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Coauthorship Networks and Research Output✩

Michael D. Königa, Xiaodong Liub, Christian Zimmermannc
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Abstract

We study the impact of research collaborations in coauthorship networks on total research
output. Through the links in the collaboration network researchers create spillovers not only
to their direct coauthors but also to researchers indirectly linked to them. We characterize the
interior equilibrium when multiple agents spend effort in multiple, possibly overlapping projects,
and there are interaction effects in the cost of effort.

Key words: coauthor networks, economics of science
JEL: C72, D85, D43, L14, Z13

1. Introduction

We build a micro-founded model of scientific co-authorship that incorporates and generalizes

previous ones in the literature [cf. e.g. Ballester et al., 2006; Cabrales et al., 2010; Jackson

and Wolinsky, 1996]. We characterize the interior equilibrium when multiple agents spend

effort in multiple, possibly overlapping projects, and there are interaction effects in the cost of

effort. While we assume that the allocation of agents into different projects is exogenous (and

determined by some underlying meeting process), the endogenous choice of efforts makes the

network of positive efforts endogenous, and in this sense we consider an endogenous network

formation model. The equilibrium solution to this model then allows us to study the impact of

individual researchers on total research output.

There exists a growing literature, both empirical and theoretical, on coauthorship networks

including Bosquet and Combes [2013]; Ductor [2011]; Ductor et al. [2013]; Fafchamps et al.

[2010]; Goyal et al. [2006], Newman [2001a,b,c,d, 2004], König [2011], Ballester et al. [2006];

Cabrales et al. [2010]; Calvó-Armengol et al. [2009], Azoulay et al. [2010]; Waldinger [2010,

2012] and König et al. [2014]; Liu et al. [2011]. In particular, our paper is related to the

recent ones by Baumann [2014] and Salonen [2014], where agents choose time to invest into

bilateral relationships. Our model extends the setups considered in these papers to allow for
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are those of individual authors and do not necessarily reflect official positions of the Federal Reserve Bank of St.
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(Xiaodong Liu), zimmermann@stlouisfed.org (Christian Zimmermann)
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investments into multiple projects involving more than two agents. Moreover, Bimpikis et al.

[2014] analyze firms competing in quantities à la Cournot across different markets with a similar

linear-quadratic payoff specification, and allow firms to choose endogenously the quantitites sold

to each market. In contrast, the efforts invested by the agents in different projects in our model

are strategic complements, and not substitutes as in their paper.

2. Production Function

Assume that there are s = 1, . . . , p research projects. Let the production function for project s

be given by

Ys(G, es) =
∑

i∈Ns

αieis +
β

2

∑

i∈Ns

∑

j∈Ns\{i}

eisejs =
∑

i∈Ns

eis



αi +
β

2

∑

j∈Ns\{i}

ejs



 , (1)

where eis is the research effort of agent i in project s, Ns is the set of agents participating

in project s, αi is the ability/skill of researcher i and β is a spillover parameter from comple-

mentarities between the research efforts of coauthors. If efforts are measured in logs then Ys

corresponds to a translog production function [cf. Christensen et al., 1973, 1975]. The translog

production function can be viewed as an exact production function, a second order Taylor ap-

proximation to a more general production function or a second order approximation to a CES

production function [cf. Adams, 2006].1

3. Payoffs

In the following we study two alternative payoff specifications.2 The assumption of a convex

separable cost is similar to the model studied in Adams [2006]. The introduction of a quadratic

cost with substitutes or complements, depending on the sign of the parameters φss′ , is similar

to Cohen-Cole et al. [2012], and it includes the case of a convex total cost as a special case when

φs,s′ = γ, and the the case of a convex separable cost when φs,s′ = γδs,s′ . A theoretical model

with only two activities is studied in Belhaj and Deröıan [2014], and an empirical analysis is

provided in Liu [2014].

1A related specification, however, without allowing agents to spend effort across different projects, can be
found in Ballester et al. [2006].

2Table 1 gives an overview of possible extensions and alternative specifications.
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3.1. Convex Separable Costs

The payoff of agent i is given by

πi(G, e) =

p
∑

s=1

(

Ys(G, es)−
γ

2
e2is

)

δis

=

p
∑

s=1





∑

j∈Ns

αjejs +
β

2

∑

j∈Ns

∑

k∈Ns\{j}

ejseks −
γ

2
e2is



 δis

=

p
∑

s=1





∑

j∈Ns

ejs



αj +
β

2

∑

k∈Ns\{j}

eks



−
γ

2
e2is



 δis, (2)

where ns = |Ns| is the number of agents participating in project s, and it holds that ns =
∑n

i=1 δis with δis ∈ {0, 1} indicating whether i is participating in project s.

Proposition 1. Let the payoff function for each agent i = 1, . . . , n be given by Equation (2).

Then the unique interior Nash equilibrium effort levels are given by

eis =
αi

β + γ
+

β

(β + γ)(γ − β(ns − 1))

∑

j∈Ns

αj. (3)

for each agent i = 1, . . . , n and each project s = 1, . . . , p.

Inserting effort levels from Equation (21) into the production function from Equation (1)

yields

Ys(G) =
∑

i∈Ns

eis



αi +
β

2

∑

j∈Ns\{i}

ejs





=
1

2

∑

i∈Ns

eis (αi + γeis)

=
1

2

∑

i∈Ns

(

αieis + γe2is
)

=
1

2

∑

i∈Ns



αi





αi

β + γ
+

β

γ − β(ns − 1)

∑

j∈Ns

αj

β + γ



+ γ





αi

β + γ
+

β

γ − β(ns − 1)

∑

j∈Ns

αj

β + γ





2

 .

(4)

The model in this section assumes that efforts invested by an agent across different projects

are independent. This assumption is relaxed in the more general setup analyzed in the following

section.

3.2. Quadratic Costs with Substitutes/Complements

In the following we introduce a cost given by the quadratic form, 1
2

∑p
s,s′=1 φs,s′eiseis′δisδis′ =

1
2 ẽ

⊤
i φẽi, where φs,s′ = φs′,s, ẽi = (ẽi1, . . . , ẽip)

⊤ and ẽis = eisδis. This cost is convex if and
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only if the p × p matrix φ is positive definite. The case of a quadratic cost includes the case

of a convex total cost as a special case when φs,s′ = γ, and the case of a convex separable cost

discussed in Section 3.1 when φs,s′ = γδs,s′ .

The payoff of agent i is given by

πi(G, e) =

p
∑

s=1

Ys(G, es)δis −
1

2

p
∑

s,s′=1

φs,s′eiseis′δisδis′

=

p
∑

s=1





∑

j∈Ns

αjejs +
β

2

∑

j∈Ns

∑

k∈Ns\{j}

ejseks



 δis −
1

2

p
∑

s,s′=1

φs,s′eiseis′δisδis′

=

p
∑

s=1





∑

j∈Ns

ejs



αj +
β

2

∑

k∈Ns\{j}

eks







 δis −
1

2

p
∑

s,s′=1

φs,s′eiseis′δisδis′ , (5)

where ns = |Ns| is the number of agents participating in project s, and it holds that ns =
∑n

i=1 δis with δis ∈ {0, 1} indicating whether i is participating in project s.

Proposition 2. Let the payoff function for each agent i = 1, . . . , n be given by Equation (5)

and assume that

φss′ =







γ, if s′ = s,

ρ, otherwise.

Denote by

ϕis ≡
ρβδis

(β(ns − 1) + ρ− γ)(β + γ + ρ(di − 1))
,

µs(α) ≡
n
∑

i=1

ραidiδis

(β(ns − 1) + ρ− γ)(β + γ + ρ(di − 1))
−

1

β(ns − 1) + ρ− γ

n
∑

i=1

αiδis,

ωss′ ≡
n
∑

i=1

ϕisδis′ .

Further, let Ω ≡ (ωss′)1≤s,s′≤p, assume that the matrix Ip − Ω is invertible, and define by

ǫ ≡ (Ip − Ω)−1µ(α). Then, for β small enough, the unique interior Nash equilibrium effort

levels are given by

eis =
1

β + γ − ρ

[

βǫs + αi −
ρ

β + γ + ρ(di − 1)

(

p
∑

s′=1

δis′ǫs′ + αidi

)]

, (6)

if δis = 1 for each agent i = 1, . . . , n and each project s = 1, . . . , p. Further, the total effort

spent in project s is given by ǫs.

4



1

(

e11
e12

)

2

(
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(

0
e32
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2

Figure 1: The network analyzed in Example 1. The effort levels of the individual agents for each project they
are involved in are indicate next to the nodes.

Inserting Equation (6) into the production function from Equation (1) gives

Ys(G) =
∑

i∈Ns

αieis + β
∑

i∈Ns

∑

j∈Ns\{i}

eisejs

=
∑

i∈Ns

eis



αi + β
∑

j∈Ns\{i}

ejs





=
∑

i∈Ns

δis

β + γ − ρ

[

βǫs + αi −
ρ

β + γ + ρ(di − 1)

(

p
∑

s′=1

δis′ǫs′ + αidi

)]

×







αi + β
∑

j∈Ns\{i}

δjs

β + γ − ρ

[

βǫs + αj −
ρ

β + γ + ρ(dj − 1)

(

p
∑

s′=1

δjs′ǫs′ + αjdj

)]







.

(7)

We will illustrate the equilibrium characterization of Proposition 2 in several examples that

follow.

Example 1. Consider a network with 2 projects and 3 agents, where in the first project agents 1

and 2 are collaborating and in the second project agents 1 and 3 are collaborating. An illustration

can be found in Figure 1. The payoffs of the agents are given by

π1 = e11

(

α1 +
β

2
e21

)

+ e21

(

α2 +
β

2
e11

)

+ e12

(

α1 +
β

2
e32

)

+ e32

(

α3 +
β

2
e12

)

−
γ

2
e211 −

γ

2
e212 − ρe11e12

π2 = e11

(

α1 +
β

2
e21

)

+ e21

(

α2 +
β

2
e11

)

−
γ

2
e221

π3 = e12

(

α1 +
β

2
e32

)

+ e32

(

α3 +
β

2
e12

)

−
γ

2
e232.
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The first order conditions are given by

∂π1

∂e11
= α1 + e21β − e11γ − e12ρ = 0

∂π1

∂e12
= α1 + e32β − e12γ − e11ρ = 0

∂π2

∂e21
= α2 + e11β − e21γ = 0

∂π3

∂e32
= α3 + e12β − e32γ = 0.

Solving this system of equations directly yields

e11 = −
(β − γ)(β + γ)(α2β + α1γ) + γ(α3β + α1γ)ρ

(β2 − γ2)2 − γ2ρ2
,

e12 = −
(β − γ)(β + γ)(α3β + α1γ) + γ(α2β + α1γ)ρ

(β2 − γ2)2 − γ2ρ2
,

e21 = −
(β − γ)(β + γ)(α1β + α2γ) + β(α3β + α1γ)ρ+ α2γρ

2

(β2 − γ2)2 − γ2ρ2
,

e32 = −
(β − γ)(β + γ)(α1β + α3γ) + β(α2β + α1γ)ρ+ α3γρ

2

(β2 − γ2)2 − γ2ρ2
. (8)

Next, we compute the above equilibrium effort levels using the equilibrium characterization in

Equation (6). Note that d = (di)1≤i≤3 = (2, 1, 1)⊤, n = (ns)1≤s≤2 = (2, 2)⊤,

δ = (δis)1≤i≤3,1≤s≤2 =







1 1

1 0

0 1






,

and

ϕ = (ϕis)1≤i≤3,1≤s≤2 =









βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β+γ)(β−γ+ρ) 0

0 βρ
(β+γ)(β−γ+ρ)









.

Further, we have that α = (α1, α2, α3)
⊤ and

µ(α) =







α2

(

−1+ ρ
β+γ

)

+α1

(

−1+ 2ρ
β+γ+ρ

)

β−γ+ρ

α3

(

−1+ ρ
β+γ

)

+α1

(

−1+ 2ρ
β+γ+ρ

)

β−γ+ρ






.

Next, we have that

Ω =

(

βρ(2(β+γ)+ρ)
(β+γ)(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ(2(β+γ)+ρ)
(β+γ)(β−γ+ρ)(β+γ+ρ)

)

,

6
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Figure 2: Equilibrium effort levels for agent 1 with α1 = 0.2, α2 = 0.1, α3 = 0.9, ρ = 0.05 (left panel), ρ = 0.25
(right panel) and γ = 1.

and hence

ǫ = (I2 −Ω)−1µ(α) =





(α1+α2)(β−γ)(β+γ)2+(β+γ)(α3β+α1γ)ρ+α2γρ
2

γ2ρ2−(β2−γ2)2

(α1+α3)(β−γ)(β+γ)2+(β+γ)(α2β+α1γ)ρ+α3γρ
2

γ2ρ2−(β2−γ2)2



 .

Inserting the above expressions into Equation (6) yields exactly the equilibrium effort levels of

Equation (8). An illustration of the equilibrium effort levels for agent 1 with α1 = 0.2, α2 = 0.1,

α3 = 0.9, γ = 1 and two different values of ρ = 0.05 and ρ = 0.25 is shown in Figure 2. We

observe that with increasing values of β the effort spent by agent 1 on project 2 is increasing

more that the effort spent on project 1. The reason is that with increasing β the complementarity

effects between efforts of collaborating agents become stronger, and this effect is more pronounced

for the collaboration of agent 1 with the more productive agent 3, than with the less productive

agent 2. Moreover, when the cost parameter ρ is high enough, then agent 1 may even spend less

effort in equilibrium in the project with agent 1 than for higher values of β than for low values

of β.

Example 2. Consider a network with 2 projects and 4 agents, where in the first project agents

1, 2 and 3 are collaborating while in the second project agents 2 and 4 are collaborating. An

illustration can be found in Figure 3. The payoffs of the agents are given by

π1 = e11

(

α1 +
β

2
(e21 + e31)

)

+ e21

(

α2 +
β

2
(e11 + e31)

)

+ e31

(

α3 +
β

2
(e11 + e21)

)

−
γ

2
e211

π2 = e21

(

α2 +
β

2
(e11 + e31)

)

+ e11

(

α1 +
β

2
(e21 + e31)

)

+ e31

(

α3 +
β

2
(e11 + e21)

)

+ e22

(

α2 +
β

2
e42

)

+ e42

(

α4 +
β

2
e22

)

−
γ

2
e221 −

γ

2
e222 − ρe21e22

π3 = e31

(

α3 +
β

2
(e11 + e21)

)

+ e11

(

α1 +
β

2
(e21 + e31)

)

+ e21

(

α2 +
β

2
(e11 + e31)

)

−
γ

2
e231

π4 = e42

(

α4 +
β

2
e22

)

+ e22

(

α2 +
β

2
e42

)

−
γ

2
e242.
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(
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Figure 3: The network analyzed in Example 2. The effort levels of the individual agents for each project they
are involved in are indicate next to the nodes.

The first order conditions are given by

∂π1

∂e11
= α1 + (e21 + e31)β − e11γ = 0

∂π2

∂e21
= α2 + (e11 + e31)β − e21γ − e22ρ = 0

∂π2

∂e22
= α2 + e42β − e22γ − e21ρ = 0

∂π3

∂e31
= α3 + (e11 + e21)β − e31γ = 0

∂π4

∂e42
= α4 + e22β − e42γ = 0.

Solving this system of equations directly yields

e11 =
(−(α2 + α3)β + α1(β − γ))(β − γ)(β + γ)2 − β(β + γ)(α4β + α2γ)ρ− γ(α3β + α1γ)ρ

2

(β − γ)(β + γ) ((2β − γ)(β + γ)2 + γρ2)
,

e21 =
−(β + γ)((α1 − α2 + α3)β + α2γ) + (α4β + α2γ)ρ

(2β − γ)(β + γ)2 + γρ2
,

e22 = −
(2β − γ)(β + γ)(α4β + α2γ) + γ((α1 − α2 + α3)β + α2γ)ρ

(β − γ) ((2β − γ)(β + γ)2 + γρ2)
,

e31 = −
(β − γ)(β + γ)2((α1 + α2 − α3)β + α3γ) + β(β + γ)(α4β + α2γ)ρ+ γ(α1β + α3γ)ρ

2

(β − γ)(β + γ) ((2β − γ)(β + γ)2 + γρ2)
,

e42 =
−(2β − γ)(β + γ)(α2β + α4γ)− β((α1 − α2 + α3)β + α2γ)ρ+ α4(β − γ)ρ2

(β − γ) ((2β − γ)(β + γ)2 + γρ2)
. (9)

Next, we compute the above equilibrium effort levels using the equilibrium characterization in

8



Equation (6). Note that d = (di)1≤i≤3 = (1, 2, 1, 1)⊤, n = (ns)1≤s≤2 = (2, 2)⊤,

δ = (δis)1≤i≤3,1≤s≤2 =













1 0

1 1

1 0

0 1













,

and

ϕ = (ϕis)1≤i≤3,1≤s≤2 =













βρ
(β+γ)(2β−γ+ρ) 0

βρ
(2β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β+γ)(2β−γ+ρ) 0

0 βρ
(β+γ)(β−γ+ρ)













.

Further, we have that α = (α1, α2, α3, α4)
⊤ and

µ(α) =





−(α1+α2+α3)(β+γ)2+α2(β+γ)ρ+(α1+α3)ρ2

(β+γ)(2β−γ+ρ)(β+γ+ρ)

α4

(

−1+ ρ
β+γ

)

+α2

(

−1+ 2ρ
β+γ+ρ

)

β−γ+ρ



 .

Next, we have that

Ω =

(

βρ(3(β+γ)+2ρ)
(β+γ)(2β−γ+ρ)(β+γ+ρ)

βρ
(2β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ(2(β+γ)+ρ)
(β+γ)(β−γ+ρ)(β+γ+ρ)

)

,

and hence

ǫ = (I2 −Ω)−1µ(α) =

(

− (α1+α2+α3)(β−γ)(β+γ)2+(β+γ)(α4β+α2γ)ρ+(α1+α3)γρ2

(β−γ)((2β−γ)(β+γ)2+γρ2)
−(α2+α4)(2β−γ)(β+γ)2−(β+γ)((α1−α2+α3)β+α2γ)ρ+α4(β−γ)ρ2

(β−γ)((2β−γ)(β+γ)2+γρ2)

)

.

Inserting the above expressions into Equation (6) yields exactly the equilibrium effort levels of

Equation (9). An example of the equilibrium effort levels for agents 3 and 4 is shown in Figure

4. The figure illustrates that with differently skilled agents, the effort of an agent in one project

might exceed the effort in another project when the complementarity parameter β increases.

Example 3. Consider a network with 3 projects and 3 agents, where in the first project agents

1 and 2 are collaborating, in the second project agents 1 and 3 are collaborating and in the third

project agents 2 and 3 are collaborating. An illustration can be found in Figure 5. The payoffs

of the agents are given by

π1 = e11

(

α1 +
β

2
e21

)

+ e21

(

α2 +
β

2
e11

)

+ e12

(

α1 +
β

2
e32

)

+ e32

(

α3 +
β

2
e12

)

−
γ

2
e211 −

γ

2
e212 − ρe11e12

π2 = e11

(

α1 +
β

2
e21

)

+ e21

(

α2 +
β

2
e11

)

+ e23

(

α2 +
β

2
e33

)

+ e33

(

α3 +
β

2
e23

)

−
γ

2
e221 −

γ

2
e223 − ρe21e23

π3 = e32

(

α3 +
β

2
e12

)

+ e12

(

α1 +
β

2
e32

)

+ e33

(

α3 +
β

2
e23

)

+ e23

(

α2 +
β

2
e33

)

−
γ

2
e232 −

γ

2
e233 − ρe32e33.
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e31

e42

0.0 0.1 0.2 0.3 0.4
0.0

0.5
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1.5

2.0

Β

e 3
1,

e 4
2

e42

e31

0.0 0.1 0.2 0.3 0.4
0.0

0.5

1.0

1.5

2.0

Β

e 3
1,

e 4
2

Figure 4: Equilibrium effort levels for agents 3 and 4 with ρ = 0.05, γ = 1, α1 = 0.2, α2 = 0.1, α3 = 0.9, α4 = 0.5
in the left panel, while α1 = 0.25, α2 = 0.25, α3 = 0.25, α4 = 0.5 in the right panel.

1





e11
e12
0





2





e21
0
e23





3

2





0
e32
e33





1

2

3

Figure 5: The network analyzed in Example 3. The effort levels of the individual agents for each project they
are involved in are indicate next to the nodes.
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The first order conditions are given by

∂π1

∂e11
= α1 + e21β − e11γ − e12ρ = 0

∂π1

∂e12
= α1 + e32β − e12γ − e11ρ = 0

∂π2

∂e21
= α2 + e11β − e21γ − e23ρ = 0

∂π2

∂e23
= α2 + e33β − e23γ − e21ρ = 0

∂π3

∂e32
= α3 + e12β − e32γ − e33ρ = 0

∂π3

∂e33
= α3 + e23β − e33γ − e32ρ = 0.

Solving this system of equations directly yields

e11 = −
(β − γ)(α2β + α1γ) + α3βρ+ α1ρ

2

(β − γ − ρ) (β2 − γ2 + βρ+ ρ2)
,

e12 = −
(β − γ)(α3β + α1γ) + α2βρ+ α1ρ

2

(β − γ − ρ) (β2 − γ2 + βρ+ ρ2)
,

e21 = −
(β − γ)(α1β + α2γ) + α3βρ+ α2ρ

2

(β − γ − ρ) (β2 − γ2 + βρ+ ρ2)
,

e23 = −
(β − γ)(α3β + α2γ) + α1βρ+ α2ρ

2

(β − γ − ρ) (β2 − γ2 + βρ+ ρ2)
,

e32 = −
(β − γ)(α1β + α3γ) + α2βρ+ α3ρ

2

(β − γ − ρ) (β2 − γ2 + βρ+ ρ2)
,

e33 = −
(β − γ)(α2β + α3γ) + α1βρ+ α3ρ

2

(β − γ − ρ) (β2 − γ2 + βρ+ ρ2)
. (10)

Next, we compute the above equilibrium effort levels using the equilibrium characterization in

Equation (6). Note that d = (di)1≤i≤3 = (2, 2, 2)⊤, n = (ns)1≤s≤3 = (2, 2, 2)⊤,

δ = (δis)1≤i≤3,1≤s≤3 =







1 1 0

1 0 1

0 1 1






,

and

ϕ = (ϕis)1≤i≤3,1≤s≤3 =









βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ) 0

βρ
(β−γ+ρ)(β+γ+ρ) 0 βρ

(β−γ+ρ)(β+γ+ρ)

0 βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)









.
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0.0
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1.5

2.0

Β

e +
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3

e+1

e+2

e+3

0.0 0.1 0.2 0.3 0.4
0.0
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1.0

1.5

2.0

Ρ

e +
1,

e +
2,

e +
3

Figure 6: Total equilibrium effort levels, e+s =
∑p

i=1 eisδis, for projects 1, 2 and 3 with γ = 1, α1 = 0.25,
α2 = 0.5, α3 = 0.75 and varying values of β in the left panel, and varying values of ρ in the right panel.

Further, we have that α = (α1, α2, α3)
⊤ and

µ(α) =









− (α1+α2)(β+γ−ρ)
(β−γ+ρ)(β+γ+ρ)

− (α1+α3)(β+γ−ρ)
(β−γ+ρ)(β+γ+ρ)

− (α2+α3)(β+γ−ρ)
(β−γ+ρ)(β+γ+ρ)









.

Next, we have that

Ω =









2βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

2βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

βρ
(β−γ+ρ)(β+γ+ρ)

2βρ
(β−γ+ρ)(β+γ+ρ)









,

and hence

ǫ = (I2 −Ω)−1µ(α) =









− (α1+α2)(β−γ)(β+γ)+2α3βρ+(α1+α2)ρ2

(β−γ−ρ)(β2−γ2+βρ+ρ2)

− (α1+α3)(β−γ)(β+γ)+2α2βρ+(α1+α3)ρ2

(β−γ−ρ)(β2−γ2+βρ+ρ2)

− (α2+α3)(β−γ)(β+γ)+2α1βρ+(α2+α3)ρ2

(β−γ−ρ)(β2−γ2+βρ+ρ2)









.

Inserting the above expressions into Equation (6) yields exactly the equilibrium effort levels of

Equation (10). The total equilibrium effort levels for projects 1, 2 and 3 are shown in Figure 6

for varying values of β and ρ.

A more compact characterization of the equilibrium effort levels of Proposition 2 can be

obtained in the special case of complete network [cf. e.g. Salonen, 2014]. Assume that δis = 1

for all i = 1, . . . , n. From Equation (25) we then get

p
∑

s′=1

eis′φs′,sδisδis′ = αiδis + β
∑

j∈Ns\{i}

ejsδjsδis, (11)

for i = 1, . . . , n and s = 1, . . . , p. Let es = [e1sδ1s, . . . , ensδns]
⊤ be a vector of effort levels

that agents 1, . . . , n put into project s. Let E = [e1, . . . , ep] be the n× p matrix with columns

given by es for s = 1, . . . , p. Further, denote by wij,s = δisδjs for i 6= j and wii,s = 0, and let

12



Ws = [wij,s]1≤i,j≤n be an n × n matrix with elements wij,s ∈ {0, 1} indicating whether agents

i and j are participating in project s. Moreover, we denote by α̃is = αiδis, αs = (α̃1s, . . . , α̃ns)

and let A = [α1, . . . ,αp] be the n × p matrix with columns given by αs. Then we can write

Equation (26) in matrix form as follows

Eφ = A+ β[W1e1, . . . ,Wpep]. (12)

Note that the n × p matrix [W1e1, . . . ,Wpep] is composed of n × 1 column vectors Wses for

s = 1, . . . , p. We next apply a vectorization to both sides of Equation (12) to obtain3

vec(Eφ) = vec(A) + β













W1e1

W2e2
...

Wpep













. (13)

Using the fact that

vec(Eφ) = (φ⊗ In)vec(E),

and












W1e1

W2e2
...

Wpep













=













W1 0 · · ·

0 W2

0 · · ·
. . .

0 · · · Wp

























e1

e2
...

ep













= diag(Ws)
p
s=1vec(E),

we can write Equation (13) as follows

(φ⊗ In)vec(E) = vec(A) + βdiag(Ws)
p
s=1vec(E). (14)

Next, denoting by e = vec(E), W = diag(Ws)
p
s=1 and α = vec(A), we can write Equation (14)

as

(φ⊗ In)e = α+ βWe. (15)

When the matrix (φ ⊗ In + βW)−1 is invertible, we then obtain the equilibrium effort levels

given by

e = (φ ⊗ In + βW)−1α. (16)

An alternative compact form of the equilibrium effort levels can be obtain using the line

3For example, for the 2× 2 matrix

[

a b

c d

]

, the vectorization is vec(A) =









a

c

b

d









[cf. e.g. Dhrymes, 1984, Chap.

4].
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1 2 3

1 2 3 e11 e12 e32

e33e23e21

Figure 7: (Left panel) The bipartite collaboration network G corresponding to the network shown in Figure 5,
where round circles represent authors, squares represent projects and lines indicate the efforts agents invest into
the different projects. (Right panel) The line graph L(G) associated with the collaboration network G in which
each node represents the effort an author invests into different projects. Solid lines indicate nodes sharing a
project while dashed lines indicate nodes with the same author.

graph4 representation of the collaboration network G similar to Bimpikis et al. [2014]. An

example is shown in Figure 7. The network corresponds to the one shown in Figure 5. First

note that the FOC of the effort levels can be written as (see Equation (29) in the proof of

Proposition 2 in Appendix A)

eisδis +
ρδis

β + γ − ρ

p
∑

s=1

eisδis −
βδis

β + γ − ρ

∑

j∈Ns

ejsδjs =
1

β + γ − ρ
αiδis.

Then, introducing the matrix

Γis,jk =



















ρ if i = j, s 6= k,

−β if i 6= j, s = k,

0 otherwise,

we can write for the vector e of stacked agent-project effort levels, eis, the following

(

I+
1

β + γ − ρ
Γ

)

e =
1

β + γ − ρ
α,

where α is a stacked vector with elements αiδis, so that, when the matrix I + 1
β+γ−ρ

Γ is

invertible, we can write the equilibrium effort levels as follows

e =
1

β + γ − ρ

(

I+
1

β + γ − ρ
Γ

)−1

α.

Observe that the matrix Γ represents a weighted matrix of the line graph L(G) of the bipartite

collaboration network G, where each link between nodes sharing a project has weight −β, and

each link between nodes sharing an author have weight ρ.

4Given a graph G, its line graph L(G) is a graph such that each node of L(G) represents an edge of G, and
two nodes of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G [cf. e.g.
West, 2001].
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4. Conclusion

We have analyzed the equilibrium efforts of agents involved in multiple, possibly overlapping

projects. We show that, given an allocation of researchers to different projects, the Nash

equilibrium can be completely characterized.

We have focussed on two particular specifications, the case of convex separable costs (see

Section 3.1) and the case of a quadratic costs with substitutes or complements (see Section 3.2).

The assumption of a convex separable cost is similar to the model studied in Adams [2006].

The introduction of a quadratic cost with substitutes or complements, depending on the sign of

the parameters φss′ , is similar to Cohen-Cole et al. [2012], and it includes the case of a convex

total cost as a special case when φs,s′ = γ, and the the case of a convex separable cost when

φs,s′ = γδs,s′ . For the special case of only two activities, a theoretical model is studied in Belhaj

and Deröıan [2014], and an empirical analysis is provided in Liu [2014].

Our analysis can be extended along several directions. First, we can allow the returns of an

agent from participating in a project to be split equally among the participants of the project

similar to the models studied in Jackson andWolinsky [1996]; Kandel and Lazear [1992]. Second,

instead of a convex cost, we can introduce a time constraint as in Baumann [2014]; Salonen

[2014]. These extensions and the relation to the current setup are summarized in Table 1.
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return independent of return decreasing with
number of authors number of authors

convex separable
πi =

∑p
s=1

(

Ys −
γ
2 e

2
is

)

δis πi =
∑p

s=1

(

1
ns
Ys −

γ
2 e

2
is

)

δiscost

convex total
πi =

∑p
s=1 Ysδis −

γ
2 (
∑p

s=1 eisδis)
2

πi =
∑p

s=1
1
ns
Ysδis −

γ
2 (
∑p

s=1 eisδis)
2

cost

quadratic cost with
πi =

∑p
s=1 Ysδis −

1
2

∑p
s,s′=1 φs,s′eiseis′δisδis′ πi =

∑p
s=1

1
ns
Ysδis −

1
2

∑p
s,s′=1 φs,s′eiseis′δisδis′

substitutes/complements

time
πi =

∑p
s=1 Ysδis s.t.

∑p
s=1 eisδis = 1 πi =

∑p
s=1

1
ns
Ysδis s.t.

∑p
s=1 eisδis = 1

constraint

Table 1: The alternative payoff specifications, πi, for i = 1, . . . , n analyzed in Section 3. The output Ys of project s is given in Equation (1). The
case of convex separable costs is studied in Section 3.1. The case of a quadratic costs with substitutes or complements is studied in Section 3.2.
The case of a quadratic cost includes the case of a convex total cost as a special case when φs,s′ = γ, and the case of a convex separable cost when
φs,s′ = γδs,s′ .
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Cabrales, A., Calvó-Armengol, A., and Zenou, Y. (2010). Social interactions and spillovers.

Games and Economic Behavior.
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Appendix

A. Proofs

Proof of Proposition 1. The first order condition (FOC) wrt eis is given by5

∂πi(G, e)

∂eis
=

p
∑

s′=1

(

∂Ys′(G, es′)

∂eis
− γeis′

)

δis′ =



αi + β
∑

j∈Ns\{i}

ejs



 δis − γeisδis = 0, (17)

where we have used the fact that

∂Ys′(G, es′)

∂eis
=

{

αi + β
∑

j∈Ns\{i}
ejs, if s = s′,

0, otherwise.

From Equation (30) we get

eis =
αi

γ
+

β

γ

∑

j∈Ns\{i}

ejs, (18)

for all projects s in which i is participating. Further, Equation (18) can be written as

(

1 +
β

γ

)

eis =
αi

γ
+

β

γ

∑

j∈Ns

ejs, (19)

and

eis =
αi

β + γ
+

β

β + γ

∑

j∈Ns

ejs. (20)

Summation over i ∈ Ns gives

∑

j∈Ns

ejs =
1

β + γ

∑

j∈Ns

αj +
βns

β + γ

∑

j∈Ns

ejs,

and we get
(

1−
βns

β + γ

)

∑

j∈Ns

ejs =
1

β + γ

∑

j∈Ns

αj .

Hence
∑

j∈Ns

ejs =
1

γ − β(ns − 1)

∑

j∈Ns

αj.

Inserting into Equation (20) yields

eis =
αi

β + γ
+

β

(β + γ)(γ − β(ns − 1))

∑

j∈Ns

αj. (21)

5Observe that the second order condition (SOC) is given by ∂2πi(G,e)

∂e2
is

= −γδis ≤ 0.
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This allows us to determine the individual effort eis of agent i in project s. Denoting by α̃i ≡
αi

β+γ

we can write Equation (21) as

eis = α̃i +
β

γ − β(ns − 1)

∑

j∈Ns

α̃j. (22)

Further, denoting by β̃s ≡
β

γ−β(ns−1) this can be simplified to

eis = α̃i + β̃s
∑

j∈Ns

α̃j. (23)

From Equation (18) we have that

β
∑

j∈Ns\{i}

ejs = γeis − αi,

Inserting into the production function from Equation (1) yields

Ys(G) =
∑

i∈Ns

eis



αi +
β

2

∑

j∈Ns\{i}

ejs





=
1

2

∑

i∈Ns

eis (αi + γeis)

=
1

2

∑

i∈Ns

(

αieis + γe2is
)

=
1

2

∑

i∈Ns



αi



α̃i + β̃s
∑

j∈Ns

α̃j



+



α̃i + β̃s
∑

j∈Ns

α̃j





2



=
1

2

∑

i∈Ns



αi





αi

β + γ
+

β

γ − β(ns − 1)

∑

j∈Ns

αj

β + γ



+ γ





αi

β + γ
+

β

γ − β(ns − 1)

∑

j∈Ns

αj

β + γ





2

 .

(24)

Proof of Proposition 2. The first order condition (FOC) wrt. eis is given by6

∂πi(G, e)

∂eis
=

p
∑

s′=1

δis′
∂Ys′(G, es′)

∂eis
−δis

p
∑

s′=1

φs,s′eis′δis′ =



αi + β
∑

j∈Ns\{i}

ejs



 δis−δis

p
∑

s′=1

φs,s′eis′δis′ = 0,

(25)
where we have used the fact that

∂Ys′(G, es′)

∂eis
=

{

αi + β
∑

j∈Ns\{i}
ejs, if s = s′

0, otherwise.

6Observe that the second order condition (SOC) is given by ∂2πi(G,e)

∂e2
is

= −φssδis ≤ 0.
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From Equation (25) we get

p
∑

s′=1

eis′φs′,sδisδis′ = αiδis + β
∑

j∈Ns\{i}

ejsδjsδis, (26)

for i = 1, . . . , n and s = 1, . . . , p. In the following we denote by

ẽis =

{

eis, if i ∈ Ns,

0, otherwise.
(27)

That is, we define ẽis ≡ δiseis. Then we can write

δis

p
∑

s′=1

ẽis′φs′,s = αiδis + βδis
∑

j∈Ns\{i}

ẽjs, (28)

In the following we assume that

φss′ =

{

γ, if s′ = s,

ρ, otherwise.

Then we obtain from Equation (28) that

γẽis + ρδis

p
∑

s′ 6=s

ẽis′ = αiδis + βδis
∑

j∈Ns\{i}

ẽjs, (29)

which can be written as follows

(γ − ρ)ẽis + ρδis

p
∑

s′=1

ẽis′ = αiδis + βδis
∑

j∈Ns\{i}

ẽjs.

We can write this as

(β + γ − ρ)ẽis + ρδis

p
∑

s′=1

ẽis′ = αiδis + βδis
∑

j∈Ns

ẽjs,

and hence

δisẽ+s =
β + γ − ρ

β
ẽis −

αi

β
δis +

ρ

β
δisẽi+, (30)

where we have denoted by

ẽ+s ≡
∑

j∈Ns

ẽjs,

ẽi+ ≡

p
∑

s=1

ẽis.

Summing over all i ∈ Ns yields

nsẽ+s =
β + γ − ρ

β
ẽ+s −

1

β

∑

i∈Ns

αiδis +
ρ

β

∑

i∈Ns

ẽi+.
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Solving for ẽ+s gives

ẽ+s =
ρ

β(ns − 1) + ρ− γ

∑

i∈Ns

ẽi+ −
1

β(ns − 1) + ρ− γ

∑

i∈Ns

αi. (31)

Next, summation over all projects s involving agent i in Equation (30) yields

p
∑

s=1

δisẽ+s =
β + γ − ρ

β

p
∑

s=1

ẽis −
αi

β

p
∑

s=1

δis +
ρ

β
ẽi+

p
∑

s=1

δis,

and denoting by

di ≡

p
∑

s=1

δis,

we get
p
∑

s=1

δisẽ+s =
β + γ + ρ(di − 1)

β
ẽi+ −

1

β
αidi. (32)

Solving for ẽi+ gives

ẽi+ =
β

β + γ + ρ(di − 1)

p
∑

s=1

δisẽ+s +
1

β + γ + ρ(di − 1)
αidi.

Summation over all i ∈ Ns yields

∑

i∈Ns

ẽi+ =
∑

i∈Ns

β

β + γ + ρ(di − 1)

p
∑

s′=1

δis′ ẽ+s′ +
∑

i∈Ns

1

β + γ + ρ(di − 1)
αidi. (33)

Inserting Equation (33) into Equation (31) gives

ẽ+s =
n
∑

i=1

ρβδis

(β(ns − 1) + ρ− γ)(β + γ + ρ(di − 1))

p
∑

s′=1

δis′ ẽ+s′

+

n
∑

i=1

ραidiδis

(β(ns − 1) + ρ− γ)(β + γ + ρ(di − 1))

−
1

β(ns − 1) + ρ− γ

n
∑

i=1

αiδis. (34)

In the following we denote by

ϕis ≡
ρβδis

(β(ns − 1) + ρ− γ)(β + γ + ρ(di − 1))
,

µs(α) ≡
n
∑

i=1

ραidiδis

(β(ns − 1) + ρ− γ)(β + γ + ρ(di − 1))
−

1

β(ns − 1) + ρ− γ

n
∑

i=1

αiδis.
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Then we can write Equation (34) as follows

ẽ+s =

n
∑

i=1

ϕis

p
∑

s′=1

δis′ ẽ+s′ + µs(α)

=

p
∑

s′=1

ẽ+s′

n
∑

i=1

ϕisδis′

=

p
∑

s′=1

ωss′ ẽ+s′ + µs(α),

where we have denoted by

ωss′ ≡
n
∑

i=1

ϕisδis′ .

Further, let ǫ ≡ (ẽ+1, . . . , ẽ+p)
⊤ and Ω ≡ (ωss′)1≤s,s′≤p, then we can write the above equation

in vector-matrix form as
ǫ = Ωǫ+ µ(α).

That is
(Ip −Ω)ǫ = µ(α).

When the matrix Ip −Ω is invertible, then we can write

ǫ = (Ip −Ω)−1µ(α). (35)

Next, inserting Equation (35) into Equation (32) gives

p
∑

s=1

δisǫs =
β + γ + ρ(di − 1)

β
ẽi+ −

1

β
αidi,

so that

ẽi+ =
β

β + γ + ρ(di − 1)

p
∑

s=1

δisǫs +
1

β + γ + ρ(di − 1)
αidi. (36)

Moreover, note that Equation (30) can be written as

ẽis =
β

β + γ − ρ
δisẽ+s +

1

β + γ − ρ
αiδis −

ρ

β + γ − ρ
δisẽi+. (37)

Inserting Equations (36) and (35) into Equation (37) gives

ẽis =
β

β + γ − ρ
δisǫs +

1

β + γ − ρ
αiδis

−
ρβ

(β + γ − ρ)(β + γ + ρ(di − 1))
δis

p
∑

s′=1

ǫs′δis′

−
ρ

(β + γ − ρ)(β + γ + ρ(di − 1))
δisαidi. (38)
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Equation (38) can be written as follows

ẽis =
δis

β + γ − ρ

[

βǫs + αi −
ρ

β + γ + ρ(di − 1)

(

p
∑

s′=1

δis′ǫs′ + αidi

)]

. (39)
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