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ESTIMATING THE TERM STRUCTURE OF
INTEREST RATES: THE SWISS CASE

Iwan Meier*

December 29, 1999

Abstract

Parametric estimation approaches are widely by central banks as
they produce smooth term structures with relatively few parameters.
In the paper I implement the Nelson and Siegel (1987) model for
Switzerland. The estimations use daily observations of Swiss govern-
ment bonds from January 1994 to July 1998. To overcome the lack of
suffient data in the very short run, the 1-month and 1-year Euromarket
rate are added. The knowledge of the dependencies of the term struc-
ture from the possible parameter constellations is used to calibrate the
model for the Swiss market. The results show that the parameters are
stable over time. The smooth shape and the stablility over time make
it a valuable tool for monetary policy.

Keywords: Term structure of interest rates, Interpolation
JEL code: E43

1 Introduction

This paper estimates the Swiss term structure using non-callable govern-
ment bonds. As zero coupon bonds are not traded on the Swiss government
bond market, we cannot derive the spot rate curve directly. I therefore use
the Nelson and Siegel (1987) procedure to derive the term structure from
coupon-bearing bonds for daily observations of Swiss government bonds over
the period from January 1994 to July 1998. The Nelson/Siegel model ap-
proximates the shape of the term structure with a sequence of exponential
terms. The aim is to get a smooth term structure that is flexible enough to
replicate the shape of the actual term structure. A smooth term structure
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and suggestions. All errors are my respounsibility. Research support from the Studienzen-
trum Gerzensee and the Fordervereinigung of the Swiss Institute of Banking and Finance,
University of St. Gallen, is gratefully acknowledged.



implies stable forward rates, a desirable property for the interpretation in
monetary policy as well as for pricing interest rate derivatives. The main
emphasis of the paper is placed on the numerical implementation for the
Swiss market. I show how on economic grounds one can set up boundaries
and restrictions that ensure convergence of the optimization process. To-
gether with the starting values, these boundaries are crucial to guarantee an
accurate term structure estimation on all 1176 observation days.

The remainder of the paper is organized as follows. Section 2 reviews
the literature and the experience from other countries. Section 3 describes
the basic concepts which are important for estimating and interpreting the
term structure. The Nelson/Siegel model is presented in section 4 followed
by an description of the different steps to estimate the model in section 5.
Section 6 presents the empirical results of the application to daily prices of
Swiss government bonds from January 24, 1994 to July 31, 1998. Section 7
summarizes the paper and makes concluding remarks.

2 The Experience with Term Structure Models
Based on Bond Data

The method by Nelson and Siegel (1987) and the extended version by Svens-
son (1994) are widely used by central banks. Among others, the Bank of
England, the Deutsche Bundesbank, the Osterreichische Nationalbank and
the Banque de France make use of these estimation techniques. Nelson and
Siegel (1987) propose the model to fit a term structure to U.S. Treasury
bill yields. They use 37 monthly samples from January 1981 through Octo-
ber 1983. The objective of their empirical work was to find a parsimonious
model that is adequate to describe the relationship between interest rates
and time to maturity. Svensson (1994) applies his extension to weekly data
from Sweden for the period from May 1992 to June 1994. He demonstrates
the estimation and the interpretation of the term structure as an indicator
of market expectations of future short rates, monetary policy, inflation rates
and currency depreciation rates. Both methods have become popular as
they reconcile the following three characteristics:

e Sufficient flexibility to reflect the important and typical patterns of
the observed market data.

e Relatively robust against disturbances from individual observations.
e Applicable with only a few observations.

In November 1994 the Bank of England adopted the Svensson (1994)
technique for estimating yield curves from government bonds.! The in-

! Before using the Svensson approach, the Bank of England fitted a cubic spline through
yields to maturity by minimizing the squared differences between observed and fitted



troduction and the institutional adaptations are summarized by Breedon
(1995) in the Quarterly Report of the Bank of England. Deacon and Derry
(1994a; 1994b)? report on the evaluation of different alternatives. In the
United Kingdom investors who face a marginal income tax rate but no tax-
ation on capital gains form a large proportion of the market so that low
coupon bonds carry a price premium. The Bank of England therefore intro-
duces two further parameters to capture these tax effects.

The Deutsche Bundesbank followed in fall 1997 and introduced the Svens-
son (1994) approach in their publications. Schich (1997) describes in detail
the numerical specifications chosen by the Bundesbank. It replaced the
yield curve approximated by a linear-logarithmic regression analysis that is
described in the appendix of the “Monatsberichte der Deutschen Bundes-
bank” (1983; 1991)*. The Bundesbank announced the change in method in
the Monatsbericht (1997). The same article graphically illustrates how the
new approach allows for more flexibility and enumerates the advantages. For
example, (a) implied forward rates can be directly derived from the given
spot rates, (b) expectations can be analyzed with better accuracy and (c) as

yields. The estimation procedure also included adjustments for tax effects by modelling
the dependence of the yield from coupon and maturity. Steeley (1991) criticizes the
imprecise estimation results of conventional spline estimations.

?The working paper (1994b) describes the whole research process. The following list of
models has been investigated by the Bank of England: McCulloch (1975), Schaefer (1981),
Nelson and Siegel (1987) and Svensson (1994). The Quarterly Report (1994a) provides a
survey of the main results.

3The parameters to adjust for tax effects are described by Cooper and Steeley (1996):
(a) In the United Kingdom bonds trade ex-dividend during a certain period of the year.
The preferential tax treatment of capital gains compared to coupon income results in
a price premium for ex-dividend traded bonds. (b) Another source for a possible price
premium is the declariation of some bonds as Free Of Tax for Residents Abroad (FOTRA).

4The approach was based on government debt (Bund, Bahn and Post). Bonds were
sorted according to time to maturity. Then an average group rate R was calculated for each
time to maturity segment i. Before 1983, the influence of the level of the coupons on the
price was neglected, as test calculations in 1978 have revealed no systematic relationship
between nominal return and yield to maturity (coupon effect). The estimated equation
was

T (]_%1) =B+ B T; + 85 In (Tz) )

where T; denotes the average time to maturity for a specific time to maturity segment
i. After 1978 interest rate movements on the German market increased and the coupon
effect got more important. This induced the Bundesbank in 1983 to augment the above
regression equation by two terms to account for the coupon effect. The average nominal
coupon rate was added as a second explaining factor of the term structure equation. The
resulting equation became

r (El) = ,60 + ,61 Tl + 62 In (Tz) + ,63 61 + ﬁ4 In (61)

with two additional terms depending on the average nominal coupon rate C in the time
to maturity segment ¢. Beginning in 1983 the extended version had been estimated and
the published yield term structures had been corrected by the coupon effects.



long-term interest rates converge to a constant, the term structure models
of Nelson/Siegel and Svensson produce plausible extrapolations. The for-
mer linear-logarithmic regression approach contained terms that are linearly
related to time to maturity and hence extrapolation may generate negative
or infinitely high interest rates.

The empirical investigation on the Austrian government bond market
by Brandner and Jaeger (1992) compares the Nelson/Siegel model and the
approach by the Osterreichische Kontrollbank.” The conclusion is that the
Nelson/Siegel model performs better. Geyer and Mader (1999) estimate the
Nelson/Siegel model for the Osterreichische Nationalbank. Before applying
the model to the data set of government bond yields the authors exclude
outliers.® Besides Austria, they analyze the term structure for Germany,
U.K., U.S.A. and Japan over the period from 1993 to 1998. They find, that
the Svensson model does not improve the estimation results.

Ricart and Sicsic (1995) apply the Nelson/Siegel model to French govern-
ment bonds from 1980-95. In line with Geyer and Mader (1999), they prefer
the parsimonious Nelson/Siegel model to the extension by Svensson because
at the short end of the term structure there are not enough bond yields avail-
able to accurately estimate the extended version. Using these Nelson/Siegel
term structure estimates for France, Jondeau and Ricart (1997) evaluate
the information content of the term structure regarding future changes in
interest rates and changes in inflation.

For Switzerland, Heller (1997) estimates the term structure for April 23,
1997 using the Nelson and Siegel (1987) method. He illustrates the power of
the procedure for monetary purposes and shows how information about in-
flation expectations can be extracted using the expectations hypothesis and
the Fisher equation. Sommer (1999) employs the Nelson/Siegel procedure to
estimate the term structure for different rating classes.” Tobler (1999) pro-
poses a two-step procedure that combines the Nelson/Siegel approximation
with basis spline approximation for shorter maturities.

®The approach by the Osterreichische Kontrollbank is similar to the former approach
of the Deutsche Bundesbank used until 1983. However, the dependent variable is the
logarithm of the yields, In (R).

In(R) = By + 8, In(T),

where T is again the time to maturity. For a detailed discussion see Pichler (1998).

fGeyer and Mader (1999): “First, a smoothed curve is fitted to the observed yields
using Cleveland’s (1979) smoothing algorithm. Second, yields of bonds that are ‘too
far’ from the smoothed curve are considered to be outliers and excluded. The decision
regarding outliers is based on the interquartile range and a parameter whose value has
been fixed on the basis of experiments.”

"Previous studies of Beer (1990) and Deppner (1992) compared different (non)linear
regression and optimization methods. However, both studies did not analyze the Nelson-
Siegel method.



Most studies use government bond prices, since these are regarded as
being free of default risk. However, when comparing the results for different
countries the following problems should be kept in mind.

e The estimation results depend heavily on the availability of bonds and
how they are divided along the maturity range.® Callable and con-
vertible bond prices reflect embedded options and are not comparable
to standard coupon bond prices. Therefore, these bonds should be ex-
cluded from the estimations. Furthermore, the liquidity of the market
determines the quality of the data.

e Effects of taxation can distort bond prices substantially. Research
on tax effects in estimating the term structure of interest rates goes
back to McCulloch (1971; 1975). In many countries coupon payments
and capital gains are treated differently and possibly not in the same
manner for all market participants.

e To get the economically correct yields to maturity, accrued interest
must be added to quoted bond prices. But as Cooper and Steeley
(1996) point out in their study on the G7 nations,” accrued interest is
accounted for differently across countries.

3 The Relationship between Spot Rates, Forward
Rates and Bond Yields

3.1 Spot and Forward Rates

The models implemented in this study are formulated in continuous time
and thus all relationships in this section are also expressed in continuous
time. This simplifies the notation, as multiplications in discrete time become
additive in continuous time and cross products drop out.

For each time to maturity ¢, there exists a unique underlying interest
rate, the spot rate r (¢). It is the appropriate interest rate to discount a
payment due in t years. If the spot rate is a continuously compounded
annual rate, the present value of a payment I in ¢ years equals

P =exp[-tr(t)] Fi. (1)

The spot rates for riskless assets for different times to maturity form the
term structure. These rates are independent of e.g. taxation rules or default
risk.

®In Germany e.g. there are only few bonds with time to maturity beyond 10 years,
whereas in the United Kingdom government bonds are spread along a maturity range up
to 25 years.

9The members of the G7 group are United Kingdom, Germany, France, United States,
Japan, Italy and Canada.



The exponential term exp [—t r (¢)] in equation (1) is the relevant dis-
count factor d (t) for the time period ¢. Thus, the present value of the cash
flow F} is the product of its nominal value and its discount factor.

P=d(t) F, (2)

Forward rates indicate interest rates for a time period starting at a future
point in time. Implicit forward rates are defined by the equality of the ter-
minal wealth of a long-term and a sequence of short-term investments. The
following example for a to-year strategy with continuous-time compounding
illustrates this relationship.

tar(ta) =ti7(t) + (t2 —t1) f(t1,t2), (3)

where 7 (t2) is the continuous-time spot rate for ¢, years, r (¢1) is the spot
rate for a shorter time period ¢;, and f (f1,t2) is the implied continuous-
time forward rate for the time period starting after ¢; years and ending at
to years. All spot and forward rates on both sides of the equation are known
at the initiation of the strategies. The spot rate r (t1) then indicates the
average rate over t1 years whereas the instantaneous forward rate measures
the marginal return for the period from ¢; to to. If the time period t5 — t;
is indefinitely small f (t1,ts) is called the instantaneous forward rate.'”

Equation (3) can be solved for the forward rate. In general, the contin-
uously compounded forward rate from ¢ to to is then given by

Ftate) = 2 (1) = =2 (1) @

The sequence of short-term investments on the right hand of equation (3)
side can be extended. Assume we split the time period t, in N intervals
(tn,tn+1) of equal time length. The connection between spot and forward
rates becomes

7 (tn) =

[r(t1) + f (t1,t2) + f (ta,ts) + ...+ [ (tn-1,tn)]- (5)

SEE

This formulation reveals that any spot rate can be considered as an average
of the relevant forward rates.!! The importance of the spot rate r (¢1) in the
bracket diminishes as the number of intervals increases or can be replaced
by a forward rate for a period starting in an instant and lasting until ¢;.
In the limit the spot rate 7 (¢) equals the instantaneous forward rate f(x)
integrated from 0 to ¢.

=7 [ f@) aa (6)

10As the time period between t; and t2 is infinitesimal only one time index is needed.
Therefore the notation f (¢) will be used for the instantaneous forward rate.

'Tf it is assumed that the forward rates do not contain a term premium, forward rates
can be interpreted as expected future spot rates. For a discussion of the expectation
theory see e.g. Shiller (1990).



The instantaneous forward rate provides the interest rate of a future loan
that is repaid an instant later. The forward rate between ¢; and to is then
defined as

f (b ta) = — /Qf(w) az. (7)

to —t1 Jy,

where f (x) again denotes the instantaneous forward rate.

3.2 Bond Price and Bond Yield

A bond consists of a predetermined series of cash flows. For non-callable
Swiss government bonds the cash flows correspond to the annual fixed
coupon payments plus the repayment of the face value at maturity. The
price of a straight bond equals the sum of the present value of these individ-
ual cash flows. C; denotes the coupon payment and Fr the repayment of the
face value at maturity 7. For the sake of simplicity, the formulas (8)-(10)
are shown for a bond with exactly T full years remaining until maturity. It
is assumed that the coupon payment just occurred and the first cash flow is
the coupon due in exactly one year. Consequently, no accrued interest has
to be taken into account.

T
B = Zexp [—tr(t)] Co+exp|-T r(T)] Fr (8)

Equation (8) describes the price of a bond price given the continuously
compounded spot rates r (t). Expressed alternatively, the price is equal to
the sum of the cash flows multiplied by the discount factors d (¢) applicable
to the date of the cash flow in t years.

B=> d(t) C,+d(T) Fr (9)

t=1

Given the price of the bond we can determine the yield to maturity
y. The yield to maturity'? is the constant discount rate that equates the
present value of the future cash flows to the current price B. It is calculated
as the solution of the equation

T
B = Zexp (—=ty) Ci+exp(—Ty) Fr. (10)
=1

12Equivalently some textbooks use the term (gross) redemption yield.



Implicitly it is assumed that coupon payments during the remaining time
to maturity can be reinvested at the yield to maturity. In practice, the
reinvestment takes place at the prevailing spot rate and hence the usage of
the yield to maturity may not be appropriate in certain circumstances.

The above bond pricing equations describe the correct value of a bond
assuming that the time until the next coupon payment is exactly one year.
If this is not the case, accrued interest must be deducted from the bond
value to get the quoted bond price. Denote the time of the next coupon
payment as t¢ and the settlement day as tg. Then the quoted bond price is
given as

Bt — g C'[1 — (to — tg)] . (11)

3.3 Spot and Forward Rate Curve, Discount Function

The most common representation of interest rates over maturity is the spot
rate curve. A spot rate 7 (t) is equivalent to the yield to maturity of a zero
coupon bond, i.e. the interest rate to discount a single payment in ¢ years.
Therefore the name zero coupon yield curve is often used instead.

Implied forward rates can be derived from the spot rate curve (equation
4). The spot rate r (t) measures the average interest rate until ¢ whereas the
instantaneous forward rate f(t) equals the marginal interest rate. Figure
1(a) illustrates the relationship between the spot rate curve and the implied
instantaneous forward rate curve. The spot and forward rate curve start at
the same point at ¢ = 0. The forward rate curve is above (below) the spot
rate if the spot rate is increasing (decreasing). The forward rate curve then
crosses the spot rate curve at its maximum (minimum).'3

Recall from equation (2) that any spot rate r (¢) can be transformed into
a discount factor d (t). A future cash flow multiplied by the relevant discount
factor is equal to the present value of this cash flow. Discount factors for
zero coupon bonds with different maturities can be combined to form the
discount function. In order to exclude arbitrage, the discount function must
be non-increasing with time to maturity. Figure 1(b) plots the discount
function derived from the spot rate curve to the left.

4 The Nelson/Siegel Model and its Extension by
Svensson

4.1 The Nelson/Siegel Model

The starting point for the Nelson and Siegel (1987) model is the formula-
tion of the process for the instantaneous forward rate. The authors assume

13Shiller (1990) compares the situation to average (spot rate) and marginal (instanta-
neous forward rate) costs.
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Figure 1: The relationship between (a) the spot rate, intantaneous forward
rate and (b) the corresponding discount function.

that the instantaneous forward rates at any time ¢ is given by the following
parsimonious functional form.

f @)= 8o+ 01 exp(=t/71)+ Py (t/71) exp(=t/T1) (12)

Forward rates are represented as a sequence of exponential terms. Nel-
son and Siegel argument that exponential functions are capable of cap-
turing most shapes of the term structure. [, is a constant, the exponen-
tial term (3; exp (—t / 71) is monotonically decreasing (increasing) with time
to maturity ¢ if 3, is positive (negative). The second exponential term
By (t/T1)exp (—t /T1) produces a hump (trough) if 3, is positive (negative).
If the time to maturity converges to infinity both exponential functions be-
come zero and the limiting value of equation (12) is 3. If time to maturity
approaches zero the exponential functions become 1, but the 3, term drops
out as it includes the fraction (¢/71). Hence the result is 5y + ;.

Section 3 showed that spot rates can be represented as an average of
relevant forward rates. In continuous time this turned out to be the definite
integral of the instantaneous forward rate with limits of integration of 0 and
t, divided by t. Equation (13) follows by integrating equation (12) from 0
to t and dividing by t.

10 = o+ [FRE)

1—exp(—t/T1)
t/Tl

Nelson and Siegel (1987) suggest that setting 71 = 1, f, = 1 and 5; = —1
allows best to explore the available shapes for the term structure.'* As they

15, { - exp(—t/m] (13)

4 Analogous to Nelson and Siegel (1987) Fig. 1: Yield curve shapes.



Spot rate (% p.a.)

Time to maturity (years)

Figure 2: Setting (8y+ ;) =0, B3 = —1 and 71 = 1 allows to illustrate the
available shapes of the Nelson/Siegel model depending on a single parameter
a that is varied from —10 to +20 with a step size of 10.

point out in the original paper, the expression for r (¢) then becomes

[1 — exp (—t)]

rt)=1-—(1-a) ;

—a exp(—t). (14)
The shapes only depend on the single unknown parameter a. In figure 2
the parameter a takes the values from —20 to +20 with an increment of
10. All term structures converge to 3; = 1. For a = 20 the term structure
exhibits a hump whereas for a = —20 a trough results. For a = 0 the curve
is monotonically increasing and concave.

4.2 Decomposition of the Nelson/Siegel Spot Rate Curve

Figure 3 illustrates the decomposition of the Nelson/Siegel spot rate curve
into single exponential expressions. The figure uses a rather exceptional
parameter constellation and shape of the term structure in order to illustrate
the different time-dependent components. The decomposition of the spot
rate into the three components is similar to the forward rate. 3, represents
the long-term interest rate that is approached in the limit. The (; term
has the faster decay towards zero than the (3; term and determines the
short-term segment. The 3, term converges to zero at t = 0 and ¢ = oc.
Consequently, it has an impact on the medium-term segment of the term
structure. The knowledge of the exact sensitivities of the term structure
from the parameters will be used to set up boundaries for the estimation.

10
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Figure 3: Decomposition of the Nelson-Siegel term structure into the long-
term interest rate 3, and the two exponential components. The bold solid
line represents the resulting term structure of spot rates r (¢). The exemplary
parameter values are 3, =6, 3; = —5, $5 =20 and 71 = 1.

The limiting values of the spot rate curve are equal to those of the
forward rate curve. With longer time to maturity the spot rate curve ap-
proaches ;. To avoid negative interest rates (3, must be positive. If ¢ gets
small the limiting value for r (t) is (8, + 31). Thus, also the sum (8, + 5;)
is required to be positive.

lim r(t) =8, and limr(t) =, + 5, (15)
t—00 t—0
The parameter 71 is bounded to positive values that guarantee convergence
to the long term value (3;. An increase in 71 shifts any hump or trough in
the spot rate curve to the right or the decay to the long term rate is slower.

If the parameter 3, is negative and its value in absolute terms is bigger
than or equal to |3,| the term structure is monotonically increasing. If in
addition 35 > 0, then it is monotonically increasing and concave, i.e. the
spot rate curve exhibits no change in the curvature (second derivative). To
obtain a monotonic decay in the term structure the parameter 3, is set to a
positive value. Still the condition |3;| > |B5| must hold. If the parameters
B, and (35 are both positive (negative) and |3;| < |55| this produces a hump
(trough) that lies above (below) the long term interest rate (3,. However,
if the sign of (3 is changed the hump (trough) crosses the (j-line. This
corresponds to the situation of figure 3: A hump-shaped spot rate curve
that crosses the long-term rate around a time to maturity close to one. In

11



Shape of the spot rate 3, (; B, 71 Condition
Increasing, concave + = +  + B =B
Increasing + = =+ B = 1Bs]
Decreasing, convex + + =+ B = 8.
Decreasing + + 4+ 4+ 5] =16l
Hump, above 3 + + B <Bs
Hump, crosses 3, + =+ 4 B < Bl
Trough, below 3, + = =+ B <8
Trough, crosses 3 + 4+ =+ ] <8

Table 1: The term structure shapes resulting from all possible parameter
constellations.

general, the bigger 3, compared to (3; the more accentuated the hump or
trough becomes.

Figure 5 shows the estimation of the term structure for the last day of
the sample period, July 31, 1998. Because the circles indicate the yield
to maturity of coupon bearing bonds they need not coincide with the spot
rate curve. This effect becomes more apparent for long-term bonds that
include numerous outstanding payments. Apart from the very short run the
observed yields (circles) are well approximated by the fitted yields (small
black squares).

4.3 The Extended Version of Svensson

Svensson (1994) augments the Nelson/Siegel approach by an additional ex-
ponential term. This term allows for further flexibility in form of a second
possible hump or trough. As the overview of the literature in section 2 has
shown, several investigations extend their analysis to the version by Svens-
son. This section briefly reviews the key differences between the two models.
However, because of the limited number of available and liquid default-free
bonds on the Swiss fixed income market, the empirical analysis in section 6
will restrict to the Nelson/Siegel model. Test calculations revealed that the
overparametrization of the Svensson model for the Swiss market causes se-
rious convergence problems.'> Moreover, the empirical evidence from other
countries demonstrates no significant improvement of the estimations with
the Svensson extension. Schich (1997) explores the improvement of the fit
when applying the Svensson approach to German government loans, bonds

'5In the U.K. there are more than 50 regularly traded government bonds available for the
estimation of the nominal spot rate curve and the Svensson model can even be augmented
by further parameters to model the tax effects. For the estimation of the real rates Deacon
and Derry (1994a) report that the Bank of England uses a relatively small sample of 13
index-linked gilts. As a consequence, they also estimate the parsimonious Nelson/Siegel
model.

12
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Figure 4: Estimation of the spot rate on July 31, 1998 using the Nelson
and Siegel (1987) model. The circles indicate the yields to maturity of the
individual Swiss government bonds, the small black squares the fitted yields,
and the solid line the resulting spot rate curve.

and Treasury bills. He concludes that at least with monthly data for the
investigated sample period from September 1972 to December 1996, the ad-
ditional flexibility shows no gain in the form of substantially smaller yield
errors in the objective function. The results are confirmed by Geyer and
Mader (1999) and Ricart and Sicsic (1995).

Mathematically, two instead of one change in the second derivative of
the spot rate curve are feasible with the Svensson extension.

f@) = Bo+ 0y exp(=t/71) + P, (t/71) exp(=t/71)
+05 (t/T2) exp(=t/72) (16)

The forward rate representation chosen by Nelson/Siegel belongs to a class of
functions called Laguerre functions (see chapter 9 in Press et al., 89). These
functions are characterized by a polynomial times a decaying exponential
term. The use of Laguerre functions is a well-known approximation proce-
dure. In that light the Svensson approach follows as a natural extension of
the Nelson/Siegel approach, including a third Laguerre term.

As in the case of the Nelson/Siegel model the spot rates can be derived
by integration according to equation (6). The spot rates r (t) are then given

13



8 1 Term structure 7(f)
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Figure 5: Decomposition of the Svensson spot rate curve into the long term
interest rate (3, and the three exponential terms. The parameter values are
6026, /61:—3, /62:—15,7—1:1, /63:12 and7'2:3.

by

r(t) = Bo+ 5 1_6)?/(:/71) + 6, {l_extp/(;l/ﬁ)

1- e);p/(;t/m) — exp (—t/TQ):| . (17)

—exp(—t/T1)

+ 03

Note that the 5 term is identical to the 3, term with 7; replaced by 72.
The two additional parameters 33 and 79 explain the extended flexibility of
the Svensson approach. Similar to 71, small values of the new parameter
T9 correspond to rapid decay of the additional hump or trough towards the
limiting value of 3.

Figure 5 decomposes the Svensson spot rate curve, denoted by the solid
bold line, into its components. The 3, term causes the resulting spot rates
to be hump-shaped in the short run, i.e. for a time to maturity of 0-3 years.
The (35 term itself has the maximum at a time to maturity of 5.4 years,
but the combination with the two other exponential functions results in
a hump of the spot rate curve with a maximum at 10.6 years. Beyond
this maximum the term structure slowly converges to 3,. Over the whole
maturity spectrum the term structure changes twice its curvature, from
convex to concave, and again back to a convex decay towards [3,.
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5 The Numerical Procedure

The first part of this section shows an efficient way to store the information
of the observed market data in three matrices. Then the general steps
of the estimation of the Nelson/Siegel method are discussed. The specific
implementation for the use with Swiss government bonds is the topic of
section 6.

Non-callable bonds are fully characterized by the coupon rate, face value
and time to maturity. The two matrices C (for cash flows) and T (for times
to payment) summarize this information. The dimension of the two matrices
is determined by the number of bonds N and the maximum number of full
years of the bond with the longest time to maturity.'® The row index i
numbers consecutively the bonds from 1 to N and each row represents a
specific bond. The matrix C contains the future cash flows, namely the
coupon payments C;; and the repayment of the face value Fir. The column
index j runs from 1 to T', where 1 indicates the next coupon payment and
T the maturity. The elements of the matrix T describe the remaining times
to payment corresponding the cash flows Cij.17 Both matrices are padded
to the right with zeros,

Fir 0 0 . 0
Cxn Cyn Cor+For --- 0
c=| . . (18)
Cn1 Cn2 Cn3 -+ Cnr+ Fnr
and

Tir O o .- 0
tor  tog Ty -+ 0

T=| | . (19)
tn1 tn2 tnz o InT

The bond prices are stacked to a vector.
b=[B By, -+ By| (20)

Figure 6 summarizes the steps of the estimation process for the Nelson/Siegel
model.'® The left branch (a)-(c) returns the yields to maturity from the
market data. First, accrued interest is added to the quoted prices of Swiss
government bonds. We then insert the adjusted bond price and solve for
the yield to maturity y in the pricing formula

B =
t

T
exp (—ty) Cp+exp(=Ty) Fr. (21)
=1

16 All Swiss government bonds pay annual coupons.
17To simplify the notation a subscript denoting the settlement date is dropped.
'8Exactly the same sequence of calculations can be applied to the Svensson approach.
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Figure 6: The flowchart illustrates the sequence of calculations necessary
to estimate the parameters of the Nelson/Siegel model from observed bond
prices.

There is no analytical solution and the equation must be solved numerically.
The applied method is Newton-Raphson (see e.g. Hamilton, 1992).' Thus,
out of the vector of quoted bond prices and, together with the matrices C
and T representing the characteristics of these bonds, we calculate a new
vector of yields to maturity observed on the market.

The right branch (d)-(g) in the flowchart begins by initializing the pa-
rameter vector 3. In case of the Nelson/Siegel model the vector contains
the following four elements.

5:[50 B1 B 71] (22)

19 At first sight the non-linear equation with the order equal to the number of coupon
payments appears complex. However, as Svensson (1994) points out, the equation has
only one real root and is thus easy to solve numerically.

16



The aim is to find a parameter vector that reflects the observed market yields
to maturity as close as possible.?’ Inserting the estimated parameters into
the formulation of the Nelson/Siegel spot rate curve (equation 13) returns
the theoretical spot rates. These spot rates are transformed to discount
rates and used in

T
B=) d(t) Ci+d(T) Fr (23)
t=1

to get the corresponding theoretical bond prices.?! Applying again the

Newton-Raphson procedure equation (21) can be solved for the theoreti-
cal bond yields 3.

At point (g) on the flowchart, where the two branches meet, the sum of
squared differences between the market yields and the theoretical yields to
maturity of the IV bonds is calculated. The objective function is minimized
to get the appropriate estimates for (3, i.e. the loop (i) and then (e)-(h) on
the right hand side of the flowchart is repeated until the objective function
reaches a minimum.

N
minz (yZNS — y¢)2 (24)
i=1

Alternatively, the bond prices themselves could be approximated and
price errors could be minimized. However, as Deacon and Derry (1994a)
mention, minimizing yields implicitly gives greater weight to bonds with
maturities up to about ten years and thus improves the fit of the curve at
shorter maturities.’?> From the perspective of monetary policy or interest
rate risk management this is desirable as this covers the interesting time
horizon.

6 Implementation of the Nelson/Siegel Model for
Switzerland

6.1 The Data

The Nelson and Siegel (1987) model is applied to Swiss government bonds
from January 28, 1994 to July 31, 1998. The daily observations during

20Deacon and Derry (1994a) argue that the par yield curve was chosen as the resulting
forward rate curve is more robust than if it is derived from a discount function.

2In matrix notation, a matrix of discount factors corresponding to the times to payment
in T is calculated. Then the bond prices follow directly as the diagonal elements of C
times the transpose of the matrix of discount factors.

*?Ricart and Sicsic (1995) weight the pricing errors with the duration in order to mitigate
this problem.
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this data period amount to a total of 1176 observations.?? Callable bonds
are excluded from the data set as the call features may heavily distort the
bond price. Furthermore, only bonds with a remaining time to maturity
of more than 3 months are included in order to avoid market disturbances
towards the end of the life of the bonds.”* Instead, the 1-month and 1-year
Euromarket rates are added to the data set. To include other default-free
instruments than government bonds is a commonly used strategy to improve
the fit at the short end of the term structure (see e.g. Svensson, 1994, or
Heller, 1997).25 At the beginning of the data period, the estimations are
based on 13 government bonds and at the end a maximum of 18 bonds plus
the two Euromarket rates. The coupon rates range from 3.5% for the bond
maturing in August 2010 up to 7% for the July 2001 bond. Table 2 lists
the bonds (and the two Euromarket rates) of the sample. For bonds that
are newly issued during the data period, the second column of the table
shows when the series begins. Initially, there are only the two Euromarket
rates in the time segment from 0 to 6 years. Over the analyzed period of
4% years, there is a steady increase in the number of bonds, and the bonds
get more and more equally spread over a range from roughly 2 to 19 years.
Figure 4 at the end of section 4.1 represents the typical pattern at the end
of the sample period. Apart from the bond characteristics the table shows
the minima and maxima for the prices, yields and the daily changes in the
yields. The final two columns contain the mean and standard deviation of
the changes in the yield. These standard deviations are considerably higher
for the shortest maturities.

6.2 Calibration

The iteration to estimate theoretical bond yield starts with initializing the
parameter vector 3. To ensure convergence towards the true minimum of
the objective function these starting values need to be chosen carefully. For
the first loop at the beginning of the data set, on January 28, 1994, the
knowledge of the limiting values and sensitivities of the Nelson/Siegel model
are applied. Because (3, represents the long-term interest rate, it takes the
yield of the bond with the longest time to maturity. The limiting value of
the spot rate if ¢ gets small is (8, + ;). If we set this sum equal to the
yield of the shortest maturity, the 1-month Euromarket rate, and replace
B¢y by the yield of the longest maturity it follows naturally to set 3; equal
to the difference between the 3-month Euromarket rate minus the yield

Z3Source: Datastream.

*4This agrees with Schich (1997) for the Deutsche Bundesbank.

*Nelson and Siegel (1987) warn against the use of very short maturities like the
overnight rate or Treasury bills with the shortest term of 3 and 10 days: “Yields are
consistently higher, presumably because of relatively large transaction costs over a short
term to maturity.”
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of the bond with the maximum time to maturity. As the term structure
at the beginning of 1994 is increasing the remaining two parameters are
set to B9 to —1 and 71 = 1. These values turned out to work well for
the investigated data period. After the first initialization, the estimated
parameters of the previous day are taken as the new starting values for the
subsequent estimation.

The sum of squared deviations of the theoretical bond yields from the ob-
served ones described by equation (24) can be formulated as a log likelihood
function.

N (yNS _ y})Q
logL = —N log (27r02) —0.5 Z 20722 (25)
i=1

The variance o2

is calculated as the sum of squared deviations divided by
the number of observations N. This log likelihood function is maximized
by changing the parameter vector 3 that determines the theoretical bond
yields.2®  The log likelihood function described by equation (25) is con-
strained by non-negativity conditions for the parameters 3, and 7. In ad-
dition, the following boundaries proved to be successful for the considered

sample.

e Besides being never negative (3, is not allowed to deviate more than 3
percentage points from the bond yield with the longest maturity.

e (3, has to lie in the range of £3 percentage points from the difference
between the 3-month Euromarket rate minus the bond yield with the
longest maturity.

e The lower bound for 3, is set to —10 and the upper bound to 20.

e The boundaries for 71 are 0.05 and 20.

The algorithm used to solve this nonlinear programming problem is the
Sequential Quadratic Programming method contained in the Matlab Opti-
mization Toolbox.?” All restrictions and boundaries were never binding for
the whole sample, however they are crucial to achieve plausible solutions.

6.3 Empirical Results

Figure 7 shows the evolution of the parameter values from January 24, 1994
to July 31, 1998. The parameter 3, reveals that the long-term interest rate

26The termination conditions are set as follows: The objective function requires a pre-
cision at the solution of le-4 and the worst case constraint violation that is acceptable is
le-7. A maximum number of iterations of 300 was never exceeded.

27See The MathWorks Inc. (1996) User’s Guide for the Optimization Toolbox, chapter
2: Introduction to Algorithms, and especially pages 2-22, Constrained Optimization.

20



— —
(@n) ot
L | L L L L

ot
L

o
L

Parameter value

_10 ] T T T T T T T T T T T
Jan-94 Jan-95 Jan-96 Jan-97 Jan-98

Figure 7: Daily parameter values of the Nelson-Siegel model for the period
from January 1994 to July 1998.

changed only slightly over the sample period. However, recall from section
4 that (B, determines the limiting value and for finite times to maturity the
combination with the other parameters matters. The 20-year interest rate
for instance decreases from a maximum of 5.780% on September 9, 1994 to
4.057% at the end of the sample.

Short-term interest rates dropped during the observed data period as it
can be seen from the sum of 3, and 3;. With short interruptions at the end
of April 1994 until mid of May 1994 and in June 1994 (from June 10 to June
26) the short term interest rate was above 4% until September 12, 1994.
Then with the exception of a last period of three days in December 1994
(7-9 December) the short rate never exceeded 4% again. The short-term
rate dropped even below 1% at end of May 1997 and from the mid February
1998 until mid of March 1998.

The 3, parameter constantly decreases and remains negative during the
whole period. It describes the short-term component and a negative value
indicates an increasing term structure. At the beginning the term structure
is basically flat with a slight trough at the short end and hence the absolute
value of (3 is close to zero and smaller than |35|. Until September 1994
the long term rates increase and the slope of the term structure becomes
positive. Despite occasional troughs (below ;) in the very short run the
increasing shape persists over the remaining sample period. The troughs
occur any time when in absolute terms the value of (3; is smaller than 3.

It is readily apparent, that 3, and 77 show much more pronounced
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changes over time. Moreover, it can be seen that during several periods
B, takes the value zero. (35 = 0 together with a negative (3; coefficient sig-
nifies a monotonically increasing and concave term structure. As it can be
seen from figure 7 the term structure is concave most of the time from June
94 to March 95, on February 16, 1996, and several times during the period
from January to May 1998. Hump shapes that require big positive values
of 85 do not occur in the sample.

A change to a value of zero for (3, is usually accompanied by an increase
in 71. An increase in 77 corresponds to a shift of any curvature in the term
structure to the right. If 35 gets zero the hump in the short run disappears
and hence the slightly bent curve has no longer a pronounced curvature
at the short end. This explains the inverse relationship between the two
parameters. But it should be stressed that a high value of 71 does not imply
an extraordinary shape of the term structure, as e.g. on June 1, 1994 with
71 = 13.525. Big (Small) values simply enable to fit the curvature well at
long (small) maturities.

6.4 Robustness Tests

Four measures are analyzed to check the accuracy of the estimation results.

e The terminal value of the log likelihood function.
e The absolute and relative average yield error.
e The spread between the highest and smallest deviation

e Root mean squared yield errors

In figure 8 the value of the log likelihood function evaluated at the so-
lution decreases over the observation period. To some extent this follows
naturally from the increase of the number of available bonds. At the be-
ginning of the data period only the two Euromarket rates form the short
segment of the term structure whereas towards the end the observations
are spread over the whole maturity range and an appropriate fit becomes
much more difficult. However, it is apparent that the volatility of the log
likelihood function increases at the end of 1997 until the beginning of 1998.

Figures 9 and 10 make an interesting comparison between the average
absolute yield error % Zf\il (yZN S yi) and the average relative yield error
% ZZ]\L 1 (yZN o —yi) /yi. The average absolute yield error is measured in
basis points (= 0.01 percentage points) and the average relative yield errors
in percent. The average absolute error does not deviate substantially from
zero. During the major part of the sample the average absolute error is
negative, meaning that the observed yields are slightly underestimated by
the model.
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Figure 8: The log likelihood function (see equation 25 in the text) daily
evaluated at the solution.

On the other hand the average relative yield errors amount to values
up to 0.491% on February 20, 1998. The reason is that the interest rate
level at the beginning of 1998 is extremely low, especially at the short end,
and hence small absolute deviations amount to considerable percentage de-
viations. On February 20, 1998, the 1-month Euromarket rate is at 0.792%
and the theoretical spot rate based on the Nelson/Siegel estimations is 0.141
percentage points, i.e. 17.848% higher. On the contrary the model value was
0.315 percentage points lower than the observed 1-year Euromarket rate of
0.918%, a difference y¥¥ —y of —21.768%. The individual bond yields are
overestimated up to 4.763% (the 4.5% July 2002 bond) and the biggest de-
viations concern mainly short-term bonds. On average a positive deviation
from the market yields results, but as interest rates are at a low level these
deviations are not substantial in absolute terms.

Figure 11 illustrates the root mean squared error \/1/n Zf\il (yZNS — yi) 2
and the absolute yield error spread, defined as the difference between the
biggest positive deviation minus the biggest negative deviation

yv — ). (26)

Despite the increase in the number of bonds, the yield error spread does not
increase over time. Both measures reveal similar characteristics and exhibit
again an augmented volatility at the end of 1997 until the beginning of 1998.
Big yield error spreads are usually due to a single bond yield observation,
like on October 2, 1996 where the yield for the bond maturing in July 2002

‘max (yZNS — yi) — min (
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Figure 9: Average absolute deviations of the estimated yields from the ob-
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Figure 10: Average relative deviations of the estimated bond yields from
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Figure 11: The root mean squared errors and the spread between the max-
imum positive and negative absolute deviation.

is overestimated by 0.394 percentage points, probably due to illiquid trading
on that day.

7 Conclusions

The parsimonious Nelson and Siegel (1987)model and its extension by Svens-
son (1994) are widely used among central banks. This paper calibrates
the Nelson/Siegel approach to Swiss market. The limited number of non-
callable Swiss government bonds prevents the application of the Svensson
model. After an introduction of the fundamental relationships on the fixed-
income market, the sensitivities and the interpretation of the parameters in
the Nelson/Siegel model are addressed in detail. The Nelson/Siegel model is
compared to the extension by Svensson and the general estimation process
is explained. The estimation is implemented as a constrained optimization
problem and parametrized for the Swiss market. The estimation results
suggest the following conclusions:

e The objective function to be minimized is the sum of squared devi-
ations of the estimated yields from the observed market yields. The
knowledge of the limiting values and the economic interpretation is
needed to constrain the parameters so that convergence to accurate
term structures on all 1176 observation days is guaranteed.

e The limiting long-term interest rate 3, is stable over time and ex-
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trapolations beyond the maturity range of the available bonds deliver
plausible results. Considerable changes in the parameter values 35 and
71 do not translate into big changes in the shape of the term struc-
ture. The average bond yield errors in absolute and relative terms are
close to zero and also the root mean squared errors are small and quite
stable over time and confirm that the estimated term structures are
smooth and concise.

e The estimations provide smooth term structures. Single outliers in
the data set do not affect the estimation results seriously. However, in
the very short run, the lack of sufficient traded government bonds in
Switzerland creates implausible curvatures. Consequently, the use for
pricing short-term derivatives on long-term interest rate products is
problematic. For monetary policy analysis on the other hand, where
there is less need for a precise fitting of local anomalies than when
pricing financial instruments, the Nelson/Siegel model is very attrac-
tive.
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