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Abstract: This study develops and implements a theory and method for 
analyzing whether introducing new securities or relaxing investment 
constraints improves the investment opportunity set for risk averse 
investors. We develop a test procedure for ‘stochastic spanning’ for two 
nested polyhedral portfolio sets based on subsampling and Linear 
Programming. The procedure is statistically consistent and asymptotically 
exact for a class of weakly dependent processes. Using the stochastic 
spanning tests, we accept market portfolio efficiency but reject two-fund 
separation in standard data sets of historical stock market returns. The 
divergence between the results of the two tests illustrates the role for 
higher-order moment risk in portfolio choice and challenges representative-
investor models of capital market equilibrium. 
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1. INTRODUCTION 

Stochastic Dominance (SD) is a partial stochastic ordering of prospects based on 
general regularity conditions for decision making under risk (Quirk and 
Saposnik (1962), Hadar and Russell (1969), Hanoch and Levy (1969)). It can be 
seen as a model-free alternative to mean-variance (M-V) dominance that applies 
also for non-normal probability distributions. SD is traditionally applied for 
comparing a pair of given prospects, for example, two income distributions or 
two medical treatments. Davidson and Duclos (2000), Barrett and Donald 
(2003) and Linton, Maasoumi and Whang (2005), among others, develop 
statistical tests for pairwise SD. 

A more general, multivariate problem is that of testing whether a given 
prospect is stochastically efficient relative to all mixtures of a discrete set of 
alternatives (Bawa et al. (1985), Shalit and Yitzhaki (1994), Post (2003), 
Kuosmanen (2004)). This problem arises naturally in applications of portfolio 
theory and asset pricing theory, where the mixtures are portfolios of financial 
securities. Post and Versijp (2007), Scaillet and Topaloglou (2010), and Linton, 
Post and Whang (2014) address this problem using various statistical methods. 
Their stochastic efficiency tests can be seen as model-free alternatives to tests 
for M-V efficiency, such as Gibbons, Ross and Shanken (1989). 

This study introduces the related concept of ‘stochastic spanning’ and 
develops a theory and method for implementing this new concept. Spanning 
occurs if introducing new securities or relaxing investment constraints does not 
improve the investment opportunity set for a given class of investors. Stochastic 
spanning can be seen as a model-free alternative to M-V spanning (Huberman 
and Kandel (1987)) that accounts for higher-order moment risk in addition to 
variance.  

Accounting for higher-order risk arguably is more relevant for analyzing 
spanning than for efficiency. Efficiency tests are typically applied to given and 
broad market index with limited higher-order moment risk (at the typical 
monthly to annual return frequency). In this case, the arguments of Levy and 

Markowitz (1979) for the mean-variance approximation seem compelling. By 
contrast, a spanning test evaluates all feasible portfolios, including concentrated 
ones, and can therefore be more strongly affected by higher-order moment risk.  

We propose a theoretical measure for stochastic spanning for two nested 
polyhedral investment opportunity sets. We derive the exact limit distribution 
for the associated empirical test statistic for a general class of dynamic 
processes. In addition, we develop consistent and feasible test procedures based 
on subsampling and Linear Programming (LP).  

Our focus is on the second-order stochastic dominance (SSD) rule, the 
most common SD criterion. The economic interpretation of this criterion in 
terms of expected utility theory and Yaari’s (1987) dual theory of risk is well 
established. Extensions to the first-order rule (FSD) and third-order rule (TSD) 
would require large-scale mixed-integer programs and quadratic programs, 
respectively, which are computationally demanding when embedded in re-
sampling routines. 

We apply the stochastic efficiency and spanning tests to standard data 
sets of historical stock returns from the empirical asset pricing literature. We 
accept market portfolio efficiency but reject two-fund separation in these data 
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sets. By Tobin’s (1958) separation theorem, these two concepts are equivalent 
under a multivariate normal distribution. Therefore, the divergence of our two 
sets of test results suggests an important role for higher-order moment risk in 
portfolio choice. The rejection of two-fund separation also casts doubt on 
representative investor models of capital market equilibrium.  

Furthermore, the application also illustrates that the proposed 
resampling scheme and mathematical program are computationally feasible with 
modern-day computer hardware and solver software for the typical problem 
dimensions. The total run time of all computations for our application spanned 
several working days on a standard desktop PC with a 2.93 GHz quad-core Intel 
i7 processor, 16GB of RAM and using MATLAB with the external Gurobi 
Optimizer solver. 

 
 

2. STOCHASTIC EFFICIENCY 

The investment universe consists of   assets with random investment returns 
  (     )

     with compact support   , ,  -,         . The 

investment opportunity set is assumed to be an  -simplex   *    
  1 

   
1+. We may deal with a more general polytope     

  by replacing the convex 
hull of the assets with the convex hull of the vertices of   . To allow for dynamic 
intertemporal choice problems, the base assets could be periodically rebalanced 
portfolios of individual securities. Let      , ,1- denote the continuous joint 
CDF of   and  ( ,  )  ∫1(     )  ( ) the CDF for portfolio    . 

 
DEFINITION 2.1 (WEAK STOCHASTIC DOMINANCE): Portfolio     weakly second-
order stochastically dominates portfolio    , or     , if  
 

 ( ,  ,  ;  )        ; (2.1) 
 ( ,  ,  ;  )   ( )( ,  )   ( )( ,  ); (2.2) 

 ( )( ,  )  ∫ ( ,  )   

 

  

 ∫(   )   ( ,  ) 

 

  

  (2.3) 

 
Weak stochastic dominance does not occur, or     , if  ( ,  ,  ;  )    for 
some    . 
 
Stochastic dominance it is a preorder rather than a partial order, because two 
distinct portfolios (   ) may be equivalent (             ), which 
violates the antisymmetric property; (    ) (    )     . Furthermore, 
dominance is not a total order, as a pair of portfolios may be incomparable, that 
is,  ( ,  ,  ;  )    for some     and  ( ,  ,  ;  )    for some other    . 
 
DEFINITION 2.2 (STRICT STOCHASTIC DOMINANCE): Portfolio     strictly second-
order stochastically dominates portfolio    , or     , if  
 

(    )  ( ( ,  ,  ;  )    for some    )  (2.4) 
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Strict stochastic dominance does not occur, or     , if 
(    )  ( ( ,  ,  ;  )        )  
 
Strict dominance is the irreflexive part of the preorder, as a given portfolio does 
not strictly dominate itself (    ). 
 The integrated CDF  ( )( ,  ) corresponds to Bawa’s (1975) first-order 
lower-partial moment or expected shortfall for return threshold    . Other 
possible interpretations of second-order stochastic dominance include those in 
terms of the quantiles of the return distribution and Yaari’s (1987) dual theory 
of risk. 
 Our definition of stochastic efficiency is based on Post (2003), 
Kuosmanen (2004) and Roman, Darby-Dowman and Mitra (2006): 
 
DEFINITION 2.3 (STOCHASTIC EFFICIENCY): Portfolio     is second-order 
stochastically efficient if it is not strictly second-order stochastically dominated 
by any feasible portfolio:              Stochastic inefficiency occurs if 
          . 
 
We denote all stochastically efficient portfolios by  ( )  *               
 +. In order theory,  ( ) amounts to the set of maximal elements. By Zorn’s 
lemma,  ( )   .  ( ) is analytically challenging because it generally is a non-
polyhedral, non-convex and disconnected set.  

 ( ) is a model-free generalization of the M-V efficient set, which is based 
on the assumption of a normal probability distribution or a quadratic utility 
function. For important families of parametric distributions,  ( ) is a proper 
subset of the M-V efficient set (Ali (1975)). For these distributions, the M-V set is 
larger than  ( ) because the M-V rule can assign an economically irrational 
weight to variance. In general, the two efficient sets however are not nested, 
because the mean and the variance do not capture all lower partial moments 
 ( )( ,  ),    . 

The above definition of stochastic efficiency should not be confused with 
the alternative definition of Scaillet and Topaloglou (2010, henceforth ST2010), 
which we label here as ‘stochastic super-efficiency’  
 
DEFINITION 2.4 (STOCHASTIC SUPER-EFFICIENCY): Portfolio     is second-order 
stochastically super-efficient if it weakly second-order stochastically dominates 
all feasible portfolios, or              Stochastic super-efficiency does not 
occur if           . 
 
We denote all super-efficient portfolios by  ( )  *                +. In 
order theory,   ( ) amounts to the set of greatest elements rather than the set of 
maximal elements. Clearly, stochastic super-efficiency gives a sufficient condition 
for stochastic efficiency; (           )  (           ), or  ( )   ( ). 
The reverse is not true, as all superefficient portfolios must be equivalent and 
comparable, whereas efficient portfolios may be non-equivalent or 
incomparable.  

The super-efficient set is either equal to the efficient set   ( ( )   ( )) or 

empty ( ( )   ). In our applications, the efficient set generally has non-
equivalent and incomparable elements, and therefore  ( )   . For example, an 
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efficient portfolio that maximizes expected return generally takes a concentrated 
position in the individual asset with the highest mean. By contrast, an efficient 
portfolio that minimizes semi-variance generally takes a diversified position in 
multiple risky assets or a position in a risk-free asset. 

 
 

3. STOCHASTIC SPANNING 

Despite its restrictiveness, the notion of stochastic super-efficiency can be 
generalized to a useful notion of stochastic spanning for comparing two nested 
choice sets.  
 
DEFINITION 3.1 (STOCHASTIC SPANNING): Portfolio set   is second-order 
stochastically spanned by a non-empty polyhedral subset     if all portfolios 
    are weakly second-order stochastically dominated by some portfolios 
   : 
 

(         K)      
 (( ( ,  ,  ;  )        )     K)       

 
(3.1) 

 
Stochastic spanning does not occur if 
 

(          K)       
 (( ( ,  ,  ;  )       )      K)        

 
(3.2) 

 
We will let  ( )  *K    (         K)     +    denote all relevant 
subsets that span  . Spanning occurs if and only if K   ( ).  ( ) is non-empty 
because it includes at least   . 
 The following result clarifies the relation between stochastic spanning 
and stochastic efficiency: 
 
PROPOSITION 3.1: Stochastic spanning occurs if the enlargement (  K) does not 
change the efficient set, that is,  
 

K   ( )   ( )  K  (3.3) 
 
The reverse relation generally does not hold, because the weak dominance 
relation does not possess the antisymmetric property. Specifically, the condition 
 ( )  K does not allow that two distinct portfolios ( ,  )   ( )  (  K) are 
equivalent (       ), whereas the condition K   ( ) does allow this. 
Consequently,  ( )  K is a sufficient but not necessary condition for K   ( ). 
In addition, the sufficient condition  ( )  K is not practical, because  ( ) 
generally is non-convex and disconnected, which makes it difficult to identify all 
its elements and test the sufficient condition directly. On the contrary, a small 
polyhedral span K   ( ) could be used as a practical outer approximation to 
the intractable efficient set  ( ). 
 We use the following scalar-valued functional of the population CDF as a 
degree measure for deviations from stochastic spanning: 
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 ( )  sup
   
 inf
   
  sup
   
  ( ,  ,  ;  )  (3.4) 

 
The outer maximization searches for a feasible portfolio     that is not weakly 
dominated by a portfolio    . If  ( )   , then no such portfolio exists and   
spans  ; if  ( )   , then stochastic spanning does not occur.  
 
REMARK 3.1: Stochastic super-efficiency (           ) occurs as the special 
case of stochastic spanning with   * +,    . In this case, our degree measure 
reduces to 
 

 ( )  sup
   
 sup
   
  ( ,  ,  ;  )  (3.5) 

  
REMARK 3.2: Since  ( ,  ,  ;  )    , 

      -, we find the following lower 
bound for the stochastic spanning measure: 
 

 ( )  sup
   
 inf
   
  ( ,  ,  ;  ) 

 sup
   
 inf
   
   , 

      -  

 

(3.6) 

 
To further clarify the economic meaning of the notion of stochastic spanning, it is 
useful to formulate it in terms of expected utility:  
 
PROPOSITION 3.2: The stochastic spanning measure (3.4) can be reformulated as 
follows: 
 

 ( )  sup
   ;
   

 inf
   
  ( ,  ,  ;  ); (3.7) 

 ( ,  ,  ;  )  ∫  ( ) ( ,  ,  ;  )
 

 

  ; (3.8) 

  {    , ,1- ∫  ( )   1
 

 

}  (3.9) 

 
Alternatively, 
 

 ( )  sup
   2;
   

 inf
   
   , ( 

  )   (   )-; (3.10) 

    {   
   ( )  ∫  ( ) ( ;  )  

 

 

      } ; (3.11) 

 ( ;  )  (   )1(   ), ( ,  )   2  (3.12) 

 
In this formulation,    is a set of normalized, increasing and concave utility 
functions that are constructed as convex mixtures of elementary Russell and Seo 
(1989) ramp functions  ( ;  ),    . Stochastic spanning ( ( )   ) occurs if 
no non-satiable and risk-averse investor      benefits from the enlargement 
(  K). The lower bound (3.6) represents the potential benefit of the 
enlargement to a risk-neutral investor with utility function  ( )  (   ). Apart 
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from clarifying the economic meaning of stochastic spanning, Proposition 3.2 
will also prove useful for developing a consistent and feasible test procedure 
below.  
 Stochastic spanning can also be formulated in terms of mutual fund 
separation. In portfolio theory,  -fund separation occurs if all rational risk 
averters combine at most      distinct mutual funds; see, for example, Ross 
(1978). Stochastic super-efficiency is the extreme (and generally impossible) 
case with a single mutual fund (  1). If we assume a multivariate normal 
distribution and free portfolio formation, then two-fund separation arises 
(  2). Our definition of stochastic spanning however allows for non-normality 
and investment restrictions. Using the Minkowski-Weyl Theorem, the nested 
portfolio set     can be represented as the convex hull of its  (K)     
vertices. Hence, in case of stochastic spanning, rational investors can limit their 
attention to combining the  (K) vertices of K, and    (K). 
 

 

4. NUMERICAL EXAMPLE 

Figure 1 illustrates the relevant concepts using a numerical example based on a 
discrete probability distribution with two equiprobable states (  1,2). We use 
both state-space diagrams and mean-standard deviation diagrams, in order to 
illustrate the difference between the SD and M-V criteria.  

Panel A and B are based on a single risky asset (  1) with gross 
investment returns (  (1),   (2))  (  8, 1 2). The clear area contains all 
inefficient return vectors, which are stochastically dominated by (  8, 1 2); the 
grey areas contain the efficient vectors, which are not stochastically dominated 
by (  8, 1 2); the dark grey area contains the stochastically super-efficient 
vectors, which stochastically dominate (  8, 1 2). Many of the super-efficient 
vectors do not M-V dominate (0.8, 1.2). Since the feasible set includes only a 
single asset, it obviously coincides with the set of efficient portfolios and the set 
of super-efficient portfolios in this example:    ( )   ( )  *1+. 

Panel C and D include two additional assets (  3) with gross 
investment returns (  (1),   (2))  (  8, 2) and (  (1),   (2))  (1, 1 5). The 
set of efficient vectors (grey area) and the set of super-efficient vectors (dark 
grey area) shrink materially. The black line represents the edges of the feasible 
portfolio set   *    

           1+. The set of stochastically efficient 
portfolios is now given by  ( )  *        +.  ( ) is a proper subset of the 
M-V efficient set    ( )  *        + *        +. Clearly, no feasible 
portfolio dominates all     in this example and hence the set of super-efficient 
portfolios is empty;  ( )   . 

By definition, every superset of the efficient set  ( )  *        + 
spans the entire portfolio set  ; see Proposition 3.1. For example, K  *  
       5+ spans  ; K   ( ). Furthermore, in this simple example without 
equivalent portfolios, no proper subset of  ( ) spans  . For example, 
K  *        ,      5+ does not span  ; K   ( ). If we set K  K , then 
it is easy to verify that the optimal solution for the spanning measure (3.4) is 
given by    (    1) ,    (    5   5)  and    1.00. We therefore find 
expected shortfall levels of  ( )(  ,   )       and  ( )(  ,   )    1 , and the 
spanning measure amounts to  ( )   (  ,   ,   ;  )  (  1      )    1 . 
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Clearly, spanning does not occur. In this case, the optimal utility function in 
(3.10) is simply   ( )   ( ; 1)  (  1)1(  1). 

 
[Insert Figure 1 about here.] 

 

 

5. SPANNING TEST STATISTIC 

In empirical applications, the CDF   is latent and the analyst has access to a 
discrete time series of realized returns    (  )   

 ,     ,   1, ,  . 
 
ASSUMPTION 5.1: (i) The return sequence (  )     is  –mixing with mixing 

coefficients (  )     such that     ( 
  ) for some   1. (ii) Furthermore, the 

covariance matrix  

  ,(     ,  -)(     ,  -)
 -  2∑  ,(     ,  -)(     ,  -)

 -

 

   

 

is positive definite. 
 
Let   ( )   

  ∑ 1(    )
 
    denote the empirical joint CDF constructed from 

the sample   . The multivariate functional CLT for stationary strongly mixing 

sequences implies that √ (    ) weakly tends to the limiting Brownian bridge 
process    . 

We consider the following scaled empirical analogue of (3.7) as a test 
statistic for stochastic spanning: 

 

   √  (  )  √ sup
   
 inf
   
  sup
   
  ( ,  ,  ;   ) (5.1) 

 √ sup
   ;
   

 inf
   
  ( ,  ,  ;   )  (5 1’) 

  
REMARK 5.1 If the portfolio set   is a singleton, or K  * +,    , then we obtain 
the super-efficiency test of ST2010;    √ sup

   
 sup
   
  ( ,  ,  ;   ). Our below 

results thus also apply to the ST2010 test.  
 
REMARK 5.2 If the portfolio set   is a singleton, or   * +, then we obtain a test 
for stochastic efficiency that resembles the test of Linton et al. (henceforth 
LPW2014);    √ inf

   
  sup
   
  ( ,  ,  ;   )  This is however not a proper spanning 

test statistic, as K   . 
 
We use the test statistic    to test the null hypothesis of stochastic spanning, 
    ( )   , against the alternative hypothesis of no stochastic spanning, 
    ( )   . To derive the limit distribution of the test statistic under the null, 
we first introduce some additional notation. Under the null, the set       
can be partitioned into the following two subsets: 
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   {( ,  )    inf
   
  ( ,  ,  ;  )   } ; (5.2) 

   {( ,  )    inf
   
  ( ,  ,  ;  )   }  (5.3) 

 
Since    , we find     . In addition, for any ( ,  )   ,   can be decomposed 
into the following two subsets: 
 

K( , )
  *  K  ( ,  ,  ;  )   +   ( ,  )   ; (5.4) 

K( , )
  *  K  ( ,  ,  ;  )   +   ( ,  )     (5.5) 

 

Under the null, we have that (( ( ,  ,  ;  )        )     K) for all    , 

and hence K( , )
    for all ( ,  )   . 

 
PROPOSITION 5.1: Under Assumption 5.1,  
(i)  ( ,  ,  ; √ (    ))   ( ,  ,  ;    ); 
(ii) oper

( , )   

oper 
    

 ( ,  ,  ; √ (    ))  oper
( , )  

oper 
   

 ( ,  ,  ;    ), 

where oper and oper  are sup or inf,    and   are measurable subsets of  such 
that      and     and B are measurable subsets of  K such that     . 
 
The following proposition establishes the asymptotic distribution of the test 
statistic    under the null: 
 
PROPOSITION 5.2: If Assumption 5.1 holds and    is true, then 
 

      sup
( , )   

 inf
   ( , )

 
  ( ,  ,  ;    )  (5.6) 

 
 
COROLLARY 5.1: For the case of super-efficiency, or K  * +,     , we obtain the 
exact limit distribution of the ST2010 test statistic as the law of 
sup

( , )   
 ( ,  ,  ;    )  

 
Given Proposition 5.2, we can develop a test procedure for stochastic spanning 
based on    and   . Let  (  , 1   ) denote the (1   ) quantile of the 
distribution of    for any significance level   - ,1,. Our decision rule is to reject 
   against    if and only if     (  , 1   ). Obviously, this rule is infeasible 
due to the dependence of  (  , 1   ) on the latent CDF  . Nevertheless, feasible 
decision rules can be obtained by using re-sampling procedures to estimate 
 (  , 1   ) from the data. The next section develops a consistent subsampling 
procedure.  
 
 

6. SUBSAMPLING PROCEDURE 

This section analyzes a subsampling procedure to estimate the distribution of    
along the lines of LPW2014. The following (non-trivial) properties of the limit 
distribution are essential to motivate our use of the subsampling by allowing us 
to invoke established results of Politis et al. (1999): 
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PROPOSITION 6.1: Under Assumption 5.1, (i) the distribution of   has support 
, ,   ,; (ii) the CDF of   may have a jump discontinuity with a size of at most 
(    ) at zero; (iii) the CDF of   is continuous on - ,   ,. 

 
The procedure generates (     1 ) maximally overlapping subsamples of 

      consecutive observations,    ; ,  (  )   
      ,   1, ,      1, and 

calculates subsample test scores    ; ,  √   (   ; , ), where    ; ,  denotes 

the empirical joint CDF constructed from    ; , ,   1, ,      1. The 

distribution of subsample test scores can be described by the following CDF and 
quantile function: 
 

  ,  ( )  
1

     1
∑ 1(   ; ,   )

      

   

; (6.1) 

  ,  (1   )  inf 
{    ,  ( )  1   }  (6.2) 

 
The decision rule is to reject the null     ( )    against the alternative 
    ( )    at a significance level of   - ,1, if and only if      ,  (1   ), or, 

equivalently, 1    ,  (  )   . 

 To establish the statistical properties of this subsampling procedure, we 
assume that the subsample size    and significance level are selected 
appropriately:  
 
ASSUMPTION 6.1: The positive sequence (  ), possibly dependent on (  )   

 , 
obeys 
 

 (        )  1, (6.3) 
 
where (  ) and (  ) are deterministic sequences of natural numbers such that 
1        for all  ,      and         as    .  
 
ASSUMPTION 6.2: Let      ,     ( ), denote the number of vertices of   that 
are also included in  . The significance level obeys   1  (    ). 
 
Since   is a proper subset of  , we can safely assume that     ( ). The 
smaller the overlap between   and  , the higher the significance level that we 
can employ under Assumption 6.2. 

The following proposition shows that our test based on the subsample 
critical value is asymptotically exact and consistent: 
 
PROPOSITION 6.2: If Assumption 5.1, Assumption 6.1 and Assumption 6.2 hold, 
then we find the following asymptotic size and power properties: 
 

lim 
   

 (     ,  (1   )   )   ; (6.4) 

lim 
   

 (     ,  (1   )   )  1  (6.5) 
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Although the test has asymptotically correct size, computational experiments 
show that the quantile estimates   ,  (1   ) may be biased and sensitive to the 

subsample size    in finite samples of realistic dimensions (  and  ). To correct 
for small-sample bias and reduce the senstivity for the choice of   , we propose a 
regression-based bias-correction method.  

For a given significance level  , we compute the quantiles   ,  (1   ) for 

a ‘reasonable’ range of the subsample size   . Next, we estimate the intercept 
and slope of the following regression line using OLS regression analysis:  

 
  ,  (1   )    ; ,      ; ,    (  )

     ;   ,    (6.6) 

 
Finally, we estimate the bias-corrected (1   )-quantile as the predicted value 
for     : 
 

  
  (1   )   ̂ ; ,     ̂ ; ,    ( )

    (6.7) 

 
Since   ,  (1   ) converges in probability to  (  , 1   ) and (  )

   converges 

to zero as    ,  ̂ ; ,    converges in probability to  (  , 1   ) and the 

asymptotic properties are not affected. However, computational experiments 
show that the bias-corrected method is more efficient and more powerful in 
small samples. 
 The bootstrap is an obvious alternative to the subsampling. Proposition 
5.2 is based on the properties of the partitions of   and   in (5.2)-(5.5) and the 
behavior of the degree measure  ( ) on these subsets. Our analysis does not 
directly apply to the bootstrap, because the re-centering is not with respect to 
the degree measure  ( ) but instead its empirical counterpart  (  ), which does 
not have the same behavior on the relevant subsets. We expect that it is possible 
based on our Proposition 3.2 to construct a bootstrap critical value that allows 
for a consistent test procedure (in the spirit of Prop. 3.1 of ST2010). We expect 
however that the procedure would be asymptotically conservative and less 
powerful than the subsampling under local alternatives. On the other hand, there 
could be cases where the bootstrap is more efficient in finite samples than the 
subsampling since it utilizes the full sample information. We leave the further 
development of a bootstrap test procedure for stochastic spanning for further 
research. 
 
 

7. COMPUTATIONAL STRATEGY 

Computing the test statistic    in general is a challenging global optimization 
problem. Depending on the application, we may use various alternative 
computational strategies. Below, we outline two possible strategies, one for a 
small enlargement (   ) and another one for a limited return interval (   )  

 If the enlargement (   ) is small, we may perform a quasi-Monte Carlo 
search and solve an embedded LP problem for every sampled portfolio 
  (   ). Specifically, we can use the following reformulation of (5.1): 
 

    √ inf
  (   )

   ( ); (7.1) 
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  ( )  sup
   
  inf
   
  ( ,  ,  ;   )  (7.2) 

 
The embedded statistic   ( ) can be computed by solving an LP problem. The 
linear program is reminiscent of existing programs for testing whether a given 
portfolio     is SSD efficient relative to portfolio set  ; see Post (2003), 
Kuosmanen (2004) and Roman, Darby-Dowman and Mitra (2006), among 
others. However, we analyze whether a portfolio     K improves the 
investment possibilities relative to a portfolio set K that does not include that 
portfolio. In addition, we use a different objective function, a Kolmogorov-
Smirnov type test statistic, and we derive and formulate our program in terms of 
the empirical shortfall measures that form the building blocks of that objective 
function.  
   
PROPOSITION 7.1: The embedded test statistic   ( ) equals the optimal value of the 
objective function of the following LP problem in canonical form: 
 

max √   (7.3) 

           ∑  , 

 

   

   
( )(   ,  ),   1, ,  ; 

   ,    
       ,  ,   1, ,  ; 

∑  

 

   

 1; 

  ,   ,  ,   1, ,  ; 
    ,   1, , ; 

        
 
Although the problem has  (    ) variables and constraints, the 
computational burden is perfectly manageable with modern-day computer 
hardware and solver software for the typical data dimensions in empirical asset 
pricing research. Nevertheless, we need to solve the LP problem for sufficiently 
many portfolios   (  K) and the computational burden will therefore 
explode if the enlargement (  K) is large. For example, in our application in 
Section 8, K is a 2-simplex and   is a 11-simplex; this enlargement is too large to 
allow for an accurate and manageable discrete approximation. 
 An alternative strategy seems more approporiate when the enlargement 

(  K) is large but the return range (   ) is limited. Using (3.10) and (5.1’), 

we find 

 

   √ sup
    

 (sup
   
    , ( 

  )-  sup
   
    , ( 

  )-)  (7.4) 

 
The term in parentheses is the difference between the solutions to two standard 
convex optimization problems of maximizing a quasi-concave objective function 
over a polyhedral feasible set. The analytical complexity of computing    stems 
from the search over all admissible utility functions (  ). However, the utility 
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functions are univariate, normalized, and have a bounded domain ( ). We can 
approximate    with arbitrary accuracy using a finite set of increasing and 
concave piecewise-linear functions.  

Partition   as             , where      
   

    
(   ), 

  1, ,  ;    2. Instead of an equal spacing, the partition could also be 
based on percentiles of the outcomes distribution. Similarly, partition the 

interval , ,1-, as   
 

    
   

    

    
 1,    2. Using this partition, let 

 

   √ sup
    

(sup
   
    , ( 

  )-  sup
   
    , ( 

  )-) ; (7.5) 

   {   
   ( )  ∑   ( ;   )

  

   

     W} ; (7.6) 

W  {  { ,
1

   1
, ,

   2

   1
, 1}

  

 ∑  

  

   

 1}  (7.7) 

 
Every element of      consists of at most    linear line segments with knots at 

   possible outcome levels. Clearly,       and    approximates    from 

below as we refine the partition (  ,     ). The appealing feature of    is that 

we can enumerate all    
 

(    ) 
∏ (     1)
(    )
    elements of     for a given 

partition, and, for every     , solve the two embedded maximization problems 

in (7.5) using LP: 
 

PROPOSITION 7.2: Let 

  ,  ∑(  ,      , )  

  

   

; (7.8) 

  ,  ∑   

  

   

; (7.9) 

  *  1, ,       +  *  +  (7.10) 
 
For any given     , sup      , ( 

  )- is the optimal value of the objective 

function of the following LP problem in canonical form: 
 

max    ∑  

 

   

 (7.11) 

     ,   
     , ,   1, ,  ;    ; 

∑  

 

   

 1; 

    ,   1, , ; 
       ,   1, ,    
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The LP problem always has a feasible and finite solution. The problem has 
 (   ) variables and constraints and is small for typical data dimensions. Our 
application in Section 8 is based on the entire available history of monthly 
investment returns to a standard set of benchmark assets (  11,   1, 62). 

The application uses    1  and    5, which gives    
 

  
∏ (4   ) 
    715 

distinct utility functions and 2   1,43  small LP problems, which is perfectly 
manageable with modern-day computer hardware and solver software.  
 An alternative computational approach could build on the sufficient 
condition  ( )  K of Proposition 3.1 and the linear Karush-Kuhn Tucker (KKT) 
portfolio optimality conditions of Post (2003). Specifically, we could enumerate 
all feasible rankings of investment returns to efficient portfolios in K and, for 
every feasible ranking, solve an LP problem that searches for an anti-monotonic 
utility gradient vector that obeys the KKT conditions for K but violates the KKT 
conditions for  . This approach would however require an adjustment of the 
spanning measure (based on violations of the KKT condition rather than 
improvements in expected utility) and the statistical theory for the spanning test 
statistic. We leave this route for future research. 
 
 

8. EMPIRICAL APPLICATION 

This section applies stochastic efficiency and spanning tests to a standard data 
set of historical investment returns from the online data library of Kenneth 
French. The relevant investment universe consists of   11 distinct base 
assets: the one-month T-bill and ten stock portfolios that are formed by 
classifying stocks based on the four-digit SIC industry code. Our market portfolio 
is the CRSP all-share index. We use monthly value-weighted total returns from in 
July 1926 to December 2014, leading to a large data set (  1, 62).  
 Several features of these data sets justify our model-free approach to 
account for higher-order moment risk and time-series dynamics. The return 
distribution appears not normal, witness, for example, the skewness of -/-0.511 
and excess kurtosis of 1.813 of the market returns. In addition, the data show 
dynamic patterns; for example, the first-order auto-correlation coefficient for the 
market returns is 8.52 percent. The dimensions of the data set (  11,   
1, 62) also seem favorable for our model-free approach.  

We find similar results as reported below in two sub-periods of roughly 
equal length, as well as for a second data set of ten portfolios formed on 
estimated market beta and a third data set of ten portfolios formed on market 
capitalization of equity (ME). We deliberately do not consider data sets of equal-
weighted returns and/or double-sorted portfolios that are formed on ME and a 
second stock characteristic in order to avoid a bias towards micro-cap stocks 
that would lead to a predictable rejection of our hypotheses and make the test 
results uninformative. For the same reason, we do not consider data sets of 
portfolios that are formed on price reversal and momentum patterns. 
  
 

8.1 Market portfolio efficiency 
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We first analyze whether the market portfolio is stochastically efficient. 
Representative-investor models of capital market equilibrium predict that the 
market portfolio is efficient as a result of risk sharing in sufficiently complete 
markets or aggregation across sufficiently homogenous investors in incomplete 
markets. Alternatively, a market portfolio efficiency test can be interpreted as a 
revealed preference analysis of those individual investors who adopt a passive 
strategy of broad diversification. 
 In this application,   consists of all convex combinations of the 11 base 
assets. There is no need to explicitly allow for short selling in this application, 
because the market portfolio has no binding short-sales restrictions.  

To test market portfolio efficiency, we use the LPW2014 test. For the sake 
of comparability, we embed the LPW2014 test in the same subsampling 
procedure as our spanning test. The four panels of Figure 2 illustrate our results.  

The optimal solution      consists of large positions in the non-durables 
industry (46%) and energy industry (42%) and small positions in the health 
industry (6%), telecom industry (5%) and T-bill (1%). In Panel A of Figure 2, the 
PDF of    appears less risky than the PDF of the market portfolio. Panel B shows 

the difference function  ( ,  ,   ;   ) for every return level      
, 25 15, 42  7-. Clearly, the market portfolio has a strictly higher expected 

shortfall than the solution portfolio for every return level     ; it follows that 
      . The value of the LPW2014 test statistic is     

√ min     ( ,  ,  
 ;   )    114. 

Panel C shows the de-cumulative subsampling distribution of the test 
statistic for subsample sizes    12  and    48 . Clearly, large values of the 
test statistic occur more frequently in smaller subsamples, which reiterates the 
need to correct the quantile estimates for bias. Panel D shows the estimated OLS 
regression line (6.6) based on the empirical quantiles   ,  (1   ) for 

significance levels of      1 and     1  using various subsample sizes 
   ,12 ,48 -. Using (6.7), the regression estimate for the critical value for    is 
  
  (  9 )    37 , more than three times the full-sample value      114. 

Hence, we cannot reject market portfolio efficiency at conventional significance 
levels. 

 
[Insert Figure 2 about here.] 

 
 

8.2 Two-fund separation 

Our second research hypothesis is two-fund separation: Do all rational risk 
averters combine the T-bill and the market portfolio? For a multivariate normal 
distribution, two-fund separation is equivalent to market portfolio efficiency, as 
a result of Tobin’s (1958) separation theorem  Without normality, one generally 
needs to assume that preferences are sufficiently similar across investors in 
order to justify two-fund separation (see, for example, Cass and Stiglitz (1970)). 
Our stochastic spanning test can analyze two-fund separation without assuming 
a particular shape for the return distribution or utility function.  

We include a synthetic index futures contract as the 12th base asset to 
allow risk-tolerant investors to take leveraged equity positions. The futures 
contract is built using a short position of 100% in the T-bill and a long position of 
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200% in the market portfolio. In this application,   consists of all convex 
combinations of the T-bill, ten stock portfolios and the index futures contract; K 
consists of all convex combinations of the T-bill and the index futures contract. 
For the computational strategy outlined in Section 7, our partition is based on 
  min ,   , ,   max ,   , ,    1  and    5. 

 Figure 3 illustrates the estimation results for the industry data set. The 
optimal solution    K consists of the T-bill (56%) and the index futures 
contract (44%). The optimal solution      consists of a large position in the 
non-durables industry (42%) and smaller positions in the health industry 
(26%), energy industry (20%) and telecom industry (12%). Panel B shows the 
difference function  ( ,   ,   ;   ) for every relevant return level    . Clearly, 
we find a strictly positive difference for large positive return levels and hence 
      

 ; stochastic spanning does not occur. We find max    ( ,  
 ,   ;   )  

  138 and the test statistic amounts to    4 48 . 
Panel C shows the de-cumulative subsampling distribution of the test 

statistic for    12  and    48  months. Again, large values of the test 
statistic occur more frequently in smaller subsamples. Panel D shows the 
estimated OLS regression line (6.6) for significance levels of      1 and 
    1  using various subsample sizes    ,12 ,48 -. Using (6.7), the 
regression estimate for the critical value for    at      1 is   

  (  99)  4 354, 
below the full-sample value    4 48 . Hence, we can reject two-fund 
separation with at least 99% confidence. 

 
[Insert Figure 3 about here.] 

 
 

8.3 Conclusion 

The combined results of the stochastic efficiency and spanning tests suggest that 
a passive position in the T-bill and market portfolio is optimal for some risk 
averters (portfolio efficiency) but not optimal for all risk averters (no two-fund 
separation). Since market portfolio efficiency and two-fund separation are 
equivalent under a multivariate normal distribution, the results must reflect 
economically significant deviations from normality. 
 Harvey and Siddique (2000) and Dittmar (2002) analyze the empirical 
explanatory power of skewness and kurtosis in cross-sectional regression tests 
for market portfolio efficiency. Dittmar (2002, Section III-d) shows that the 
apparent explanatory power of higher-order moment risk disappears if he 
imposes risk aversion (consistent with the SSD criterion). His finding suggests 
that the market portfolio is not more attractive for general risk averters than for 
M-V investors. By contrast, our spanning test results indicate that the market 
portfolio is less attractive to some risk averters than to M-V investors due to its 
relatively unfavorable higher-order moment risk profile. 

These results present a challenge for representative investor models. 
While the market portfolio may be optimal for some utility functions, those 
utility functions can represent the aggregate investor only if we ignore the 
individual investors for whom the market portfolio is suboptimal. In other 
words, we need to assume investor homogeneity in a specific class of utility 
function, an assumption that does not follow from economic theory. 
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APPENDIX 

PROOF OF PROPOSITION 3.1: Our proof consists of the following arguments: 

 ( )  K  ((         K)      (  K))  (         K)      

K   ( )   
 
PROOF OF PROPOSITION 3.2: We use of the following chain of arguments: 

 ( )  sup
   
 inf
   
  sup
   
  ( ,  ,  ;  )  
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 inf
   
  sup
   

 ∫  ( ) ( ,  ,  ;  )
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   ;
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 inf
   
 (∫  ( )   ( ,  )

 

 

 ∫  ( )   ( ,  )
 

 

)  

 sup
    ;
   

 inf
   
 (  , ( 

  )   (   )-)   

Equality (3.A) makes the objective function upper semicontinuous and 
quasiconcave for every     and    , allowing us to invoke Sion’s (1958) 
Minimax Theorem to change the order of the optimization operators in Equality 
(3.B).   
 
PROOF TO PROPOSITION 5.1: We endow       with the metric  ( ,   )  

 sup  , ,  -  ( )   
 ( )               , with     sup   ,      

   diam( ),   ( ,  ,  ) and    (  ,   ,   ). For any ( ,  ,  ), 
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  | ( ,  ,  ; √ (    ))|
 

 

   (∫ ∫ (     )  (      )   √ (    )  

  

 

 

)

 

 

 (   )
 
(   )   ( ∫‖ ‖ √ (    )

  

)

 

  (5.A) 

The latter RHS is bounded w.r.t.   due to Assumption 5.1. This result, along with 
Prop. 3.2 (a) of Jakubowski, Memin and Pages (1989) and Lemma 2.1 of ST2010, 

implies the fidi convergence of  ( ,  ,  ; √ (    )) to  ( ,  ,  ;    ). 
Furthermore,  

| ( ,  ,  ; √ (    ))   ( 
 ,   ,   ; √ (    ))| 

 (   ) ( ,   ) ∫‖ ‖ √ (    )

  

, (5.B) 

where the RHS follows from the Lipschitz continuity of ( ) . Notice that 

∫ ‖ ‖ √ (    )   
    ∑ (‖  ‖    ‖  ‖)

 
     

, which converges in 

distribution to a normal random variable due to Assumption 5.1 and the CLT for 
 -mixing processes (see Rio (2000)). Hence, the above integral is uniformly 
(w.r.t.  ) tight due to Prokhorov’s Theorem (see Thm 18.12 in Van Der Vaart 
(1997)). This result, along with the total boundedness of       w.r.t.  , 
implies the second condition in Thm 18.14 of Van Der Vaart (1997), which 
establishes part (i) of our proposition. Part (ii) follows from the Continuous 
Mapping Theorem.   
 
PROOF OF PROPOSITION 5.2: Our proof uses a sequence of weak approximations of 

   under the null hypothesis. For     , √      as    , and     1, let 

  
  sup

( , )   
inf
   
  ( ,  ,  ; √   )  (5.C) 

  
  sup

( , )       
 
inf
   
 √  ( ,  ,  ;   ) ; (5.D) 

   
  {( ,  )    inf

   
  ( ,  ,  ;  )     }  (5.E) 

K( , )
    *  K  ( ,  ,  ;  )      +   ( ,  )     (5.F) 

Our strategy weakly approximates    by   
 , weakly approximates   

  by   
  and 

uses     as the weak limit of   
 . 

 For any ( ,  )     for which K( , )
   , 

inf
   
  ( ,  ,  ; √   )  min { inf

   ( , )
 
  . ,  ,  ; √ (    )/ ,   ( ,  )}, (5.G) 

where   ( ,  )  inf   ( , )
   ( ,  ,  ; √   ). If the infimum is achieved on the 

boundary of K( , )
 , then   ( ,  )   . ,  ,  ; √ (    )/.  In any case, using a 
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Skorokhod representation argument (see Thm 1.10.4 of van der Vaart and 
Wellner (1996)), the sequence (  ( ,  )) can be partitioned to subsequences 

which (if any) diverge to    , and to subsequences which (if any) converge to 

the limit of  . ,  ,  ; √ (    )/ evaluated on the boundary of K( , )
 . 

Consequently, the above minimum weakly converges to inf   ( , )
   ( ,  ,  ;   

 ). The CMT and Proposition 5.1 then imply 

  
  sup

( , )   
 inf
   ( , )

 
  ( ,  ,  ;    )       (5.H) 

Furthermore, we can derive the following results: 
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 √  ( ,  ,  ;   ))  (5.I) 

 
The probability (5.I) can be shown to converge to zero. From (5.H), the LHS of 
the inequality inside the probability (5.I) weakly converges to   . For the RHS, 
we obtain  

sup
  
sup
 ( , )
   

 √  ( ,  ,  ;   )   

sup
  
sup
 ( , )
   

  ( ,  ,  ; √ (    ))  sup
  
sup
 ( , )
   

 √  ( ,  ,  ;  )  (5.J) 

Due to Proposition 5.1, the first term on the RHS of the last display weakly 
converges to sup

  
sup ( , )

  ( ,  ,  ;    ) and the second terms diverges to    

due to the construction of K( , )
   . It follows that 

lim 
   

 (     
   )          (5.K) 

For any    , we can use the following arguments: 

lim sup
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 lim sup
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  . ,  ,  ; √ (    )/  sup
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  ( ,  ,  ; √  )   ) 

 lim sup
   

 (sup
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  . ,  ,  ; √ (    )/    √   )     (5.L) 

The first inequality uses   (max ( ,  )   )   (   )   (   ). The final 
equality follows from Proposition 5.1 and the assumed properties of   . Clearly, 

  (  
   )   (  

   )     (5.M) 

Combining (5.H), (5.K) and (5.M) completes the proof.   
 
PROOF OF PROPOSITION 6.1: To prove part (i), notice that zero lies in the support of 
the distribution of   , witness, for example, the possible yet negligible event 
   ( )   ,      . Furthermore, due to the convexity of the sets 
*          +, *          + for all     and      and 
Assumption 5.1.ii, we have that, excluding negligible events,  ( ,  ,  ;    ) 
equals zero, and thus has a degenerate variance, only if      . By generalizing 
Prop. 2.1.10 and 2.1.11 of Nualart (2006) to our case (with his sup replaced by 
our sup inf), we can derive that the process     ( ,  ,  ;    ) has a square 
integrable Malliavin derivative. By Prop. 2.1.7 of Nualart (2006), we obtain that 
the support of    is connected and thereby via our earlier results, we obtain that 
the support is , ,  ,.  

To prove part (ii), we use that, by analogy to (3.6),  

     
  sup

   
    sup

   
   , (6.A) 

where   follows a zero-mean  -variate normal distribution with non-singular 
variance matrix. The support of   

  is , ,   ,, which implies that the latter 
interval also includes the support of   . Inequality (6.A) implies that 
 (    )   (  

   ) and due to closeness and convexity of   , K and the non-
degeneracy of the distribution of  ,  (  

   ) equals the probability that the 
maximum of   occurs at a coordinate that corresponds to a common extreme 
point of   and K . Using Thm 2 of Sidak et al. (1999, p. 37), we find that 
 (  

   )  (    ). Hence, the distribution of    may have an atom at zero of 
probability at most (    ). 
 To prove part (iii), consider a restriction of the   process.   induces a 
Gaussian measure on the subspace of the continuous functions on     
equipped with the sup inf norm that attain the value zero if    . Let     denote 
the restriction of   to the elements of this function space for which the sup inf is 
strictly positive. The original Gaussian measure assigns a strictly positive 
probability to this set of functions, because  (  

   )  1. The (generalized) 
Nualart propositions apply also to   . In addition, the Malliavin derivative of 
  , in contrast to that of   , has a non-zero norm on the set  

{        ( )  sup
( , )   

 inf
   ( , )

 
   }  (6.B) 

Hence, the law of sup
( , )   

 inf   ( , )
    , whose support is , ,   ,, is absolutely 

continuous w.r.t. the Lebesgue measure. Combining this results with the 
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possibility of an atom at zero, we obtain the differentiability and hence 
continuity of the relevant CDF on - ,   ,, as in Thm 3 of Lifshits (1983).   

 
PROOF OF PROPOSITION 6.2: The behavior under    follows by a direct application 
of Thm 3.5.1.i of Politis et al. (1999), which Proposition 6.1 allows us to use. The 
behavior under    follows from the following considerations. Proposition 5.1 
along with (3.A) - (3.B) imply that  

sup
 , , 

   ( ,  ,  ;   )   ( ,  ,  ;  ) 
 
  , (6.C) 

and thereby that 
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 inf
   
  sup
   
  ( ,  ,  ;  )    ( )  (6.D) 

Using the Skorokhod Representation Theorem (see inter alia Thm 1.10.4 of van 
der Vaart and Wellner (1996), we may assume the existence of an enriched 

probability space that supports random variables   
 
  (  )   ( ) that a.s. 

converge to zero. Hence, for some     small enough, and any elementary event 
  in the enlarged space we can choose a   ( ) large enough so that, for any 
    ( ), under   , 

  √ ( ( )   )  √ ( ( )    ( ))  √ ( ( )   ), (6.E) 

which implies that √ ( ( )    ( )) diverges to    a.s. Hence, for any    , 

 (    (  , 1   )   )   (√ ( ( )    ( ))   (  , 1   )   )

 1  

(6.F) 

The behavior under    now follows from   ,  (1   )
 
  (  , 1   ), 

Proposition 5.2 and Thm 3.5.1.i of Politis et al. (1999).   
 
PROOF OF PROPOSITION 7.1: We may linearize the empirical shortfall measures in 
the spirit of the analysis of Conditional Value-at-Risk by Rockafellar and Uryasev 
(2000): 
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    have an increasing and convex piece-wise linear 

shape with kinks at     
   and      ,   1, ,  , respectively. It follows 

that the minimization of  ( ,  ,  ;   )    
( )( ,  )    
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achieves an optimal solution at a sub-interval boundary point     
  , 
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(7.B) 

 √ max
 
 *     (   ,  ,  ;   )     1, ,  +  

Combining (7.A) and (7.B), we find the following linear problem in canonical 
form for pairwise comparison of two given portfolios: 
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This linear maximization problem can be embedded directly in the maximization 

over the portfolio weights   K to yield   ( )   max
   
   ( ;  ), or the optimal 

value of the objective function of LP problem in canonical form (7.3).  

 
PROOF OF PROPOSITION 7.2: Any piecewise-linear function      consists of 

segments of     * + linear lines   ( )    ,    ,   that connect knots   , 

   . Since the piecewise-linear function is concave, it can equivalently be 
formulated as  ( )  min     ( ). Equipped with this result, our proof 
consists of the following arguments: 
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Bringing all model variables to the LHS and coefficients to the RHS gives the 
canonical form (7.11).   
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Figure 1: Numerical Example
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Figure 2: Empirical test for the hypothesis of market portfolio efficiency 
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Figure 3: Empirical test for the hypothesis of two-fund separation 
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