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Abstract

We use quantifiers and selection functions to represent simultane-
ous move games. Quantifiers and selection functions are examples of
higher-order functions. A higher order function is a function whose
domain is itself a set of functions. Thus, quantifiers and selection func-
tions allow players to form goals not only about outcomes but about
the whole (or parts) of the game play. They encompass standard pref-
erences and utility functions as special cases, but also extend to non-
maximizing behavior and context-dependent motives. We adapt the
Nash equilibrium concept to our new representation and also introduce
a refinement to capture the essential features of context-dependent
motives. As an example, we discuss fixpoint operations as context
dependent goals of coordination and differentiation in simultaneous
game variants of Keyne’s beauty contest and the minority game.
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Keywords: context dependent refinement of Nash equilibrium, higher order
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1 Introduction

We propose a generalized representation of finite, simultaneous games. Our

framework is based on quantifiers and selection functions which have been

introduced in proof theory and computer science [4, 5]. Quantifiers express

agents’ motivation in a natural and high-level way. They can express mo-

tives that cannot be modelled directly by preference relations and utility

functions, in particular motives that are dependent on the context in which

a decision is made. Since quantifiers and selection functions are higher-order

functions, there is a close connection to high-level functional programming

languages. As such, the formalism we propose is constructive and equilibria

are computable by directly implementable functional programs.

The motives we address in this paper are coordination and differentiation

that underly Keynes beauty contest and the minority game. The new feature

we add to game theory is that we express in a high-level way the goal of co-

ordination via fixpoints, and differentiation via non-fixpoints. The intuition

for agents pursuing such goals is that they are solving the game within the

game, using the fact that an equilibrium is itself a fixpoint.

Once agents are modeled to reason about the game itself, via selection

functions that represent fixpoints of the game, it becomes necessary to adjust

the equilibrium concept of the Nash equilibrium. We propose an equilibrium

refinement, which we call a context dependent Nash equilibrium, that takes

into account that fixpoint goals are context dependent, that is, they depend

not only on what outcomes can be attained but how they are attained. We

contrast the fixpoint goals to the usual context independent quantifiers and

selection functions of max and argmax in classical, i.e. context indepen-

dent, game theory. In this special case, every Nash equilibrium is a context

dependent equilibrium. In our examples, the context dependent variant of

the Nash equilibrium perfectly captures the intuitively plausible equilibria in

games where agents take into account the actions of other agents in a context

dependent way.
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2 Context Dependent Game Theory

2.1 Quantifiers

Quantifiers are a very general way of representing the aims or goals of a

decision-making agent. Whenever an agent decides, there is an associated

context, which is a function mapping the agent’s moves to final outcomes.

Suppose the agent must choose between a set of moves X. A rational agent

operating under common knowledge of rationality can associate an outcome

q(x) to every move x that may be chosen. An example of a commonly used

context is when we fix moves by all but one player in a simultaneous game,

and one player is unilaterally changing his strategy. In this situation or

context we can unambiguously assign an outcome to every possible move.

A quantifier is a rule for assigning to every context a set of ‘good’ out-

comes. A quantifier is therefore a higher order function (or functional), that

is a function whose domain is itself a set of functions. If an agent makes

a choice between a set of moves X and the outcomes form a set R, then a

quantifier for the agent is any higher order function

ϕ : (X → R)→ P(R)

that takes a function of type X → R as an argument and returns an element

from the power-set P(R) of R.

The classical example of a quantifier is utility maximisation. In this case

the set of outcomes is R = Rn, where the ith element represents the utility

of the ith player. Given a context q : X → Rn, the good outcomes for the

ith player are precisely those for which the ith coordinate, i.e. his utility

function, is maximal. This quantifier is given by

ϕi(q) = {r ∈ Im(q) | ri ≥ q(x′)i for all x′ ∈ X}

where Im(q) denotes the image of the function q : X → R.

There are quantifiers very different from utility maximisation, which we

considered in our accompanying paper [9].
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An extension of the classical decision theoretical setting that we are pur-

suing in [9] and extend here into a game theoretical setting is the notion of

context independent quantifiers and context dependent ones. Classical de-

cision theory relies on preferences and utility functions which only consider

outcomes and cannot directly consider the context in which a decision is

made. Yet, there are many economic situations where agents do not only

care about final outcomes but also (or even exclusively) care about the pro-

cess how results come about.1 Context dependent quantifiers capture exactly

goals which are dependent on the context.

One specific example of a context dependent quantifier which we will use

is the fixpoint quantifier. Recall that a fixpoint of a function f : X → X

is a point x ∈ X satisfying f(x) = x. When the set of moves is equal to

the set of outcomes (for example in an election) there is a quantifier whose

good outcomes are precisely the fixpoints of the context. If the context has

no fixpoint and the agent will be equally happy (or equally unhappy) with

any outcome, then the quantifier is given by

ϕ : (X → X)→ P(X)

ϕ(q) =

fix(q) if fix(q) 6= ∅

X otherwise

where

fix : (X → X)→ P(X)

fix(q) = {x ∈ X | q(x) = x}

2.2 Selection functions

Just as a quantifier tells us which outcomes an agent considers good, selection

functions tell us which moves are good. Thus a selection function is any

1In particular in behavioral economics there is wide evidence that subjects take into
account the context in which they make a decision, for instance when fairness concerns
play a role or when deciding in uncertain contexts. See [3, 10] for overviews.
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function of the form

ε : (X → R)→ P(X)

To this we add the condition that ε(q) 6= ∅, because the agent must always

select a move.

In the computer science literature where selection functions have been

considered previously the focus was on single-valued ones. However, as multi-

valued selection functions are extremely important in our examples we have

adapted the definitions accordingly.

As for quantifiers, the canonical example of a selection function is max-

imising one coordinate in Rn, defined by

εi(q) = {x ∈ X | q(x)i ≥ q(x′)i for all x′ ∈ X}

Even in one dimension, the arg max selection function is naturally multi-

valued: a function may attain its maximum value at several different points.

There is an important relation between quantifiers and selection functions

called attainment. Intuitively this means that the outcome of a good move

should be a good outcome. Formally, given a quantifier ϕ : (X → R)→ P(R)

and a selection function ε : (X → R) → P(X), we say that ε attains ϕ iff

for all contexts q : X → R it is the case that

x ∈ ε(q) =⇒ q(x) ∈ ϕ(q)

For example, this relation holds between the quantifier and the selection

function which maximise over Rn. The fixpoint quantifier is also itself a

selection function, and it attains itself since

x ∈ fix(q) =⇒ q(x) ∈ fix(q)

When modelling a situation, we consider that a quantifier describes the

goals of an agent and a selection function describes the strategy of the agent

attaining the quantifier. Seen in this way, attainment becomes a general

notion of rationality.
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Given a selection function ε, we can form the ‘smallest’ quantifier which

it attains. This is called ε and is defined by the equation

ε(q) = {q(x) | x ∈ ε(q)}

Thus the good outcomes according to the quantifier ε are exactly the out-

comes resulting from good moves according to the selection function ε.

2.3 Simultaneous games

A simultaneous game can be solely described by a family of selection functions

and an outcome function. For instance, consider a n-player game with a set

R of outcomes and sets Xi of strategies for the ith player. Such game can be

described in two parts:

1. the outcome function

q :
n∏

i=1

Xi → R

i.e., a mapping from the strategy profile to the final outcome,

2. for each player 1 ≤ i ≤ n, a selection function εi : (Xi → R)→ P(Xi)

representing that player’s prefered strategy in the game.

Intuitively, we think of the outcome function q as representing the ‘sit-

uation’, or the rules of the game, while we think of the selection functions

as describing the agents. Thus we can imagine the same agent in different

situations, and different agents in the same situation. This allows us to de-

compose a modelling problem into a global and a local part: modelling the

situation and modelling the players.

In the specific example in which R = Rn and εi is the selection function

which maximises the ith coordinate, we obtain ordinary normal-form games.

2.4 Unilateral contexts and equilibria

Consider a strategy profile x ∈
∏

iXi. The outcome of this strategy profile is

q(x). We want to define the context in which one player unilaterally changes
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his strategy. This is given by

U q
i (x)(x) = q(x[i 7→ x]).

The functions

U q
i :

n∏
j=1

Xj → (Xi → R)

are called unilateral maps. They were introduced in [7] in which it is shown

that the proof of Nash’s theorem amounts to showing that the unilateral maps

have certain topological (continuity and closure) properties. The concept of

a context was introduced later in [8], so now we can say that U q
i (x) : Xi → R

is the context in which the ith player has unilaterally changed his strategy,

so we call it a unilateral context.

Using these concepts we can generalize the definition of Nash equilibrium

to games defined by selection functions.

Definition 2.1 (Nash equilibrium) A strategy profile x is a Nash equi-

librium iff it results in a good outcome in every context in which a player

has unilaterally changed strategy. Since the set of good outcomes for the ith

player in the context U q
i (x) is given by

εi(U q
i (x)) ∈ P(R)

the condition for x to be a Nash equilibrium is

q(x) ∈ εi(U q
i (x))

for all players 1 ≤ i ≤ n.

This definition of a Nash equilibrium says that the outcome resulting

from a strategy profile is a good outcome in the context in which one player

unilaterally changes strategy.

Definition 2.2 (Context dependent Nash equilibrium) Each player’s
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move is a good move in the unilateral context, that is,

xi ∈ εi(U q
i (x))

for all players 1 ≤ i ≤ n. A strategy profile satisfying this condition for each

player is called a context dependent Nash equilibrium.

In classical game theory in which all quantifiers are max and all selection

functions are arg max these two definitions are equivalent. However in gen-

eral, and in the specific examples we use, context dependent equilibria are

an equilibrium refinement of Nash equilibria. Moreover they are important

in practice: our specific examples contain implausible Nash equilibria which

are not context dependent equilibria. Indeed, we have examples in which

every strategy is a Nash equilibrium, but there are few context dependent

equilibria.

The general concept is qualitative rather than quantitative: in an equi-

librium no player can unilaterally improve his situation by changing from a

bad outcome to a good outcome.

What is the relation between Nash equilibria and context dependent equi-

libria? In fact, it is easy to prove that context dependent equilibria are an

equilibrium refinement of Nash equilibria. Recall that by definition, for every

context p we have

x ∈ εi(q) =⇒ q(x) ∈ εi(q)

Consider in particular the unilateral context U q
i (x). Assuming that x is a

context dependent equilibrium we have

xi ∈ εi(U q
i (x))

Therefore

U q
i (x)(xi) ∈ εi(U q

i (x))

It remains to note that U q
i (x)(xi) = q(x), because x[i 7→ xi] = x.

These definitions are rather abstract and we will illustrate them with

specific examples. In the next section we will prove that for classical games
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both definitions reduce to ordinary Nash equilibrium, and also provide an

example that shows that this does not hold when investigating more general

games.

2.5 Equivalence for classical games

The reason why the distinction between Nash equilibria and context depen-

dent equilibria is surprising is that both coincide in classical game theory. Fix

a strategy profile x and let f : X → R be the unilateral context f = U q
i (x).

In order for Nash equilibria and context dependent equilibria to coincide it

must be the case that the condition

f(xi) ∈ εi(f)

implies the condition

xi ∈ εi(f).

Consider the particular selection functions

εi(q) = {x ∈ X | q(x)i ≥ q(x′)i for all x′ ∈ X}

and the quantifiers

εi(q) = {q(x) | q(x)i ≥ q(x′)i for all x′ ∈ X}

which are used in classical game theory. Now both of the conditions are

equivalent to

f(xi) ≥ f(x′), for all x′ ∈ X

To see that this is just the definition of a Nash equilibrium, again we note

that f(xi) = q(x).

If we suppose for simplicity that our quantifiers and selection functions

are single-valued, we can see that this is a cancellation argument, namely we

go from

f(xi) = max(f) = f(arg max f)
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to

xi = arg max f

Typically a cancellation of this form is invalid unless f is an injective function.

Thus from an algebraic point of view it is a remarkable property of arg max

that this cancellation

f(x) = f(arg max f) =⇒ x = arg max f

is always valid, even when f is not injective. From an alternative point of

view, this ‘remarkable property’ is nothing but the definition of arg max: if

the value of f at xi is maximal then xi is in arg max of f .2

It is also easy to see that the same cancellation argument fails if we replace

arg max with another single-valued selection function, and this is the reason

that Nash equilibria and context dependent equilibria are distinct. Suppose

we replace arg max with a single-valued fixpoint operator (ignoring the fact

that some functions have no fixpoint). Then the equivalent cancellation

f(x) = f(fix f) =⇒ x = fix f

is invalid. Consider in particular the constant function f : R → R given

by f(x) = 1, and the particular value x = 0. The unique fixpoint of f is

fix f = 1. Therefore it is the case that f(x) = 1 = f(fix f), but it is not the

case that x = fix f .

Overall we have proved that every classical Nash equilibrium is a con-

text dependent equilibrium, and every context independent equilibrium is

a (generalized) Nash equilibrium. This can be represented by the inclusion

chain

classical Nash ( context dependent Nash ( generalized Nash equilibria.

2This ‘deep triviality’ is reminiscent of the Curry-Howard isomorphism in logic, which
is the connection between proofs and computer programs. A simple proof system (natural
deduction for minimal logic) and a simple programming language (simply-typed λ calculus)
are equal by definition, but the philosophical implications are huge and the consequences
are still being explored.
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3 Examples

We focus our examples on a simple situation: there are three players, the

judges J = {J1, J2, J3}. The set of strategies X = {A,B} are the same for

each judge which are votes for two contestants A and B. The set of outcomes

is given by X = {A,B} denoting the winner of the contest. The winner is

determined by the majority rule of type maj : X ×X ×X → X. We analyse

several instances of this game with different motivations of players in order

to illustrate the expressiveness of selection functions.

3.1 Classical game

In a classical game, the judges rank the contestants according to a preference

ordering. For example, suppose judges 1 and 2 prefer A and judge 3 prefers

B. Thus for each judge we have an order relation on X. The order relation

of the first judge is B <1 A, the second judge is B <2 A and the third is

A <3 B.

The judges now attempt to maximise the outcome with respect to their

preferred ordering. Thus we obtain 3 different selection functions, which are

maximisation with respect to each ordering. The three selection functions

we obtain are

ε1(q) = {arg max
x1∈(X,≤1)

q(x)}

ε2(q) = {arg max
x2∈(X,≤2)

q(x)}

ε3(q) = {arg max
x3∈(X,≤3)

q(x)}.

In this particular example (but not in general) we can fix a ‘global’ order

B < A and notice that ≤3 is the dual order. Thus for short we refer to ε1

and ε2 as arg max and ε3 as arg min.

The game is represented in table 1. Notice that Nash and context depen-

dent equilibria coincide for this game, because it is classical.
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Table 1: Agents: max, max, min

Strategy Winner NE Defects cd NE Defects

AAA A X X
AAB A X X
ABA A - J3 - J3
ABB B - J2 - J2
BAA A - J3 - J3
BAB B - J1 - J1
BBA B - J1, J2 - J1, J2
BBB B X X

There is a subtle difference between this setup and the usual approach of

classical game theory. In the classical approach, each judge’s ordering would

be seen as a preference relation. This would be used to derive utilities, which

amounts to an order embedding of X into R. Here there are no utilities: we

directly maximise over the discrete order X.

We now want to give the calculations of the Nash equilibria of table

1 in the notation of selection functions and unilateral contexts. First we

take a look at the Nash equilibrium BBB with outcome q(BBB) = B

and give the rationals of player 1. The unilateral context of player 1 is

U q
1 (BBB)(x) = maj(xBB) = {B} meaning that the outcome is (still) B

if player 1 unilaterally changes from B to A. The minimal quantifier is

ε1(U q
1 (BBB)(x)) = maj(xBB) = {B} meaning that B is the outcome re-

sulting from an optimal choice. Hence, we can conclude by B = q(BBB) ∈
ε1(U q

1 (BBB)(x)) = {B} that B is a Nash equilibrium strategy for player 1.

This condition holds for each player and allows us to conclude that BBB is

a Nash equilibrium.

In the same way we see in B = q(BBA) /∈ ε1(U q
1 (BBA)(x)) = ε1({A}) =

{A} that BBA is not a Nash equilibrium.
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3.2 Keynes beauty contest

We consider Keynes beauty contest as the paradigmatic example of a context

dependent game. The first judge J1 ranks the candidates according to a

preference ordering B < A. The second and third judges, however, are

‘Keynes agents’: they have no preference relations over the candidates per

se, but want to vote for the winning candidate.

The context dependent equilibria are precisely those in which J2 and J3

are coordinated, and J1 is not pivotal in any of these. In the next section

we will explain in more detail how the fixpoint selection function models

coordination. Table 2 contains a summary of the equilibria.

Consider the strategy AAA, which is a context dependent equilibrium of

this game. Suppose the moves of J1 and J2 are fixed, but J3 may unilaterally

change strategy. The unilateral context is

Umaj
3 (AAA)(x) = maj(AAx) = A

Thus the unilateral context is a constant function, and its set of fixpoints is

fix(Umaj
3 (AAA)) = {A}

This tells us that J3 has no incentive to unilaterally change to the strategy

B, because he will no longer be voting for the winner.

On the other hand, for the strategy ABB the two Keynes agents are

indifferent, because if either of them unilaterally changes to A then A will

become the majority and they will still be voting for the winner. This is still

a context dependent equilibrium (as we would expect) because the unilateral

context is the identity function, and in particular B is a fixpoint.

There are two context dependent equilibria, BAA and BBB, which are

implausible in the sense that J1 is not voting for his preferred candidate. We

will discuss the issue of equilibrium selection in Section 3.5.

We now calculate the Nash and the context dependent rational for the

strategy profile AAB of the Keynes player 3. The outcome of AAB is

14



Table 2: Agents: max, fix, fix

Strategy Winner NE Defects cd NE Defects

AAA A X X
AAB A X - J3
ABA A X - J2
ABB B X X
BAA A X X
BAB B - J1 - J1, J2
BBA B - J1 - J1, J3
BBB B X X

q(AAB) = A. The unilateral context of player 3 is

U q
3 (AAB)(x) = maj(AAx) = A

meaning that the outcome is (still) A if player 3 unilaterally changes from B

to A. The minimal quantifier is

ε3(U q
3 (AAB)(x)) = fix(maj(AAx)) = {A}

meaning that A is the outcome resulting from an optimal choice. Hence, we

can conclude by

A = q(AAB) ∈ ε3(U q
3 (AAB)(x)) = {A}

that B is a Nash equilibrium strategy for player 3.

The rational for the context dependent Nash equilibrium is as follows:

the strategy B = x3 /∈ ε3(U q
3 (AAB)(x)) = fix(maj(AAx)) = {A} meaning

that AAB is not a context dependent Nash equilibrium.

In the classical approach a modeller usually writes down a payoff matrix

directly from considerations about the situation as given by a story told in

natural language. The modeller solves the game for the fixpoint outcomes

and provides the players with the payoffs such that the maximizing behav-
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Table 3: Agents: max, fix, fix

Strategy Winner NE sim. cd NE Defects PJ1 PJ2 PJ3

AAA A X 1 1 1
AAB A - J3 1 1 0
ABA A - J2 1 0 1
ABB B X 0 1 1
BAA A X 1 1 1
BAB B - J1, J2 0 0 1
BBA B - J1, J3 0 1 0
BBB B X 0 1 1

ior mimicks the Keynes agent’s goal and the classical pure Nash equilibria

coincide with our context dependent equilibria.

An example of this classical approach is depicted in table 3 where the

last three columns depicts the payoff matrix. In column ‘NE sim. cd NE’

we denote the Nash equilibria that simulate the context dependent Nash

equilibria. As opposed to the classical approach we can equip players with

the modeler’s ability to reason about the game and to solve for any context

dependent goal such as a fixpoint goal in the Keynes beauty contest example.

The fixpoint selection function, combined with context dependent equilibria,

perfectly model our intuition about this game.

Note that by solving the game the economist changes the payoffs such

that the context dependency is internalized into the payoff matrix. Consider

the strategies profiles AAA and AAB, here, working with selection functions

the outcome does not change, meaning that both of them are Nash equilibria

but only one of them is a context dependent Nash equilibrium. Creating

the payoff matrix the modeller introduces differences in outcomes for the

strategy profiles such that the third player strictly prefers to play A. In the

selection function approach the context changes but results in the same (ob-

servable) outcome whereas in the classical approach the internalization of

the context dependency changes the outcome in terms of utilities. Internal-

izing the context dependency makes AAA into a Nash equilibrium but not
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AAB. Selection functions do not convey implicitly the context dependency

but explicitly highlights it.

Compiling games In table 3 we have calculated the payoff matrix such

that the Nash equilibrium mimicks the context dependent one. There is a

very simple procedure for this: we write 0 whenever the player defects and

1 whenever they do not defect. The reason this is important is that we

are unable to define mixed strategies inside the selection functions frame-

work, but context dependent games could still be intuitively expected to

have mixed equilibria. A good example of this is the beauty context variant

(max,min, fix). In this game J1 prefers A, J2 prefers B and J3 would like to

vote for the winner. Intuitively we expect this game to have an equilibrium

in which J1 votes for A, J2 votes for B and J3 mixes with arbitrary proba-

bility. By ‘compiling’ the game to a classical utility function representation

we regain these mixed equilibria.

Underlying this process there is a general pattern of compiling high level

languages of high expressivity into languages with a lower expressivity. In

general, any mathematical or logical language for knowledge representation

[6] faces a trade off between the goals of representation and reasoning [2],

page 327: ”[. . .] why do we not attempt to define a formal knowledge repre-

sentation language that is coextensive with a natural language like English?

[. . .] Although such a highly expressive language would certainly be desir-

able from a representation standpoint, it leads to serious difficulties from a

reasoning standpoint.”

The difference between the classical and the context dependent approach

is that both differ in their representational power. The natural language

description of an economic situation is rather directly translatable into the

high level formal system of selection functions as opposed to the low level

classical approach. We have depicted both in figure 1. In our approach, the

payoff matrix as in table 3, can be automatically computed, and the modeller

needs only to decide which selection functions represent the agents and which

outcome function represents the situation. The classical approach is depicted

in figure 1 by a translation into the payoff matrices.
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Figure 1: Context depended and classical modelling
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Our approach of context dependent modeling of the left part of figure 1

can thus be seen as a modelling technique to reduce the gap between the

high level description of an economic situation in natural language and the

formal modelling language. Selection functions are mid-level in between the

high level natural language and the low level language of utility maximization

represented traditionally in calculus in classical games.

An account for the representational power of languages is an involved

research topic and even more raising the expressivity while not sacrificing

reasonability. However, we hypothesis that our approach increases the ex-

pressivity of the representation language for game theory while not sacrificing

reasoning possibilities, but quite the opposite, our framework is ready for au-

tomated reasoning, as opposed to calculus [12].

Our approach is directly programmable in modern functional languages

like Haskell that has been developed within the high level modern mathe-

matical type theory [13] in order to increase the expressivity of imperative

languages such as Fortran or Matlab. The essence of functional languages
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is the usage of higher order functions that take and output other functions

like selection functions, quantifier and outcome functions. Functional pro-

gramming languages can be understood as languages to design languages. A

typical approach to programing via functional languages is to design a do-

main specific language that allows to express the problems in a most direct

and natural way while the program is compiled with its problem declara-

tion into the low level solution steps of an intermediate imperative or a very

low level machine language. This is much in the spirit of our approach to

compile the selection function model into the payoff matrix of a classical

representation of the Keynes beauty contest game in table 3.

We have heavily taken advantage of a prototype Haskell tool that calcu-

lates equilibria by brute force (enumeration of all strategies) for the games

we have discussed in this paper. In fact the discovery of the notion of con-

text dependent Nash equilibrium has been a direct consequence of using the

tool. Before using the software we were misguided by our intuition, and did

not recognise the difference between Nash equilibria and context dependent

equilibria.

3.3 Coordination game

We consider a game where all agents act according to a fixpoint goal. Judges

J1, J2 and J3 want to vote for the winner, so the selection functions are given

by the fixpoint operator (R → R) → R. For this particular case we do not

need to consider multi-valued fixpoint operators, since for this game fixed

points always exist and are unique.

As can be seen in table 4, the context dependent equilibria are exactly

the coordinated strategies. Note that the fixpoint selection function models

coordination, and the game in which all selection functions are fixpoints is a

coordination game. This gives us a new perspective on the Keynes beauty

contest as a one-sided coordination game: the Keynes agent would like to

coordinate with the group, whereas the agents of the group are not interested

in coordination.

This game is a good example of why ordinary Nash equilibria are not suit-
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Table 4: Agents: fix, fix, fix

Strategy Winner NE Defects cd NE Defects

AAA A X X
AAB A X - J3
ABA A X - J2
ABB B X - J1
BAA A X - J1
BAB B X - J2
BBA B X - J3
BBB B X X

able for modelling context dependent games: it can be seen in the table that

every strategy is a Nash equilibrium of this game, but the context dependent

equilibrium captures our intuition perfectly that the equilibria should be the

strategy profiles that are maximally coordinated, namely AAA and BBB.

3.4 Anti-coordination game

Just as the fixpoint selection function models coordination, so there is a ‘non-

fixpoint’ selection function which models anti-coordination (or differentiation

as in the minority game [1, 11]).

The set of non-fixpoints of a function p : X → X is

non-fix(q) = {x ∈ X | x 6= q(x)}

We extend this to a selection function by specifying that the player is indif-

ferent in the event that there are no non-fixpoints (such as if p is the identity

function)

ε(q) =

non-fix(q) if non-fix(q) 6= ∅

X otherwise

Unlike for fixpoints, this selection function does not attain itself when con-

sidered as a quantifier. The corresponding quantifier is instead given by the
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Table 5: Agents: non-fix, non-fix, non-fix

Strategy Winner NE Defects cd NE Defects

AAA A X - J1, J2, J3
AAB A X X
ABA A X X
ABB B X X
BAA A X X
BAB B X X
BBA B X X
BBB B X - J1, J2, J3

set

{q(x) | x 6= q(x)}

An agent whose selection function is non-fix is a ‘punk’ who aims to be

in a minority. We consider the game in which all three judges are punks (see

Table 5). Of course only one can actually be in a minority, so the context

dependent equilibria are precisely the ‘maximally anti-coordinated’ strategy

profiles, namely those in which one judge differs from the other two. This is

another example of a game in which every strategy is a Nash equilibrium, but

the context dependent equilibrium corresponds perfectly to our intuition.

3.5 Strategic voting models

The classical game considered in Section 2.5, in which J1 and J2 maximise

and J3 minimises, contains two implausible equilibria, AAA and BBB. In the

first, J3 is voting against his preferred candidate because he is not pivotal.

The second is stranger: both J2 and J3 would prefer B, but neither can

unilaterally change the outcome.

One way to remove these equilibria is assuming that agents vote for the

weakly dominant option. With the conception of a context dependent equi-

librium there is a new perspective on this issue. Using a classical Nash-

equilibrium implies that an agent only has an incentive to deviate when he is
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pivotal, that is, when he can change the global outcome. In fact this implic-

itly represents a form of context dependency but one which is not intended.

The context is: vote for your preferred outcome if you are pivotal, choose

any of all options if you are not pivotal. Assuming ‘on top’ that the agent

does not vote for the dominated option, is then just a remedy to get around

this context dependency while using the classical, context independent, Nash

equilibrium concept to solve the game.

In order to account for this context dependency directly, an appropriate

selection function for J1 would be to vote for B iff voting for B is beneficial

and voting for A is not beneficial. The selection function is

εA(q) =

B if q(A) = B and q(B) = A

A otherwise

The selection function for B is

εB(q) =

A if q(B) = A and q(A) = B

B otherwise

The selection function εA is a selection refinement of arg max, in the sense

that it is consistent with arg max but reduces the amount of indecision. In

this particular example, this selection function leads to the same outcome as

a constant selection function where an agent always votes for his preferred

party indepedently of the context. The only difference would arise, if voting

for the opponent resulted in the own preferred candidate winning. But in the

context of voting games with majority and only two alternatives this cannot

occur.

Formally, the condition for a selection function ε to be a selection re-

finement of δ is that ε(q) ⊆ δ(q) for every context q. If J1 and J2 use εA

and J3 uses εB then the resulting game has exactly one context dependent

equilibrium, which is AAB. Even in such a simple situation as this, the con-

text dependent equilibrium is important: there are two more Nash equilibria

which are not context dependent equilibria (see Table 6).

When there are a small number of moves we can actually enumerate every
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Table 6: Agents: εA, εA, εB

Strategy Winner NE Defects cd NE Defects

AAA A X - J3
AAB A X X
ABA A - J3 - J2, J3
ABB B - J2 - J2
BAA A - J3 - J1, J3
BAB B - J1 - J1
BBA B - J1, J2 - J1, J2, J3
BBB B X - J1, J2

Table 7: Enumerating arg max, εA and constant

p (A) p (B) arg max(p) εA(p) always A

A A A, B A A
A B A A A
B A B B A
B B A, B A A

context to see this, as in table 7.

We can use selection functions to model more elaborate voting prefer-

ences. Suppose there are three political parties A, B, C standing in an elec-

tion. A voter ranks the parties according to a preference relation A > B > C.

Suppose A is a minority party for which there may be no chance of being

elected. Parties B and C are mainstream parties, of which the voter would

always prefer B. The voter votes according to the following rule: vote for

A if there is any chance of A being elected, otherwise vote for B. In no

situation will the voter vote for C. The context q of the decision can tell

us whether voting for A will bring about A winning the election, and the

selection function we are looking for is

ε(q) =

A if q(A) = A

B otherwise
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This implicitly assumes that the outcome function is the majority function

(or at least does not lead to strange contexts), but it can be argued that this

condition is exactly what we mean by the term ‘voting’.

4 Conclusions

In our complementary paper on decision theory [9] we have generalized the

notions of max, argmax, utility functions and preferences. These classical,

context independent concepts are superseded by the context dependent se-

lection functions and quantifiers in order to model for example social prefer-

ences, conformity or differentiation goals.

In this paper we have extended the usage of context dependent concepts to

finite, simultaneous stage games. We reproduce classical context independent

games and go beyond to models of players with context dependent goals. In

order to solve context dependent games we have refined the classical Nash

equilibrium into the so called context dependent Nash equilibrium. The

specific context dependent goals we have discussed are the fixpoint goals of

coordination and differentiation within Keynes beauty contest and minority

games.

This paper also contributes to the general modelling principle of eco-

nomics in that we can reduce the gap between the high level description of

economic situations in natural languages and their representation in formal

models. As a consequence, we can automate a larger part of the modelling

process and implement our models directly in modern functional program-

ming languages that have been developed by the mathematical tools of type

theory.

In future work we plan to extend the context dependent framework to re-

peated and sequential games with imperfect and incomplete information and

to endogeneize the context itself towards a framework with learning players

and for institutional dynamics. When extending the framework to infinite

games such as repeated games there are computability issues to consider,

and in particular both arg max and fixpoint must be replaced with approxi-

mation algorithms. We see this as a positive aspect, since the type-theoretic
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foundation forces us to only discuss objects that are computable.

Moreover, the general idea of building the game theoretic formalism

on computable functions implies that “reflexive” phenomena that are om-

nipresent in economic problems can be directly approached. As Thomas

Sargent ([14]) has put it:“[. . .] the agents in the model should be able to

forecast and profit-maximize and utility-maximize as well as the economist -

or should we say the econometrician - who constructed the model.” As the

lambda calculus allows functions to manipulate themselves, it is the tool of

choice to approach these questions. In our paper, we are making a first step

in this direction as the agents who want to act according to the fixpoints of

the game they find themselves in, just as we, the modellers, solve the games

for their fixpoints. We will make further steps in this direction in future

work.
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