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BLOCK BOOTSTRAP THEORY FOR MULTIVARIATE INTEGRATED AND

COINTEGRATED PROCESSES

CARSTEN JENTSCH, EFSTATHIOS PAPARODITIS, AND DIMITRIS N. POLITIS

Abstract. We develop some asymptotic theory for applications of block bootstrap resampling
schemes to multivariate integrated and cointegrated time series. It is proved that a multivariate,
continuous-path block bootstrap scheme applied to a full rank integrated process, succeeds in
estimating consistently the distribution of the least squares estimators in both, the regression
and the spurious regression case. Furthermore, it is shown that the same block resampling
scheme does not succeed in estimating the distribution of the parameter estimators in the case
of cointegrated time series. For this situation, a modified block resampling scheme, the so-called
residual based block bootstrap, is investigated and its validity for approximating the distribution
of the regression parameters is established. The performance of the proposed block bootstrap
procedures is illustrated in a short simulation study.

JEL classification: C15; C32

1. Introduction

The block bootstrap methodology, Künsch (1989), Liu and Singh (1992), is a general resampling
scheme applicable to time series data obeying a weak dependence structure; see Lahiri (2003)
for an overview. Since then, block bootstrap has been successfully applied to a wide range of
inference problems in statistics and econometrics. In particular, it has become a useful tool
for various estimation and testing problems extensively studied in econometrics literature. In
the univariate case, applications of block resampling schemes to integrated processes have been
considered by Paparoditis and Politis (2003), Parker, Paparoditis and Politis (2006) and Phillips
(2010). For the multivariate case, Li and Maddala (1997) and Badillo, Belaire-Franch and Re-
verte (2010) investigate the usefulness of block bootstrap methods for small sample inference
in cointegration regression models and for cointegration rank testing. However, despite these
applied papers, in the multivariate context few is known about the theoretical properties of the
block bootstrap used for statistical inference.

However, diverse other bootstrap approaches have been applied and studied in several esti-
mation and testing contexts in multivariate integrated and cointegrated models. Chang, Park
and Song (2006) propose a sieve bootstrap for estimation and testing of linear hypothesis in
cointegrating regressions. They prove bootstrap consistency not only for the OLS estimator
and corresponding test statistics, but also for the case of asymptotically efficient estimation and
hypothesis testing. In a reduced rank VAR model, Swensen (2006,2009) applied a residual-based
bootstrap procedure for testing and determining the cointegration rank. He proves bootstrap
consistency for the likelihood ratio test statistic (trace statistic) which consequently leads to a
valid sequential procedure to determine the cointegration rank of the system. Since this influen-
tial paper, this bootstrap testing methodology has been refined in several directions. In Trenkler
(2009), the potential benefit of a prior adjustment for deterministic terms before bootstrapping
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is investigated and consistency is proved for the adjusted system cointegration tests. Cava-
liere, Rahbek and Taylor (2010a,b) propose to use wild bootstrap to extend the methodology
of Swensen (2006) to cases where conditional and unconditional heteroskedasticity is present
in the innovations. Swensen (2011) considers reduced rank autoregressive models that include
also stationary regressors and provides theory. Cavaliere, Rahbek and Taylor (2012) proposed
to execute the bootstrap procedure with restricted parameter estimates, which allows for boot-
strap consistency under weaker conditions than used by Swensen (2006). Its generalization to
heteroskedastic innovations has been addressed in Cavaliere, Rahbek and Taylor (2014).

The aim of this paper is to complement the existing literature by filling the gap of missing
theory for the block bootstrap and to provide some asymptotic theory that justifies applications
of block bootstrap methods to multivariate integrated and/or cointegrated processes. In partic-
ular, we establish asymptotic theory not only under linearity, but also for innovations fulfilling
some suitable strong mixing conditions. We first consider a so-called, full rank, multivariate in-
tegrated process and investigate properties of a block bootstrap resampling scheme that is based
on block bootstrapping of the centered differences of the observed multivariate time series. This
resampling scheme is a multivariate version of the so-called Continuous-Path Block bootstrap
(CBB), proposed in the univariate context by Paparoditis and Politis (2001). Based on CBB-
generated multivariate bootstrap observations, we first establish a functional limit theorem for
the bootstrap partial sum process. Using this basic result, we then prove asymptotic validity
of the CBB method applied to the matrix of the least squares estimators in the full rank inte-
grated case. We also show that by means of the same bootstrap procedure, the distribution of
the least squares estimators for the spurious regression as coined by Phillips (1986) can be also
successfully approximated. This complements the results in Phillips (2001), who investigated
the applicability of several bootstrap approaches in this framework. Further, we show that the
same bootstrap method based on resampling blocks of the (centered) differences does not work,
however, in the case of multivariate cointegrated processes. This is due to the fact that in this
case the block resampling scheme based on differences does not mimic correctly the cointegration
structure of the underlying process. For this kind of processes a Residual-based Block Bootstrap
(RBB) is more appropriate. This procedure is based on block bootstrapping of the (centered)
residuals of a regression fit obtained using the cointegration relations. We prove that the RBB
is asymptotically valid in approximating the distribution of the least squares estimators of the
cointegration matrix.

The paper is organized as follows. Section 2 describes the CBB procedure and establishes a
basic functional limit theorem for the block bootstrap generated partial sum process. Appli-
cations of the CBB bootstrap scheme to multivariate integrated processes are then considered
and asymptotic validity for the full rank integrated case and in the spurious regression case are
established. Section 3 deals with cointegrated multivariate processes. It is first demonstrated
that the CBB applied to the least squares estimator fails. A residual based block bootstrap
(RBB) resampling scheme is then discussed. It is shown, that for cointegrated processes the
RBB resampling scheme leads to an asymptotically valid approximation of the distribution of
the least squares cointegration matrix. Section 4 summarizes our findings while all proofs are
deferred to Section 5.

2. Block Bootstrap for Integrated Processes

2.1. Preliminaries.
Suppose we have m-variate time series data X1, . . . ,Xn plus one additional pre-sample value X0

at hand stemming from a stochastic process {Xt, t ∈ N0} where the Xt’s are R
m-valued random

variables. Throughout this paper, we will also denote by X1t the m1-dimensional vector that
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contains the first m1 coordinates of Xt and by X2t the m2-dimensional vector that contains the
last m2 = m − m1 coordinates of Xt for some 0 ≤ m1 ≤ m. In this section, we assume that
{Xt, t ∈ N0} is a so-called, m-dimensional, full-rank random walk, i.e., Xt follows the model

Xt = Xt−1 + Ut, t ∈ N, (2.1)

where X0 = Oas(1) is random following a certain fixed distribution and {Ut, t ∈ N} is a station-
ary process satisfying either Assumption 2.1 or Assumption 2.2 below. By these assumptions,
{Ut, t ∈ N} is allowed to be either a linear process or a process fulfilling some general strong
mixing conditions; see also Phillips (1988) and Paparoditis and Politis (2003).

Assumption 2.1.
The process {Ut, t ∈ N} is a sequence of m-variate random variables satisfying

Ut =

∞∑

ν=0

ψνǫt−ν ,

where ψν = (ψν,ij)i,j=1,...,m,
∑∞

ν=1 ν|ψν,ij| < ∞ for each i, j = 1, . . . ,m, (ǫt, t ∈ Z) is an m-
variate sequence of i.i.d. random variables with E(ǫt) = 0, E(ǫ4it) < ∞ for i = 1, 2, . . . ,m and
E(ǫtǫ

′
t) = Σ > 0. Furthermore,

Ω = 2πf(0) =

(
∞∑

ν=0

ψν

)
Σ

(
∞∑

ν=0

ψν

)′

> 0,

where f(ω) denotes the spectral density matrix of {Ut, t ∈ N}.

Assumption 2.2.
The process {Ut, t ∈ N} is a sequence of strictly stationary, strong mixing m-variate random
variables satisfying E(Ut) = 0, E|Ui1|β+ǫ < ∞, i = 1, . . . ,m for some β > 2, ǫ > 0 and∑∞

k=1 α(k)1−2/β <∞. The α-mixing coefficient α(k) is defined by

α(k) = sup
A∈F∞

t+k,B∈Ft
−∞

|P (A ∩B) − P (A)P (B)|,

where F∞
t+k = σ(Xt+k,Xt+k+1, . . .), F t

−∞ = σ(Xt,Xt−1, . . .) and σ(Y ) denotes the σ-algebra

generated by the random variable Y . Furthermore, it holds true that E(n−1SnS
′
n) → Ω > 0 as

n→ ∞, where St =
∑t

j=1Uj .

Some remarks on the two sets of assumptions are in order. Assumption 2.1 imposes linearity
of the process {Ut} with sufficiently fast decaying coefficient matrix entries. In contrast, {Ut}
is assumed to fulfill a suitable strong mixing condition in Assumption 2.2 that is just strong
enough to prove limit theorems. In both conditions, the long-run variance Ω of {Ut} is assumed
to be non-singular to ensure the existence of its inverse.

The following notation borrowed e.g. from Phillips (1988) is used in the sequel. We set

Ω = Γ(0) +

∞∑

h=1

Γ(h) +

∞∑

h=1

Γ(−h) = Ω0 + Ω1 + Ω′
1, (2.2)

where Γ(h) = Cov(Ut+h, Ut) = E(Ut+hU
′
t) denotes the covariance matrix at lag h ∈ Z of the

innovation process {Ut}.
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2.2. The Continuous-path Block Bootstrap (CBB).
We first describe a multivariate version of the so-called Continuous-path Block Bootstrap (CBB)
as proposed by Paparoditis and Politis (2003). This general block bootstrap resampling scheme
will be applied in the sequel in order to approximate the distribution of statistics calculated
using time series data X0,X1, . . . ,Xn stemming from the process (2.1), where {Ut} satisfies As-
sumption 2.1 or Assumption 2.2. More precisely, the multivariate CBB consists of the following
four steps.

Step 1. Compute the differences Ut = ∆Xt = Xt −Xt−1, t = 1, . . . , n.
Step 2. Choose a block length b < n and let k be the smallest number of blocks needed to get

a bootstrap sample of length l = kb, such that l ≥ n. Let i0, . . . , ik−1 be i.i.d. random
variables uniformly distributed on the set {0, 1, 2, . . . , n− b}.

Step 3. Let U∗
1 , . . . , U

∗
l be a moving block bootstrap sample, where for j = 1, 2, . . . , b and m =

0, 1, 2, . . . , k − 1,

U∗
mb+j = Ûim+j := Uim+j − E∗ (Uim+j) = Uim+j −

1

n− b+ 1

n−b∑

τ=0

Uτ+j. (2.3)

Step 4. Generate then the bootstrap pseudo-time series X∗
1 , . . . ,X

∗
l , as

X∗
t =

{
X0, t = 0

X∗
t−1 + U∗

t , t ∈ {1, . . . , l}. (2.4)

Remark 2.1. Note that the centering of the bootstrap sample in (2.3) is tailor-made for the
moving block bootstrap and adjusted centering has to be applied for other approaches as e.g.
non-overlapping block bootstrap, cyclical block bootstrap or stationary bootstrap.

2.3. A Functional Limit Theorem (FLT) for the bootstrap partial sum process.
We first establish a basic result which is useful to prove consistency of the CBB resampling
scheme. In fact, the asymptotic theory for establishing bootstrap consistency for statistics
based on time series X1,X2, . . . ,Xn relies to a large extent on the asymptotic behavior of the
standardized partial sum process {S∗

l (ν), 0 ≤ ν ≤ 1}, which is defined by

S∗
l (ν) =

1√
l
(Ω∗

l )
−1/2

j−1∑

t=1

U∗
t , for

j − 1

l
≤ ν <

j

l
, j = 1, . . . , l,

S∗
l (ν) =

1√
l
(Ω∗

l )
−1/2

l∑

t=1

U∗
t , for ν = 1. (2.5)

By convention, summations over empty sets are zero and (Ω∗
l )

1/2 is the symmetric (positive
semi-definite) square root of

Ω∗
l = V ar∗

(
1√
l

l∑

t=1

U∗
t

)
=

1

b

b∑

s1,s2=1

1

n− b+ 1

n−b∑

t=0

Ût+s1
Û ′

t+s2
, . (2.6)

Notice that by Assumption 2.1 or Assumption 2.2, Ω∗
l is positive definite with probability tend-

ing to one.

Observe that S∗
l (·) is a random element taking values in the space D[0, 1]m = D[0, 1] × · · · ×

D[0, 1], the product metric space of all real valued vector functions on [0, 1] that are right con-
tinuous at each element of [0, 1] and possess finite left limits. Each component space D[0, 1]
is endowed with the Skorohod metric, denoted by d, which ensures separability of the metric
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space. For the product space D[0, 1]m, the metric d̃ is defined by

d̃(x, y) = max
i∈{1,2,...,m}

{
d(xi, yi) : xi, yi ∈ D[0, 1]

}
.

In the following theorem, we prove that conditional on the sample X1, . . . ,Xn, the standard-
ized CBB bootstrap partial sum process (2.5), converges weakly to an m-dimensional standard
Wiener process, where each element of W (t) is a univariate Wiener process and the elements of
W (t) are independent from each other. The notation S∗

l ⇒ W in probability, means that the
distance between the law of S∗

l = S∗
l (·) and the law of W tends to zero in probability for any

distance metrizing weak convergence.

Theorem 2.1. Let {Xt, t ∈ N0} be an m-dimensional stochastic process following (2.1) and
assume that the process {Ut, t ∈ N} satisfies Assumption 2.1 or Assumption 2.2. If b → ∞ as
n→ ∞ such that b/

√
n→ 0, then

S∗
l ⇒W

in probability, respectively, where {W (t) = (W1(t), . . . ,Wm(t))′, t ∈ [0, 1]} is here and throughout
this paper an m-dimensional standard Wiener process on [0, 1], i.e. each element Wi(·) is a
univariate Wiener process and the elements of W (·) are independent.

We next discuss some cases where Theorem 2.1 is employed to establish asymptotic properties
of block-bootstrap based, statistical inference procedures.

2.4. Applications to Regression Estimators.

2.4.1. Regressing Xt on Xt−1.

Consider the least squares (LS) estimator Â obtained by regressing Xt on Xt−1, that is,

Â =

(
n∑

t=2

XtX
′
t−1

)(
n∑

t=2

Xt−1X
′
t−1

)−1

. (2.7)

We want to approximate the unknown distribution of n(Â− Im) by the bootstrap distribution

of l(Â∗ − Im), where

Â∗ =

(
l∑

t=2

X∗
t X

∗′
t−1

)(
l∑

t=2

X∗
t−1X

∗′
t−1

)−1

, (2.8)

Im is the (m ×m) unity matrix and X∗
1 , . . . ,X

∗
l is generated using the CBB scheme described

in Section 2.2. As

n(Â− Im) ⇒
{

Ω1/2

∫ 1

0
W (t)dW (t)′Ω1/2 + Ω1

}{
Ω1/2

∫ 1

0
W (t)W (t)′dtΩ1/2

}−1

holds under Assumptions 2.1 [cf. Lütkepohl (2006), Proposition C.18] or 2.2 [cf. Phillips and
Durlauf (1986), Theorem 2.1], the following theorem establishes validity of the multivariate CBB

procedure for approximating the distribution of the least squares estimator Â.

Theorem 2.2. Under the assumptions of Theorem 2.1, conditionally on X1,X2, . . . ,Xn, it holds
true that

l(Â∗ − Im) ⇒
{

Ω1/2

∫ 1

0
W (t)dW (t)′Ω1/2 + Ω1

}{
Ω1/2

∫ 1

0
W (t)W (t)′dtΩ1/2

}−1

in probability, where Ω and Ω1 are defined in (2.2).
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2.4.2. Spurious Regression of X1t on X2t for m1 = 1.
Consider next the so-called spurious regression case, where we regress the first coordinate of Xt

on the remaining ones, while the underlying process is the full rank random walk (2.1). By using
the notation introduced in Section 2.1, this means, we regress X1t on X2t with m1 = 1. Let α̂

and β̂ be the least squares estimators of α and β when one fits the (spurious regression) model

X1t = α+ β′X2t + ǫt, (2.9)

to the time series at hand. More specifically,

β̂ =

{
1

n2

n∑

t=1

(X2t −X2)(X2t −X2)
′

}−1{
1

n2

n∑

t=1

(X2t −X2)(X1t −X1)

}
(2.10)

and α̂ = X1 − X
′
2β̂, where X1 = 1

n

∑n
t=1X1t and X2 = 1

n

∑n
t=1X2t. From Phillips (1986),

Theorem 2 and under Hamilton (1994), Proposition 18.2, we get under Assumptions 2.2 or 2.1,
respectively, that

1√
n
α̂ ⇒ b1 − b′2A

−1
22 a21 (2.11)

β̂ ⇒ A−1
22 a21, (2.12)

where a11, b1, a12, a21, b2 and A22 are random variables such that a11, b1 take values in R,
a12, a21, b2 in R

m−1 and A22 in R
(m−1)×(m−1) and

A =

(
a11 a′12
a21 A22

)
= Ω1/2

{∫ 1

0
W (t)W ′(t)dt −

∫ 1

0
W (t)dt

∫ 1

0
W ′(t)dt

}
Ω1/2,

b =

(
b1
b2

)
= Ω1/2

∫ 1

0
W (t)dt.

Further, let α̂∗ and β̂∗ be the bootstrap analogues of α̂ and of β̂, i.e., the least squares estimators
of α and β in running the regression

X∗
1t = α+ β′X∗

2t + ǫt

using the bootstrap pseudo-time series X∗
1 , . . . ,X

∗
l generated by the CBB scheme of Section 2.2.

Here, X
∗
1 = 1

l

∑l
t=1X

∗
1t and X

∗
2 = 1

l

∑l
t=1X

∗
2t. The corresponding bootstrap estimator is then

given by

β̂∗ =

{
1

l2

l∑

t=1

(X∗
2t −X

∗
2)(X

∗
2t −X

∗
2)

′

}−1{
1

l2

l∑

t=1

(X∗
2t −X

∗
2)(X

∗
1t −X

∗
1)

}
(2.13)

and α̂∗ = X
∗
1 − Z

∗′
β̂∗. We then have the following theorem.

Theorem 2.3. Under the assumptions of Theorem 2.1, it holds

1√
l
α̂∗ ⇒ b1 − b′2A

−1
22 a21

β̂∗ ⇒ A−1
22 a21

in probability, respectively.

As the above theorem in comparison to (2.11) and (2.12) shows, the CBB procedure succeeds

in approximating correctly the distribution of the parameter estimators α̂ and β̂ in the spurious
regression case.
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3. Block Bootstrap for Cointegrated Processes

3.1. CBB applied to cointegrated processes.
Consider now the case where the underlying process fulfills a cointegrated relation, that is, the
multivariate time series X1, . . . ,Xn is generated by the m = m1 +m2-dimensional model

X1t = BX2t + U1t,

X2t = X2,t−1 + U2t, (3.1)

where X0 = OP (1) is random following a certain fixed distribution, X1t, U1t are m1-dimensional,
X2t, U2t are m2-dimensional, B is an (m1 × m2) matrix and {Ut = (U ′

1t, U
′
2t)

′, t ∈ N} is a
stationary process satisfying Assumption 2.1 or Assumption 2.2. Notice that {Xt, t ∈ N} is
cointegrated with cointegration rank m1. Our goal is to investigate the properties of the CBB

bootstrap in estimating the distribution of the LS-estimator B̂ of B, where

B̂ =

(
n∑

t=1

X1tX
′
2t

)(
n∑

t=1

X2tX
′
2t

)−1

. (3.2)

Under the imposed conditions [cf. Lütkepohl (2006), Lemma 7.1 or Phillips and Durlauf (1986),
Theorem 4.1], we have

n(B̂ −B) ⇒
[
Ω1/2

∫ 1

0
W (t)dW ′(t)Ω1/2 + Ω0 + Ω1

]

12

[[
Ω1/2

∫ 1

0
W (t)W ′(t)dtΩ1/2

]

22

]−1

, (3.3)

where Ω1,Ω and Ω0 are defined in (2.2) and [C]12, [C]22 denote the (m1 ×m2) upper-right and
the (m2 × m2) lower-right part of an (m ×m) matrix C with m = m1 + m2. The bootstrap

analogue of B̂ is given by

B̂∗ =

(
l∑

t=1

X∗
1tX

∗′
2t

)(
l∑

t=1

X∗
2tX

∗′
2t

)−1

, (3.4)

where X∗
1 ,X

∗
2 , . . . ,X

∗
l is generated according to the CBB algorithm described in Section 2.2.

Now, recall that the CBB is based on resampling blocks of the differenced time series Xt−Xt−1,
t = 1, 2, . . . , n, which leads to

X1t −X1,t−1 = BU2t + (U1t − U1,t−1)

≡ V1t,

and V1t 6= U1t = X1t − BX2t. Notice that X2t − X2,t−1 = U2t. Thus, the CBB uses the

(centered) differences of the innovations (V
′

1t, U
′

2t), t = 1, 2, . . . , n, to resample the blocks and

not the innovations (U
′

1t, U
′

2t) as in the case of a full rank integrated process. Furthermore,

the resampled blocks obtained from a centered version of (V
′

1t, U
′

2t), t = 1, 2, . . . , n, that is the
pseudo replicates (V ∗′

1t , U
∗′
2t), t = 1, 2, . . . , l, are integrated to obtain the bootstrap observations

X∗
1 ,X

∗
2 , . . . ,X

∗
l . From this we get by usingMt = ⌈ t

b⌉−1, Bt,m = min(b, t−mb), X∗
1t =

∑t
j=1 V

∗
1j ,

X∗
2t =

∑t
j=1 U

∗
2j and the definition of V ∗

1t that

X∗
1t = B

Mt∑

m=0

Bt,m∑

s=1

Û2,im+s +
Mt∑

m=0

Bt,m∑

s=1

(Û1,im+s − Û1,im+s−1)

= BX∗
2t +

Mt−1∑

m=0

(Û1,im+b − Û1,im) + (Û1,iMt+(t−Mtb) − Û1,iMt
), (3.5)

where Û1t and Û2t are the centered differences of the component processes U1t and U2t, see also
(2.3). Note also that the two last terms in the last right-hand side above are the increments



8 CARSTEN JENTSCH, EFSTATHIOS PAPARODITIS, AND DIMITRIS N. POLITIS

between the last and the first random variable in each randomly selected block. Further, (3.5)
leads to

l∑

t=1

X∗
1tX

∗′
2t = B

l∑

t=1

X∗
2tX

∗′
2t +

l∑

t=1

U∗
1tX

∗′
2t +

l∑

t=1

Mt−1∑

m=0

(Û1,im+b − Û1,im)X∗′
2t −

l∑

t=1

Û1,iMt
X∗′

2t

= B

l∑

t=1

X∗
2tX

∗′
2t +

l∑

t=1

U∗
1tX

∗′
2t +R1,l +R2,l,

with an obvious notation for R1,l and R2,l. Notice that in obtaining the last equality above,∑l
t=1 U1,iMt+(t−Mtb)X

∗′
2t =

∑l
t=1 U

∗
1tX

∗′
2t has been used. From the above and (3.4) we get that

l(B̂∗ −B) =
(
l−1

l∑

t=1

U∗
1tX

∗′
2t

)(
l−2

l∑

t=1

X∗
2tX

∗′
2t

)−1
+ R̃1,l + R̃2,l, (3.6)

where

R̃1,l = l−1R1,l

(
l−2

l∑

t=1

X∗
2tX

∗′
2t

)−1
and R̃2,l = l−1R2,l

(
l−2

l∑

t=1

X∗
2tX

∗′
2t

)−1
.

Notice that the terms R1,l and R2,l are due to the fact that integrating the block resampled

V1,t’s, the differences Û1,im+b− Û1,im within each block do not cancel out. Now, comparing (3.6)
with

n(B̂ −B) =
(
n−1

n∑

t=1

U1tX
′
2t

)(
n−2

n∑

t=1

X2tX
′
2t

)−1
,

indicates that
(
l−1
∑l

t=1 U
∗
1tX

∗′
2t

)(
l−2
∑l

t=1X
∗
2tX

∗′
2t

)−1
mimics in the bootstrap world the sto-

chastic behavior of
(
n−1

∑n
t=1 U1tX

′
2t

)(
n−2

∑n
t=1X2tX

′
2t

)−1
. However,

1

l
R2,l =

1

k

k−1∑

m=0

Û1,im

1

b

b∑

s=1

X∗
2,mb+s = OP (1),

since

1√
bl

b∑

s=1

X∗
2,mb+s = Ω∗1/2 1√

b

b∑

s=1

Ω∗−1/2 1√
l

mb+s∑

j=1

U∗
2j = Ω∗1/2 1√

b

b∑

s=1

S∗
l ((mb+ s)/l) = OP (1),

see also the proof of Lemma 6.2(i), Section 6. This together with Lemma 6.1(iii), implies that

R̃2,l = OP (1). Furthermore, since

1

l
R1,l =

1

l

k−2∑

m=0

(Û1,im+b − Û1,im)

l∑

t=(m+1)b+1

X∗
2t

and l−3/2
∑l

t=r X
∗
2t = Ω∗1/2

l−1
∑l

t=r S
∗
l (t/l), see the proof of Lemma 6.2(i), we get that l−1R1,l =

OP (
√
lk), and thus R̃1,l does not vanish as n → ∞. The above considerations and expression

(3.6) lead to the conclusion that the stochastic behavior of n(B̂ − B) can not be successfully

approximated by that of the CBB analogue l(B̂∗ −B).
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3.2. Residual-based Block Bootstrap (RBB).
Since the CBB applied to a cointegrated process fails due to the fact that the generated pseudo-
time series X∗

1 ,X
∗
2 , . . . ,X

∗
n mimics the behavior of a full rank random walk, we show in this

section that a residual-based block bootstrap (RBB) scheme succeeds in approximating correctly

the distribution of the least squares estimator B̂ under the cointegration model (3.1). Using
this residual-based block bootstrap, we generate pseudo-time series data X+

1 ,X
+
2 , . . . ,X

+
n that

retains the cointegration structure of the underlying process. This is achieved using the following
block bootstrap algorithm. Notice that the notation X+

t instead of X∗
t is used in order to

distinguish between the pseudo-time series generated by the CBB and by the following RBB
algorithm.

Step 1. Compute B̂ and Ũt = (Ũ ′
1t, U

′
2t)

′ for t = 1, . . . , n according to

Ũ1t = X1t − B̂X2t,

U2t = X2t −X2,t−1.

Step 2. Choose a block length b < n and let k be the smallest number of blocks needed to get
a bootstrap sample of length l = kb, such that l ≥ n. Let i0, . . . , ik−1 be i.i.d. random
variables uniformly distributed on the set {0, 1, 2, . . . , n− b}.

Step 3. Let U+
1 , . . . , U

∗
l with U+

t = (U+′
1t , U

+′
2t )′ be a moving block bootstrap sample, where for

j = 1, 2, . . . , b and m = 0, 1, 2, . . . , k − 1,
(
U+

1,mb+j

U+
2,mb+j

)
=

(
Û1,im+j

Û2,im+j

)
=

(
Ũ1,im+j − E+(Ũ1,im+j)
U2,im+j − E+(U2,im+j)

)

=

(
Ũ1,im+j

U2,im+j

)
− 1

n− b+ 1

n−b∑

τ=0

(
Ũ1,τ+j

U2,τ+j

)
. (3.7)

Step 4. Generate then the bootstrap pseudo-time series (X+′
1t ,X

+′
2t )′, t = 1, . . . , l from

X+
2t =

{
X20, t = 0

X+
2,t−1 + U+

2t , t ∈ {1, . . . , l}
and

X+
1t = B̂X+

2t + U+
1t , t ∈ {1, . . . , l}.

This leads to the estimator

B̂+ =

(
l∑

t=1

X+
1tX

+′
2t

)(
l∑

t=1

X+
2tX

+′
2t

)−1

.

As (3.3) holds under Assumptions 2.1 or 2.2, the following theorem shows that the RBB proce-
dure described above succeeds in mimicking correctly the random behavior of the LS-estimator

B̂ in the cointegrated case (3.1).

Theorem 3.1. Let {Xt, t ∈ N0} be an m-dimensional stochastic process following (3.1) and
assume that the process {Ut, t ∈ N} satisfies Assumption 2.1 or Assumption 2.2. If b → ∞ as
n→ ∞ such that b/

√
n→ 0 then

l(B̂+ − B̂) ⇒
[
Ω1/2

∫ 1

0
W (t)dW ′(t)Ω1/2 + Ω0 + Ω1

]

12

[[
Ω1/2

∫ 1

0
W (t)W ′(t)dtΩ1/2

]

22

]−1

in probability, where Ω1,Ω and Ω0 are defined in (2.2). Here, [C]12 and [C]22 denote the (m1 ×
m2) upper-right and the (m2 ×m2) lower-right part of an (m×m) matrix C with m = m1 +m2.
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Figure 1. Realizations of the cointegrated system {Xt = (X1t,X
′
2t)

′} in (4.1)
and (4.2) for a) MA(1) noise (upper panels) and b) AR(1) noise (lower panels)
for sample size n = 400 and δ ∈ {0.9, 0.5, 0.1} (from left to right). {X1t} (solid)
and both components of {X2t} (dashed and dotted) are shown.

4. Simulations

In this section, we illustrate the bootstrap performance of the CBB and the RBB as proposed
in the previous sections by means of coverage rates of confidence intervals and by estimated
standard deviations. To cover jointly estimates for (purely) integrated as well as cointegrated
multivariate time series processes, we consider data X1, . . . ,Xn from the trivariate cointegrated
system

X1t = BX2t + U1t, (4.1)

X2t = X2,t−1 + U2t, (4.2)

where we set X0 = 0. In this setup, X1t, U1t are 1-dimensional, X2t, U2t are 2-dimensional, B is
a (1×2) cointegration matrix and {Ut = (U1t, U

′
2t)

′, t ∈ N} is a 3-dimensional stationary process.
In this section, we specify the latter process as follows. Let U1t = etet−1, where {et, t ∈ N0} is
i.i.d. and follows a standard normal distribution et ∼ N (0, 1). The bivariate process {U2t, t ∈ N}
follows either an

a) VMA(1) model U2t = Ψǫt−1 + ǫt

or an
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MA(1), δ = 0.9 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 Â11 3.004 3.451 0.476 0.427 2.992 3.221 0.296 0.140 3.004 3.164 0.250 0.088

Â12 4.291 4.647 0.788 0.748 4.292 4.460 0.521 0.299 4.294 4.376 0.374 0.147

Â21 3.224 3.542 0.609 0.472 3.197 3.344 0.366 0.156 3.230 3.288 0.275 0.079

Â22 3.124 3.572 0.508 0.459 3.134 3.345 0.356 0.171 3.163 3.278 0.302 0.104

3n1/3 Â11 3.004 3.586 0.745 0.894 2.992 3.302 0.517 0.363 3.004 3.182 0.370 0.168

Â12 4.291 4.824 1.229 1.793 4.292 4.621 0.796 0.742 4.294 4.438 0.520 0.291

Â21 3.224 3.686 0.909 1.040 3.197 3.391 0.552 0.342 3.230 3.325 0.385 0.157

Â22 3.124 3.721 0.891 1.150 3.134 3.433 0.576 0.421 3.163 3.308 0.438 0.213

5n1/3 Â11 3.004 3.595 0.983 1.316 2.992 3.423 0.636 0.591 3.004 3.279 0.485 0.311

Â12 4.291 4.990 1.493 2.718 4.292 4.761 1.008 1.235 4.294 4.530 0.680 0.519

Â21 3.224 3.617 1.068 1.295 3.197 3.490 0.728 0.616 3.230 3.409 0.482 0.265

Â22 3.124 3.813 1.060 1.599 3.134 3.576 0.751 0.759 3.163 3.413 0.566 0.383

MA(1), δ = 0.5 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 Â11 3.443 3.801 0.527 0.406 3.347 3.653 0.368 0.229 3.386 3.526 0.297 0.108

Â12 3.636 3.934 0.689 0.563 3.573 3.729 0.411 0.193 3.567 3.640 0.303 0.097

Â21 4.110 4.346 0.731 0.590 4.026 4.263 0.449 0.258 4.007 4.158 0.341 0.139

Â22 3.104 3.520 0.529 0.454 3.129 3.351 0.374 0.189 3.113 3.219 0.293 0.097

3n1/3 Â11 3.443 4.043 0.981 1.322 3.347 3.782 0.661 0.627 3.386 3.625 0.456 0.265

Â12 3.636 4.082 1.036 1.272 3.573 3.820 0.595 0.415 3.567 3.734 0.452 0.232

Â21 4.110 4.666 1.213 1.780 4.026 4.389 0.745 0.688 4.007 4.252 0.492 0.302

Â22 3.104 3.686 0.957 1.255 3.129 3.412 0.579 0.415 3.113 3.320 0.462 0.256

5n1/3 Â11 3.443 4.035 1.190 1.766 3.347 3.918 0.854 1.057 3.386 3.710 0.613 0.481

Â12 3.636 4.164 1.296 1.958 3.573 3.955 0.843 0.857 3.567 3.799 0.558 0.366

Â21 4.11 4.522 1.421 2.189 4.026 4.511 0.941 1.121 4.007 4.314 0.640 0.504

Â22 3.104 3.732 1.060 1.518 3.129 3.549 0.791 0.802 3.113 3.359 0.544 0.357

MA(1), δ = 0.1 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 Â11 5.196 5.364 0.923 0.881 5.376 5.417 0.664 0.443 5.465 5.462 0.576 0.332

Â12 3.396 3.727 0.630 0.507 3.413 3.588 0.400 0.191 3.399 3.524 0.304 0.108

Â21 5.567 5.532 0.884 0.783 5.732 5.603 0.597 0.373 5.809 5.709 0.513 0.274

Â22 3.112 3.400 0.512 0.345 3.127 3.294 0.379 0.172 3.123 3.232 0.298 0.101

3n1/3 Â11 5.196 5.934 1.585 3.058 5.376 5.793 1.143 1.481 5.465 5.715 0.969 1.002

Â12 3.396 3.959 0.986 1.289 3.413 3.799 0.628 0.543 3.399 3.631 0.457 0.263

Â21 5.567 6.053 1.466 2.386 5.732 5.949 0.967 0.983 5.809 5.943 0.818 0.687

Â22 3.112 3.611 0.918 1.092 3.127 3.498 0.678 0.598 3.123 3.337 0.474 0.271

5n1/3 Â11 5.196 6.033 1.859 4.156 5.376 6.147 1.497 2.835 5.465 5.946 1.219 1.718

Â12 3.396 3.950 1.198 1.742 3.413 3.876 0.823 0.892 3.399 3.671 0.582 0.413

Â21 5.567 6.046 1.767 3.353 5.732 6.150 1.163 1.528 5.809 6.086 0.959 0.997

Â22 3.112 3.583 1.083 1.396 3.127 3.486 0.788 0.749 3.123 3.342 0.566 0.369

Table 1. Standard deviations σ̂∗ of the entries of n(Â − I2) estimated by the
RBB bootstrap for the VMA(1) model a), sample sizes n ∈ {100, 400, 1200},
(rounded) block lengths b ∈ {n1/3, 3n1/3, 5n1/3} and δ ∈ {0.9, 0.5, 0.1}. The true
parameter σ is estimated by 20, 000 Monte Carlo replications.

b) VAR(1) model U2t = ΨU2,t−1 + ǫt

where ǫt ∼ N (0,Σ). The parameter specifications B = (0.5,−0.5),

Ψ =

(
δ −0.4
0 0.5

)
and Σ =

(
1 0.5

0.5 1

)
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AR(1), δ = 0.9 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 Â11 2.431 2.362 0.267 0.076 2.491 2.064 0.140 0.202 2.487 2.037 0.136 0.221

Â12 11.981 7.771 2.033 21.864 15.237 8.749 1.358 43.936 16.539 10.324 1.112 39.866

Â21 1.081 1.736 0.478 0.656 0.861 1.308 0.210 0.244 0.807 1.081 0.120 0.089

Â22 2.672 2.919 0.417 0.235 2.566 2.521 0.214 0.048 2.504 2.413 0.154 0.032

3n1/3 Â11 2.431 2.497 0.512 0.266 2.491 2.341 0.354 0.148 2.487 2.352 0.315 0.117

Â12 11.981 10.064 3.406 15.279 15.237 12.645 2.721 14.126 16.539 14.134 2.159 10.445

Â21 1.081 1.487 0.530 0.445 0.861 1.035 0.236 0.086 0.807 0.911 0.135 0.029

Â22 2.672 3.030 0.653 0.555 2.566 2.648 0.337 0.120 2.504 2.541 0.224 0.051

5n1/3 Â11 2.431 2.611 0.687 0.504 2.491 2.563 0.530 0.286 2.487 2.541 0.441 0.197

Â12 11.981 11.149 4.535 21.264 15.237 13.960 3.356 12.894 16.539 15.627 2.79 8.614

Â21 1.081 1.424 0.641 0.529 0.861 1.030 0.257 0.095 0.807 0.897 0.164 0.035

Â22 2.672 3.196 0.892 1.070 2.566 2.796 0.436 0.243 2.504 2.666 0.303 0.118

AR(1), δ = 0.5 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 Â11 3.669 3.419 0.465 0.279 4.060 3.472 0.352 0.469 4.219 3.716 0.365 0.386

Â12 4.196 4.108 0.812 0.667 4.557 4.138 0.552 0.480 4.706 4.323 0.472 0.370

Â21 3.858 3.761 0.720 0.528 4.094 3.717 0.429 0.326 4.16 3.853 0.358 0.223

Â22 2.608 2.840 0.359 0.183 2.658 2.632 0.213 0.046 2.686 2.582 0.176 0.042

3n1/3 Â11 3.669 4.011 0.978 1.072 4.060 4.123 0.822 0.679 4.219 4.207 0.689 0.475

Â12 4.196 4.665 1.296 1.900 4.557 4.704 1.043 1.109 4.706 4.709 0.810 0.656

Â21 3.858 4.095 1.065 1.191 4.094 4.101 0.799 0.639 4.16 4.194 0.652 0.427

Â22 2.608 3.033 0.668 0.627 2.658 2.805 0.378 0.164 2.686 2.747 0.285 0.085

5n1/3 Â11 3.669 4.164 1.146 1.558 4.060 4.351 1.118 1.336 4.219 4.425 0.875 0.807

Â12 4.196 4.626 1.624 2.823 4.557 4.967 1.373 2.054 4.706 4.939 1.014 1.083

Â21 3.858 4.147 1.299 1.770 4.094 4.294 1.036 1.113 4.160 4.293 0.760 0.595

Â22 2.608 3.013 0.749 0.725 2.658 2.962 0.519 0.362 2.686 2.859 0.380 0.174

AR(1), δ = 0.1 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 Â11 6.134 5.347 0.864 1.366 7.098 5.943 0.741 1.882 7.324 6.478 0.672 1.169

Â12 3.497 3.703 0.675 0.498 3.748 3.594 0.472 0.247 3.813 3.662 0.389 0.174

Â21 6.556 5.420 0.892 2.084 7.565 6.100 0.687 2.617 7.601 6.691 0.628 1.222

Â22 2.615 2.820 0.318 0.143 2.769 2.678 0.208 0.052 2.786 2.691 0.191 0.045

3n1/3 Â11 6.134 6.563 1.536 2.543 7.098 7.241 1.438 2.088 7.324 7.388 1.228 1.511

Â12 3.497 3.985 1.153 1.567 3.748 3.982 0.827 0.740 3.813 3.937 0.682 0.480

Â21 6.556 6.576 1.698 2.883 7.565 7.369 1.381 1.946 7.601 7.588 1.151 1.325

Â22 2.615 2.981 0.614 0.511 2.769 2.937 0.422 0.206 2.786 2.860 0.317 0.106

5n1/3 Â11 6.134 6.805 1.784 3.634 7.098 7.579 1.869 3.724 7.324 7.616 1.519 2.391

Â12 3.497 4.097 1.374 2.248 3.748 4.035 0.949 0.983 3.813 4.006 0.782 0.650

Â21 6.556 6.744 2.067 4.306 7.565 7.836 1.848 3.489 7.601 7.806 1.466 2.190

Â22 2.615 3.071 0.809 0.862 2.769 3.030 0.520 0.338 2.786 2.949 0.402 0.188

Table 2. Standard deviations σ̂∗ of the entries of n(Â − I2) estimated by the
RBB bootstrap for the VAR(1) model b), sample sizes n ∈ {100, 400, 1200},
(rounded) block lengths b ∈ {n1/3, 3n1/3, 5n1/3} and δ ∈ {0.9, 0.5, 0.1}. The true
parameter σ is estimated by 20, 000 Monte Carlo replications.

are used in both cases a) and b) with δ ∈ {0.1, 0.5, 0.9}. {et} and {ǫt} are independent. By
using the notation of Section 2.1, this setup corresponds to the cointegration model (3.1) with
m1 = 1 and m2 = 2.

Further, note that the bivariate process {X2t} is (purely) integrated and of the form (2.1) and
that {U1t} and {U2t} are independent by construction. Hence, an application of the RBB scheme
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MA(1), δ = 0.9 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 α̂ 0.805 0.714 0.109 0.020 0.792 0.755 0.068 0.006 0.798 0.763 0.054 0.004

β̂ 0.714 0.687 0.135 0.019 0.695 0.694 0.088 0.008 0.698 0.688 0.061 0.004

3n1/3 α̂ 0.805 0.662 0.150 0.043 0.792 0.750 0.113 0.015 0.798 0.771 0.080 0.007

β̂ 0.714 0.643 0.188 0.040 0.695 0.692 0.135 0.018 0.698 0.690 0.093 0.009

5n1/3 α̂ 0.805 0.610 0.189 0.074 0.792 0.716 0.140 0.025 0.798 0.749 0.099 0.012

β̂ 0.714 0.604 0.222 0.061 0.695 0.668 0.172 0.030 0.698 0.680 0.117 0.014

MA(1), δ = 0.5 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 α̂ 0.631 0.580 0.082 0.009 0.624 0.598 0.053 0.003 0.629 0.612 0.042 0.002

β̂ 0.572 0.559 0.108 0.012 0.552 0.548 0.063 0.004 0.547 0.549 0.049 0.002

3n1/3 α̂ 0.631 0.535 0.128 0.025 0.624 0.584 0.085 0.009 0.629 0.607 0.063 0.004

β̂ 0.572 0.510 0.151 0.027 0.552 0.536 0.102 0.011 0.547 0.543 0.075 0.006

5n1/3 α̂ 0.631 0.493 0.160 0.045 0.624 0.563 0.115 0.017 0.629 0.598 0.079 0.007

β̂ 0.572 0.487 0.192 0.044 0.552 0.527 0.141 0.020 0.547 0.542 0.094 0.009

MA(1), δ = 0.1 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 α̂ 0.466 0.450 0.059 0.004 0.463 0.459 0.038 0.001 0.460 0.459 0.033 0.001

β̂ 0.412 0.430 0.079 0.007 0.403 0.422 0.048 0.003 0.399 0.412 0.036 0.001

3n1/3 α̂ 0.466 0.402 0.099 0.014 0.463 0.438 0.061 0.004 0.460 0.449 0.047 0.002

β̂ 0.412 0.389 0.121 0.015 0.403 0.408 0.075 0.006 0.399 0.406 0.056 0.003

5n1/3 α̂ 0.466 0.365 0.111 0.022 0.463 0.419 0.078 0.008 0.460 0.439 0.060 0.004

β̂ 0.412 0.350 0.134 0.022 0.403 0.390 0.092 0.009 0.399 0.396 0.070 0.005

Table 3. Standard deviations σ̂∗ of n−1/2α̂ and β̂ estimated by the CBB boot-
strap for the VMA(1) model a), sample sizes n ∈ {100, 400, 1200}, (rounded)

block lengths b ∈ {n1/3, 3n1/3, 5n1/3} and δ ∈ {0.9, 0.5, 0.1}. The true parameter
σ is estimated by 20, 000 Monte Carlo replications.

as proposed in Section 3.2 leads to trivariate bootstrap data X+
t = (X+

1t,X
+′
2t )′, t = 1, . . . , n such

that the bivariate observations X+
2t can be regarded as being generated by the CBB defined in

Section 2.2. That is, we have X+
2t = X∗

2t, t = 1, . . . , n. This observation allows us to investigate
jointly the finite sample performance of the RBB and CBB by using the setup described above.

For the trivariate cointegrated model in (4.1) and (4.2), we consider the estimator B̂ defined

in (3.2) and for the purely integrated bivariate sub-model (4.2), we consider the estimator Â
defined in (2.7) which is obtained from regressing X2t on X2,t−1 as well as the estimators α̂ and

β̂ defined in (2.10) obtained from regressing the first coordinate of X2t on its second coordinate.

To judge the finite sample performance of RBB and CBB, the task is to estimate the stan-

dard deviations of (the entries of) n(B̂ − B), n(Â − I2), n
−1/2α̂ and β̂. Further, we compute

coverage rates of 95% bootstrap confidence intervals for (the entries) of B. We show the results
for n ∈ {100, 400, 1200} and to illustrate how sensitive the bootstrap reacts on the choice of

the block length b, we show results for three (rounded) values of b ∈ {n1/3, 3n1/3, 5n1/3}. For
both settings a) and b) above, we generate T = 500 time series and we use K = 500 bootstrap
replicates to estimate the standard deviations and to construct the confidence intervals. The
true parameter σ is estimated by 20, 000 Monte Carlo replications.

In Figure 1, we show realizations of the model (4.1)-(4.2) for both cases a) and b), δ ∈
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AR(1), δ = 0.9 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 α̂ 3.499 1.766 0.442 3.201 3.919 2.282 0.321 2.781 4.099 2.780 0.253 1.804

β̂ 2.804 1.453 0.414 1.995 2.792 1.693 0.272 1.282 2.754 1.979 0.212 0.645

3n1/3 α̂ 3.499 2.234 0.717 2.116 3.919 3.152 0.627 0.982 4.099 3.525 0.436 0.519

β̂ 2.804 1.765 0.666 1.522 2.792 2.257 0.525 0.561 2.754 2.425 0.358 0.237

5n1/3 α̂ 3.499 2.287 0.948 2.369 3.919 3.238 0.698 0.951 4.099 3.643 0.515 0.473

β̂ 2.804 1.819 0.886 1.756 2.792 2.286 0.574 0.586 2.754 2.524 0.452 0.257

AR(1), δ = 0.5 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 α̂ 0.827 0.764 0.119 0.018 0.829 0.799 0.074 0.006 0.834 0.817 0.054 0.003

β̂ 0.593 0.627 0.126 0.017 0.558 0.603 0.075 0.008 0.552 0.578 0.052 0.003

3n1/3 α̂ 0.827 0.710 0.181 0.046 0.829 0.786 0.117 0.016 0.834 0.810 0.089 0.009

β̂ 0.593 0.566 0.180 0.033 0.558 0.566 0.116 0.014 0.552 0.553 0.083 0.007

5n1/3 α̂ 0.827 0.638 0.204 0.077 0.829 0.761 0.150 0.027 0.834 0.795 0.104 0.012

β̂ 0.593 0.497 0.193 0.047 0.558 0.546 0.141 0.020 0.552 0.546 0.092 0.008

AR(1), δ = 0.1 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 α̂ 0.471 0.498 0.068 0.005 0.464 0.492 0.040 0.002 0.461 0.484 0.031 0.001

β̂ 0.332 0.414 0.076 0.013 0.308 0.369 0.044 0.006 0.303 0.342 0.032 0.003

3n1/3 α̂ 0.471 0.417 0.095 0.012 0.464 0.449 0.063 0.004 0.461 0.458 0.045 0.002

β̂ 0.332 0.334 0.106 0.011 0.308 0.322 0.060 0.004 0.303 0.315 0.044 0.002

5n1/3 α̂ 0.471 0.371 0.106 0.021 0.464 0.427 0.079 0.008 0.461 0.451 0.056 0.003

β̂ 0.332 0.297 0.114 0.014 0.308 0.305 0.073 0.005 0.303 0.308 0.053 0.003

Table 4. Standard deviations σ̂∗ of n−1/2α̂ and β̂ estimated by the CBB boot-
strap for the VAR(1) model b), sample sizes n ∈ {100, 400, 1200}, (rounded)

block lengths b ∈ {n1/3, 3n1/3, 5n1/3} and δ ∈ {0.9, 0.5, 0.1}. The true parameter
σ is estimated by 20, 000 Monte Carlo replications.

{0.9, 0.5, 0.1} and sample size n = 400. These figures clearly indicate the cointegration rela-
tion. In Tables 1–6, we present the simulation results for the task of (CBB and RBB) bootstrap
estimation of standard deviations. In each table, we show the true standard deviations σ to-
gether with averages of their bootstrap estimates mean(σ̂∗), their standard deviations SD(σ̂∗)
and the corresponding mean squared errors MSE(σ̂∗).

The overall performance appears to be quite well, where the results do not seem to react
very sensitive on the choice of the block length. In general a larger block length tends to be
superior in the situation, where more dependence structure has to be captured by the block
bootstrap which is the case for the AR-type model. In particular, in almost all cases, the results
show an improving behavior wrt MSE for increasing sample size. Essentially, the only exception

is the case of Â12 in the upper panel of Table 2. In this case, although the true parameter σ is
converging, it is still increasing considerably from 11.981 to 16.539 from n = 400 to n = 1200.
Here, in comparison to b ∈ {3n1/3, 5n1/3}, the block length b = n1/3 is just too small which
results in a large bias while the standard deviation behaves quite well. This means, the large
MSE is mainly caused by a large bias, which appears to be a problem of the sample size. For
larger block lengths b ∈ {3n1/3, 5n1/3}, the approximation of σ is superior which leads to a
smaller bias and, consequently, to a smaller MSE. Moreover, the simulation results show that
different block lengths b turn out to be optimal for the different parameters. For example, in

Table 2, upper panel, for n = 1200, it can be seen that b = n1/3 performs best for Â22, b = 3n1/3
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MA(1), δ = 0.9 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 B̂11 1.939 2.073 0.562 0.334 1.888 1.965 0.305 0.099 1.882 1.939 0.229 0.056

B̂12 2.178 2.388 0.644 0.458 2.192 2.264 0.354 0.130 2.182 2.237 0.264 0.073

3n1/3 B̂11 1.939 2.025 0.728 0.537 1.888 1.921 0.430 0.186 1.882 1.904 0.290 0.085

B̂12 2.178 2.327 0.859 0.760 2.192 2.239 0.497 0.249 2.182 2.212 0.339 0.116

5n1/3 B̂11 1.939 1.986 0.873 0.764 1.888 1.951 0.516 0.27 1.882 1.947 0.378 0.147

B̂12 2.178 2.306 0.843 0.726 2.192 2.292 0.607 0.379 2.182 2.237 0.415 0.175

MA(1), δ = 0.5 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 B̂11 2.421 2.476 0.642 0.415 2.371 2.486 0.387 0.163 2.394 2.417 0.270 0.073

B̂12 2.194 2.273 0.581 0.343 2.168 2.241 0.368 0.141 2.124 2.173 0.239 0.060

3n1/3 B̂11 2.421 2.526 0.907 0.834 2.371 2.436 0.512 0.267 2.394 2.392 0.345 0.119

B̂12 2.194 2.272 0.853 0.734 2.168 2.179 0.464 0.215 2.124 2.167 0.325 0.107

5n1/3 B̂11 2.421 2.443 1.066 1.136 2.371 2.489 0.677 0.472 2.394 2.428 0.451 0.205

B̂12 2.194 2.286 0.940 0.892 2.168 2.242 0.607 0.374 2.124 2.188 0.396 0.161

MA(1), δ = 0.1 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 B̂11 3.225 3.200 0.822 0.676 3.218 3.209 0.478 0.229 3.222 3.235 0.365 0.134

B̂12 2.148 2.255 0.647 0.429 2.091 2.180 0.323 0.112 2.066 2.150 0.238 0.064

3n1/3 B̂11 3.225 3.199 1.155 1.335 3.218 3.280 0.675 0.46 3.222 3.275 0.507 0.260

B̂12 2.148 2.156 0.812 0.659 2.091 2.208 0.494 0.258 2.066 2.145 0.336 0.119

5n1/3 B̂11 3.225 3.224 1.263 1.595 3.218 3.314 0.827 0.694 3.222 3.331 0.611 0.385

B̂12 2.148 2.194 1.015 1.032 2.091 2.154 0.569 0.328 2.066 2.138 0.394 0.160

Table 5. Standard deviations σ̂∗ of the entries of n(B̂ − B) estimated by the
CBB bootstrap for the VMA(1) model a), sample sizes n ∈ {100, 400, 1200},
(rounded) block lengths b ∈ {n1/3, 3n1/3, 5n1/3} and δ ∈ {0.9, 0.5, 0.1}. The true
parameter σ is estimated by 20, 000 Monte Carlo replications.

for Â21 and Â11 and b = 5n1/3 for Â12. Interestingly, if one compares the true (simulated) values
of σ depending on δ ∈ {0.9, 0.5, 0.1} in Tables 1–6, it becomes apparent that in some cases a
smaller parameter δ leads to larger σ, while this effect is reversed in other cases.

Finally, in Table 7, we show the bootstrap performance of the CBB in terms of coverage rates
of bootstrap confidence intervals. In general, these turn out to be quite accurate and again the
effect of the block length choice is not very pronounced.

5. Conclusions

In this paper, some asymptotic theory for block bootstrap resampling schemes has been de-
veloped when such procedures are applied to multivariate integrated and/or cointegrated time
series. We proved a functional central limit theorem for the partial sum process based on pseudo-
time series generated using a multivariate continuous-path block bootstrap (CBB) procedure.
The pseudo-time series generated in this context is based on integrating resampled blocks of the
centered differences of the observed multivariate time series. This basic result is used to estab-
lish asymptotic validity of the CBB procedure for estimating the distribution of least squares
estimators, both, in the full rank regression and in the spurious regression case. We showed
further, that the CBB procedure fails in the case of cointegrated processes since it does not
capture appropriately the cointegration structure of the underlying time series. For this kind
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AR(1), δ = 0.9 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 B̂11 0.519 0.894 0.309 0.236 0.394 0.666 0.132 0.091 0.371 0.536 0.066 0.032

B̂12 1.774 1.922 0.540 0.314 1.672 1.743 0.279 0.083 1.649 1.667 0.182 0.034

3n1/3 B̂11 0.519 0.668 0.300 0.112 0.394 0.477 0.125 0.023 0.371 0.420 0.071 0.007

B̂12 1.774 1.800 0.672 0.452 1.672 1.679 0.370 0.137 1.649 1.649 0.245 0.060

5n1/3 B̂11 0.519 0.655 0.366 0.153 0.394 0.454 0.135 0.022 0.371 0.406 0.079 0.007

B̂12 1.774 1.922 0.915 0.859 1.672 1.688 0.462 0.214 1.649 1.692 0.308 0.097

AR(1), δ = 0.5 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 B̂11 1.807 1.947 0.511 0.281 1.812 1.866 0.314 0.101 1.778 1.834 0.203 0.044

B̂12 1.716 1.885 0.500 0.278 1.648 1.774 0.274 0.091 1.656 1.716 0.182 0.037

3n1/3 B̂11 1.807 1.919 0.746 0.569 1.812 1.843 0.394 0.156 1.778 1.818 0.267 0.073

B̂12 1.716 1.805 0.693 0.488 1.648 1.730 0.411 0.176 1.656 1.670 0.267 0.072

5n1/3 B̂11 1.807 1.867 0.794 0.634 1.812 1.817 0.475 0.225 1.778 1.836 0.342 0.121

B̂12 1.716 1.710 0.704 0.496 1.648 1.703 0.479 0.232 1.656 1.699 0.310 0.098

AR(1), δ = 0.1 n = 100 n = 400 n = 1200

b σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗) σ mean(σ̂∗) SD(σ̂∗) MSE(σ̂∗)

n1/3 B̂11 3.101 2.825 0.705 0.574 3.199 2.987 0.440 0.239 3.207 3.042 0.321 0.131

B̂12 1.661 1.872 0.516 0.311 1.656 1.788 0.285 0.099 1.631 1.707 0.191 0.042

3n1/3 B̂11 3.101 3.066 1.093 1.196 3.199 3.237 0.716 0.514 3.207 3.192 0.486 0.237

B̂12 1.661 1.778 0.684 0.481 1.656 1.749 0.380 0.153 1.631 1.687 0.260 0.071

5n1/3 B̂11 3.101 3.218 1.279 1.649 3.199 3.239 0.809 0.657 3.207 3.232 0.577 0.333

B̂12 1.661 1.840 0.794 0.662 1.656 1.708 0.433 0.191 1.631 1.685 0.308 0.098

Table 6. Standard deviations σ̂∗ of the entries of n(B̂ − B) estimated by the
CBB bootstrap for the VAR(1) model b), sample sizes n ∈ {100, 400, 1200},
(rounded) block lengths b ∈ {n1/3, 3n1/3, 5n1/3} and δ ∈ {0.9, 0.5, 0.1}. The true
parameter σ is estimated by 20, 000 Monte Carlo replications.

of integrated multivariate processes, a block resampling scheme based on regression residuals
(RBB) is more appropriate. It is shown that the RBB procedure is valid for estimating the
distribution of the least square estimator of the cointegration matrix.

6. Proofs

Proof of Theorem 2.1: First, note that

t∑

j=1

U∗
t =

Mt∑

m=0

Bt,m∑

s=1

U∗
mb+s =

Mt∑

m=0

Bt,m∑

s=1

Ûim+s,

where Mt = ⌈ t
b⌉ − 1, Bt,m = min(b, t−mb) and

Ûim+s := Uim+s − E∗ (Uim+s) = Uim+s −
1

n− b+ 1

n−b∑

τ=0

Uτ+s.

Here, ⌈x⌉ (⌊x⌋) denotes the smallest (largest) integer that is larger (smaller) or equal to x.

Similarly, we set Mν = ⌊ ⌊lν⌋−1
b ⌋ and Bν,m = min(b, ⌊lν⌋ −mb) and together with the definition
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δ = 0.9 VMA(1) model VAR(1) model

b n 100 400 1200 100 400 1200

n1/3 B11 0.936 0.952 0.940 0.990 0.990 0.986
B12 0.928 0.958 0.950 0.948 0.938 0.958

3n1/3 B11 0.884 0.926 0.938 0.946 0.962 0.958
B12 0.890 0.958 0.948 0.866 0.932 0.930

5n1/3 B11 0.816 0.934 0.952 0.896 0.934 0.956
B12 0.828 0.926 0.914 0.844 0.926 0.920

δ = 0.5 VMA(1) model VAR(1) model

b n 100 400 1200 100 400 1200

n1/3 B11 0.932 0.944 0.946 0.952 0.962 0.946
B12 0.960 0.948 0.95 0.964 0.954 0.958

3n1/3 B11 0.916 0.930 0.946 0.890 0.920 0.950
B12 0.910 0.910 0.942 0.850 0.908 0.938

5n1/3 B11 0.822 0.914 0.924 0.862 0.902 0.938
B12 0.848 0.922 0.944 0.836 0.930 0.938

δ = 0.1 VMA(1) model VAR(1) model

b n 100 400 1200 100 400 1200

n1/3 B11 0.922 0.918 0.938 0.922 0.924 0.930
B12 0.950 0.938 0.946 0.958 0.936 0.926

3n1/3 B11 0.874 0.934 0.952 0.876 0.912 0.940
B12 0.92 0.932 0.948 0.870 0.934 0.934

5n1/3 B11 0.854 0.928 0.928 0.824 0.914 0.932
B12 0.840 0.924 0.928 0.810 0.934 0.942

Table 7. Coverage rates of CBB bootstrap confidence intervals for the entries
of B for the VMA(1) model a) and the VAR(1) model b), sample sizes n ∈
{100, 400, 1200}, (rounded) block lengths b ∈ {n1/3, 3n1/3, 5n1/3} and δ ∈
{0.9, 0.5, 0.1}.

of S∗
l (ν) in (2.5), this leads to

S∗
l (ν) =

1√
l
(Ω∗

l )
−1/2

Mν∑

m=0

Bν,m∑

s=1

Ûim+s

=
1√
l
(Ω∗

l )
−1/2

Mν∑

m=0

b∑

s=1

Ûim+s −
1√
l
(Ω∗

l )
−1/2

b∑

s=Bν,Mν +1

ÛiMν +s

and since

sup
ν

∥∥∥∥∥∥
1√
l
(Ω∗

l )
−1/2

b∑

s=Bν,Mν +1

ÛiMν +s

∥∥∥∥∥∥
= OP (k−1/2),

it remains to show
(

1√
l
(Ω∗

l )
−1/2

Mν∑

m=0

b∑

s=1

Ûim+s

)

ν∈[0,1]

⇒ (W (ν), ν ∈ [0, 1])

in probability. We can consider instead the asymptotically equivalent statistic

S̃∗
l (ν) =

1√
l
(Ω∗

l )
−1/2

⌊kν⌋∑

m=0

b∑

s=1

Ûim+s =
1√
k

⌊kν⌋∑

m=0

V ∗
m, (6.1)
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where {V ∗
m,m = 0, 1, 2, . . . , ⌊kν⌋} with

V ∗
m =

1√
b

(Ω∗
l )

−1/2
b∑

s=1

Ûim+s (6.2)

forms a triangular array of random variables that are independently and identically distributed

conditionally on X1, . . . ,Xn. Now, to prove S̃∗
l ⇒W , we have to show

(a) Convergence of all finite dimensional distributions
(b) Tightness

For the first part (a), let q ∈ N and set ν = (ν1, . . . , νq)
′, where 0 ≤ ν1 ≤ . . . ≤ νq ≤ 1. Further,

let S̃∗
l (ν) be the vector that stacks S̃∗

l (ν1), . . . , S̃
∗
l (νq) and ∆S̃∗

l (ν) be the vector that stacks the

differences S̃∗
l (ν1) − S̃∗

l (ν0), . . . , S̃
∗
l (νq) − S̃∗

l (νq−1), where we set ν0 = 0. Note that the qm-

dimensional process {∆S̃∗
l (ν), ν ∈ [0, 1]q} consists of q conditionally independent m-dimensional

processes due to the independence of {V ∗
m,m = 0, 1, 2, . . . , ⌊kν⌋}. This allows us to consider

them separately. We have

S̃∗
l (νp) − S̃∗

l (νp−1) =
1√
k

⌊kνp⌋∑

m=⌊kνp−1⌋+1

V ∗
m =

1√
l
(Σ∗

l )
−1/2

⌊kνp⌋∑

m=⌊kνp−1⌋+1

b∑

s=1

Ûim+s,

and due to E∗(V ∗
m) = 0 and Lemma 6.1(i), we obtain

V ar∗
(
S̃∗

l (νp) − S̃∗
l (νp−1)

)

=
1

k



(Ω∗

l )
−1/2E∗




⌊kνp⌋∑

m1=⌊kνp−1⌋+1

b∑

s1=1

Ûim1
+s1

⌊kνp⌋∑

m2=⌊kνp−1⌋+1

b∑

s2=1

Û ′
im2

+s2


 (Ω∗

l )
−1/2





=
⌊kνp⌋ − ⌊kνp−1⌋

k

{
(Ω∗

l )
−1/2

(
Ω∗
⌊kνp⌋−⌊kνp−1⌋

)
(Ω∗

l )
−1/2

}

→
k→∞

(νp − νp−1) Im

as n→ ∞ in probability for any p. To prove asymptotic normality, we show a CLT based on the
Liapunov condition for triangular arrays {V ∗

m,m = 0, 1, 2, . . . , ⌊kν⌋} [see e.g. Serfling (1980)].

More precisely and due to k−1V ar∗(
∑⌊kνp⌋

m=⌊kνp−1⌋+1 V
∗
m) = OP (1), it suffices to show

(
1√
k

)2+κ ⌊kνp⌋∑

m=⌊kνp−1⌋+1

E∗
(
‖V ∗

m‖2+κ
)

= oP (1).

The latter results follows from

1

k(2+κ)/2

⌊kνp⌋∑

m=⌊kνp−1⌋+1

E∗
(
‖V ∗

m‖2+κ
)

=
(⌊kνp⌋ − ⌊kνp−1⌋)

k(2+κ)/2

1

n− b+ 1

n−b∑

t=0

∥∥∥∥∥
1√
b

(Ω∗
l )

−1/2
b∑

s=1

Ût+s

∥∥∥∥∥

2+κ

= OP

(
1

kκ/2

)
,

because of

1

n− b+ 1

n−b∑

t=0

∥∥∥∥∥
1√
b

(Ω∗
l )

−1/2
b∑

s=1

Ût+s

∥∥∥∥∥

2+κ

=

∫ 1

0

∥∥∥S̃b(ν)
∥∥∥

2+κ
dν ⇒

∫ 1

0
‖W (ν)‖2+κ dν = OP (1).

Here, the partial sum process {S̃b(ν), 0 ≤ ν ≤ 1} is similarly defined as {S∗
l (ν), 0 ≤ ν ≤ 1}

in (2.5) and fulfills a FLT under the imposed conditions. Now, we can conclude that S∗
l (νp) −
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S∗
l (νp−1) ⇒ W (νp − νp−1) in probability. Together, we have that ∆S̃∗

l (ν) converges weakly to

(W ′(ν1−ν0), . . . ,W
′(νq−νq−1))

′. Finally, multiplying ∆S̃∗
l (ν) with a suitable matrix gives S̃∗

l (ν)
and by W (0) = 0 and W (a−b) = W (a)−W (b) for a, b ∈ [0, 1], we get the desired convergence of
the finite dimensional distributions. For the tightness of part (b) recall first that in probability
measures on the product space are tight if and oly if the marginal probability measures are tight;
cf. Billingsley (1999), page 65. Now, for i ∈ {1, 2, . . . ,m} consider

S̃∗
i,l(ν) = e′iS̃

∗
l (ν),

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the i-th unit vector. Denote by P ∗
i,l the probability measure

of S̃∗
i,l and by P ∗

l the probability measure of S̃∗
l . Then, by a version of Donsker’s Theorem for

triangular arrays of row-wise independent random variables, Billingsley (1999), pages 147-148,
we immediately get that P ∗

i,l is tight from which the tightness of P ∗
l follows. �

Proof of Theorem 2.2: It holds

l(Â∗ − Im) =

(
1

l

l∑

t=2

U∗
t X

∗′
t−1

)(
1

l2

l∑

t=2

X∗
t−1X

∗′
t−1

)−1

and the claimed result follows from Lemma 6.1 and the positive definiteness of Ω. �

Lemma 6.1. Under the assumptions of Theorem 2.2, it holds

(i) Ω∗
l → Ω in probability,

(ii)
1

l

l∑

t=2

U∗
t X

∗′
t−1 ⇒ Ω1/2

∫ 1

0
W (t)dW ′(t)Ω1/2 + Ω1,

(iii)
1

l2

l∑

t=2

X∗
t−1X

∗′

t−1 ⇒ Ω1/2

∫ 1

0
W (t)W (t)′dtΩ1/2

in probability, respectively, where joint convergence (of (ii) and (iii)) also applies.

Proof: (i) By (2.6) and rewriting the involved sums, we get

Ω∗
l = V ar∗

(
1√
l

l∑

t=1

U∗
t

)

=
1

b

b∑

s1,s2=1

1

n− b+ 1

n−b∑

t=0

Ût+s1
Û ′

t+s2

=

b−1∑

h=−b−1

1

b

min(b,b−h)∑

r=max(1,1−h)

1

n− b+ 1

n−b∑

t=0

Ût+r+hÛ
′
t+r

=
b−1∑

h=−(b−1)

{
1

n− b+ 1

n∑

t=1

b− |h|
b

Ût+hÛ
′
t

}
+O

(
b2

n

)
(6.3)

= Aq + (A−Aq),

where A denotes the first term in (6.3) and Aq the same sum with
∑b−1

h=−(b−1) replaced by
∑q−1

h=−(q−1) for some fixed q. Now, we use Proposition 6.3.9 in Brockwell and Davis (1991).

Under the assumptions, we have for any fixed h ∈ Z that 1
n−b+1

∑n
t=1

b−|h|
b Ût+hÛ

′
t → Γ(h) holds
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in probability as n→ ∞ and we get

q−1∑

h=−(q−1)

{
1

n− b+ 1

n∑

t=1

b− |h|
b

Ût+hÛ
′
t

}
+O

(
b2

n

)
→

n→∞

q∑

h=−q

Γ(h) →
q→∞

∞∑

h=−∞

Γ(h)

in probability. It remains to show for all δ > 0 that limq→∞ lim supn→∞ P ∗(‖A −Aq‖ ≥ δ) = 0
in probability, which can be proved by standard arguments.
(ii) Plugging-in for X∗′

t−1 leads to

1

l

l∑

t=2

U∗
t X

∗′
t−1 =

1

l

l∑

t=1



U

∗
t

t−1∑

j=1

U∗′
j



+

(
1

l

l∑

t=1

U∗
t

)
X ′

0 −
1

l
U∗

1X0

=
1

l

k−1∑

p=0

b∑

r=1



U

∗
pb+r




Mpb+r−1∑

m=0

Bpb+r−1,m∑

s=1

U∗′
mb+s






+OP ∗

(
1√
l

)

=
1

l

k−1∑

p=0

b∑

r=1

{
Ûip+r

(
p−1∑

m=0

b∑

s=1

Û ′
im+s

)}
+

1

l

k−1∑

p=0

b∑

r=1

{
Ûip+r

(
r−1∑

s=1

Ûip+s

)}
+OP ∗

(
1√
l

)

= A∗
1 +A∗

2 +OP ∗

(
1√
l

)
.

with an obvious notation for A∗
1 and A∗

2. The first term can be expressed as

A∗
1 = (Ω∗

l )
1/2





1

k

k−1∑

p=0

V ∗
p

(
p−1∑

m=0

V ∗
m

)′


 (Ω∗

l )
1/2 ,

where V ∗
m is defined in (6.2) which forms a triangular array of random variables that are inde-

pendently distributed conditionally on X1, . . . ,Xn. By adopting the proof of Theorem 2.4(ii) in
Chan and Wei (1988) for our purposes and the FLT in Theorem 2.1, we can show that

1

k

k−1∑

p=0

V ∗
p

(
p−1∑

m=0

V ∗
m

)′

⇒
∫ 1

0
W (t)dW ′(t)

in probability. This is possible, because their proof is based exclusively on the FLT and, there-
fore, the fact that {V ∗

m} is a triangular array does not alter the proof. For A∗
2, we get

E∗(A∗
2) =

1

l

k−1∑

p=0

b∑

r=1

r−1∑

s=1

E∗
(
Ûip+rÛ

′
ip+s

)
=

1

b

b∑

r=1

r−1∑

s=1

1

n− b+ 1

n−b∑

t=0

Ût+rÛ
′
t+s,

which converges to Ω1 by Proposition 6.3.9 in Brockwell and Davis (1991). Similar arguments
show V ar∗(A∗

2) = oP (1).
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(iii) Since X∗
t = X0 +

∑t
j=1 Y

∗
j = X0 +

∑t
j=1 U

∗
j , we get

1

l2

l∑

t=2

X∗
t−1X

∗′
t−1 =

1

l

l∑

t=2


 1√

l

t−1∑

j=1

U∗
j




 1√

l

t−1∑

j=1

U∗′
j


+OP ∗

(
1√
l

)

= (Ω∗
l )

1/2 1

l

l∑

t=2


 1√

l
(Ω∗

l )
−1/2

t−1∑

j=1

U∗
j




 1√

l

t−1∑

j=1

U∗′
j (Ω∗

l )
−1/2


 (Ω∗

l )
1/2 +OP ∗

(
1√
l

)

= (Ω∗
l )

1/2 1

l

l∑

t=2

S∗
l

(
t− 1

l

)
S∗′

l

(
t− 1

l

)
(Ω∗

l )
1/2 +OP ∗

(
1√
l

)

= (Ω∗
l )

1/2

∫ 1

0
S∗

l ([lν])S∗′
l ([lν])dν(Ω∗

l )
1/2 +OP ∗

(
1√
l

)

⇒ Ω1/2

∫ 1

0
W (ν)W ′(ν)dνΩ1/2,

in probability by Theorem 2.1, part (i) of this lemma and the continuous mapping theorem. �

Proof of Theorem 2.3: Due to (2.13), the claimed result follows immediately from Lemma
6.2 below. �

Lemma 6.2. Under the assumptions of Theorem 2.3, it holds

(i) l−3/2
l∑

t=1

X∗
t ⇒ Ω1/2

∫ 1

0
W (ν)dν,

(ii) l−2
l∑

t=1

X∗
t X

∗′

t ⇒ Ω1/2

∫ 1

0
W (ν)W ′(ν)dνΩ1/2,

(iii) l−2
l∑

t=1

(X∗
t −X

∗
)(X∗

t −X
∗
)′ ⇒ Ω1/2

{∫ 1

0
W (t)W ′(t)dt−

∫ 1

0
W (t)dt

∫ 1

0
W ′(t)dt

}
Ω1/2.

Proof: Considering part (i), Theorem 2.1, Lemma 6.1 and the continuous mapping theorem,
gives

l−3/2
l∑

t=1

X∗
t = l−3/2

l∑

t=1

t−1∑

j=1

U∗
j + l−1/2X0 + l−3/2

l∑

t=1

U∗
t

= (Ω∗
l )

1/2 1

l

l∑

t=1

1√
l
(Ω∗

l )
−1/2

t−1∑

j=1

U∗
j +OP ∗

(
l−1/2

)
+OP ∗

(
l−1
)

= (Ω∗
l )

1/2 1

l

l∑

t=1

S∗
l

(
t− 1

l

)
+OP ∗

(
l−1/2

)

= (Ω∗
l )

1/2
l∑

t=1

∫ t
l

t−1

l

S∗
l (⌊lν⌋) dν +OP ∗

(
l−1/2

)

= (Ω∗
l )

1/2

∫ 1

0
S∗

l (⌊lν⌋) dν +OP ∗

(
l−1/2

)

⇒ Ω1/2

∫ 1

0
W (ν)dν
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in probability. Part (ii) follows from l−2
∑l

t=1X
∗
t X

∗′
t = l−2

∑l
t=2X

∗
t−1X

∗′
t−1+OP ∗(1

l ) and Lemma
6.1 and (iii) is an immediate consequence of (i) and (ii) of this lemma, due to

l−2
l∑

t=1

(X∗
t −X

∗
)(X∗

t −X
∗
)′ = l−2

l∑

t=1

X∗
t X

∗′
t −

(
l−3/2

l∑

t=1

X∗
t

)(
l−3/2

l∑

t=1

X∗
t

)′

.

�

Proof of Theorem 3.1: It holds

l(B̂+ − B̂) =

(
1

l

l∑

t=1

U+
1tX

+′
2t

)(
1

l2

l∑

t=1

X+
2tX

+′
2t

)−1

and the claimed result follows from Lemma 6.3. �

Lemma 6.3. Let Ω+
l be defined analogue to (2.6), but based on X+

1 , . . . ,X
+
n . Under the

assumptions of Theorem 3.1, it holds

(i) Ω+
l → Ω in probability,

(ii)
1

l

l∑

t=1

U+
1tX

+′
2t ⇒

[
Ω1/2

∫ 1

0
W (t)dW ′(t)Ω1/2 + Ω0 + Ω1

]

12

,

(iii)
1

l2

l∑

t=1

X+
2tX

+′
2t ⇒

[
Ω1/2

∫ 1

0
W (t)W ′(t)dtΩ1/2

]

22

,

in probability, respectively, where joint convergence (of (ii) and (iii)) also applies.

Proof: First, by (3.1) and (3.7), we get

(
U+

1,mb+j

U+
2,mb+j

)
=

(
Ũ1,im+j

U2,im+j

)
− 1

n− b+ 1

n−b∑

τ=0

(
Ũ1,τ+j

U2,τ+j

)

=

(
U1,im+j

U2,im+j

)
− 1

n− b+ 1

n−b∑

τ=0

(
U1,τ+j

U2,τ+j

)
(6.4)

−
(

(B̂ −B)X2,im+j

0

)
− 1

n− b+ 1

n−b∑

τ=0

(
(B̂ −B)X2,τ+j

0

)

for j = 1, . . . , b and m = 0, . . . , k − 1.

(ii) Plugging-in for X+′
t−1 leads to

1

l

l∑

t=1

U+
1tX

+′
2t =

1

l

l∑

t=1



U

+
1t

t−1∑

j=1

U+′
2j



+

1

l

l∑

t=1

U+
1tU

+′
2t +

(
1

l

l∑

t=1

U+
1t

)
X ′

20

=
1

l

l∑

t=1



U

+
1t

t−1∑

j=1

U+′
2j



+

1

l

l∑

t=1

U+
1tU

+′
2t +OP+

(
1√
l

)
.

The asymptotic behavior of the first term above follows by using (6.4) immediately from Lemma
6.1(ii), where the second term on the last right-hand side of (6.4) vanishes asymptotically due
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to (B̂ −B) = OP (n−1). Similarly, for the second term, we have

E+

(
1

l

l∑

t=1

U+
1tU

+′
2t

)
=

1

l

k−1∑

m=0

b∑

s=1

E+
(
U1,im+sU

′
2,im+s

)
+ oP (1)

=
1

b

b∑

s=1

1

n− b+ 1

n−b∑

τ=0

U1,τ+sU
′
2,τ+s + oP (1),

which converges to Ω0 by Proposition 6.3.9 in Brockwell and Davis (1991). Similar arguments
show that its conditional variance vanishes asymptotically in probability. Part (i) follows by
similar arguments from (6.4) and Lemma 6.1(i) and part (iii) follows immediately from Lemma
6.1(iii). �
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