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This paper provides a microfounded information acquisition technology based on a simple

framework with information search. When searchable information is limited, an agent

encounters increasingly more redundant information in his search for new information.

Redundancy slows down the learning process and generates decreasing returns. Further-

more, as multiple agents search for information from the same source, limited searchabil-

ity leads to covariance as the acquired information becomes increasingly more overlapped

among agents. Using an asymptotic approach, we construct a tractable mapping from

resource (attention) allocations to the precision and the correlation of agents�information

under varying degrees of searchability of information. We study two economic applica-

tions with endogenous information acquisition using our model: (i) a �beauty contest�

coordination game, and (ii) a noisy rational expectations equilibrium.
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1 Introduction

It is a truism that available information for economic decision making is scarce, and acquir-

ing information is costly and subject to frictions. One such friction could be the scarcity of

cognitive resources such as limited attentional capacity as pointed out by Kahneman (1973).

Alternatively, there can be lack of other types of resources such as time, budget, skills or even

social networks that facilitate collecting useful information. In the presence of these frictions,

available resources should be allocated optimally in searching and processing information to

make a more informed decision. The economic literature often employs a set of assumptions

that allows quantifying the amount of collected information given an input of resources. How-

ever, there has been a scarcity of theoretical justi�cations to support such assumptions. Our

paper provides a microfoundation for an information acquisition technology in the presence of

impediments to information search, and investigates its implications in economic and �nancial

decision making.

Our framework on learning under imperfect information searchability is based on the fol-

lowing simple intuition: As an agent keeps searching for new information, it is likely that

he would encounter some overlapping�and therefore redundant�pieces of information from the

past searching activities. The tendency of increasing redundancy results in diminishing returns

to scale in information search, and such concavity of informativeness is more pronounced when

the total amount of potentially observable information (henceforth, �searchable information�)

is more limited. Similarly, multiple agents who search in an identical source of information

would also face increasing redundancy as more information is collected, thus, their acquired

information becomes increasingly more similar. Such commonality of acquired information is

more pronounced when searchable information is more limited.

We formalize the aforementioned intuition by employing an urn model with an asymptotic

approach. Consider drawing balls with replacement from an urn with a �nite number of balls;

drawing a ball from an urn with replacement is interpreted as collecting a signal through search.

Because the collected balls are replaced into the urn, the odds of drawing a previously-collected

ball increases each time an agent draws a ball from the urn. In the context of information

acquisition, drawing a previously-collected ball means collecting a redundant (thus uninforma-

tive) signal. Because each new signal becomes increasingly less informative on average due to

redundancy, the expected overall informativeness is concave in the number of collected signals.
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Such concavity is more pronounced as searchable information is more limited (or the urn is

smaller). Therefore, the expected precision of acquired information becomes concave in the

input of resources. However, one may �nd it rather di¢ cult to apply such a result to most of

economic applications because the resulting precision is random and discrete given the input

of resources. Considering the limiting case in which each signal becomes in�nitesimally small,

we can study the continuous limit of a precision function under which the law of large numbers

can be applied. This asymptotic approach allows us to obtain a smooth and deterministic func-

tion maps the inputs of resources used into the precision of the information that is eventually

collected by an agent (see Theorem 2.1). The curvature of this asymptotic precision function

decreases with the amount of searchable information, thus a smaller curvature is associated

with a higher e¢ ciency of information search.

We also formalize the case with multiple agents using the same logic; imagine that they

are independently drawing balls from a single urn which is interpreted as a shared source of

information. Because the number of balls in the urn is �nite, they tend to gather a more

similar set of balls as they increase the number of drawings from the urn. Furthermore, such

tendency is more pronounced as the number of balls in the urn becomes smaller. In the context

of information acquisition, the shared component of agents�collected signals grows larger as

more information is acquired by each agent. Consequently, the correlation of their acquired

information increases in the degree of information acquisition, and such tendency is more pro-

nounced when information searchability is lower (Theorem 2.2). This information acquisition

technology developed in our paper provides a framework of endogenizing the �publicity� of

the acquired information; the correlation between di¤erent agents�information is endogenously

determined in terms of the input of resources by each agent as well as searchability of infor-

mation from the source. In the limit case where the number of agents is large, the noise in

each agent�s acquired information can be decomposed into a public component and an idio-

syncratic component where all the components are independent of each other (Corollary 2.1).

This framework provides a microfoundation for popular setups in the literature such as private

signals with imperfect correlations among agents and private signals with both a public and a

private component of noise.

We study two applications of our information acquisition technology. In the �rst applica-

tion, we study a �beauty contest�coordination game with endogenous information acquisition.
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Our setup follows a standard two-period setup in the literature: Agents��nal payo¤s depend

on the quadratic distance of actions from an unobserved fundamental value and the average

action. To acquire information prior to taking the actions, agents can allocate their e¤orts (or

resources) among di¤erent information sources to maximize their ex-ante utility. In the recent

debate in the related literature, there are mixed messages about the determinacy (or the possi-

bility of multiple equilibria) for coordination games with endogenous information acquisition.

Hellwig and Veldkamp (2009) �nd that the endogenous choice of how much public information

to acquire naturally leads to multiple equilibria. In contrast, Myatt and Wallace (2012) assume

an information structure similar to the representation that we obtain in Corollary 2.1 and �nd

a unique equilibrium. The results of our analysis lie somewhere in between these two papers.

In our setup, the endogenous publicity of the information that is acquired by the agents is

not enough to guarantee a unique equilibrium unless the coordination motive is su¢ ciently

weak. When the mapping from agents�e¤ort choices to information is endogenously derived

as in our paper, we show how non-concavities arise that can lead to multiple equilibria. Hence,

the microfoundation provided in our paper is relevant because it leads to qualitatively di¤er-

ent implications. These implications shed new light on the relation between the information

structure and equilibrium determinacy in coordination games with endogenous information.

We then specialize to a setup with only two information sources. One of them is superior to

the other in the sense that it o¤ers more precise information about the fundamental given the

same level of inputs. On the other hand, because of its lower searchability, the inferior source

provides information that is more correlated among agents. Therefore, if other agents are lean-

ing from this source, it gives more precise information on what the other agents will do. When

the coordination motive is su¢ ciently strong, there exists an equilibrium in which all agents

choose to focus on the inferior information source. Because less searchable information leads to

more covariance, this equilibrium outcome becomes more �likely�(i.e., it exists on a larger set

of parameters) precisely when the inferior information source becomes more ine¢ cient. This

outcome may not be socially optimal because agents are acting based on information from a

less e¢ cient source. For instance, the inferior information equilibrium is associated with an

average action that is more volatile and less correlated with the fundamental. Our results can

be applied to situations with strategic complementarity such as bank runs, analysts�herding

behavior, etc. For example, agents may decide to run on a healthy bank based on less accurate
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information (e.g., rumors) instead of investigating into more accurate sources of information

because information from a less accurate source is more likely to be correlated due to imperfect

information searchability.

Our second application is in the context of portfolio optimization and �nancial equilib-

rium. We begin by solving the problem of an investor who allocates his resources to acquire

information on risky assets prior to choosing his portfolio. In a partial equilibrium setup with

exogenous prices, the investor tends to concentrate his resources on the assets with more in-

formation searchability, thereby neglecting other assets. Under-diversi�cation arises naturally

as the investor concentrates his portfolio on a few assets that allow him to exploit private

information best. Furthermore, our results relate the lack of portfolio diversi�cation to the

investors�availability of resources for information search and are therefore consistent with the

empirical �ndings that retail investors generally hold highly-concentrated portfolios.

To understand the pricing implications of these forces, we then embed this problem in

a noisy rational expectations equilibrium. In equilibrium, an increase in searchability of in-

formation in one asset always improves liquidity and informational e¢ ciency for this asset.

However, its e¤ect on the other assets crucially depends on the strength of the externality of

information revelation through prices. This is because more searchable information is re�ected

faster in asset prices, thereby reducing investors� incentives to gather costly information on

such assets. Hence, the strength of this information externality determines whether the in-

vestors allocate more or less resources to the other assets and therefore determines the sign of

the �informational spillovers�onto the other assets. If the information externality is strong

(because, for instance, investors devote signi�cant resources to information search and prices

are very informative), then an increase in information searchability in one asset leads to more

information acquisition in the other assets. In turn, this has a positive e¤ect on the liquidity

and the informational e¢ ciency of the other assets�a positive informational spillover. If the

information externality is weak, then the partial equilibrium force dominates and results in an

information crowding out e¤ect. In turn, this e¤ect results in lower liquidity and informational

e¢ ciency for the other assets. These results point to cross market linkages that arise due to

investors� information choices and may shed light on how di¤erent price behaviors (such as

price delay to information) may arise due to di¤erent analysts�coverage in case of small �rms.1

1See, for example, Hou and Moskowitz (2005) to review related empirical �ndings.
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In the literature, there have been various formulations that quantify the amount of collected

(or processed) information. One of well-known attempt is rational inattention theory based

on entropy theory. In his seminal paper, Sims (2003) connected information theory to agents�

utility maximization problem using entropy as the measure of information. Due to its practical

usefulness, there have been numerous applications in economics and �nance based on such

rational inattention framework.2 For example, Peng (2005) shows a �nancial equilibrium with

information capacity constraints. While the entropy is a convenient and useful measure of

information, it may not re�ect relevant features of learning problems such as impediments to

information search in our model. As was pointed by Marschak (1974), entropy is only relevant

to the cost of communicating rather than the cost of searching and collecting information. The

original idea of Shannon (1948) is not meant for information processing in economic contexts.

In that context, the entropy measure is suitable as communicating constraint rather than

information acquisition constraint. Shannon�s second proposition asserts that we can transfer

a signal without errors under certain capacity limit by using an optimal coding scheme. This

optimal coding scheme may not apply to natural languages or economic and �nancial terms.

Developments in information technology imply that we bear minimum costs of communicating;

however, natural language is far from being an optimal coding scheme. More importantly,

entropy is silent about searching and collecting information. In contrast, our model provides

a microfoundation for measuring information in an environment where information search is

important. Our results complement the existing literature (such as those in rational attention),

and contribute to it by �nding further implications that arise from impediments to information

search.

The organization of the paper is as follows. Section 2 develops the framework of information

acquisition under imperfect information searchability. Section 3 studies a coordination game

with complementarities as an example of possible applications. Section 4 studies a portfolio

optimization problem as an example of possible applications. Section 5 concludes.

2See, for example, Veldkamp (2011) for an excellent survey on applications in macroeconomics and �nance.
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2 Information Search

In this section, we develop our methodology and characterize endogenous information under

imperfect information searchability. We begin by describing the basic setup, then derive the

asymptotic precision function (Theorem 2.1) and the asymptotic covariance function (Theo-

rem 2.2). Then we derive our main result�the joint distribution of agents�information after

information search (Theorem 2.3). Finally, we provide a public-private decomposition of the

resulting information structure (Corollary 2.1).

2.1 The Setup

2.1.1 Basic signals

Consider an economic agent who is endowed with limited information processing resources

(henceforth, resources) that allow the agent to search necessary information. The agent ac-

quires information using his resources in order to resolve uncertainties that are relevant to his

payo¤s. There is a random variable of interest, �, which follows a normal distribution with

mean �� and variance ��1� . For example, � could be the payo¤ of an investment opportunity

such as the liquidation value of a tradable asset. Suppose the underlying source of information

on � is given by a set L of basic signals that consists of L 2 N distinct signals on �. Each basic
signal m 2 f1; 2; : : : ; Lg in L is given by

sm = � + �m; (1)

where �m � i:i:d: N (0; ��1� ) is a noise that is independent of �. We refer to �� as the precision

of the basic signal sm.

2.1.2 Information searchability

We de�ne information search as a process of gathering information by using endowed resources.

We say that information search is easier (or harder) if the same input of resources resolves a

greater (or smaller) amount of uncertainty about the variable of interest. Therefore, �infor-

mation searchability�is de�ned as the degree of resolution of uncertainty with respect to the

increase in resource input. Assuming that a �xed amount of resource input gives the agent a
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signal in Eq. (1), information searchability is inversely related to the possibility of encountering

redundant signals in his search process.

We formalize the idea of information searchability using an urn model. Consider the set of

signals L to be an urn, and the basic signals to be balls in the urn. Imagine that the agent is

sequentially drawing a ball with replacement from the urn. The agent can identify the index

of each signal, thus he knows whether a signal is redundant or not given the set of collected

signals. If the number of balls in the urn is limited, the chance of drawing a ball that is distinct

from the balls drawn in the previous trials would get smaller as the agent draws more balls

from the urn.

The following assumption embeds this idea of impediments to information search by allow-

ing redundancy among acquired signals.

Assumption 2.1. Signals are drawn with replacement from L.

This assumption plays a critical role in our model because it gives a foundation for the

concept of information searchability. The opposite case to this assumption is sampling without

replacement, in which case acquired signals are never redundant. In this case, any increases in

the input of resources would be directly translated into a greater amount of information (or a

greater resolution of uncertainty) regardless of the scale of resource investment. On the other

hand, the assumption of sampling with replacement in Assumption 2.1 makes it impossible to

maintain the constant returns to scale in information search.

2.1.3 Precision function

Because redundant signals are completely uninformative, the informativeness of a set of ac-

quired signals only depends on the distinct signals among them. Let H denote the set of

distinct signals among those acquired by the agent, and let h denote the number of signals in

H. Let S(h) denote the mean of the signals s1 ; s2 ; : : : ; sh in H as follows:

S(h) =
1

h

X
m2H

sm = � +
1

h

X
m2H

�m: (2)

Notice that S(h) is a su¢ cient statistic for the signals acquired by the agent. By the standard

Bayesian belief update formula, the precision of the posterior belief about � conditional on
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observing the signal S(h) is given by

V ar[�jS(h)]�1 = ��|{z}
precision of prior belief

+ ��h|{z}
signal precision

: (3)

That is, the set of h i.i.d. signals is equivalent to having a single signal with precision that

is h-times higher than that of each individual signal in the set. These observations lead to

the following de�nition of the precision function given the number of distinct signals that are

collected:

De�nition 2.1. The precision function � : R+ ! R+ is de�ned by

�(h) = ��h; (4)

where h is the number of distinct basic signals drawn from L, and �� is the precision of each

basic signal.

Suppose that l signals are drawn with replacement from a �nite set L which consists of L

distinct signals. We let ~h denote the (random) number of distinct signals among l collected

signals. The following lemma derives the expected number of distinct signals E[~h].

Lemma 2.1. Suppose that signals are drawn l times from a set of L distinct signals. Then,

the expected number of distinct signals among the collected signals is given by

E[~h] = L

"
1�

�
1� 1

L

�l#
: (5)

Proof. A more general proof for this can be found in Stadje (1990). For eachm 2 f1; 2; : : : ; Lg,
we de�ne ~hm to be one if signal sm is collected eventually, and zero otherwise. Then, it is

immediate that Pr(~hm = 1) = 1�
�
L�1
L

�l
. Because ~h =

PL
m=1

~hm, we get

E[~h] =
LX

m=1

"
1�

�
L� 1
L

�l#
= L

"
1�

�
1� 1

L

�l#
: (6)
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Notice that E[~h] is monotone increasing and concave in l.3 That is, by drawing more signals

from the urn, the expected number of distinct signals increases, but it does at a decreasing

rate as more and more signals are being collected. Furthermore, E[~h] is monotone increasing

in L. Intuitively, the more independent signals are in the urn, the higher the expected number

of distinct signals for a given number of draws. Hence, the number of signals in L re�ects the

easiness of searching information (or the degree of searchability). We explore these ideas in

the next subsection by connecting the precision function with the amount of resources spent

on information collection.

2.1.4 Resources and precision

In this subsection, we introduce a set of assumptions that allow us to study an asymptotic

limit of precision function. To exploit the law of large numbers, we consider the case where

the signals (or balls) in the urn become in�nitesimally small so that the number of signals

grows to in�nity. That is, information acquisition becomes continuous in the limit rather

than discrete. This continuous limit yields a smooth and deterministic precision function with

desirable properties that can applied to various economic applications with ease.

To acquire necessary information, the agent needs to use his endowed resources. Let c 2
(0;1) be the unit of resources required to collect one signal on � (i.e., the cost of one draw
from the urn). We assume that any smaller amount of resources which is less than c cannot

be utilized to acquire a signal. Hence, an input of k units of resources would enable the agent

to collect bk
c
c signals.4

If an agent could observe all signals in L, the agent�s posterior precision in (3) would be

� � � �� + ��L. Therefore, � � is the upper bound to an agent�s information precision, which is
regarded as an exogenous feature of the underlying informational environment. As we elaborate

below, we will consider the behavior of the precision function as the cost c becomes small while

leaving � � unchanged. Accordingly, in the next two assumptions we relate the number and

3The monotonicity and concavity can be easily veri�ed from the following:

@E[~h]

@l
= �L

�
1� 1

L

�l
log

�
1� 1

L

�
> 0; and

@2E[~h]

@l2
= �L

�
1� 1

L

�l �
log

�
1� 1

L

��2
< 0: (7)

4bxc = maxfz 2 Zjz � xg.
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precision of basic signals to the cost c.5

Assumption 2.2. For some L 2 [0;1], the number of basic signals in L is given by L = bL
c
c.

Because L determines the number of signals in L, L parameterizes the degree of information
searchability. All the collected signals will be distinct (thus informative) in the absence of

impediments to information search (or in case of perfect searchability, i.e., L = 1). On the
other hand, some of the collected signals may be redundant in the presence of impediments

to information search (or in case of imperfect searchability, i.e., L < 1), thus the number of
distinct signals can be strictly lower than the number of collected signals.

Assumption 2.3. For some � 2 [0;1), the precision of each basic signal sm 2 L equals

�� = �c.

Therefore, the parameter � captures the e¢ ciency of each basic signal per unit of cost. For

given values of L and � , Assumption 2.2 and Assumption 2.3 imply that the total amount of
information available to the agent is in fact independent of c. For example, when the required

input of resources for one signal decreases by half, the number of basic signals available in the

population increases by twice but the precision of each basic signal decreases by half.

We de�ne ~h(k; c) to be the number of distinct signals drawn from L given an input of k

units of resources when the minimum fraction of resource inputs is set to be c. Then, the

precision function according to De�nition 2.1 under Assumption 2.3 is given by

�(~h(k; c)) = �c~h(k; c): (8)

There are two major problems in using the precision function in Eq. (8): First, the precision

of information given an input of k units of resources is random because the number of distinct

signals is random. Second, the function is not smooth in k because the number of distinct

signals is given by discrete numbers. These shortcomings make the precision function de�ned

in Eq. (8) unattractive in most economic applications. To resolve these shortcomings, we will

consider the limiting case in which the cost c tends to zero and rely on the following notion:

5This following is a technical assumption which obtains smooth extrapolation of discrete choices. Moscarini

and Smith (2001) provides a similar extrapolation out of number of sampling.
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De�nition 2.2. The asymptotic precision function � : R+ ! R+ is de�ned to be a function
that satis�es the following6

�(~h(k; c))! �(k) a.s. as c! 0: (9)

As we will demonstrate below, the asymptotic precision function �(k) in Eq. (9) resolves

both problems in Eq. (8). That is, it becomes deterministic and smooth (i.e., continuous in k

and also in�nitely di¤erentiable with respect to k).

2.2 Asymptotic Precision Functions

Here we derive our main result, the asymptotic precision function in the presence of impedi-

ments to information search.

As a benchmark, consider the case of perfect searchability in which signals are drawn from

L without replacement. Since there cannot be redundant signals in this case, the number of

distinct signals drawn from L given an input of resources k such that
j
k
c

k
� L is trivially equal

to the number of collected signals,
j
k
c

k
. Hence, the corresponding precision function is given

by

�(~h(k; c)) = �c
jk
c

k
= �
h
k � g(c)

i
; (10)

where g(c) � c. By taking the limit as c goes to zero, it is immediate to obtain the asymptotic
precision in case of perfect information searchability:

�(k) = �k: (11)

Now, we turn to the case of imperfect information searchability, i.e., signals are drawn from

L with replacement and L < 1. Using Lemma 2.1, we can derive the expected number of
distinct signals given the resource input k as follows:

E[~h(k; c)] = bL
c
c

0@1� 1� 1

bL
c
c

!b k
c
c
1A : (12)

6One may alternatively state that Pr
h
lim
c!0

���(~h(k; c))� �(k)�� < �i = 1 for each � > 0.
12



Multiplying by c and taking the limit as c goes to zero in Eq. (12) yields

E[c~h(k; c)]! L
�
1� exp

�
� kL

��
; as c! 0: (13)

Therefore, the expectation of the precision function �(~h(k; c)) becomes smooth in the

limit where c approaches zero. However, it is not clear that the precision function itself

will be a deterministic function: proving this result is a non-trivial task because the number

of collected signals grows large as c approaches zero but so does the number of redundant

signals. Intuitively, proving that uncertainty in c~h(k; c) disappears as c approaches zero requires

showing that the fraction of redundant signals converges to its expectation, or, more formally,

that c~h(k; c) can only deviate from E[c~h(k; c)] in measure zero cases as c approaches zero. This

result is provided the following lemma:

Lemma 2.2. As c! 0, the di¤erence between c~h(k; c) and E[c~h(k; c)] converges to zero almost

surely.

Proof. See Appendix A.

Because �(~h(k; c)) = �c~h(k; c), Lemma 2.2 gives the main argument in the proof of the

following theorem.

Theorem 2.1. In case of imperfect information searchability, the asymptotic precision is given
by

�(k) = �L
�
1� exp

�
� kL

��
(14)

As mentioned above, the asymptotic precision function �(k) overcomes the two major

di¢ culties that exist in case of �(~h(k; c)). First, �(k) is a deterministic function in k. Second,

�(k) is a smooth function in k, i.e., �(k) is continuous in k and is also in�nitely di¤erentiable

with respect to k. Furthermore, it has the following standard properties that are frequently

assumed in the information economics literature:

(i) Non-negativity: � � 0,
(ii) Monotonicity: @�=@k � 0,
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(iii) Concavity: @2�=@k2 � 0,
(iv) Curvature: �@2�=@k2

@�=@k
= 1=L.

The precision increases with more input of resources, but the marginal bene�ts diminish

in scale. Furthermore, such diminishing marginal bene�ts are larger with worse information

searchability. These properties �t intuition quite well. As one learns more about one subject,

the probability of encountering redundant materials is going up. He realizes that the collected

materials are overlapping with those that are previously acquired only after searching. The

concavity of the signal precision function is also associated with negatively accelerated learning

curve which has been repeatedly reported in cognitive science and psychology. A large body

of literature with empirical and experimental evidence �nds learning data showing a rapid

improvement followed by lesser improvements are best �tted with an exponential function.7

The increasing curvature inverse to L implies that worse information searchability would
make the asymptotic precision function more concave. On the other hand, as information

searchability improves (i.e., L ! 1), the asymptotic precision function (14) converges to the
linear function in (11) that is obtained when signals are drawn without replacement. This

result is intuitive: as information searchability deteriorates, so does the possibility of drawing

redundant signals. We remark that (14) implies �0 (0) = �; that is, the precision obtained

from the �rst unit of input only depends on the precision of the underlying information and is

una¤ected by information searchability�the very �rst unit of information cannot be redundant,

regardless of L.
In applications, it is common to specify the information acquisition technology in terms

of a cost function k : � 7! k(�) that speci�es the amount of resources k that are required

to collect information with precision �. In our setup, the asymptotic cost function is readily

obtained as the inverse of the precision function in (14), k (�) = ��1 (�), as

k (�) = �L log
�
1� �

�L

�
: (15)

The cost function k (�) has the following properties: it is non-negative, monotone decreasing

and concave, with curvature decreasing in the information searchability parameter, L. Note
7See Ritter and Schooler (2001) for surveys on �power law�of learning curve which has been widely observed

in cognitive psychology.
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that k (�) becomes in�nite as � approaches �L, which represents the upper bound to the
information precision. Finally, we remark that k0 (0) = ��1. Di¤erently from what is often

assumed in applications, the marginal cost of the �rst unit of information is bounded away

from zero.

Figure 1 provides a graphical illustration of � (k) and k (�) for di¤erent values of the infor-

mation searchability parameter L. The functions are linear in the case of perfect searchability
(L =1) while the curvature decreases for larger values of L, the precision function becoming
less concave and the cost function becoming less convex.
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Figure 1. Left panel: precision function �(k). Right panel: cost function k(�). Parameter

values: � = 1 and L 2 f1; 2;1g.

Finally, we call an information source �superior� to the other source only if it provides

more precise information than the other source given the same level of inputs. We give a more

formal de�nition of superiority as follows:

De�nition 2.3. Information source i is superior to information source j if i is both more
e¢ cient and more searchable, i.e., � i � � j and Li � Lj with at least one equality being strict.

A superior information source will always have higher precision given the same level of

inputs, i.e., suppose that i is superior to j, then �i(k) > �j(k) for all k > 0. One may imagine
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that a superior source is always preferred to an inferior source, but later in the paper (Section

3) we show that is is not necessarily the case when agents�actions are strategic complements.

This result builds on the multiple agent framework that we develop next.

2.3 Multiple Agents

In this section, we extend our framework to the case of multiple agents. In particular, we

focus on the covariance of the acquired signals at the given level of information searchability.

The same intuition about drawing balls with replacement from an urn still applies to the

case with multiple agents; when the number of balls in the urn gets smaller, the possibility

of collecting overlapping information among di¤erent agents becomes higher. That is, more

severe impediments to information search would induce higher covariance of errors among the

acquired signals across di¤erent agents.

Suppose that there are I agents in the economy, and let I denote the set of agents. Adapting

the notation introduced in Section 2.1.3, let Hi denote the set of distinct signals acquired by

agent i, and hi denote the number of signals in Hi. Let Si(hi) be the mean of the distinct

signals acquired by agent i. Then, Si(hi) and Sj(hj) are su¢ cient statistics for the information

acquired by agent i and j:

Si(hi) =
1

hi

X
m2Hi

sm = � +
1

hi

X
m2Hi

�m; (16)

Sj(hj) =
1

hj

X
m2Hj

sm = � +
1

hj

X
m2Hj

�m: (17)

Therefore, the covariance between Si(hi) and Sj(hj) is given by

Cov(Si(hi); Sj(hj)) =
1

��
+ Cov

0@ 1

hi

X
m2Hi

�m;
1

hj

X
n2Hj

�n

1A : (18)

Let Hi;j denote the set of indices of signals that belong to both Hi and Hj. Then, it is

immediate that

Cov

0@ 1

hi

X
m2Hi

�m;
1

hj

X
n2Hj

�n

1A =
1

hihj
V ar

0@ X
m2Hi;j

�m

1A =
hi;j
�chihj

; (19)
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where hi;j denotes the number of distinct signals in Hi;j.

Suppose that agent i and j use an amount of resource ki and kj, respectively, when the cost

of each signal is set to be c: Denote with ~hi(ki; c) and ~hj(ki; c) the resulting number of distinct

signals collected by agent i and j and let ~hi;j(ki; kj; c) denote the number of distinct signals

among the commonly collected signals. Of course, for any positive value of c, ~hi(ki; c); ~hj(ki; c)

and ~hi;j(ki; kj; c) are random, and so is the covariance among the error terms in the signals

Si(~hi(ki; c)) and Sj(~hi(ki; c)) (see Eq. 19). To restore tractability, we will again consider the

limit in which c goes to zero and rely on the following de�nition:

De�nition 2.4. The asymptotic covariance �ij of the error terms in the signals Si(~hi(ki; c))
and Sj(~hi(ki; c)) satis�es

~hi;j(ki; kj; c)

�c~hi(ki; c)~hj(kj; c))
! �ij a.s. as c! 0: (20)

Using an argument similar to Lemma 2.2, we can show that randomness in c~hi;j(ki; kj; c)

disappears in the limit in which the cost c tends to zero. We have:

Lemma 2.3. As c! 0, c~hi;j(ki; kj; c) converges to a deterministic function in ki and kj almost

surely, i.e.,

c~hi;j(ki; kj; c)! L
�
1� exp

�
�kiL

���
1� exp

�
�kjL

��
a.s., as c! 0: (21)

Proof. See Appendix A.

Then, Lemma 2.2 and Lemma 2.3 together with Eq. (19) provide the proof for the following

theorem:

Theorem 2.2. For each agent pair i; j 2 I, the asymptotic covariance of the error terms in
the signals Si(~hi(ki; c)) and Sj(~hi(ki; c)) satis�es

�ij =
1

�L : (22)

Notice that the asymptotic covariance �ij is constant and monotone decreasing in �L. The
latter result con�rms our initial intuition that worse information searchability would increase

the covariance of acquired information across di¤erent agents.
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Finally, using Theorem 2.1 and Theorem 2.2, we can obtain the asymptotic correlation of

the error terms between the two signals given the input of resources ki and kj as follows:

�(ki; kj) = lim
c!0

Corr

0@ 1

hi

X
m2Hi

�m;
1

hj

X
m2Hj

�m

1A =

��
1� exp

�
�kiL

���
1� exp

�
�kjL

��� 1
2

:

(23)

2.4 Asymptotic Normality

While Theorem 2.1 and Theorem 2.2 show the second moments of the error terms in the

asymptotic signals, the proof of the next theorem derives their joint asymptotic distribution.

We can summarize our results as follows:

Theorem 2.3. For each agent pair i; j 2 I using input ki and kj, respectively, as c goes to
zero the information acquired by agent i; j 2 I is equivalent to the asymptotic signals

Si(ki) = � + �i; (24)

Sj(kj) = � + �j; (25)

where �i and �j are jointly normally distributed with mean zero and variance-covariance matrix

�i;j, where

�i;j =

 
�(ki)

�1 1
�L

1
�L �(kj)

�1

!
;

where the function �(�) is as in Eq. (14).

Proof. See Appendix A.

It is worth mentioning that Theorem 2.3 is proved in the appendix without imposing any

distributional assumption about � or �. Therefore, our results in the theorem can be generalized

to broader classes of distributions than the normal distribution.
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2.5 A public-private decomposition of signals�noise terms

From Theorem 2.3, we can represent each asymptotic signal Si(ki) by decomposing the noise

term �i into two parts as follows:

Si(ki) = � + �+ �i; (26)

where � is a common component of noise, and �i is an idiosyncratic component of noise such

that

� =
1

I

IX
i=1

�i; �i = �i � �: (27)

The next corollary provides a characterization of the representation in Eq. (26) for an economy

with a large number of agents.

Corollary 2.1. When the number of agents I goes to in�nity, the noise decomposition in
Eq. (26) satis�es the following properties:

(i) � and �i become independent of each other for all i 2 I,

(ii) �i and �j become independent of each other for all i; j 2 I,

(iii) The precision of �i approaches �L (exp (ki=L)� 1) for all i 2 I,

(iv) The precision of � approaches �L.

Proof. See Appendix A.

Parts (i) and (ii) in the corollary show that the representation in Eq. (26) separates out

the original individual error term in each signal (the �i�s in Corollary 2.3) into the sum of one

component that is common across all agents, �, and a truly idiosyncratic component, �i. By

parts (iii) and (iv) in the corollary, agent i can reduce the idiosyncratic variance of his signal

by increasing the amount of resources ki used for information acquisition. However, agent i

cannot reduce the variance of the common component �, which is determined by the extent of

information searchability.

Corollary 2.1 gives a microfoundation for a signal structure that blends together the two

common assumptions used in the literature, in which the error terms in the signals are typically
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assumed to be either fully private (i.e., purely idiosyncratic noise) or fully public (i.e., purely

public noise). A signal structure with similar properties to ours has been assumed in recent

work by Manzano and Vives (2011) and Myatt and Wallace (2012).

For a given input of resources ki, the public-private nature of a signal can be further

described as follows. The fraction of a signal�s error term variance that is attributed to the

common part is
V ar(�)

V ar(�i)
= 1� exp

�
�kiL

�
: (28)

Hence, the smaller the searchability parameter L, the more the error terms the signals become
�public�across agents. This property of the model is intuitive: the smaller the information

content that is available from an information source, the more common the information of the

agents who search from it.

It is worth noting that the precision of �i in Corollary 2.1 is a convex function of ki. To

intuitively understand this, one could interpret �i as the error term of a signal on � + �.

Consider the limiting cases in which L is either very large or very small. As L becomes very
large, � + � becomes equivalent to � because the common component � vanishes. Then, the

precision of �i becomes equivalent to the precision of the error term �i in the original signal,

which approaches the linear function �ki as L " 1. In contrast, as L is very small, the error
term in the original signal is completely dominated by the common noise (see Eq. (28)). In the

limit as L # 0, the content of the information source becomes akin to a single �small�noisy
signal of the form � + �, which can be learnt with any positive amount of resources spent on

information search. This case corresponds to an extreme form of convexity for the precision

function of �i. Finite values of L correspond to cases between these two extremes. For all
L 2 (0;1), the precision function of �i is then strictly convex, with curvature that increases
for lower values of L.
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3 Application I: Endogenous Information in Coordina-

tion Games

We consider endogenous information choice in a beauty contest coordination game of the type

popularized by Morris and Shin (2002). Our analysis complements the existing literature (e.g.,

Hellwig and Veldkamp (2009) and Myatt and Wallace (2012)) by adopting the information

technology derived in the previous section. Our contribution is twofold. First, we show that

our information acquisition technology leads to qualitatively di¤erent implications regarding

the nature of the information structure and the existence of multiple equilibria. Second, we

provide comparative statics on the di¤erent equilibria and searchability of information that

are unique to our framework.

3.1 The Setup

There is a continuum of agents indexed by i 2 [0; 1] who play a simultaneous move game with
the following stages. First, each agent i gathers information, in a way that we specify below,

on an aggregate state variable �. Second, each agent i chooses an action ai 2 R that is based
on the information he has observed. Agent i�s payo¤ depends on how well his action does

at matching the state variable � as well as the average action a =
R 1
0
ahdh. Agent i�s payo¤

function is assumed to be quadratic:

ui = � (1� �) (� � ai)2 � � (a� ai)2 : (29)

The parameter � 2 [0; 1] in Eq. (29) measures the intensity of agents�coordination motive:
larger values of � re�ect larger concerns for an agent to choose an action that is as close as

possible to the average action. We assume � � N
�
��; ��1�

�
. To gather information about �, each

agent in the model allocates a �xed amount of resources K to J > 1 independent information

sources. Each information source j 2 f1; :::; Jg is characterized by its own e¢ ciency parameter
� j and searchability parameter Lj. Each agent i chooses an allocation of his resources across
information sources ki =

�
k1i ; :::; k

J
i

�
such that �jk

j
i � K. The mapping from resources to

information is based on the information technology derived in the previous section. When

agent i allocates kji > 0 resources to information source j, the information obtained through
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this source is equivalent to a signal of the form

Sji = � + �
j
i ; �ji � N

�
0; �j

�
kji
��1�

; (30)

where the precision function �j (�) is as speci�ed in Eq. (14) in Theorem 2.1,

�j
�
kji
�
= � jLj

 
1� exp

 
� k

j
i

Lj

!!
:

Vice versa, agent i ignores information source j whenever kji = 0, in which case the signal S
i
j

is pure noise.

The error terms in Eq. (30) are assumed to be independently distributed across information

sources. On the other hand, within each information source, the decomposition in Corollary 2.1

implies that we can write each signal Sji as

Sji = � + �
j + �ji ; (31)

where �j and �ji are independent for all j and i and

�j � N
�
0;
�
� jLj

��1�
; �ji � N

�
0; exp

�
�kj=Lj

�
�j
�
kji
��1�

: (32)

An interpretation of the setup in this section is that of �nancial analysts or professional

forecasters issuing their forecasts on some random variable of interest (e.g., earnings per share

on a given stock, a macroeconomic aggregate, a commodity price etc.). In this interpretation,

agent i�s action is her forecast, and the average action �a is the consensus forecast. Resources

K would be total working hours. Intuitively, an analyst�s payo¤ depends on the accuracy of

her forecast. However, the reputational damage from a wrong forecast is more severe if the

analyst�s forecast is di¤erent from the consensus. The payo¤ function in Eq. (29) is a second

order approximation of these concerns.

3.2 Equilibrium

In line with the literature, we focus on equilibria in which actions are a¢ ne functions of the

signals, that is, in which agent i�s action takes the form ai = 
0
i + �j

j
iS

j
i .
8 We denote i =

8See Myatt and Wallace (2012) for a discussion of su¢ cient conditions on the strategy space that ensure

this assumption to be without loss of generality.
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�
0i ; :::; 

J
i

�
and let � be the set of feasible resource allocations, � = fk 2 RJ+

�� �jkj � Kg.
The strategy space is � = �� RJ+1. An agent�s strategy is a pair (k; ) 2 �.
We focus on symmetric equilibria in which all agents play the same strategy. When all

other agents play some strategy
�
k̂; ̂
�
, agent i�s ex-ante utility from a strategy (ki; i) equals

E (ui) = �L1 (ki; i)� L2 (i; ̂) ; (33)

where L1 (ki; i) and L2 (i; ̂) are given in Eqs. (B.1)-(B.2) in Appendix B. (Appendix B also

contains the derivation of Eq. (33).) L1 (ki; i) is the quadratic loss experienced by an agent

when all players play the same strategy. L2 (i; ̂) is the quadratic loss experienced by an

agent when he deviates from other players�strategy. A Symmetric Bayesian Nash Equilibrium

(SBNE or equilibrium, hereafter) is a strategy
�
k̂; ̂
�
such that�

k̂; ̂
�
2 arg min

(ki;i)2�
L1 (ki; i) + L2 (i; ̂) : (34)

Since L2 (i; ̂) vanishes when agent i plays i = ̂ (and is strictly positive otherwise), a

global minimizer of L1 (ki; i) in Eq. (34) is a payo¤ maximizing equilibrium.9 In Appendix B

(see Lemma B.1) we show that �nding a strategy that minimizes L1 (ki; i) reduces to �nding

an allocation of resources among information sources k� that satis�es

k� 2 argmax
k2�

G(k), (35)

where we de�ne

G(k) = �Jj=1gj(k
j); gj(k

j) =

�
1� �
�j(kj)

+
�

exp (kj=Lj)�j(kj)

��1
: (36)

The problem in Eqs. (35)-(36) is that of �nding an allocation of resources that maximizes

agents�payo¤s in a symmetric equilibrium. Because an agents�local deviation from a sym-

metric strategy pro�le has no �rst-order e¤ects on L2 (i; ̂) (see Eq. (B.3)), k� in Eq. (35) is

the unique SBNE if G(k) is strictly concave in k.

The objective function G(k) in Eq. (36) has an intuitive interpretation. Each function

gj(k
j) is an (weighted, harmonic) average of the precisions of the error term �ji of the signal in

9We remark that a payo¤ maximizing equilibrium may not coincide with the �rst-best if coordination has

no social value. See Colombo, Femminis, and Pavan (2014) for a welfare analysis of information acquisition.
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Eq. (30) and of the idiosyncratic error term �ji in the decomposition in Eq. (31). When agents

do not care about other agents�actions, forecasting the fundamental � is all that matters for

agents�utility. In this case, G(k) is simply the sum of signals�precisions (gj(�) = �j(�) for
� = 0, see Eq. (36)) and k� is the allocation of resources that gives the most precise forecast of

�. Because the precision functions �j(�) are concave, G(k) is concave, and thus the equilibrium
unique, if the coordination motive is su¢ ciently weak.

On the other hand, coordination motives in actions introduce a distortion. When the

coordination motive is strong, agents�utilities depend crucially on whether their actions deviate

from the average action. In a symmetric equilibrium, the average action equals �a = ̂0 +

�j ̂
j (� + �j), and what matters for predicting �a is learning about the sums � + �j. For

instance, in the extreme case � = 1, G(k) is simply the sum of the idiosyncratic precisions

(gj(k
j
i ) = var

�
�ji
��1

for � = 1, see Eq. (36) and Eq. (32)) and k� is the allocation of resources

that gives the highest precision on the sums � + �j. As explained in Section 2.3.1, learning

about the sums � + �j introduces a source of non-concavity because uncertainty about � + �j

decreases faster than it does for �. A strong enough coordination motive makes the problem

in Eq. (35) non-concave, which can result in multiple equilibria. For instance, an allocation of

resources that constitutes a local (but not global) maximum of G(k) is a SBNE if the cost an

agent incurs when moving away from other agents�actions deter deviation.

This discussion suggests that the interplay between the coordination motive and the na-

ture of the information is key for information choices and equilibrium uniqueness. The next

propositions analyze this interplay formally.

Proposition 3.1. (SBNE)(i) When the coordination motive is weak, i.e., for � 2 [0; 1=2),
there exists a unique equilibrium. In equilibrium, information acquisition satis�es

k̂j(�) =

8<: Lj log
�
�j�2��(1��)+

p
�j(�j�4��(1��))

2(1��)2�

�
for 0 < � < � j

0 for � � � j
(37)

for some � > 0 that is the unique solution to �Jj=1k̂
j(�) = K:

(ii) When the coordination motive is strong, i.e., for � 2 [1=2; 1); there may be multiple equi-
libria. An equilibrium allocation of resources is either a local maximum or a critical point of

G (k) = �Jj=1gj(k
j).
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Proof. See Appendix B.

Proposition 3.1-(i) con�rms the intuition from the previous discussion. The equilibrium

is unique if the coordination motive is not su¢ ciently strong. In this equilibrium, agents

devote attention to an information source only if this source is su¢ ciently e¢ cient. As agents

care more about other agents�actions, agents allocate their resources among a (weakly) lower

number of information sources (i.e., d�
d�
> 0). If information source j is superior to information

source i according to De�nition 2.3, then information source j gets more resources than i. If

an information source is superior to all other information sources and has perfect searchability,

it gets all resources.

Proposition 3.1-(ii) reveals the possibility of multiple equilibria when the coordination

motive is su¢ ciently strong. In such case, an equilibrium allocation of resources may have very

di¤erent properties than the ones discussed above. For example, an equilibrium allocation of

resources may favor an inferior information source. The next proposition examines this case

in a simpli�ed environment with only two information sources.

Proposition 3.2. (Inferior information equilibrium when coordination motive is strong)

Assume there are only two information sources, A and B, such that A is superior to B in that

it is relatively more e¢ cient and has perfect searchability (�A > �B and LA =1). Then:
(i) k̂A = K is an equilibrium.

(ii) There exists a threshold �LN <1 such that k̂B = K is an equilibrium only if LB � �LN .
(iii) There exists a threshold �LS < 1 such that, for all LB < �LS, k̂B = K is the payo¤

maximizing equilibrium if the coordination motive is su¢ ciently strong.

Proof. See Appendix B.

Since information source A has perfect searchability, the nature of this information is purely

private. Then, when kAi = K for all agents, an agent�s payo¤s only depend on the fundamental

�, and deviating from kAi = K is costly because A is a superior to B. Devoting all resources

to this superior technology is therefore an equilibrium.

The necessary condition in Proposition 3.2-(ii) requires that the inferior information source

must be su¢ ciently public in nature. The intuition is as follows. For kB = K to be an
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equilibrium, it must be a local maximum ofG(k) (Proposition 3.1-(ii)). Instead, as LB becomes
large and information source B becomes private in nature, predicting � + �B is the same as

predicting �. Because �A > �B, agents would be better o¤ in a symmetric equilibrium in which

k̂A > 0.

The intuition for Proposition 3.2-(iii) is the following. If all agents are learning from the

superior information source A, then the average action only depends on �. Instead, if all agents

are learning from the inferior information source B, then the average action depends on �+�B.

For LB < �LS, kBi = K gives a more precise source of information about � + �B than kAi = K

does about �. If agents�concerns about predicting the average action are su¢ ciently strong,

k̂B = K is an equilibrium that gives higher payo¤s to agents than the k̂A = K equilibrium.

(Under the conditions in the proposition, the problem in Eqs. (35)-(36) is strictly convex, and

interior equilibria are dominated.)

How strong does the desire for coordination need to be in Proposition 3.2-(iii)? The answer

depends on the parameters of the model, including the searchability parameter LB. The lower
LB, the less precise a B-signal is about �. At the same time, lower LB makes a B-signal a
more precise source of information about �+�B. The following corollary shows that the second

e¤ect dominates the �rst one when LB is close to the threshold �LS. We have:

Corollary 3.1. (Comparative statics) As LB decreases from the threshold �LS, a less strong
desire for coordination is needed for k̂B = K to be the payo¤ maximizing equilibrium.

Proof. See Appendix B.

Corollary 3.1 underlies the following surprising result. Since a B-signal�s precision is in-

creasing in LB, then, over a range of values, an even lower precision of the inferior information
source is associated with a larger set of parameters for which agents choose this information

in the payo¤ maximizing equilibrium. The left panel of Figure 2 provides and illustration.

The �gure further shows that the same comparative statics holds when k̂B = K is a SBNE,

without the further requirement of being the payo¤ maximizing SBNE.

Equilibrium information choices have implications for aggregate volatility, as illustrated by

the right panel in Figure 2. The aggregate action is perfectly correlated with the fundamental

when resources are fully invested in the superior information. Instead, this correlation is
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signi�cantly lower than one in the inferior information equilibrium because of the common

noise �B. As a result, the volatility of the average action is signi�cantly higher in the k̂B = K

equilibrium than it is in the k̂A = K equilibrium, and this di¤erence is more pronounced for

lower values of the searchability parameter LB.

Figure 2. Left panel: light grey area: k̂B = K is a SBNE; dark grey area: k̂B = K is the payo¤

maximizing SBNE. Right panel: thick line, �B=�A: relative volatility of the aggregate action across

k̂B = K and k̂A = K equilibria; dashed (dot-dashed) line, �B;� (�A;�): correlation coe¢ cient between

the average action a and � in the k̂B = K (k̂A = K) equilibrium. Parameter values: �� = �A = K = 1;

�B = 0:8 in both panels and � = 0:8 in the right panel.

In the interpretation of this model as one of �nancial analysts or professional forecasters,

the superior information technology could be fundamental analysis, and the inferior informa-

tion source could be information originating from the media (e.g., social media, investors�

online chat rooms, popular business TV shows). Proposition 3.2 and Corollary 3.1 describe

an equilibrium in which analysts gather all their information from the inferior source. In this

equilibrium, the informational content of the consensus forecast is

V ar[�j�a]�1 = ��

1� corr (�; �a)2
;
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where corr(�; �a) denotes the correlation coe¢ cient between � and �a. Hence, the correlation

coe¢ cients in Figure 2 measure the informational e¢ ciency of the equilibrium outcome. While

the consensus forecast reveals the fundamental perfectly in the k̂A = K equilibrium, the

equilibrium outcome informationally ine¢ cient in the k̂B = K equilibrium.

3.3 Relation to the literature

The analysis in this section relates very closely to Hellwig and Veldkamp (2009) and Myatt and

Wallace (2012). Both papers consider endogenous information acquisition in a beauty contest

coordination game.

A key message in Hellwig and Veldkamp (2009) is that the endogenous choice of public

information generates multiple equilibria. The idea is that a public signal is more valuable

than a private signal because it carries information both about the fundamental and about

what other agents have learned (and, hence, about what other agents will do). However, this

second e¤ect depends on whether the public signal has been acquired by others or not, and

this leads to multiple equilibria.10

A very di¤erent message emerges from Myatt and Wallace (2012), who assume a signal

structure equivalent to Eq. (31) in which costly information acquisition from an information

source reduces the idiosyncratic noise (but not the common noise). In their setup, the equi-

librium is unique. The key di¤erence is that the correlation in public information is bounded

away from zero in Hellwig and Veldkamp (2009), while in Myatt and Wallace (2012) the pub-

licity of a signal depends on agents�information choices and the �rst bits of information are

e¤ectively private. As Myatt and Wallace (2012) put it,�this smooths out the �rst step of the

information acquisition process and eliminates multiple equilibria, even though the informative

signals actually acquired in equilibrium may be relatively public in nature.�

The message from Proposition 3.1 is somewhat intermediate between these two papers. In

our setup, the endogeneity of the signal structure in Eq. (31) leads to non-concavities that are

absent in Myatt and Wallace (2012). The endogenous publicity of signals guarantees a unique

equilibrium only if the coordination motive is su¢ ciently weak.

10This result also holds when acquisition of public information is �near continuous,�in which case the value

of information is kinked at the point where other agents have stopped learning from the public source. Hence,

there can be many equilibria (a continuum, in fact).
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4 Application 2: Portfolio Choice and Asset Prices with

Endogenous Information

In this section, we study an example of resource allocations under imperfect information search-

ability in the context of portfolio optimization and �nancial equilibrium. There is a large

volume of literature on �nancial equilibrium with endogenous information acquisition (e.g.,

Grossman and Stiglitz (1980), Peress (2004), Peng (2005) , Van Nieuwerburgh and Veldkamp

(2009), Van Nieuwerburgh and Veldkamp (2010) and Mondria (2010)). Our results here com-

plement those in the existing literature by suggesting an alternative mechanism�information

search�that a¤ects investors�optimal portfolio choice and asset prices.

We have two main goals in this section. The �rst goal is to study the impact of information

searchability on an agent�s resource allocation and portfolio choice problem. The second goal

is to embed these choices in a noisy rational expectations equilibrium and study the impact of

information searchability on equilibrium prices.

4.1 Optimal Resource Allocation and Portfolio Choice

Consider a competitive investor who wants to allocate his resources optimally in order to

maximize his expected utility from investment in a one-period setup (t = 0; 1). There are N

risky assets in the economy. Each asset j 2 f1; 2; : : : ; Ng pays �j at t = 1, where �j follows
a normal distribution with mean ��j and variance 1=� j� . Payo¤s �

j�s are independent of each

other. There also exists a riskless asset whose gross return is normalized to one. We denote pj

to be the price of each risky asset in the market. To focus on the e¤ects of learning from costly

information, we assume that the price of each asset j does not provide any payo¤ relevant

information. For concreteness, we set each pj equal to the payo¤ mean, i.e., pj = E[�j].11 We

will relax this assumption in the next subsection where we study a noisy rational expectations

equilibrium.

The investor is endowed with an initial wealth w0, and has a CARA utility function such

that u(w1) = � 1

exp(�w1), where w1 is his wealth at t = 1. At t = 0, he acquires information

11One can consider a situation where the trader submits orders given prices posted by competitive risk-neutral

market makers.
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on the risky assets, then forms a portfolio that consists of the risky assets and the riskless asset.

At t = 1, he receives the realized payo¤ of his portfolio.

The investor is also endowed with a total amount of resources K which can be allocated

to gather information about the risky assets. kj denotes the amount of resources allocated on

asset j 2 f1; 2; : : : ; Ng. An allocation of resources across risky assets is feasible for the investor
if it satis�es the constraint

NX
j=1

kj � K: (38)

The mapping from resources to information is based on the information technology derived in

Section 2. Here � j and Lj denote, respectively, the e¢ ciency and searchability parameters for
asset j. By Theorem 2.3, the information collected by the investor for each asset j is equivalent

to a noisy signal on the fundamental value of each asset j,

Sj = �j + �j; (39)

where �j follows a normal distribution with mean zero and precision �j(kj) which is de�ned in

Eq. (14):

�j
�
kji
�
= � jLj

 
1� exp

 
� k

j
i

Lj

!!
:

For a given allocation of resources and signals�realizations, the agent�s optimal portfolio

choice in asset j = 1; :::; N is given by the standard CARA-Gaussian demand, which for

pj = E (�j) equals

xj =
�j(kj) (Sj � pj)


: (40)

For notational convenience, we de�ne �̂ j = � j=� j� as the normalized signal e¢ ciency. Ex

ante, the investor allocates his resources K while anticipating his asset demand in Eq. (40).

By solving this resource allocation problem, we �nd:

Proposition 4.1. (Optimal information choice) There exists a unique optimal allocation of
resources for the risky assets such that the optimal allocation kj is given by

kj(�) =

8<: Lj log
�

�̂j

�
+�̂jLj

1+�̂jLj

�
if 0 < � < �̂ j

0 if � � �̂ j
(41)
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where � is a positive constant. Furthermore, � decreases in K and increases in Lj for all j
with �̂ j > �.

Proof. See Appendix C.

The allocation of resources in Proposition 4.1 is governed by the endogenously-determined

multiplier �, which is interpreted as the shadow price of the resource constraint. From Eq.

(41) we can deduce the following. First, the resource allocation kj on each asset j decreases as

the shadow price � increases. Second, the number of assets that receive a positive allocation

of resources (i.e., kj > 0) weakly decreases in �. This in turn a¤ects the portfolio choice xj in

Eq. (40), and results in a portfolio that is more concentrated (resp., diversi�ed) as the shadow

price � increases (resp., decreases).12

Proposition 4.1 further demonstrates that the shadow cost � decreases in the investor�s

total amount of resource K, and increases in the searchability of each asset. Therefore, ceteris

paribus, a smaller amount of resources K or an increase in information searchability for some

assets results in the investor�s portfolio being more concentrated.

In the next corollary we further illustrate the comparative statics of changes in searchability

in one asset.

Corollary 4.1. (Attention crowding out) Consider an improvement in information searcha-
bility for an asset to which the investor allocates positive resources. Then: (i) the resources

allocated to the other assets in the portfolio strictly decrease (i.e., dk
r

dLj < 0 for any asset r 6= j
with kr > 0); and (ii) the resource allocation to the asset with improved searchability strictly

increases (i.e., dk
j

dLj > 0).

Corollary 4.1 implies that the investor puts less resources on other assets if one asset

becomes more searchable. This is quite intuitive. If the informational environment for an

asset already in the portfolio becomes richer, information about this asset can be acquired

more e¢ ciently. As a result, the investor will increase attention to it in order to exploit further

private information. This e¤ect naturally crowds out attention on other assets. Therefore, the

portfolio becomes more concentrated.
12Because this setup is one of purely speculative trading, having no private information on an asset implies

that the asset has zero weight in the investor�s portfolio.
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4.2 A Noisy Rational Expectations Equilibrium

What is the impact of information searchability on the cross section of risk premia and liquidity

of risky assets? To answer this question, we embed the resource allocation and portfolio choice

of Section 4.1 in a noisy rational expectations equilibrium framework.

There is a continuum of homogenous investors indexed by i 2 [0; 1]. Each investor has
CARA utility with risk aversion  and is endowed with an initial wealth w0 and an amount

of resources K: In contrast to the model of Section 4.1, equilibrium prices will partially reveal

the investors�private information. We assume that the supply of each asset j is given by zj

which follows a normal distribution with mean zi and variance 1=� jz . The noise in the supply

can arise due to non-informational trades such as liquidity trading (or noise trading) and is

assumed to be independent of all other random variables in the model.

Due to Corollary 2.1, we can represent each signal Sji (i.e., agent i�s signal on asset j) as

follows:

Sji = �
j + �j + �ji ; (42)

where the common error term �j and the idiosyncratic error term �ji are independent for all j

and i and

�j � N
�
0;
�
� jLj

��1�
; �ji � N

�
0; exp

�
�kj=Lj

�
�j
�
kji
��1�

:

As in the standard noisy rational expectation equilibrium models of Grossman and Stiglitz

(1980), Hellwig (1980) and Admati (1985), we focus on a linear equilibrium where the price

function is given by an a¢ ne function of fundamentals and noise. We summarize the equilib-

rium at the trading stage as follows:

Lemma 4.1. (Financial market equilibrium) There exists a unique linear equilibrium in which
the price for each asset j 2 f1; 2; : : : ; Ng is given by

pj = f j1 (�
j + �j)� f j2zj; (43)

where f j1 and f
j
2 are constants.

Proof. See Appendix C.

Now, we turn to the overall equilibrium of the model. For simplicity, we focus on symmetric

equilibria in which information choices are the same across agents. The ex-ante optimization
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problem of each investor is similar to the one in Proposition 4.1. However, the problem now

involves learning the information that is aggregated and transmitted via the equilibrium prices

in Eq. (43). Investors�information choices determine how much information asset prices trans-

mit, which in turn in�uences an investor�s information choices. An equilibrium allocation of

information is a �xed point of this problem. The following proposition shows that a symmetric

equilibrium always exists under some given level of parameter values.

Proposition 4.2. (Overall equilibrium) For su¢ ciently small � jz , there always exists an overall
equilibrium. In equilibrium, there exists a unique constant � such that each agent i allocates

kji on each asset j given � as follows:

kji (�) =

8<: Lj log
�
Aj +

q
(Aj)2 �Bj

�
if 0 < � < ��j

0 if � � ��j;
(44)

where

��j =
�̂ j�

1 + (� jLj)�1� jp
� �
1 +

�
1

�j�
+ (� jLj)�1

�
� jp
� ; (45)

Aj =
1

2

 
�̂j

�
+ �̂ jLj

1 + �̂ jLj

!
� (� jLj)�1� jp ; (46)

Bj = (� jLj)�1� jp
�
(� jLj)�1� jp �

�̂ jLj
1 + �̂ jLj

�
; (47)

� jp =

 
f j1
f j2

!2
� jz : (48)

Proof. See Appendix C.

We remark that the term � jp in Eq. (48) captures the precision with which price p
j reveals

�j + �j, the common part of the investors� information on asset j. In general, information

revelation through prices reduces investors� incentives to acquire information. This e¤ect is

illustrated by the threshold value ��j in Eq. (45) which decreases in the precision � jp . Intuitively,

prices must not be too informative for it be optimal to spend resources on private information

acquisition. On the other hand, in the limit case in which � jz approaches zero and prices
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become very noisy, the equilibrium resource allocation in Proposition 4.2 converges to the one

in Proposition 4.1 with no learning from prices.

Figure 3 shows a numerical example with two risky assets. We illustrate the comparative

statics of increasing the searchability parameter of asset 1 while keeping that of asset 2 at the

initial level.

(i) Equilibrium resource allocations across various levels of information searchability

(ii) Assets�illiquidity across various levels of information searchability

Figure 3. This �gure plots the equilibrium resource allocation fkjgj=1;2 (panel (i)) and assets�
equilibrium illiquidity coe¢ cients f j2 (panel (ii)) as a function of L1 for low (left column) and high
(right column) values of the investors�resources K. Parameter values are �1� = �2� =  = 1; �1 =

�2 = 2; �1z = �
2
z = 2 and L2 = 5:
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Panel (i) in the �gure shows how investors change their resource allocations in equilib-

rium. As information on asset 1 becomes more searchable, Corollary 4.1 suggests that the

resource allocation to this asset should increase. However, in equilibrium there is an opposing

force related to the externality of information revelation through prices. As L1 increases, the
precision of agents�information about asset 1 increases (given k1 > 0). Keeping information

choices �xed, more precise information is aggregated and partially revealed through the price

p1, thereby reducing the incentives to gather information on asset 1. When this force is suf-

�ciently strong, the partial equilibrium comparative statics of Corollary 4.1 may actually be

reversed. Figure 3 shows that investors�allocation of resources to asset 1 increases when the

size of total resources K is small whereas it decreases when K is large. Intuitively, a larger

amount of resources spent on information acquisition makes prices more informative and is

associated with a stronger information externality.

Panel (ii) of Figure 3 shows the implications of these information choices for asset prices.

We measure market illiquidity by f j2 , which is the price coe¢ cient on noisy supply in Eq. (43).
13

The market becomes more liquid if the investors are more con�dent about fundamentals of

the traded asset. As the precision of information for asset 1 exogenously increases (i.e., as

L1 increases), liquidity for this asset should improve. The top row of panel (ii) con�rms

this intuitive result in an equilibrium framework with endogenous information choice. The

bottom row of panel (ii) shows a more interesting result. We remark that since the two assets

are independent, any e¤ect of an increase in L1 on asset 2 is only due to its e¤ect on the
information choices. The �gure shows how such an �informational spillover�operates on the

illiquidity of asset 2. When the information externality is weak (lowK), the attention crowding

out e¤ect (i.e., k2 decreases in L1) results in increased investors�uncertainty on asset 2. Hence,
the informational spillover on market liquidity for the second asset is negative. The opposite

e¤ect arises when the information externality is strong (high K), and an increase in L1 leads to
more resources being allocated to asset 2. In this case, an increase in information searchability

for the �rst asset results in an improvement in liquidity for both assets.14

13This illiquidity measure re�ects the price sensitivity to changes in the asset�s random supply. This measure

is often used in the �nance literature following the seminal paper by Kyle (1985).
14Similar results hold with respect to the informational e¢ ciency of prices, de�ned as V ar[�j jpj ]�1. That is,

V ar[�1jp1]�1 increases in L1 while V ar[�2jp2]�1 decreases in L1 for lower values of K and increases in L1 for
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4.3 Relation to the literature

The empirical evidence shows that investors systematically under-diversify their portfolios.

Furthermore, retail investors are also subject to signi�cant home biases in their portfolio

choices. What causes such under-diversi�cation? The existing literature has suggested various

reasons: (i) informational frictions (e.g., Van Nieuwerburgh and Veldkamp (2009), Van Nieuwer-

burgh and Veldkamp (2010)), (ii) institutional barriers (e.g., Black (1974)), and (iii) behavioral

biases such as familiarity bias (e.g., Portes and Rey (2005)). For example, Van Nieuwerburgh

and Veldkamp (2009) employ the Kreps and Porteus (1978) framework to induce preference for

an early resolution of uncertainty, and this creates bene�ts of specialization among investors.

Such specialization bene�ts lead to portfolio concentration.

In our analysis, increased frictions in information search cause more concentrated port-

folios. This result is line with the literature that connects informational frictions to under-

diversi�cation. Unlike the existing literature, however, our paper relates the lack of portfolio

diversi�cation to the investors� availability of resources for information search. Given that

retail investors are likely to have less resources for information search than institutional in-

vestors, our model predicts higher portfolio concentration among retail investors relative to

institutional investors. This �ts the well-documented empirical observation that retail investors

tend to under-diversify their portfolios more than institutional investors.

Our model also predicts that increasing searchability of one asset may crowd out investing

in other assets by taking away investors�attention. For instance, if assets traded in the home

market have superior information sources for domestic investors, a home bias should arise as a

result of this attention crowding out e¤ect. Therefore, our model contributes to the literature

by suggesting an alternative mechanism of specialization and portfolio concentration.

Finally, our analysis highlights a new channel for liquidity spillovers across assets and

relates the sign of such spillovers to the investors�endowment of resources. More speci�cally,

our results suggest the following empirical prediction: that di¤erences in the availability of

information across stocks should be associated with larger cross-sectional di¤erences in liquidity

and informational e¢ ciency when investors�resources are more limited. Because small stocks

are mostly held by retail investors with smaller resources than institutional investors, these

informational spillovers should be more pronounced for small �rms.

higher values of K.
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5 Conclusion

In our paper, we develop a microfounded framework of information acquisition in which search-

able information is limited. Our framework on learning under imperfect information search-

ability is based on a simple intuition: As an agent keeps searching for new information, it is

likely that he would encounter some overlapping pieces of information from the past searching

activities. Furthermore, other agents searching for information from the same source would

face the same di¢ culty in collecting new information, thus, they are more likely to end up with

similar information in case the amount of searchable information is smaller. We formalize this

idea by employing an urn model where signals are drawn with replacement. This allows us to

develop a framework in which both the concavity of signal precision and the correlation among

signals increase as information becomes less searchable. Using an asymptotic approach, we

construct a tractable mapping from resource allocations to the precision and the correlation

of agents�acquired information under varying degrees of searchable information.

We study two economic applications with endogenous information acquisition using our

model. Our �rst application is a �beauty contest�coordination game with endogenous infor-

mation. We �nd that agents may prefer an inferior information source with less searchable

information due to coordination motives. When the coordination motive is su¢ ciently strong,

there exists an equilibrium in which all agents choose to focus on the inferior information source.

Because less searchable information leads to more covariance, such equilibrium outcome be-

comes more likely precisely when the inferior information source becomes more ine¢ cient. In

the second application with a multi-asset market, we study a noisy rational expectations equi-

librium model in which investors optimally allocate resources across risky assets. We �nd that

improved searchability on one asset can crowd out attention on other assets, thereby resulting

in portfolio concentration. Furthermore, such tendency is more pronounced when investors

are more constrained in resources. Our results shed further light on under-diversi�cation phe-

nomena while at the same time having implications for cross-sectional di¤erences in liquidity

across assets.
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Appendix A

Proof of Lemma 2.2: We prove this lemma in a similar fashion as in standard proofs of the strong
law of large numbers.15 The major di¤erence of the proof from the standard case is that samples
of the random variables from the population allow redundancy at varying rates as the number of
samples increases.

Let L denote the number of distinct signals in L, i.e., L = bLc c. We also denote l to be the number
of collected signals from L, i.e., l = bkc c. For each m 2 f1; 2; : : : ; Lg, we de�ne ~hm(k; c) to be one if
signal sm is collected eventually, and zero otherwise. Then, we have ~h(k; c) =

PL
m=1

~hm(k; c), and

E[~hm(k; c)] = Pr(~hm(k; c) = 1) = 1�
�
L� 1
L

�l
: (A.1)

By Markov�s inequality, we have

Pr
h���c~h(k; c)� E[c~h(k; c)]��� � �i � c4E

����~h(k; c)� E[~h(k; c)]���4�
�4

: (A.2)

We �rst prove that c2E
����~h(k; c)� E[~h(k; c)]���4� converges as c! 0. That is, the r.h.s. would be less

than c2M
�4

for su¢ ciently small c for some positive constant M . This will allow us to have the desired
result.

We now drop the arguments in ~h(k; c) and ~hm(k; c) for notational convenience throughout this
proof. Observe that

E

����~h� E[~h]���4� = E h~h4i� 4E h~h3iE h~hi+ 6E h~h2iE h~hi2 � 4E h~hi4 + E h~hi4 : (A.3)

Then, we can obtain the exact expression for Eq. (A.3) by obtaining each element in it separately
as follows:

E
h
~h2
i
= LE

h
(~hm)2

i
+ L(L� 1)E

h
~hm~hn

i
; (A.4)

E
h
~h3
i
= LE

h
(~hm)3

i
+

�
3

2

�
L(L� 1)E

h
(~hm)2~hn

i
+ L(L� 1)(L� 2)E

h
~hm~hn~hx

i
; (A.5)

E
h
~h4
i
= LE

h
(~hm)4

i
+

�
4

3

�
L(L� 1)E

h
(~hm)3~hn

i
+
1

2

�
4

2

�
L(L� 1)E

h
(~hm)2(~hn)2

i
+

�
4

2

�
L(L� 1)(L� 2)E

h
(~hm)2~hn~hx

i
+ L(L� 1)(L� 2)(L� 3)E

h
~hm~hn~hx~hy

i
: (A.6)

15See, for example, Billingsley (1979) for the standard proofs of the strong law of large numbers.
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Because (hm)r = hm for all r 2 N, we have E
h
(~hm)r

i
= E

h
~hm
i
, E

h
(~hm)r(~hn)q

i
= E

h
~hm~hn

i
,

and E
h
(~hm)r(~hn)q(~hx)s

i
= E

h
~hm~hn~hx

i
for any r; q; s 2 N. By substituting Eqs. (A.4), (A.5) and

(A.6) into Eq. (A.3), we have

E

����~h� E[~h]���4� = LE h~hmi+ (3L2 � 7L)E h~hm~hni� 6(L2 + 2L)E h~hm~hn~hxi
+ 3(L2 � 2L)E

h
~hm~hn~hx~hy

i
:

(A.7)

We denote S to be the set of outcomes from drawing of l signals from the set L (i.e., the urn).
Then, we have jSj = Ll because there are L signals in the set L.16 We de�ne Am to be an event
where signal i is not drawn within l trials (i.e., ~hm is equal to zero). Then, the expectation of the
product between the random variables ~hm and ~hn is given by

E
h
~hm~hn

i
= Pr(~hm~hn = 1) = Pr(Acm \Acn) =

jAcm \Acnj
jSj : (A.8)

Using the inclusion�exclusion principle, we obtain17

E
h
~hm~hn

i
=
jSj � 2jAcmj+ jAcm \Acnj

jSj :

= 1� 2(L� 1)
l � (L� 2)l
Ll

= 1� 2
�
1� 1

L

�l
+

�
1� 2

L

�l
:

(A.10)

Therefore, taking the limit of c in Eqs. (A.1) and (A.10) yields

lim
c!0

E
h
~hm
i
= 1� exp

�
� kL

�
; (A.11)

lim
c!0

E
h
~hm~hn

i
=

�
1� exp

�
� kL

��2
: (A.12)

In a similar fashion as in Eq. (A.10), we obtain the followings using the inclusion�exclusion
principle:

E
h
~hm~hn~hx

i
= Pr(~hm~hn~hx) = 1� 3(L� 1)

l � 3(L� 2)l + (L� 3)l
Ll

; (A.13)

16 jAj indicates the cardinality of a set A.
17Suppose that there are �nite sets A1; A2; : : : ; AM that belong to a set S. Then, the inclusion�exclusion

principle states that

j \Mm=1 Acmj = jSj �
MX
m=1

jAmj+
X

1�m<n�M
jAm \Anj �

X
1�m<n<r�M

jAm \An \Arj+ : : :+ (�1)M j \Mm=1 Amj:

(A.9)
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E
h
~hm~hn~hx~hy

i
= Pr(~hm~hn~hx~hy) = 1� 4(L� 1)

l � 6(L� 2)l + 4(L� 3)l � (L� 4)l
Ll

: (A.14)

Then, taking the limit of c in Eqs. (A.13) and (A.14) yields the followings:

lim
c!0

E
h
~hm~hn~hx

i
=

�
1� exp

�
� kL

��3
; (A.15)

lim
c!0

E
h
~hm~hn~hx~hy

i
=

�
1� exp

�
� kL

��4
: (A.16)

Multiplying c2 to Eq. (A.7) and taking the limit of c yields

lim
c!0

c2E

����~h� E[~h]���4� = 3L2 exp��2kL
��

1� exp
�
� kL

��2
: (A.17)

Given a positive real number �, let �L denote 3L2 exp
�
�2k
L
� �
1� exp

�
� k
L
��2

+ �. Then, there exists

�c such that c2E
����~h� E[~h]���4� < �L. Therefore, there exists N > 0 such that for all n � N and n 2 N

we have

Pr

����� 1n~h� 1

n
E
h
~h
i���� � �� < �L

n2�4
: (A.18)

Then, the �rst Borel-Cantelli lemma implies that

Pr

�
lim
n!1

������~h(k; 1n)
�
� �(k)

���� < �� = 1; (A.19)

or equivalently

Pr
h
lim
c!0

�����~h(k; c)�� �(k)��� < �i = 1: � (A.20)

Proof of Lemma 2.3: The proof is parallel with Lemma 2.2. Let L to be the number of distinct
signals in L, i.e., L = bLc c. We also denote l

i and lj to be the number of signals collected by agent

i and j from L, respectively, i.e., li = bkic c and l
j = bkjc c. For each m 2 f1; 2; : : : ; Lg, we de�ne we

de�ne ~hmi;j(ki; c) to be one if signal s
m belongs to the group of the commonly collected signals Hi;j ,

and zero otherwise. We also de�ne ~hmi (ki; c) (or ~h
m
j (kj ; c)) to be one if signal s

m is collected by agent
i (or j), and zero otherwise. Then, we have

~hi;j(ki; kj ; c) =
LX

m=1

~hmi;j(ki; kj ; c) =
LX

m=1

~hmi (ki; c)
~hmj (kj ; c): (A.21)

40



Because ~hmi (ki; c) and ~h
m
j (kj ; c) are independent, we get

E[~hi;j(ki; kj ; c)] =
LX

m=1

Pr(~hmi (ki; c)
~hmj (kj ; c) = 1) =

LX
m=1

Pr(~hmi (ki; c) = 1)Pr(
~hmj (kj ; c) = 1)

= L

" 
1�

�
L� 1
L

�li! 
1�

�
L� 1
L

�lj!#
:

(A.22)

We can represent Eq. (A.22) given ki and kj as follows:

E[~hi;j(ki; kj ; c)] = b
L
c
c

264
0@1� 1� 1

bLc c

!b ki
c
c
1A
0B@1� 1� 1

bLc c

!b kj
c
c
1CA
375 : (A.23)

Multiplying c to Eq. (A.23) and taking the limit of c yields

lim
c!0

E[c~hi;j(ki; kj ; c)]! L
�
1� exp

�
�kiL

���
1� exp

�
�kjL

��
: (A.24)

We now drop the arguments in ~hi;j(ki; kj ; c) and ~hmi;j(ki; kj ; c) for notational convenience through-
out this proof.

By Markov�s inequality, we have

Pr
h���c~hi;j � E[c~hi;j ]��� � �i � c4E

����~hi;j � E[~hi;j ]���4�
�4

: (A.25)

We aim to prove Eq. (A.25) by showing that c2E
����~hi;j � E[~hi;j ]���4� converges as c! 0. The rest

of the proof of Lemma 2.3 is identical to Lemma 2.2 up to Eq. (A.7).
We denote '1(z); '2(z) and '3(z) to be

'1(z) =

�
L� 1
L

�z
; (A.26)

'2(z) =

�
L� 2
L

�z
; (A.27)

'3(z) =

�
L� 3
L

�z
(A.28)
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Using the inclusion�exclusion principle (which is analogous to Eq. (A.10)), we have18

E
h
~hmi;j
~hni;j

i
= Pr(~hmi;j

~hni;j = 1)

= 1� Pr(~hmi;j = 0)� Pr(~hni;j = 0) + Pr(~hmi;j = 0 ^ ~hni;j = 0):
(A.30)

Using the inclusion�exclusion principle again, we derive

Pr(~hmi;j = 0) = Pr(
~hni;j = 0) = '1(li) + '1(lj)� '1(li + lj): (A.31)

and

Pr(~hmi;j = 0 ^ ~hni;j = 0) = Pr((~hmi = 0 _ ~hmj = 0) ^ (~hni = 0 _ ~hnj = 0))
= 2'1(li)(1� '1(li))'1(lj)(1� '1(lj))
+ '2(li) + '2(lj)� '2(li)'2(lj):

(A.32)

Substituting Eqs. (A.31) and (A.32) into Eq. (A.30), and taking the limit of c yields

lim
c!0

E
h
~hmi;j
~hni;j

i
=

�
1� exp

�
�kmL

��2�
1� exp

�
�knL

��2
: (A.33)

Similarly as in Eq. (A.33), we obtain the expectation of the cross product of three variables ~hm; ~hn

and ~hx as follows:

E
h
~hmi;j
~hni;j
~hxi;j

i
= Pr(~hmi;j

~hni;j
~hxi;j = 1)

= 1� 3 ['1(li) + '1(lj)� '1(m+ n)]
+ 3 ['1(li)(1� '1(li))'1(lj)(1� '1(lj)) + '2(li) + '2(lj)� '2(li)'2(lj)]
� [3('1(li)2(1� '1(li))'1(lj)(1� '1(lj))2 + '1(li)(1� '1(li))2'1(lj)2(1� '1(lj)))
+ 6'2(li)(1� '1(li))'2(lj)(1� '1(lj)) + '3(li) + '3(lj)� '3(li)'3(lj)]:

(A.34)

Taking the limit of c in Eq. (A.34) yields

lim
c!0

E
h
~hmi;j
~hni;j
~hxi;j

i
=

�
1� exp

�
�kmL

��3�
1� exp

�
�knL

��3
: (A.35)

18In this case, we use the inclusion�exclusion principle in the following form:

j [Mm=1 Amj =
MX
m=1

jAmj �
X

1�m<n�M
jAm \Anj+

X
1�m<n<r�M

jAm \An \Arj+ : : :+ (�1)M+1j \Mm=1 Amj:

(A.29)
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We can repeat the same exercise as in Eq. (A.34) for the expectation of the cross product of four
variables ~hm; ~hn; ~hx and ~hy to obtain the following:

lim
c!0

E
h
~hmi;j
~hni;j
~hxi;j
~hyi;j

i
=

�
1� exp

�
�kmL

��4�
1� exp

�
�knL

��4
: (A.36)

Then, the rest of the proof is again identical to Lemma 2.2 to �nish the proof. �

Proof of Theorem 2.3 Let n = 1=c. With a slight modi�cation of the notation in the main text,
let H i

n denote the set of distinct signals among those acquired by agent i for a �xed k
i and c, and

let hin denote the number of signals in H
i
n. Similarly, denote H

i;j
n the set of distinct signals among

the overlapping signals acquired by agent i and agent j for �xed ki; kj and c, and let hi;jn denote the
number of signals in H i;j

n . Further, let Ln be the set of signals in the urn when the cost of each draw
is c,19 and let Ln be the cardinality of Ln. Then, let Sin denote the mean of the signals s1 ; s2 ; : : : ; sh

i
n

in H i
n as follows:

20

Sin =
1

hin

X
m2Hi

n

sm = � +
X
m2Hi

n

�m;

and let e�in denote Sin � �, that is, e�in = 1

hin

X
m2Hi

n

�m: (A.37)

Outline of the proof. We will prove joint asymptotic normality of e�in;e�jn by showing that, as n goes
to in�nity,

ae�in + be�jn d�! N

�
0;

a2

� (ki)
+

b2

� (kj)
+ 2

ab

�L

�
for all a; b 2 R2 (A.38)

The plan of the proof is as follows. As a �rst step, starting from e�in;e�jn; we construct two alternative
random variables, b�in;b�jn say, whose distribution is una¤ected by the randomness in hin; hjn and hi;jn .
As a second step, we use the CLT to prove asymptotic normality of ab�in + bb�jn as c goes to zero. As a
third step, we prove that ae�in+ be�jn converges in probability to ab�in+ bb�jn as c goes to zero. The fourth
step combines the previous results and completes the proof.

First step. Let ~Ln be an independent copy of let Ln, that is, a set of Ln signals of the form � + ~�m,
where each ~�m is independently and identically distributed to each �m in the signals in Ln.

Let the random variable zi;jn be de�ned as zi;jn = hi;jn �
l
E
�
hi;jn
�m
.21 Then, let the set Zi;jn be

de�ned as follows. If zi;jn > 0; let Zi;jn be a set of zi;jn random draws (without replacement) from H i;j
n .

19In terms of the notation in the main text we have hn = ~h(k; 1n ) and Ln = bnLc:
20The signals and error terms sm; �m should also have a n subscript to highlight that the distribution depends

on n (i.e., c). We will omit such additional notation in the rest of the proof.
21dxe = minfz 2 Zjz � xg.
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If zi;jn < 0; let Zi;jn be a set of
���zi;jn ��� random draws (without replacement) from ~Ln. If z

i;j
n = 0; let Zi;jn

be the null set. Then, let the set Ĥ i;j
n be de�ned as follows:

Ĥ i;j
n =

(
H i;j
n �Zi;jn

H i;j
n [ Zi;jn

if zi;jn > 0

if zi;jn � 0
:

By construction, the cardinality of Ĥ i;j
n equals

l
E
�
hi;jn
�m
.

Let the random variable zin be de�ned as z
i
n = h

i
n�
�
E
�
hin
��
�zi;jn . Then, let the set Zin be de�ned

as follows. If zin > 0; let Z
i
n be a set of z

i
n random draws (without replacement) from H i

n�H
i;j
n . If

zin < 0; let Z
i
n be a set of

���zi;jn ��� random draws (without replacement) from ~Ln. If zin = 0; let Z
i
n be

the null set. Then, let the set Ĥ i
n be de�ned as follows:

Ĥ i
n =

8<:
�
H i
n�H

i;j
n

�
�Zin�

H i
n�H

i;j
n

�
[ Zin

if zin > 0
if zin � 0

:

By construction, the cardinality of Ĥ i
n equals

�
E
�
hin
��
�
l
E
�
hi;jn
�m
. De�ne the random variable b�in

as

b�in = 1

dE (hin)e

24 X
m2Ĥi

n

�m +
X

m2Ĥi;j
n

�m

35 : (A.39)

By construction, b�in is therefore the sample average of �E �hin�� i.i.d. error terms, while e�in is the
sample average of hin i.i.d. error terms.

Finally, let the random variable b�jn be constructed in an equivalent manner to b�in but for agent j.
Second step. Let rn =

�
E
�
hin
��
+
l
E
�
hjn
�m
�
l
E
�
hi;jn
�m
. By construction, ab�in+ bb�jn can be written

out as the sum of rn independent terms as follows:

ab�in + bb�jn = rnX
k=1

Xnk;

where a number
�
E
�
hin
��
�
l
E
�
hi;jn
�m
of the Xnk terms are of the form Xnk =

a
dE(hin)e

�k; a numberl
E
�
hjn
�m
�
l
E
�
hi;jn
�m
of the Xnk terms are of the form Xnk =

b

dE(hjn)e�
k and a number

l
E
�
hi;jn
�m

of the Xnk terms are of the form Xnk =

�
a

dE(hin)e
+ b

dE(hjn)e

�
�k: Since E

�
�k
�
= 0, then E (Xnk) = 0.

Letting V 2n denote the variance of ab�in + bb�jn, we have
V 2n =

rnX
k=1

V ar(Xnk)
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= V ar
�
�k
�24��E �hin��� �E �hi;jn ���� a

dE (hin)e

�2
+
��
E
�
hjn
��
�
�
E
�
hi;jn
���0@ bl

E
�
hjn
�m
1A2

+
�
E
�
hi;jn
��0@ a

dE (hin)e
+

bl
E
�
hjn
�m
1A235

= V ar
�
�k
�24 a2

dE (hin)e
+

b2l
E
�
hjn
�m + 2ab

dE (hin)e
l
E
�
hjn
�m �E �hi;jn ��

35 (A.40)

=
n

�

24 a2

nL
h
1�

�
1� 1

nL
�nkii

+ gi (n)
+

b2

nL
h
1�

�
1� 1

nL
�nkji

+ gj (n)
+

2ab

nL+ gi;j (n)

35 ;
for some deterministic functions gi(c), gj(c) and gi;j(c) that all vanish as n!1. Hence, we have

lim
n!1

V 2n =
a2

� (ki)
+

b2

� (kj)
+ 2

ab

�L : (A.41)

The Lindeberg condition requires that, for all � > 0,

lim
n!1

rnX
k=1

1

V 2n
E
�
X2
nk1fjXnkj��Vng

�
= 0: (A.42)

We can write
rnX
k=1

1

V 2n
E
�
X2
nk1fjXnkj��Vng

�
= �in + �

j
n + �

i;j
n ;

where

�in =

��
E
�
hin
��
�
l
E
�
hi;jn
�m�

V 2n
E

0B@� a�k

dE (hin)e

�2
1(����� a�k

dE(hin)e

�������Vn
)
1CA

�jn =

�l
E
�
hjn
�m
�
l
E
�
hi;jn
�m�

V 2n
E

0B@
0@ b�kl

E
�
hjn
�m
1A2 1(����� b�k

dE(hjn)e

�������Vn
)
1CA

�i;jn =

l
E
�
hi;jn
�m

V 2n
E

0B@
240@ a

dE (hin)e
+

bl
E
�
hjn
�m
1A �k

352 1(����� a

dE(hin)e+
b

dE(hjn)e

!
�k

�������Vn
)
1CA :
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Using the expression for V 2n in (A.40) and simplifying, we can write

�in = �
i
n�

i
n;

where

�in =

0@1�
l
E
�
hi;jn
�m

dE (hin)e

1A a2�
a2 + b2 dE(h

i
n)e

dE(hjn)e + 2ab
dE(hi;jn )e
dE(hjn)e

� ;
and

�in = E

0B@ �kp
V ar (�k)

!2
1(����� a�k

dE(hin)e

�������Vn
)
1CA :

Furthermore, note that we can write (assuming a 6= 0)

���� a�k

dE (hin)e

���� � �Vn ,
����� �kp
V ar (�k)

����� � �

jaj

s
dE (hin)e

2 V 2n
V ar (�k)

,
���yk��� � in;

where we de�ne

yk =
�kp

V ar (�k)

and

in =
�

jaj

vuuuta2 dE (hin)e+ b2 dE (hin)e2l
E
�
hjn
�m + 2ab

l
E
�
hi;jn
�m

l
E
�
hjn
�m dE (hin)e:

Hence, we can write

lim
n!1

�in = lim
n!1

�in

Z
jykj�in

�
yk
�2
dP:

Note that limn!1 in =1 while the distribution of yk is independent of n (yk is a standardized version
of the original signal error term �k in the urn), and therefore

���yk�� � in� # ? as n " 1. Since �in has a
�nite limit as n!1, then limn!1 �in = 0. Similar steps show that limn!1 �

j
n = limn!1 �

i;j
n = 0, so

that the Lindeberg condition (A.42) is satis�ed. Then, the Lindeberg-Feller Central Limit Theorem
implies

ab�in + bb�jn
Vn

d�! N(0; 1);

or, equivalently, that

ab�in + bb�jn d�! N

�
0;

a2

� (ki)
+

b2

� (kj)
+ 2

ab

�L

�
: (A.43)
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Third step. Note that we can write e�in in (A.37) as
e�in = �E �hin��hin

1

dE (hin)e
X
m2Hi

n

�m =

�
E
�
hin
��

hin
��in;

where we de�ne
��in =

1

dE (hin)e
X
m2Hi

n

�m: (A.44)

We will �rst prove that ��in
i:p:�! b�in. We need to prove

lim
n!1

Prob
�����in � b�in�� > �� = 0: (A.45)

By Chebyshev�s inequality,

Prob
�����in � b�in�� > �� � V ar

�
��in � b�in�
�2

: (A.46)

By the variance decomposition formula,

V ar
�
��in � b�in� = E �V ar ���in � b�in��hin; hi;jn ��+ V ar �E ���in � b�in��hin; hi;jn �� :

Since E
�
��in � b�in��hin; hi;jn � = 0, we are left with

E
�
V ar

�
��in � b�in��hin; hi;jn �� = 1

dE (hin)e
2E

24V ar
0@ X
m2Hi

n�H
i;j
n

�m �
X
m2Ĥi

n

�m +
X

m2Hi;j
n

�m �
X

m2Ĥi;j
n

�m

1A35 :
Note that, by construction, H i;j

n and Ĥ i;j
n di¤er by exactly

���zi;jn ��� elements, while H i
n�H

i;j
n and Ĥ i

n

di¤er by exactly
��zin�� elements. Hence, we can write the last expression as

E
�
V ar

�
��in � b�in��hin; hi;jn �� = V ar (�m)

dE (hin)e
2E
���zin��+ ��zi;jn ���

=
V ar (�m)

dE (hin)e
2E
���hin � �E �hin��� zi;jn ��+ ��zi;jn ���

� V ar (�m)

dE (hin)e
2E
���hin � �E �hin����+ 2 ��zi;jn ���

=
V ar (�m)

dE (hin)e
2E
���hin � �E �hin����+ 2 ��hi;jn �

�
E
�
hi;jn
�����
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=
V ar (�m)

dE (hin)e

0@E ����� hin
dE (hin)e

� 1
�����+ 2

l
E
�
hi;jn
�m

dE (hin)e
E

24������ hi;jnl
E
�
hi;jn
�m � 1

������
351A

=
V ar (�m)

dE (hin)e

0@E ���win � 1���+ 2
l
E
�
hi;jn
�m

dE (hin)e
E
���wi;jn � 1

���1A
where the second line follows from the de�nition of zin, the third line follows by the triangle inequality,
the fourth line follows from the de�nition of zi;jn ; the �fth line from rearranging terms and the last
line uses the following de�nitions:

win =
hin

E (hin) + gi(n)
; wi;jn =

hi;jn

E
�
hi;jn
�
+ gi;j(n)

;

for two deterministic functions gi (n) and gi;j (n) that converge to zero as n!1.
By Lemma 2.2 in the paper, 1nh

i
n
a:s:�! 1

nE
�
hin
�
and therefore win

a:s:�! 1. Since
��win�� is bounded

from above by the constant
�
1� e�ki=L

��1
, the dominated convergence theorem implies that win

converges in the L1 norm, that is,
lim
n!1

E
���win � 1��� = 0:

By Lemma 2.3 in the paper, 1
nh

i;j
n

a:s:�! 1
nE
�
hi;jn
�
and therefore wi;jn

a:s:�! 1. Since
���wi;jn ��� is

bounded from above by the constant
h�
1� e�ki=L

��
1� e�kj=L

�i�1
, the dominated convergence

theorem implies that wi;jn converges in the L1 norm, that is,

lim
n!1

E
���wi;jn � 1

��� = 0:
Since V ar(�m)

dE(hin)e
and dE(h

i;j
n )e

dE(hin)e
have �nite limits as n " 1, we have shown that

lim
n!1

V ar
�
��in � b�in� = 0;

which completes the proof of (A.45).

Finally, since ��in
i:p:�! b�in and dE(hin)e

hin

i:p:�! 1 (which is implied by 1
nh

i
n

a:s:�! 1
nE
�
hin
�
and the

continuous mapping theorem) and e�in = dE(hin)e
hin

��in, then e�in i:p:�! b�in. An identical proof shows thate�jn i:p:�! b�jn, and therefore
ae�in + be�jn i:p:�! ab�in + bb�jn: (A.47)
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Fourth step. By (A.43) and (A.47), Theorem 2.7 in Van der Vaart (2000) implies that (A.38) holds.

Hence, by Theorem 29.4 in Billingley (1995), e�in and e�jn are jointly normally distributed. �

Proof of Corollary 2.1: Notice that

V ar(�) =
1

I2

IX
i=1

V ar(�i) +
1

I2

IX
i=1

IX
j 6=i

Cov(�i; �j) (A.48)

=
1

I2

IX
i=1

��1(ki) +
I � 1
I

1

�L ; (A.49)

and

Cov(�i; �) =
1

I

0@V ar(�i) +X
j 6=i

Cov(�i; �j)

1A (A.50)

=
1

I
��1(ki) +

I � 1
I

1

�L : (A.51)

Therefore, we have

Cov(�i; �) = Cov(�i; �)� V ar(�) =
1

I2

IX
j=1

��1(kj)�
1

I
��1(ki); (A.52)

and

V ar(�i) = V ar(�i � �) = V ar(�i)� 2Cov(�i; �) + V ar(�) (A.53)

=

�
1� 2

I

�
��1(ki)�

I � 1
I

1

�L +
1

I2

IX
j=1

��1(kj); (A.54)

and

Cov(�i; �j) = Cov(�i � �; �j � �) = Cov(�i; �j)� Cov(�i; �)� Cov(�j ; �) + V ar(�) (A.55)

=
1

�L �
1

I
��1(ki)�

1

I
��1(kj)�

I � 1
I

1

�L +
1

I2

IX
i=1

��1(ki): (A.56)

Therefore, we have the following results in the limit where I tends to in�nity:

lim
I!1

V ar(�i) =
1

�(ki)
� 1

�L ; for all i 2 I (A.57)

lim
I!1

Cov(�i; �) = 0; for all i 2 I (A.58)
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lim
I!1

Cov(�i; �j) = 0; for all i; j 2 I (A.59)

lim
I!1

V ar(�) =
1

�L : (A.60)

Using the de�nition of �(ki) in Theorem 2.1 it is immediate to rearrange the r.h.s. of Eq. (A.57) as
in the statement of Corollary 2.1: �
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Appendix B

Ex-ante utility. Assuming all agents play some strategy
�
k̂; ̂
�
, the average action equals a =

̂0 +�j ̂
j (� + �j). Agent i�s ex-ante utility from playing strategy (ki; i) is

E (ui) = � (1� �)E
�
� � ai

�2 � �E �a� ai�2 ;
where

E (� � ai)2 = E
�
� � 0i � �j

j
i S

i
j

�2
= E

��
� � �

� �
1� �jji

�
+ �

�
1� �jji

�
� 0i � �j

j
i �
i
j

�2
=
�
1� �jji

�2
��1� +

�
�
�
1� �jji

�
� 0i

�2
+�j

�
ji

�2
�j
�
kji

��1
and

E (a� ai)2 = E
�
̂0 +�j ̂

j (� + �j)� 0i � �j
j
i S

i
j

�2
= E

�
̂0 � 0i + �

�
�j ̂

j � �jji
�
+
�
�j ̂

j � �jji
� �
� � �

�
+�j

�
̂j � ji

�
�j � �jji �

i
j

�2
=
�
̂0 � 0i + �

�
�j ̂

j � �jji
��2

+
�
�j ̂

j � �jji
�2
��1� +

+�j

�
̂j � ji

�2 �
� jLj

��1
+�j

�
ji

�2�
�j
�
kji

��1
�
�
� jLj

��1�
:

It is immediate to rearrange terms as in Eq. (33), where we de�ne

L1 (ki; i) = (1� �)
�
��1�

�
1� �Jj=1

j
i

�2
+
�
�
�
1� �Jj=1

j
i

�
� 0i

�2�
+�Jj=1

�
ji

�2�
�j
�
kji

��1
� �

� jLj

�
;

(B.1)
and

L2 (i; ̂) = �

�
��1�

�
�Jj=1

j
i � �

J
j=1̂

j
�2
+�Jj=1

�
ji � ̂

j
�2 1

� jLj +
�
�
�
�Jj=1

j
i � �

J
j=1̂

j
�
+ ̂0 � 0i

�2�
:

(B.2)
We remark that Eq. (B.2) implies

L2 (i; ̂) > 0 for i 6= ̂; L2 (̂; ̂) = 0;
@

@i
L2 (̂; ̂) = 0: (B.3)
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Lemma B.1. A strategy
�
k̂; ̂
�
is a SBNE only if: (i) ̂ satis�es

̂j = ~j
�
k̂
�
=

8>><>>:
�
�
1� �Jj=1̂j

�
(1��)gj(k̂j)

��+(1��)�Jn=1gn(k̂n)
;

for j = 0

for j = 1; :::; J
(B.4)

where
gj(k) = �

j (k)
�
1� � + � exp

�
�kj=Lj

���1
; (B.5)

and (ii) k̂ satis�es �Jj=1k̂
j = K:

(iii) In a payo¤ maximizing equilibrium, the equilibrium resource allocation solves

k� 2 argmax
ki2�

�Jj=1gj(kj) s.t. �Jj=1k
j
i = K: (B.6)

Proof of part (i). Let ~ (ki) 2 argmin(i) L1 (ki; i). Fixing ki, it is immediate to verify that
L1 (ki; i) is strictly convex in i for all � 2 [0; 1]: Di¤erentiating L1 (ki; i) with respect to i and
solving the system of �rst-order conditions for i gives

~0 (ki) = �
�
1� �Jj=1~j (ki)

�
;

~j (ki) =
(1� �) ��1� �j

�
kji

� �
1� � + � exp

�
�kj=Lj

���1
1 + (1� �) ��1� �Jn=1�n (k

n
i ) [1� � + � exp (�kj=Lj)]

�1 for j = 1; :::; J:

Note that the expression for ̂j in Eq. (B.4) equals ~j
�
k̂
�
. Then, assume

�
k̂; ̂
�
is a SBNE and

̂j 6= ~j
�
k̂
�
for some j: Consider an agent deviating locally from ̂j . First-order e¤ects of deviations

of ji from ̂j are zero for L2 (see Eq. (B.3)). Strict convexity of L1 in i implies that, if ̂j 6= ~j
�
k̂
�
,

then @
@i
L1

�
k̂; ̂
�
6= 0. Therefore, there is a pro�table deviation, contradicting

�
k̂; ̂
�
being a SBNE.

�

Proof of part (ii). Assume
�
k̂; ̂
�
is a SBNE and �Jj=1k̂j < K. By part (i), it has to be that

̂ = ~
�
k̂
�
. Substituting ~ (ki) for i into L1 (ki; i), we obtain

~L1 (ki) = L1 (ki; ~ (ki)) =
(1� �) ��1�

1 + (1� �) ��1� �Jj=1gj(k
j
i )
: (B.7)

Inspection of the functions gj in Eq. (B.5) reveals that each gj is strictly increasing for � 2 [0; 1].
Then, assume

�
k̂; ~

�
k̂
��
is a SBNE and �Jj=1k̂j < K. Then, consider agent i deviating locally from k̂
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by increasing marginally kji from k̂j . The deviation is feasible, it decreases L1 and it has no �rst-order

e¤ect on L2 (see Eq. (B.3)). Then, because gj is strictly increasing we have @ ~L1 (ki) =@k
j
i

���
ki=k̂

> 0:

Therefore, there exists a pro�table deviation, contradicting
�
k̂; ~

�
k̂
��

being a SBNE. �

Proof of part (iii). Follows trivially by part (ii) and the fact that ~L1 (ki) in Eq. (B.7) is strictly
decreasing in �Jj=1gj(k

j
i ). �

Proof of Proposition 3.1 . By Lemma B.1 and Eq. (B.7), �nding k� that minimizes L1 is equivalent
to the following problem. Inspection of the functions gj in Eq. (B.5) reveals that each gj is strictly
concave for � 2 [0; 1=2). Therefore, we can convert the problem in Eq. (B.6) to the following dual
problem:

min
�
�K � �Jj=1g�j (�);

where g�j (�) is the conjugate function of gj(k
j) such that

g�j (�) = min
kj�0

0@�kj � �j �kj� exp
�
kjj=Lj

�
exp

�
kjj=Lj

�
(1� �) + �

1A :
The F.O.C. gives

��
� j exp

�
kj=Lj

�
[(1� �) exp (kj=Lj) + �]2

= 0; (B.8)

which has a strictly positive solution for kj if and only if 0 < � < � j , in which case it is immediate
to verify that kj is as in Eq. (37). Finally, � can be obtained by solving the following equation:

�Jj=1k̂
j(�) = K: (B.9)

Notice that l.h.s. is zero when � = 1 and in�nity when � = 0 and each k̂j(�) is strictly decreasing
in � for 0 < � < � j . Therefore, there exists a unique � > 0 that solves for Eq. (B.9) because l.h.s. is
continuous and monotone decreasing in �.

We now prove the statements in the proposition regarding uniqueness of equilibrium. By Lemma

B.1, in an equilibrium ̂ must satisfy ̂ = ~
�
k̂
�
. Therefore, the problem is reduced to whether the

equilibrium resource allocation k̂ is unique. In an equilibrium, local deviations in (ki; i) starting from�
k̂; ~

�
k̂
��
must not provide a pro�table deviation to an agent. Since an agent�s local deviation from a

symmetric strategy pro�le has no �rst-order e¤ect on L2 (i; ̂) (see Eq.(B.3)), an equilibrium resource
allocation must be either a local minimum or a critical point of ~L1 (ki) in Eq. (B.7). Equivalently,
an equilibrium resource allocation must be either a local maximum or a critical point of G (k) =
�Jj=1gj(k

j). For � 2 [0; 1=2) the resource allocation in Eq. (37) is the unique maximizer of G (k).
Since G (k) is strictly concave in ki for � 2 [0; 1=2), the equilibrium resource allocation in Eq. (37)
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is unique. This completes the proof of part (i) of the proposition. For � 2 [1=2; 1], G (k) fails to be
strictly concave. Then, a global maximizer of G (k) is clearly an equilibrium, but a critical point and
a local maximum of G (k) can also be an equilibrium because the loss term L2 (i; ̂) > 0 for i 6= ̂.
This completes the proof of part (ii) of the proposition. �

Proof of Proposition 3.2-(i). We want to prove that k̂A = K, k̂B = 0 is an equilibrium. By Lemma
B.1 and Eqs. (B.4), it must be ̂0 = (1 � ̂A)�; ̂A = (1��)�AK

��+(1��)�AK and ̂B = 0. Then, consider the

corresponding problem in Eq. (34) using these values for
�
k̂; ̂
�
: Denote k (�i) =

�
kA (�i) ; k

B (�i)
�

where kA (�i) = (1� �i)K and kB = �iK. Fixing �i 2 [0; 1] and letting i (�i) = argmini
L1 (k (�i) ; i) + L2 (i; ̂) we obtain

̂0i (ai) = (1� Ai (ai)� Bi (ai))�

Ai (ai) =
(1� �)

�
�A(K) + ��

�
(�A(K)(1� �) + ��) (�� + �A((1� �i)K) + �B(�iK))

�A((1� �i)K)

Bi (ai) =
(1� �)

�
�A(K) + ��

�
(�A(K)(1� �) + ��) (�� + �A((1� �i)K) + �B(�iK))

�B(�iK):

Substituting these optimal values for i into the problem leaves

L3 (�i) = L1 (k (�i) ; i (�i)) + L2 (i (�i) ; ̂)

=
(1� �)��

�
�A(K)2(1� �)��1� + (2� �(1 + �i))�A(K) + �� + ��B(�iK)

�
(�A(K)(1� �) + ��)2 (�� + �A((1� �i)K + �B(�iK))

:

Straightforward algebra shows that L3 (�i) is strictly increasing in �i if �A > �B. �

Proof of Proposition 3.2-(ii). By Proposition 3.2-(ii), an equilibrium k̂ must be a local maximum
or a critical point of G (k) = �Jj=1gj(k

j
i ). Equivalently � = 1 must be a local maximum or a critical

point of Ga (�), where we de�ne

G� (�) = gA((1� �)K) + gB(�K): (B.10)

That is, for � = 1 to be an equilibrium it must be

d

d�
G�(1) � 0, eK=L

B � �A

�B

�
eK=L

B
(1� �) + �

�2
: (B.11)

Letting LN = K
log(�A=�B)

, it is immediate to verify that the necessary condition in Eq. (B.11) is

satis�ed only if LB � LN . �
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Proof of Proposition 3.2-(iii). De�ne

~�
�
LB
�
=

eK=L
B

1 + eK=LB
:

It is immediate to verify that G� (�) in Eq. (B.10) is strictly convex in � for all � 2 [0; 1] if
� 2 (~�

�
LB
�
; 1]. Letting �� = argmax�2[0;1]G� (�), strict convexity of G� (�) implies �� 2 f0; 1g.

Therefore, � = 1 is the unique payo¤ maximizing SBNE if

G� (1) > G� (0),
�A

�B
K

LB <
eK=L

B � 1
eK=LB (1� �) + �

(B.12)

Notice that the r.h.s. of the second inequality in Eq. (B.12) is increasing in �. As � ! 1, Eq. (B.12)
holds if LB < LS , where LS 2 (0;1) solves

�A

�B
K

LS
= eK=LS � 1:

Hence, for all LB < LS , Eq. (B.12) holds if � 2 (��
�
LB
�
; 1], where we de�ne

��
�
LB
�
=

eK=L
B

eK=LB � 1
� L

B�B

K�A
:

Combining these results, � = 1 is the unique payo¤ maximizing SBNE if LB < LS and � 2
(�S
�
LB
�
; 1], where �S

�
LB
�
= maxf~�

�
LB
�
; ��
�
LB
�
g: �

Proof of Corollary 3.1 For all for all LB 2 (1;LS ], we have ~�
�
LB
�
< 1 and ��

�
LB
�
� 1, where

the equality holds if and only if LB = LS . Then, then, we have �S
�
LS
�
= 1 and �S

�
LB
�
< 1 for all

LB < LS . The statement in the corollary follows by continuity of �S
�
LB
�
, which in turn is implied

by continuity of ~�
�
LB
�
and ��

�
LB
�
. �
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Appendix C

There is a standard formula which computes the certainty equivalence of expected utilities in case of
CARA utilities. (For example, see Dow and Rahi (2003))

Lemma C.2. Suppose A is a symmetric m �m matrix, b is an m-vector, d is a scalar, and w is
an m-dimensional normal variate: w � N(0;�), � positive de�nite. Then, we can �nd the following
certainty equivalence of expected utilities if (I � 2�A) is positive de�nite

E
h
exp(w>Aw + b>w + d)

i
= jI � 2�Aj�

1
2 exp

�
1

2
b>(I � 2�A)�1�b+ d

�
: (C.1)

Proof of Proposition 4.1. For notational convenience, we denote S = (S1; S2; : : : ; SN ) to be the
vector of all the signals acquired by the trader. The value function for the trader�s optimal portfolio
choice problem conditional on the acquired signals is given by

V (w0;S) = max
x1;x2;:::;xN

E

24� exp
0@�

0@w0 + NX
j=1

(�j � pj)xj
1A1A���S

35 (C.2)

where xj is the unit of holdings of asset j. Then, the demand for each asset j is given by the standard
CARA-Gaussian demand:

xj =
E[�jSj ]� pj
V ar[�jSj ] : (C.3)

By Lemma C.2, the expected utility can be obtained from Eqs. (C.2) and (C.3) as follows:

E [V (w0;S)] = �
NY
j=1

vuut � j�
� j� + �

j(kj)
exp

0@�w0 � 1
2

NX
j=1

� j� p
j2

1A : (C.4)

Maximizing Eq. (C.4) under the resource constraint in Eq. (38) is equivalent to the following optimal
resource allocation problem:22

maxPN
j=1 k

j=K

NX
j=1

Gj(k
j) (C.5)

where Gj(kj) = log
�
� j� + �

j(kj)
�
.

22Notice that other components in Eq. (C.4) are una¤ected by the choice of resource allocations thanQN
j=1

r
�j�

�j�+�
j(kj)

. Using a log-transformation, we get (C.5).
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Notice that each Gj(kj) is concave in kj because �j(kj) is concave. Therefore, we can convert
this problem in Eq. (C.5) to the following dual problem:

min
�
�K �

NX
j=1

G�j (�) (C.6)

where G�j (�) is the conjugate function of Gj(k
j) such that

G�j (�) = min
kj�0

�
�kj � log

�
� j� + �

j(kj)
��

(C.7)

For all each asset j, the optimal allocation kj given � is

kj(�) =

8<: Lj log
�

�̂j

�
+�̂jLj

1+�̂jLj

�
if 0 < � < �̂ j

0 if � � �̂ j
(C.8)

Finally, � can be obtained by solving the following equation:

NX
j=1

kj(�) = K: (C.9)

Notice that l.h.s. is zero when � = 1 and in�nity when � = 0. Therefore, it is easily veri�ed that
there exists a unique solution for Eq. (C.9) because l.h.s. is continuous and monotone decreasing in
�.

Now, we turn to the proof that � decreases in K. Using the implicit function theorem, we get

@(
PN
j=1 k

j(�)�K)
@K

dK +
@(
PN
j=1 k

j(�)�K)
@�

d� = 0; (C.10)

which implies that
d�

dK
= � 1P

j2J Lj
�

1
�2

1
�
+Lj

� < 0: (C.11)

We can similarly prove that � increases in Lj if �̂ j > �. Using the implicit function theorem, we get

@(
PN
j=1 k

j(�))

@Lj dLj +
@(
PN
j=1 k

j(�))

@�
d� = 0; (C.12)

which implies that

d�

dLj =
log

�
�̂j

�
+�̂jLj

1+�̂jLj

�
+

�̂jLj(1� �̂j

�
)

( �̂
j

�
+�̂jLj)(1+�̂jLj)P

j2J Lj
�

�̂j

�2

�̂j

�
+Lj

� : (C.13)
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Eq. (C.13) implies that d�
dLj > 0, F ( �̂

j

� ; �̂
jLj) > 0, where we de�ne

F (x; y) = log

�
x+ y

1 + y

�
+

yj(1� x)
(x+ y)(1 + y)

:

Notice that F (1; y) = 0 and @F (x; y)=@x = x=(x+ y)2 > 0 for all x > 0, which imply d�
dLj > 0 for all

i that satisfy � < �̂ j and, therefore, �̂ j=� > 1: This �nishes the proof. �

Proof of Corollary 4.1. (i) For any asset r with kr > 0, it is immediate from Eq. (41) that

dkr

d�
= �

Lr
�2

1
� + Lr

< 0: (C.14)

By the chain rule, we have
dkr

dLj =
dkr

d�

d�

dLj < 0: � (C.15)

(ii) This is immediate from the fact that (a) allocation kr for any asset r with a positive allocation

decrease in Lj , and (b) the total resource K is �xed. Therefore, the resource allocation in asset j
should increase in Lj . �

Proof of Lemma 4.1. We conjecture that the price function of each asset j is given by

pj = f j1 (�
j + �j)� f j2zj ; (C.16)

where f j1 and f
j
2 are constants. Then, each investor infer the true value of �

j using the su¢ cient
statistic

�j = �j + �j � f̂�1j zj ;

where f̂j =
fj1
fj2
. Using the Bayes�theorem, the conditional expectation of each investor i is given by

E[�j jSji ; �
j ] = �jiS

j
i + �

j
i �
j ;

where

�ji =
� j��

j
�

(� j� + �
j
�)(�

j
� + f̂2j �

j
z ) + �

j
� �
j
�

; (C.17)

�ji =
f̂2j �

j
z �
j
�

(� j� + �
j
�)(�

j
� + f̂2j �

j
z ) + �

j
� �
j
�

: (C.18)
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The conditional variance is also given by

V ar[�j jSji ; �
j ] =

� j� + f̂2j �
j
z + �

j
�

(� j� + �
j
�)(�

j
� + f̂2j �

j
z ) + �

j
� �
j
�

: (C.19)

Investor i�s demand for each asset j is given by the standard CARA-Gaussian demand:

xji =
E[�j jSj ; �j ]� pj
V ar[�jSj ; �j ] ; (C.20)

In equilibrium, the aggregate demand for each asset j should be equal to the supply:Z
xjidj = z

j :

By solving for the price using the above market clearing condition, we con�rm that our conjecture in
Eq. (C.16) is indeed true.

f j1 =
� j�(�

j
� + f̂2j �

j
z )

(� j� + �
j
�)(�

j
� + f̂2j �

j
z ) + �

j
� �
j
�

; (C.21)

f j2 =
f̂j�

j
z �
j
� + (�

j
� + f̂2j �

j
z + �

j
�)

(� j� + �
j
�)(�

j
� + f̂2j �

j
z ) + �

j
� �
j
�

: (C.22)

Because f̂j =
fj1
fj2
, we get the following third-order equation using Eqs. (C.21) and (C.22) as follows:

f̂j =
� j�(�

j
� + f̂2j �

j
z )

f̂j�
j
z �
j
� + (�

j
� + f̂2j �

j
z + �

j
�)
:

Because there exists only one real root for the above equation, we get a unique solution for the pair
(f j1 ; f

j
2 ). Therefore, we have a unique linear equilibrium. �

Proof of Proposition 4.2.
To prove the existence of an equilibrium, we �rst characterize the ex-ante optimization problem

of each investor i. Notice that the investor�s resource allocation problem is similar to the proof
of Proposition 4.1 except that prices also reveal private information of other investors. Let P =
(p1; p2; : : : ; pN ) denote be the vector of asset prices. Then, the value function for investor i�s optimal
portfolio choice problem conditional on the acquired signals and the prices is given by

Vi(w0;Si; P ) = max
x1i ;x

2
i ;:::;x

N
i

E

24� exp
0@�

0@w0 + NX
j=1

(�j � pj)xji

1A1A���Si; P
35 (C.23)
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where xji is the unit of holdings of asset j.
By Lemma C.2, we get

E [Vi(w0;Si; P )jP ] = E

24� exp
0@�w0 � 1

2

NX
j=1

(E[�j jSji ; pj ]� pj)2

V ar[�j jSji ; pj ]

1A���P
35 (C.24)

= �
NY
j=1

s
V ar[�j jSji ; �j ]
V ar[�j j�j ] exp

0@�w0 � 1
2

NX
j=1

(E[�j jpj ]� pj)2
V ar[�j jpj ]

1A : (C.25)

Therefore, the ex-ante expected utility can be obtained by taking an unconditional expectation on
Eq. (C.25) as follows:23

E [Vi(w0;Si; P )] = �
NY
j=1

�
V ar[�j jSji ; �

j ]
� 1
2
�; (C.27)

where � is a constant una¤ected by the choice of resource allocations such that

� =
NY
j=1

�
V ar[�j j�j ]

�� 1
2 E

24exp
0@�w0 � 1

2

NX
j=1

(E[�j j�j ]� pj)2
V ar[�j j�j ]

1A35 ; (C.28)

Then, maximizing Eq. (C.27) under the resource constraint in Eq. (38) is equivalent to the fol-
lowing optimal resource allocation problem:

maxPN
j=1 k

j
i=K

NX
j=1

Gj(k
j
i ) (C.29)

where Gj(k
j
i ) = � log

�
V ar[�j jSji ; �j ]

�
= log

�
� j� + gj(k

j
i )
�
and

gj(k
j
i ) = �

jLj
 
1� 1

exp( k
j

Lj ) + (�
jLj)�1f̂2j �

j
z

!
: (C.30)

23Notice that V ar[�j j�j ] and V ar[�j jSji ; �j ] are both constants. For V ar[�j jS
j
i ; �

j ], it is obvious from Eq. (??).
V ar[�j j�j ] is also a constant because

V ar[�j j�j ] = ��

���� + (�� + ��)f̂2j �z
: (C.26)
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Notice that Gj(�) is increasing in kji because G0j(k
j
i ) =

g0j(k
j
i )

��+gj(k
j
i )
and

g0j(k
j
i ) =

� j exp(
kji
Lj )�

exp(
kji
Lj ) + (�

jLj)�1f̂2j �
j
z

�2 > 0: (C.31)

Furthermore, we have

g00j (k
j
i ) =

�j

Lj exp(
kji
Lj )�

exp(
kji
Lj ) + (�

jLj)�1f̂2j �
j
z

�2
241� 2 exp(

kji
Lj )

exp(
kji
Lj ) + (�

jLj)�1f̂2j �
j
z

35 : (C.32)

Then, Gj(�) is concave if and only if g00j (k
j
i )(�� + g(k

j
i )) < g0j(k

j
i )
2 for all kji . Since f̂j has a �nite

limit as � jz ! 0,24 then Eq. (C.32) implies lim
�jz!0 g

00
j (k

j
i ) < 0. Because Gj(�) is continuous in � jz ,

there exists a constant �� jz such that Gj(�) is strictly concave for all � jz < � jz. Under this parametric
assumption, we can solve the optimization problem in Eq. (C.29) by solving the following for each
asset j:

G�j (�) = min
kji�0

�
�kj � log

�
� j� + gj(k

j
i )
��
: (C.33)

Then, a corner solution kji = 0 is optimal whenever the marginal increase in the objective function
of Eq. (C.33) at kji = 0 is non-negative:

�� ��j � 0; (C.34)

where

��j �
g0j(k

j
i )

� j� + gj(k
j
i )

���
kji=0

=
�̂ j�

1 + (� jLj)�1f̂2j �
j
z

��
1 + (��1� + (� jLj)�1)f̂2j �

j
z

� : (C.35)

Otherwise, the optimal choice of kji can be obtained by solving the following equation, which is
the �rst-order condition from Eq. (C.33), as follows:

exp

 
2kji
Lj

!
� 2Aj exp

 
kji
Lj

!
+Bj = 0; (C.36)

where

Aj =
1

2

 
�̂j

� + �̂
jLj

1 + �̂ jLj

!
� (� jLj)�1f̂2j � jz ; (C.37)

24See, for example, Hellwig (1980) for the proof.
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Bj = (� jLj)�1f̂2j � jz
�
(� jLj)�1f̂2j � jz �

�̂ jLj
1 + �̂ jLj

�
: (C.38)

Note that letting � jp = f̂2j �
j
z gives the expressions for ��j ,Aj and Bj in the main text.

The quadratic exponential equation in Eq. (C.36) has two solutions, but only one of them is real
whenever � < ��j , so we have the following unique optimal allocation kji for each asset j given � as
follows:

kji (�) =

8<: Lj log
�
Aj +

q
(Aj)2 �Bj

�
if 0 < � < ��j

0 if � � ��j
(C.39)

where � solves
NX
j=1

kji (�) = K:

Furthermore, the solution is unique because each kji (�) is decreasing in � as in the proof of Proposi-
tion 4.1.

Now, we turn to the proof of existence of equilibrium. Suppose that the equilibrium resource
allocation is given by a vector �� = (�1; �2; : : : ; �N ). Lemma 4.1 shows that there always exists a

unique pair of f j1 and f
j
2 for each asset j given the vector ��. Thus, there exists a unique f̂j =

fj1
fj2
for

each asset j given the vector ��. Furthermore, it is obvious from Eq. (43) that f̂j is continuous in ��
because it is continuous in � j� and �

j
� which are also continuous in �� due to Corollary 2.1.

Let K = fk1; k2; : : : ; kN jk1 + k2 + : : : + kN = Kg be a simplex that includes all the feasible
choices of resource allocations. By Eq. (C.39), it is immediate that there exists a unique mapping that
	 : K! K that maps the given equilibrium resource allocation to each investor�s individually-optimal
choice. The overall equilibrium exists when the given equilibrium allocation is indeed individually-
optimal optimal, i.e., �� = 	(��). Therefore, the equilibrium existence proof reduces to the proof of
showing the existence of a �xed point for the mapping 	(�). Because the optimal choice mapping
	(�) is a continuous mapping from the non-empty, convex and compact set K to K, there exists a
�xed point for the mapping due to Kakutani �xed point theorem. This �nishes the proof. �
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