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Abstract. We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed

up computations for datasets with many observations. A key feature of our approach is the

use of the highly e�cient di�erence estimator from the survey sampling literature to estimate

the log-likelihood accurately using only a small fraction of the data. Our algorithm improves

on the O(n) complexity of regular MCMC by operating over local data clusters instead of

the full sample when computing the likelihood. The likelihood estimate is used in a Pseudo-

marginal framework to sample from a perturbed posterior which is within O(m−1/2) of the

true posterior, where m is the subsample size. The method is applied to a logistic regression

model to predict �rm bankruptcy for a large data set. We document a signi�cant speed up

in comparison to the standard MCMC on the full dataset.

Keywords: Bayesian inference, Markov Chain Monte Carlo, Pseudo-marginal MCMC,

estimated likelihood, GLM for large data.

JEL Classi�cation: C11, C13, C15, C55, C83

1. Introduction

The popularity of Bayesian methods increased signi�cantly in the early 90's due to ad-

vances in computer technology and the introduction of powerful simulation algorithms such
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as Markov Chain Monte Carlo (MCMC) (Gelfand and Smith, 1990). However, posterior

sampling with MCMC is time-consuming and there is an increasing awareness that new

scalable algorithms are necessary for MCMC to remain an attractive choice for inference in

large data sets. Perhaps the most useful advance in computing for statisticians is parallel

computing which are now widely available in most statistical software. However, the inherent

serial nature of MCMC algorithms precludes the use of e�cient parallelization.

Current research on scalable MCMC algorithms belongs to two major groups. The �rst

group employs parallelism through the typical MapReduce scheme (Dean and Ghemawat,

2008) by partitioning the data and computing posteriors in a parallel and distributed manner.

The resulting draws are subsequently combined into a single posterior distribution. The main

di�erence within this group is how weighting is performed and if the partitions communicate

at runtime, see for example Scott et al., 2013; Neiswanger et al., 2013; Wang and Dunson,

2013; Minsker et al., 2014.

The second group of methods work with a small sample of the data in each MCMC

iteration to speed up the algorithm. Korattikara et al. (2013) develop a M-H algorithm

with an approximate accept/reject step, see also Bardenet et al. (2014). Maclaurin and

Adams (2014) introduce binary auxiliary variables, one for each observation, that e�ectively

determines which observations are used to compute the posterior. Banterle et al. (2014) use

delayed acceptance in several steps so that a �rst rejection implies a rejection of the proposed

value and no further computations are performed. Quiroz et al. (2015) propose subsampling

the data using probability proportional-to-size (PPS) sampling to obtain an approximately

unbiased estimate of the likelihood which is used in a M-H acceptance step. This approach

is in the spirit of a Pseudo-marginal MCMC (PMCMC) algorithm. Andrieu and Roberts

(2009) prove that PMCMC with an unbiased likelihood estimate generates samples from

the true posterior. Quiroz et al. (2015) show that their algorithm generates samples from a

distribution that is within O(m−
1
2 ) percent of the true posterior, where m is the subsample

size.
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Payne and Mallick (2014) combine the distributed and subsampling approaches where

the consensus Monte Carlo algorithm (Scott et al., 2013) is used to distribute computations

and a two stage M-H sampler is used within each data partition. The two stage M-H

sampler uses simple random sampling to obtain a computationally cheap estimate of the

likelihood to compute a �rst M-H ratio. If accepted, the second step uses the true M-H

acceptance probability based on all the data, thus avoiding evaluating the full data likelihood

for proposals that are unlikely to be accepted.

Our article extends the subsampling approach in Quiroz et al. (2015) in the following

directions. First, the likelihood is estimated using the e�cient and robust di�erence estimator

from the survey sampling literature. We show that this estimator is in the class of estimators

considered by Quiroz et al. (2015) and therefore that their theory applies directly. Second,

the PPS sampling in Quiroz et al. (2015) requires an approximation of the log-likelihood

contribution (log-density) for every observation. The approximation can be relatively costly

and in such instances the algorithm is only likely to speed up computations for models

with costly density evaluations. To speed up the MCMC sampling also for models with

cheap density evaluations, we modify the estimator to operate only on a sparse set of the

data and in addition we derive a computationally cheap approximation of the log-likelihood

contribution for a large class of models. Third, we propose a sampling scheme that updates

the subsample indicators infrequently and demonstrate that this gives a sampler where the

inevitable e�ciency loss from using an estimated likelihood instead of the full data likelihood

is much smaller.

This paper is organized as follows. Section 2 outlines the methodology and discusses

connections to previous research. Section 3 applies the method to a large micro-economic

data set containing nearly 5 million observations. Section 4 concludes and discusses further

research.
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2. Methodology

2.1. MCMC with likelihood estimators from data subsampling. Consider a model

parametrized by p(yk|θ, xk), where yk is a potentially multivariate response vector and xk

is a vector of covariates for the kth observation. Let lk(θ) = log p(yk|θ, xk) denote the

kth observation's log-density. Given conditionally independent observations, the likelihood

function can be written

p(y|θ) = L(θ) = exp [l(θ)] ,

where l(θ) =
∑n

k=1 lk(θ) is the log-likelihood function. We note that this setting includes

any situation where the log-likelihood can be written as a sum of terms where each term

depends on a unique piece of data information. The most obvious examples are longitudinal

problems, where lk(θ) is the log joint density of all measurements on the kth subject; in this

case we would sample subjects rather than individual observations.

Let the set F = {1, 2, . . . , n} contain the indices for all observations in the full data set

and let

u = (u1, . . . um), ui ∈ F

be the m × 1 vector of indices obtained by sampling F with replacement. Sampling with

replacement generally gives a slightly higher variance for any estimator compared to that of

without replacement sampling. However, it allows us to use the theory developed in Quiroz

et al. (2015). Suppose that we use u to construct a possibly biased estimator p̂m(y|θ, u) of

the likelihood p(y|θ). Let p(u) be the sampling density of u, and de�ne the pseudo likelihood

pm(y|θ) :=

ˆ
p̂m(y|θ, u)p(u)du

and the corresponding pseudo marginal likelihood

pm(y) =

ˆ
pm(y|θ)p(θ)dθ.
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De�ne the target density on the augmented space (θ, u) as

π̃m(θ, u) :=
p̂m(y|θ, u)p(u)p(θ)

pm(y)
,(2.1)

where p(θ) is the prior for θ. It is straightforward to show that π̃m(θ, u) is a proper density

with marginal

πm(θ) =

ˆ
π̃m(θ, u)du =

pm(y|θ)p(θ)
pm(y)

.

We now outline the MCMC scheme that targets (2.1). Suppose that the joint proposal for

θ and u is given by

q(θ, u|θc, uc) = p(u)q(θ|θc),

where c denotes the current state. The M-H acceptance probability becomes

α = min

(
1,
π̃m(θp, up)/q(θp, up|θc, uc)
π̃m(θc, uc)/q(θc, uc|θp, up)

)
= min

(
1,
p̂m(y|θp, up)p(θp)/q(θp|θc)
p̂m(y|θc, uc)p(θc)/q(θc|θp)

)
.(2.2)

It should be noted that this expression is similar to the standard M-H but with the true

likelihood replaced by an estimate. By Andrieu and Roberts (2009), the MCMC iterates

converge to draws from the target density, and in particular the iterates of θ converge to

draws from πm(θ). We note that p(u) can also depend on θ, i.e. p(u|θ).

Quiroz et al. (2015) use estimators of the form

(2.3) p̂m(y|θ, u) = exp
(
l̂m − σ̂2

z/2
)
,

where l̂m is an unbiased estimator of the log-likelihood l(θ), z = l̂− l is the estimation error

and σ̂2
z is an unbiased estimator of σ2

z = Var(z). The motivation for this particular class of

estimators is that exp
(
l̂m − σ2

z/2
)
is unbiased for the likelihood function when l̂m is normally

distributed. Estimators of the form (2.3) rede�ne the estimation problem from estimating a

product (the likelihood) into an estimation problem for a sum (the log-likelihood). This has

the advantage that we can use established sampling schemes and e�cient estimators of the
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population total (a sum) from the survey literature. Moreover, focusing the estimation on

the log-likelihood makes it possible to choose m optimally (Pitt et al., 2012; Doucet et al.,

2015) and adaptively (Quiroz et al., 2015; Tran et al., 2015). Quiroz et al. (2015) consider

log-likelihood estimators in the Hansen-Hurwitz class (Hansen and Hurwitz, 1943)

(2.4) l̂m =
1

m

m∑
i=1

ζi, where ζi =
lui
pui

,

and pk is the probability of sampling observation k. It is straightforward to show that l̂m

is an unbiased estimator of the log-likelihood l. The estimator exp
(
l̂m − σ̂2

z/2
)
is typically

slightly biased for the likelihood, but Quiroz et al. (2015) prove that an MCMC sampling

scheme in the joint space (θ, u) based on the likelihood estimator (2.3) will sample from a

target distribution that is within O(m−1/2) percent of the true posterior.

Quiroz et al. (2015) point out that the contribution to the log-likelihood varies substan-

tially across the population (the individual data points) and that selecting the observations

used for estimating the log-likelihood by simple random sampling is ine�cient. They instead

propose Probability Proportional-to-Size (PPS) sampling, where the inclusion probability

pk is proportional to an approximation of the log-likelihood contribution lk. Since the ap-

proximate log-likelihood contributions need to be computed for every data observation in

PPS sampling, the approximations are required to be fast compared to evaluating the log-

likelihood contribution for subsampling to be e�ective. One of the main contributions of our

article is the use of an alternative estimator, the so called di�erence estimator, which we

describe in the following subsection. The di�erence estimator uses the approximate lk in a

way that allows us to sample a subset of the data and compute the likelihood estimate using

far less computations than calculating the likelihood.

2.2. The di�erence estimator. The PPS scheme uses an approximation of lk for each

individual observation to construct an e�cient sampling scheme. In contrast, the di�erence

estimator uses an approximation of lk directly in the estimator rather than in the sampling
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scheme. Let wk(θ) denote the approximation of lk(θ) and let

l(θ) =
∑
k∈F

wk(θ) +
∑
k∈F

[lk(θ)− wk(θ)]

= w + d

with

w =
∑
k∈F

wk(θ), d =
∑
k∈F

dk(θ), and dk(θ) = lk(θ)− wk(θ).

Here w =
∑

k∈F wk(θ) is assumed to be known prior to sampling and the di�erence estimator

is obtained by estimating d. Since wk(θ) is an approximation of lk(θ), we can expect that

lk(θ)− wk(θ) should have roughly the same size for all k ∈ F . We can therefore use simple

random sampling with replacement (SIR) to estimate d:

(2.5) d̂m =
1

m

m∑
i=1

ζi, with ζi = ndui ,

where pui = 1/n for ui = 1, . . . n. We can show that

E[ζi] = d, E[d̂m] = d and σ2
ζ = V [ζi] = n

∑
k∈F

(dk − d̄F )2, V [d̂m] = σ2
ζ/m,

where d̄A denotes the mean computed for the set A. Therefore, for the di�erence estimator

l̂m = w + d̂m,(2.6)

we obtain

(2.7) E[l̂m] = l and V [l̂m] =
n

m

n∑
k=1

(dk − d̄F )2.

Moreover,

(2.8) σ̂2
z =

n2

m
s2, s2 =

1

m− 1

∑
k∈S

(dk − d̄S)2

is an unbiased estimator of σ2
z = V [l̂] computed on the set S of sampled observations. In

Equation (2.5), d̂m is of the form required in Quiroz et al. (2015) and we have veri�ed their
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Assumption 1. It is straightforward to show that Lemma 4 in Quiroz et al. (2015) holds for

l̂m = w + d̂m. Consequently, we can apply their Theorem 1 to ensure that our algorithm

samples from a perturbed posterior that is within O(m−1/2) percent of the true posterior.

We also note that
√
m(l̂m − l)→ N (0, σ2

ζ )

by the standard central limit theorem because the ζi's are iid.

2.3. Approximating lk by Taylor series expansions at local data clusters. We note

from V [l̂m] in (2.7) that the di�erence estimator is e�cient when the dk are close to d̄F , i.e.

when wk ≈ lk. Any of the methods developed in Quiroz et al. (2015) can be used to construct

wk. The wk in Quiroz et al. (2015) are relatively cheap to compute but need to be computed

for all points in the dataset. An advantage of the di�erence estimator is that it opens up

the possibility of constructing wk using only a sparse subset of the data observations, which

we now describe. The idea is to cluster the data zk = (yk, xk) into NC clusters, compute the

exact log-likelihood contributions at all centroids and use a second order Taylor expansion at

the centroid as a local approximation of lk around each centroid. This allow us to compute∑
k∈F wk(θ) by simply scaling up quantities computed at the NC centroids. Appendix A

describes in detail the localization of data clusters. We now consider the computationally

e�cient local Taylor series approximations at the cluster centroids.

Consider a univariate response y for notional clarity. De�ne

l(zk; θ) = log p(yk|xk, θ) = lk(θ)

as a function of zk = (yk, xk)
T ∈ (p + 1) × 1 for a given parameter θ ∈ p × 1. The change

of notation emphasizes that l(zk; θ) is a function of zk, instead of θ. Let C denote the index

set of observations within cluster c. For any k ∈ C, a second order Taylor approximation of

l(zk; θ) around the centroid zc is

w(zk; θ) = l(zc; θ) + Ozl(z
c; θ)T (zk − zc) +

1

2
(zk − zc)TH(zc; θ)(zk − zc),
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where H(zc; θ) = O2
zl(z

c; θ) is the Hessian evaluated at zc. Note that once l(zc; θ) is com-

puted, it is relatively cheap to evaluate Ozl(zc; θ) and H(zc; θ) by using the chain rule.

Appendix B provides formulas for computing w =
∑n

k=1w(zk; θ) at the centroids {zcj}NCj=1,

where typically Nc << n. Assuming that the density evaluations dominate the computa-

tional cost, our method performs NC +m log-density evaluations compared to n for regular

MCMC.

The approximation error is given by the remainder term of the Taylor series. The remain-

der depends on the clustering algorithm through ε, which is the maximum distance between

an observation in a cluster and its centroid. The choice of ε determines how local the ap-

proximation is. It is di�cult to provide guidelines on how to choose ε (see Appendix A) and

therefore also to determine a reasonable level for the error. However, as we demonstrate in

Section 2.4, the user only needs to monitor the variance of the di�erence estimator for an

optimal trade-o� between computing time and e�ciency. The variance is reduced (if needed)

by increasing the size of the subsample. We can therefore only focus on the variance of the

di�erence estimator when designing a PMCMC algorithm in our framework.

In Appendix C the approximation is derived for the class of Generalized Linear Models

(GLM) (Nelder and Wedderburn, 1972). We emphasize that our method applies much more

widely; the only requirement is that l(z; θ) is twice di�erentiable with respect to z. Even in

models with vector valued θ it is typically straightforward to derive the approximation. We

note that categorical variables, either response or covariates, are considered as continuous in

the di�erentiation.

2.4. Controlling the variance by adapting the sample size. Although the result in

Andrieu and Roberts (2009) is valid regardless of the variance of the estimator, controlling

the variance is crucial for the e�ciency. In general, an estimator with a lower variability

gives a more e�cient Markov Chain but is also more expensive to compute. Conversely, an

estimator with higher variability gives a less e�cient Markov Chain but is faster to compute.

The trade-o� between computing time and e�ciency when using an unbiased estimator of

the likelihood is investigated, under di�erent assumptions, in Pitt et al. (2012), Doucet et al.
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(2015), and Sherlock et al. (2015). The suggestions of the optimal σ2
z ranges from [1, 3.3],

with the larger values corresponding to a weaker proposal in the exact likelihood setting.

We follow Quiroz et al. (2015) and choose the sample size adaptively such that σ2
z ≈ 1,

which is a conservative choice that minimizes the risk of the Markov chain getting stuck. As

in Quiroz et al. (2015) we adapt the sample size m at a given iteration so that the variance

is never larger than a user speci�ed maximum vmax. The adaptation strategy is to increase

m whenever σ̂2
z = V̂ [l̂(θp)] > vmax. A simple guess of m is achieved by Equation (2.8), i.e.

m∗ =
1

vmax(m− 1)

∑
k∈S

(dk − d̄S)2.(2.9)

In practice, we add m∗ − m observations (with SIR) and online algorithms can be used

for computing the new variance, see e.g. Chan et al. (1983). Algorithm 2 in Appendix D

describes the PMCMC algorithm with adaptive sample size.

2.5. Infrequent updating of the data subset. Since l̂m is unbiased for any θ, we can

consider updating u less frequently than θ. Infrequently updating u is not a good idea in the

algorithm in Quiroz et al. (2015) because the PPS subsample is e�cient only for the proposed

θ. Infrequent updates of u would therefore lead to the estimator of the log-likelihood having

a large variance. In contrast, the wk in the di�erence estimator is constructed to be a

good approximation for all θ, and σ2
z(θ) will therefore be small for all proposed θ. We will

demonstrate empirically that the strategy of updating u less frequently than θ gives a more

e�cient PMCMC chain compared to updating u in every iteration.

We note that the PMCMC is still valid because (i) The iterates form a Markov chain

on the augmented space (θ, u); (ii) if the MCMC is ergodic, i.e. irreducible, aperiodic and

Harris recurrent, then so is the PMCMC. (iii) The expected value of the estimated likelihood

p̂m(y|θ, u) is pm(y|θ) as we now demonstrate.

To achieve a sampling scheme that updates the subsample infrequently we propose to

obtain a new subsample with probability ω and keep the current subsample otherwise. We

will need the following lemma to derive the PMCMC with infrequent updates of u.
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Lemma 1. Suppose that the random variable U has density p(u) with respect to the Lebesgue

measure. De�ne the conditional probability measure of V given U as

qV |U(dv|u) := ωp(v)dv + (1− ω)δu(dv), 0 < ω < 1,

where δu(dv) is 1 if u ∈ dv and zero otherwise. Let qV (dv) be the marginal probability measure

of V . Then,

i. qV (dv) = p(v)dv, i.e. V has the density p(v) with respect to the Lebesgue measure.

ii. De�ne the conditional mixed measure,

(2.10) λ(dv|u) := dv1(u 6= v) + δu(dv)1(u = v).

Then, qV |U(dv|u) has density

qV |U(v|u) := ωp(v)1(u 6= v) + (1− ω)1(u = v)

with respect to λ(dv|u).

iii. The ratio of conditional densities, each with respect to λ(·|·), is

qV |U(v|u)

qU |V (u|v)
=


p(v)/p(u), u 6= v

1, u = v.

Proof. Proof of (i): First, we note that

qV (dv) :=

ˆ
u

qV |U(dv|u)p(u)du = ωp(v)dv + (1− ω)

ˆ
u

δu(dv)p(u)du.

Let h(v) be a bounded function of v. Then,

ˆ
v

h(v)qV (dv) = ω

ˆ
v

h(v)p(v)dv + (1− ω)

ˆ
u

ˆ
v

h(v)δu(dv)p(u)du

= ω

ˆ
v

h(v)p(v)dv + (1− ω)

ˆ
u

h(u)p(u)du

=

ˆ
v

h(v)p(v)dv.
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If we take h(v) = 1A(v), i.e. the indicator function for the set A, then

qV (A) =

ˆ
A

p(v)dv,

which shows (i).

To show (ii), we write

qV |U(dv|u) = ωp(v)dv1(u 6= v) + (1− ω)δu(dv)1(u = v)

= (ωp(v)1(u 6= v) + (1− ω)1(u = v))λ(dv|u).

Part (iii) follows from (ii). �

We consider the proposal of u conditional uc,

q(du|uc) = ωp(u) + (1− ω)δuc(du)(2.11)

with density q(u|uc) with respect to the measure λ(du|uc). The density of the marginal

measure of (2.11) is p(u) by Lemma 1(i), which has the property

pm(y|θ) =

ˆ
p̂m(y|θ, u)p(u)du.

The M-H acceptance probability, when up ∼ q(u|uc), is

α = min

(
1,
p̂m(y|θc, up)p(up)p(θp)
p̂m(y|θc, uc)p(uc)p(θc)

× q(uc|up)
q(up|uc)

× q(θc|θp)
q(θp|θc)

)
.

However, from Lemma 1(iii) it follows that we obtain the same expression as in (2.2).

Let PMCMC(ω) denote an algorithm which updates u with probability ω in each MCMC

iteration. The algorithm clearly converges to the invariant distribution on the joint space

(θ, u) for any ω > 0 as the number of MCMC iterates N →∞. However, in practice we use

a �nite N and we need to ensure that ω is su�ciently large to guarantee convergence. This

is explored in our application in Section 3 where we show that ω = 1 and values as small as

ω = 0.01 result in the same inference. Algorithm 3 in Appendix D implements PMCMC(ω).
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2.6. Connection to Previous Research. Our method is closely related to the FireFly

Monte Carlo (FFMC) approach in Maclaurin and Adams (2014). FFMC augments each

observation {yk}nk=1 with an auxiliary variable uk = {0, 1}. The distribution of uk is de-

termined so that the augmented posterior p(θ, u|y) only requires evaluating the likelihood

contributions for the observations for which uk = 1. The augmented likelihood has the form

p(y|θ, u) =
n∏
k=1

Bk(θ)
∏

{k:uk=1}

Lk(θ)−Bk(θ)

Bk(θ)
,(2.12)

where Lk(θ) = p(yk|θ) and Bk(θ) is a positive lower bound of Lk(θ), i.e. 0 < Bk(θ) ≤ Lk(θ).

The lower bound Bk(θ) is chosen so that
∏n

k=1Bk(θ) can be computed using a su�cient

statistic. It should be noted that it is a very di�cult task to �nd a lower bound for most

models. The posterior is sampled using Metropolis-within-Gibbs, updating from the full

conditionals p(θ|u, y) and p(u|θ, y).

Note the analogy (in log-scale) of (2.12) to the di�erence estimator in (2.6). The �rst

term, which operates over the full data set, corresponds to w. The second term is only

evaluated for the subsample, which corresponds to d̂m. Our approach is closely related to a

Pseudo-marginal version of FFMC, where θ and u are updated jointly. Indeed, Maclaurin and

Adams (2014) conclude that FFMC with a joint update of θ and u, where each uk is updated

as a Bernoulli variable with probability 0.5, is a Pseudo-marginal MCMC. The likelihood

in Equation (2.12) using this update is an unbiased estimate of the true likelihood. This

strategy would, on average, only reduce the likelihood evaluations by a factor of 2, compared

to our approach that reduces by a factor of 10 for our application in Section 3. Moreover,

the e�ciency is likely to be poor as it is a well-known fact that a random subsample gives a

higher variance of an estimator (Särndal et al., 2003), and so there is a risk that the PMCMC

chain may get stuck (Quiroz et al., 2015). We also note that our method does not require a

lower bound for the data density.
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3. Application

3.1. Data and model. Our data set contains annual observations for Swedish �rms for

the time period 1991-2008. We model the probability of bankruptcy conditional on a set of

covariates. The �rm-speci�c �nancial variables are all scaled with respect to total assets.

These variables are earnings before interest and taxes, total liabilities, cash and liquid assets,

and tangible assets. We also use the logarithm of de�ated total sales and the logarithm of

�rm age in years as control variables. Finally, we include the macroeconomic variables GDP-

growth rate (yearly) and the interest rate set by the Swedish central bank. We have in total

534, 717 �rms and n = 4, 748, 089 �rm-year observations. The data set contains 41, 566 cases

of bankruptcy.

We consider the logistic regression model

p(yk|xk, β) =

(
1

1 + exp(xTk β)

)yk ( 1

1 + exp(−xTk β)

)1−yk
,

where xk includes the variables above plus an intercept term. We set p(β) ∼ N(0, 10I) for

simplicity.

3.2. Performance evaluation. The Ine�ciency Factor (IF), or the integrated autocorre-

lation time, is de�ned as

IF = 1 + 2
∞∑
l=1

ρl,(3.1)

where ρl is the autocorrelation at the lth lag of the chain. We estimate IF using the CODA

package in R (Plummer et al., 2006). IF measures the number of draws required to obtain

the equivalent of a single independent draw. Because PMCMC uses an estimated likelihood

it has in general a higher IF than MCMC. The Relative Ine�ciency Factor (RIF) is de�ned

as

RIF =
IF PMCMC

IFMCMC
.
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RIF increases with the e�ciency of the proposal for θ in the exact likelihood setting (Doucet

et al., 2015). Quiroz et al. (2015) studies this in the context of subsampling data for esti-

mating the likelihood and �nd that RIF can be very large when a very e�cient proposal for

θ is used. Section 3.4 shows that updating u only at randomly chosen iterations as described

in Section 2.5 avoids this problem.

We evaluate the performance of the algorithm using the E�ective Draws (ED)

ED :=
N

IF ×DE
,(3.2)

where DE is the number of log-density evaluations per iteration and N is the number of

MCMC iterates. For PMCMC this includes the subsample (after possibly adapting, in which

case we compute the average DE) and the number of clusters (Nc), and for MCMC we have

DE = n. This measure is independent of the implementation and is reasonable under the

assumption that the computational bottleneck of MCMC is the log-density evaluations. The

Relative E�ective Draws (RED) is de�ned as

RED :=
EDPMCMC

EDMCMC
.

3.3. Implementation details. Since the bankruptcy observations (yk = 1) are sparse in

this application, we only estimate the contribution from the yk = 0 observations, i.e. the

second term in

l(θ) =
∑

{k;yk=1}

lk(θ) +
∑

{k;yk=0}

lk(θ),

and the �rst term is always evaluated (and included in DE). Thus we only cluster the

4, 664, 957 remaining observations for which y = 0 and this results in NC = 173, 135 clus-

ters which corresponds to 3.71% (of the remaining observations). Together with the 41, 566

default observations, PMCMC starts with 4.6% · n evaluations prior to evaluating the sub-

sample.
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Two di�erent proposals for θ = β are considered; the Random walk M-H (RWM) and

the Independence M-H (IMH). The RWM uses the Hessian H(θ∗) of p(θ|y) evaluated at the

posterior mode θ∗ obtained from numerical optimization and sets q(θ|θc) = N(θc, cλH
−1(θ∗)).

The IMH uses q(θ|θc) = q(θ) = tν(θ
∗, H−1(θ∗)), where tν is the multivariate Student-t

distribution with ν = 10 degrees of freedom. For all algorithms we sample 55, 000 draws and

discard the �rst 5, 000 draws as burn-in.

We explore the mixing of the chain for di�erent values of ω, the probability that u is

updated in a given iteration. During the burn-in phase of the algorithm we start with ω = 1

and subsequently set some 0 < ω < 1 after the burn-in period. To determine if a Markov

chain with an ω < 1 mixes well, we compare its mean with that of a chain generated with ω

set to 1. This is a standard statistical test which takes the sampling variability of the chains

into account by computing standard errors assuming both chains are weakly stationary. The

test is conducted after the burn-in period. Figure 1 shows, for a range of ω values, the

con�dence intervals (95%) to conduct the test for di�erence in means for our application.

For none of the ω values can we reject that the chains have the same means, so we can safely

use small values of ω in our application.

3.4. Results. Figure 2 and 3 show the loss in e�ciency and the number of e�ective draws

for PMCMC(1) with a RWM and IMH proposal, respectively. The �gure also illustrates

that adapting m does not make much di�erence in this particular application because the

approximations are accurate throughout the region of the parameter space explored by the

proposal. The relative ine�ciency factor in Figure 2, where PMCMC is implemented with

the ine�cient RWM proposal, is small (Doucet et al., 2015). In contrast, for the very e�cient

IMH proposal, RIF increases signi�cantly as shown by Figure 3. In turn this adversely a�ects

the relative e�ective draws

Figure 4 illustrates that by implementing PMCMC with a random update of u, the sizeable

increase in RIF for the IMH sampler can be prevented. We note that the same applies for the

RWM proposal, but is much less pronounced because the loss in e�ciency is already small

for ω = 1 (see Figure 2). Table 1 gives additional results of the algorithms. Furthermore,
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Figure 1. Con�dence intervals (95%) for di�erence in posterior means ob-
tained using di�erent algorithms. The mean of the �rst chain is obtained
using PMCMC(1) (same for all �gures) and the second mean is obtained us-
ing PMCMC(ω) (corresponding to each subplot). These con�dence intervals
are constructed for each parameter in the application in Section 3, using two
proposals; Independent Metropolis Hastings (IMH, blue vertical line) Random
Walk Metropolis (RWM, red vertical line with star). The black horizontal line
marks the value 0 of the di�erence in means under H0.
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Figure 2. The left panel shows the Relative Ine�ciency Factors (RIF) for
PMCMC(1) adaptive (yellow bar) and PMCMC(1) non adaptive (red bar) for
each parameter obtained with a random walk Metropolis proposal. The right
panel shows the corresponding Relative E�ective Draws (RED).

Figure 5 shows the improvement in relative e�ective draws as a consequence of the reduced



MCMC FOR LARGE DATA PROBLEMS 18

β0 β1 β2 β3 β4 β5 β6 β7 β8

1

2

3

4

R
IF

Relative Inefficiency Factors (RIF)
non adaptive

adaptive

β0 β1 β2 β3 β4 β5 β6 β7 β8

1

2

3

4

R
E
D

Relative Effective Draws (RED)

Figure 3. The left panel shows the Relative Ine�ciency Factors (RIF) for
PMCMC(1) adaptive (yellow bar) and PMCMC(1) non adaptive (red bar) for
each parameter obtained with an independent Metropolis-Hastings proposal.
The right panel shows the corresponding Relative E�ective Draws (RED).
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Figure 4. Relative Ine�ciency Factors (RIF) for di�erent PMCMC(ω). The
�gure shows the RIF for all parameters using two di�erent proposals; Indepen-
dence Metropolis Hastings (IMH, yellow bar) and Random Walk Metropolis
(RWM, red bar).

ine�ciency. We conclude that randomly updating u is very bene�cial for the e�ciency of

the algorithm.

Figure 6 shows that the marginal posterior obtained with some di�erent values of ω are

very close to the true posterior obtained with MCMC. This accuracy is further con�rmed in
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Table 1. Additional results of the algorithms. The table shows the mean
acceptance probability Pr(Acc) and also the mean of the estimated standard
deviation σ̄z(θp) at the proposed θ values. The quantities are shown for MCMC
and PMCMC(ω) for di�erent ω in the example and for the proposals Random
Walk Metropolis (RWM) and Independence Metropolis Hastings (IMH). All
PMCMC algorithms use 9.48% of the data in total (of which 5% is the sub-
sample).

Algorithm Pr(Acc) σ̄z(θp)

RWM IMH RWM IMH

MCMC 0.251 0.753 n/a n/a

PMCMC(ω)

ω = 1 adaptive 0.185 0.457 0.946 0.940

ω = 1 non adaptive 0.184 0.453 0.947 0.940

ω = 0.5 0.192 0.532 0.946 0.940

ω = 0.4 0.196 0.554 0.947 0.940

ω = 0.3 0.205 0.570 0.946 0.940

ω = 0.2 0.212 0.619 0.946 0.940

ω = 0.1 0.218 0.657 0.947 0.941

ω = 0.05 0.234 0.690 0.947 0.940

ω = 0.025 0.241 0.709 0.947 0.940

ω = 0.01 0.245 0.720 0.944 0.939

Figure 7, which shows the upper bound of the fractional error in the likelihood approximation

as derived in Quiroz et al. (2015).

4. Conclusions and Future Research

We propose an algorithm for speeding up MCMC for large data problems. The method

uses a small subset of the data together with the di�erence estimator to estimate the log-

likelihood e�ciently. The estimator uses an approximation of the (log) data density via

its Taylor series approximation around a centroid in a local data cluster. We propose an

algorithm to obtain the local data clusters and furthermore we derive the approximation

for a large class of models. Our estimator uses the sum of the individual approximations to

obtain an accurate estimate of the full data log-likelihood. This operation has computational

complexity O(n), where n is the number of data observations. To overcome this issue we
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Figure 5. Relative E�ective Draws (RIF) for di�erent PMCMC(ω). The �g-
ure shows the RED for all parameters using two di�erent proposals; Indepen-
dence Metropolis Hastings (IMH, yellow bar) and Random Walk Metropolis
(RWM, red bar).

derive expressions for the sum which only requires evaluating quantities at the centroids,

thereby reducing the complexity to O(NC), where NC << n is the number of local data

clusters.

The estimated (biased) likelihood is used within the M-H algorithm to sample from an

approximate posterior distribution. We demonstrate that the proposed estimator belongs

to the class of estimators in Quiroz et al. (2015). Therefore our method samples from a

posterior that is within O(m−1/2) percent of the true posterior, where m is the sample size.

Moreover, we get explicit upper bounds for the approximation error in the likelihood and

illustrate that these are small in our application.

We propose to update the subsample used for estimation randomly in each iteration of the

algorithm. We demonstrate empirically that this is an e�ective strategy because it reduces

the inevitable e�ciency loss from using an estimated likelihood in the M-H ratio, especially

in cases where the proposal is very e�cient.
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Figure 6. Kernel density estimations of marginal posteriors. The �gure
shows the marginal posteriors obtained using PMCMC(ω) with ω = 1, 0.2, 0.01
(dashed blue, green and red, respectively) and regular MCMC (solid black
line).
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m

Figure 7. The bound for part (i) of Theorem 1 in Quiroz et al. (2015) for
our application. The �gure shows the upper bound for the fractional error in
the likelihood approximation computed over 1000 draws from the posterior.
The subsample size m is chosen so that σz ≈ 1 resulting in m = 235, 326 (5%
of the full sample size).

The method is applied to a dataset with nearly 5 million observations. We consider a

logistic model for predicting �rm bankruptcy conditional on standard covariates used in

the literature. Using a measure that balances the number of density evaluations and the
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e�ciency of the resulting chains, we document a very favorable outcome for our algorithm

compared to regular MCMC.

Future research concerns improved methods to obtain the local data clusters in the pres-

ence of a huge number of covariates. This is especially important when many of the covariates

are categorical.
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Appendix A. Local Data Clusters

Let zc and nc denote the centroid and the number of observations in cluster c, respectively.

Note that
∑NC

c=1 nc = n and typically NC << n. Algorithm 1 provides an easily implemented

clustering algorithm. The maximum distance ε between an observation and the cluster is a

user de�ned input. The clustering is a one time cost that can be stored for future use, and

is easily sequentially updated as new data arrives.

For models with a categorical response, we cluster separately for each category (i.e. zk =

xk). In the presence of many categories. we suggest transforming yk to a (�nite) interval of

real values and, once the centroids are obtained, applying the inverse transformation that

maps to the closest category. E.g. in the Poisson regression model yk ∈ {0, 1, 2, . . . , } and

we de�ne the one-to-one mapping φ : {ymin, . . . , ymax} 7→ [K1(ε), K2(ε)], where K1 and K2

control the scale. The algorithm clusters the data z̃ = (ỹk, xk) with ỹk = φ(yk), and returns

centroids {z̃cj = (ỹcj , xcj)}Ncj=1. For each centroid, we choose the point in acj ∈ [K1(ε), K2(ε)]

which is closest to ỹcj . The �nal centroids are given by zcj = (φ−1(acj), xcj).

Note that if an observation does not have any neighbors within an ε neighbourhood,

it forms a singleton cluster and is the centroid of that cluster. When the dimension of

the data space increases the number of such singleton clusters is likely to increase. By

increasing the radius of the ε-ball this can be prevented up to a certain point where the

local approximation becomes poor within the cluster. However, in practice the data are

seldom uniformly distributed on a hyper-cube; in high dimensions data tend to cluster on a

subspace. In this setting, an ε ball will always reduce the size of the data set, but it is di�cult

to provide guidelines on how to choose ε when the dimension increases, as it is depends on

the geometry of the data. In practice, we run the algorithm for a given ε and sequentially

monitor the fraction NC/n. It is usually rapidly discovered after a few iterations if this

fraction is too large and then the algorithm is restarted with a larger value of ε. In problems
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Algorithm 1 Clustering data points within an ε-radius ball
1: procedure ClusterData(y, x, ε)
2: zk ← (yk, xk)T

3: z ← (zT1 , . . . , z
T
n )T . . Standardized data.

4: Z ← (0, . . . , 0)T . 0 - observation is not clustered.

5: (i, j)← (0, 0) . Initialize counters.

6: while
∑
Z 6= n do

7: if Zi = 0 then . If not clustered yet.

8: Cj ← {k; ||zi − zk|| ≤ ε} . Form cluster within an ε-ball.

9: Nj ← |Cj |
10: zcj ← 1

Nj

∑
k∈Cj

zk . Create centroid with Nj observations.

11: ZCj
← 1 . Mark clustered observations.

12: j ← j + 1

13: end if

14: i← i+ 1

15: end while

16: NC ← j

17: return {zcj }NC
j=1, {Cj}

NC
j=1

18: end procedure

where the covariate space is huge we suggest reducing the dimension of the covariate space

using principal components.

Appendix B. Compact Matrix Computations

Let zcj denote the centroid in cluster cj, j = 1, . . . , Nc. Let Cj denote the index set of

observations within cj with Nj = |Cj|. The second order Taylor approximation l(zk; θ) in

cluster j, for k ∈ Cj, is

w(zk; θ) = l(zcj ; θ) + Ozl(z
cj ; θ)T (zk − zcj) +

1

2
(zk − zcj)TH(zcj ; θ)(zk − zcj).

We now derive a compact expression for

w =
n∑
k=1

w(zk; θ) =
n∑
k=1

l(zcj ; θ) +
n∑
k=1

Ozl(z
cj ; θ)T (zk − zcj) +

1

2

n∑
k=1

(zk − zcj)TH(zcj ; θ)(zk − zcj).

Note that, within a centroid j, l(zcj ; θ),Ozl(zcj ; θ) and H(zcj ; θ) are constant. Therefore the

�rst term is

n∑
k=1

l(zcj ; θ) =
∑
k∈C1

l(zc1 ; θ) + · · ·+
∑
k∈CNc

l(zcNc ; θ) = l(zc1 ; θ)
∑
k∈C1

1 + · · ·+ l(zcNc ; θ)
∑
k∈CNc

1

= l(zc1 ; θ)N1 + · · ·+ l(zcNc ; θ)NNc .
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For the middle term, we have

n∑
k=1

Ozl(z
cj ; θ)T (zk − zcj) =

∑
k∈C1

Ozl(z
c1 ; θ)T (zk − zc1) + · · ·+

∑
k∈CNc

Ozl(z
cNc ; θ)T (zk − zcNc )

= Ozl(z
c1 ; θ)T

∑
k∈C1

(zk − zc1) + · · ·+ Ozl(zcNc ; θ)T
∑
k∈CNc

(zk − zcNc ),

where
∑

k∈Cj(zk − z
cj) ∈ (p + 1 × 1) is obtained as a the vector sum of the indices in Cj

for the jth centroid. It is independent of θ so it only needs to be computed once before the

MCMC.

For the last term,
∑n

k=1(zk − zcj)TH(zcj ; θ)(zk − zcj), by the de�nition of the quadratic

form

bTkHbk =
∑
i,j

Hijbkibkj,

with bk = (zk − zcj)T ∈ p× 1 and H = H(zcj ; θ) we obtain

n∑
k=1

bk
THbk =

n∑
k=1

∑
i,j

Hijbkibkj

=
∑
i,j

n∑
k=1

Hijbkibkj

=
∑
i,j

Hc1
ij

∑
k∈C1

bikbjk + · · ·+H
cNc
ij

∑
k∈CNc

bikbjk

 .

Let Bj be a p+ 1× p+ 1 matrix with elements {
∑

k∈Cj bkibkj}ij. Then

n∑
k=1

bk
THbk =

∑
vec

(
Nc∑
j=1

Hcj ◦Bj

)
,

where ◦ denotes the Hadamard product (element wise multiplication) and the sum without

indices is over all elements after vectorization. Bj does not depend on θ so we can compute

it before the MCMC.

We assume that the dominating cost of the MCMC is the density evaluations. In data sets

with a reasonable amount of covariates, the term
∑n

k=1 bk
THbk might be costly as it involves
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Nc×(p+1)2 summations, which can be reduced (H and B are symmetric) to NC× (p+1)(p+2)
2

.

In models where the density is log-concave (or convex) we have found that evaluating the

second order term in the Taylor approximation for a �xed θ, e.g. the posterior mode, provides

a good approximation. Finally, we note that once l(zcj ; θ) is computed, it is relatively cheap

to evaluate the gradient and the Hessian.

Appendix C. Approximation for The GLM Class

The Generalized Linear Model (Nelder and Wedderburn, 1972) is given by

p(y|x, θ) ∼ h(y)g(θ) exp (b(θ)T (y))

E[y|x] = θ

k(θ) = xTβ.

The log-density as a function of data z = (y, x)T ∈ p+ 1× 1 is

l(z; θ) = log(h(y)) + log(g(θ)) + b(θ)T (y)

θ = k−1(xTβ).

To save space, de�ne

k−1′ =
d

da
k−1(a)

∣∣∣∣
a=xT β

k−1′′ =
d2

da2
k−1(a)

∣∣∣∣
a=xT β

The gradient Ozl(z; θ) is the p+ 1× 1 vector ∂f
∂y

∂f
∂x

 =

 h′(y)
h(y)

+ b(θ)T ′(y)(
g′(θ)
g(θ)

k−1′ + b′(θ)T (y)
)
β


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evaluated at θ = k−1(xTβ), β ∈ p× 1. The hessian O2
zp(z; θ) is the p+ 1× p+ 1 matrix with

elements  ∂2l
∂y2

∂2l
∂y∂xT

∂2l
∂y∂x

∂2l
∂x∂xT


where

∂2l

∂y2
=

1

h(y)

(
h′′(y)− h′(y)

h(y)

)
+ b(θ)T ′′(y)

∂2l

∂y∂x
=

(
b′(θ)k−1′T ′(y)

)
β

∂2l

∂x∂xT
=

((
k−1′

)2 1

g(θ)

(
g′′(θ)− g′(θ)

g(θ)

)
+
g′(θ)

g(θ)
k−1′′ + b′′(θ)k−1′T (y)

)
ββT .

Appendix D. The PMCMC Algorithm

For clarity, we present the adaptive sample size (Algorithm 2) and the infrequent updates

(Algorithm 3) separately. It is clear how to implement both features in the same algorithm.

However, in this case we note that since the proposal for u depends on the current value uc,

which in turn might have been adapted in the previous iteration, the sample size might be

unnecessarily large. This sample size is then kept until the update of u with m observations

occurs. If ω is small this might be ine�cient as a possibly too large sample size is used for

many iterations.

We recommend using adaptive sample size when the approximation is poor for some parts

of the parameter space explored by the proposal. It is then crucial to reduce the variance

(by increasing the sample size). If the approximation is fairly accurate for large regions

of the parameter space, it is usually su�cient with only randomly updating the proposed

subsample. As documented in Section 3.4 this increases the e�ciency dramatically in the

case when an e�cient proposal for θ is used.
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Algorithm 2 PMCMC(1) with adaptive sample size m such that σ̂2
z < vmax, where vmax is

the maximum variance tolerated in the log-likelihood estimate.
1: procedure Pmcmc . Pr(update u) = 1.

2: (θc, uc)← (θ0,RandomSample(F )) . Initialize subsample of size m with SIR.

3: (LogLc, σ̂
2
z(θc))← LogLikelihood(θc, uc)

4: LogLc ← LogLc − σ̂2
z(θc)/2 . "Bias-correction".

5: for i← 1, . . . ,N do

6: up ∼ p(u) . p(u) SIR with m observations.

7: θp ∼ q(θ|θc) . Propose parameter.

8: (LogLp, σ̂
2
z(θp))← LogLikelihood(θp, up)

9: while σ̂2
z(θp) > vmax do

10: u∗ ∼ RandomSample(F ) . Draw a subsample of size m∗ −m.

11: up ← Append(Su∗ , Sup ) . Augment the subsample.

12: m← |Sup |
13: (LogLp, σ̂

2
z(θp))← LogLikelihood(θp, up)

14: end while

15: LogLp ← LogLp − σ̂2
z(θp)/2 . "Bias-correction".

16: α← 1 ∧ exp
(
LogLp + log p(θp)− LogLc + log p(θc)

)
× q(θc|θp)
q(θp|θc)

17: v ∼ Uniform(0, 1)

18: if v ≤ α then . Draw is accepted.

19: LogLc ← LogLp

20: (θc, uc)← (θp, up)

21: θi ← θp

22: else

23: θi = θc

24: end if

25: end for

26: return {θi}Ni=1

27: end procedure

28:

29: procedure LogLikelihood(θ, u) . Unbiased estimation of log-likelihood.

30: l̂m ← w + d̂m . The di�erence estimator.

31: σ̂2
z ← n2

m(m−1)

∑
k∈S

(
dk − d̄S

)2
32: return l̂m, σ̂2

z

33: end procedure
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Algorithm 3 PMCMC(ω) with random update of u.

1: procedure Pmcmc(ω) . Pr(update u) = ω.

2: (θc, uc)← (θ0,RandomSample(F )) . Initialize subsample of size m with SIR.

3: (LogLc, σ̂
2
z(θc))← LogLikelihood(θc, uc) . LogLikelihood() as in Algorithm 2.

4: LogLc ← LogLc − σ̂2
z(θc)/2 . "Bias-correction".

5: for i← 1, . . . ,N do

6: v1 ∼ Uniform(0, 1)

7: if v1 ≤ ω then . Propose a new subset.

8: up ∼ p(u) . p(u) SIR with m observations.

9: else

10: up = uc . Keep the subset.

11: end if

12: θp ∼ q(θ|θc) . Propose parameter.

13: (LogLp, σ̂
2
z(θp))← LogLikelihood(θp, up)

14: LogLp ← LogLp − σ̂2
z(θp)/2 . "Bias-correction".

15: α← 1 ∧ exp
(
LogLp + log p(θp)− LogLc + log p(θc)

)
× q(θc|θp)
q(θp|θc)

16: v2 ∼ Uniform(0, 1)

17: if v2 ≤ α then . Draw is accepted.

18: LogLc ← LogLp

19: (θc, uc)← (θp, up)

20: θi ← θp

21: else

22: θi = θc

23: end if

24: end for

25: return {θi}Ni=1

26: end procedure
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