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Finding the Right Yardstick: Regulation under

Heterogeneous Environments

Endre Bjørndal∗, Mette Bjørndal∗, Astrid Cullmann†, Maria Nieswand†

February 12, 2016

Abstract

Revenue cap regulation is often combined with systematic benchmark-
ing to reveal the managerial inefficiencies when regulating natural mo-
nopolies. One example is the European energy sector, where bench-
marking methods are based on actual cost data, which are influenced
by managerial inefficiency as well as operational heterogeneity. This
paper demonstrates how a conditional nonparametric method, which
allows the comparison of firms operating under heterogeneous tech-
nologies, can be used to estimate managerial inefficiency. A dataset
of 123 distribution firms in Norway is used to show aggregate and
firm-specific effects of conditioning. By comparing the unconditional
model to our proposed conditional model and the model presently used
by the Norwegian regulator, we see that the use of conditional bench-
marking methods in revenue cap regulation may effectively distinguish
between managerial inefficiency and operational heterogeneity. This
distinction leads first to a decrease in aggregate efficient costs and
second to a reallocation effect that affects the relative profitability of
firms and relative customer prices, thus providing a fairer basis for
setting revenue caps.

JEL-Classification: L94, C44, L51

Keywords: Data Envelopment Analysis, Yardstick Regulation, Electricity

Distribution
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1 Introduction

In general, revenue-cap schemes tend to constrain monopolistic firm behavior

by “capping” the revenues regulated firms are allowed to earn. Similar to

price cap regulation, revenue caps provide incentives for cost reductions by

efficiency improvement since firms are allowed to keep their additional profits

from cost savings.

From the perspective of maximizing welfare, the regulator aims to implement

a revenue-cap scheme in which the regulated firms sets prices equal to their

average costs, i.e. the efficient costs C∗i (the so-called second-best solution in

regulation economics, Laffont and Tirole (1993); Armstrong and Sappington

(2007); Shleifer (1985)). The challenge, then, is to determine C∗i due to in-

formation asymmetry.1 To determine C∗i and reveal managerial inefficiency,

regulators may combine revenue-cap schemes with systematic benchmarking

techniques (Agrell and Bogetoft, 2013).

By comparing the performance of the firms via cost functions, benchmarking

provides information on the unknown technology, the cost structure and effi-

cient costs and thus is crucial to determining revenue caps.2 In other words,

the more precisely C∗i are approximated, the closer the revenue caps are to

the second-best solution (Laffont and Tirole, 1993).

The precision of efficient cost approximation is incrementally related to the

exogenous factors (Shleifer, 1985) describing the operational environment of

regulated firms. Exogenous factors cause heterogeneity in terms of technol-

1The regulator does not know the efficient cost structures of the regulated firms and

they have no incentives to reveal the information.
2Generally, benchmarking can be interpreted as creating a hypothetical competition

among natural monopolies. Thereby a mechanism of yardstick competition in the spirit

of Shleifer (1985) is introduced as the revenue of a particular electricity distribution firm

based on the costs of all other distribution firms.
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ogy, and hence, efficient costs. Consequently, the level of efficient costs differs

between firms according to their environmental conditions.

In this paper, we demonstrate that regulators fail to implement efficient cost

levels and revenue caps by not properly accounting for exogenous firm char-

acteristics. We discuss unconditional nonparametric benchmarking applica-

tions used in regulation mainly based on data envelopment analysis (DEA),

which set revenue caps too high and compensate firms for environmental

disadvantages and managerial inefficiency. In particular, we analyze the im-

portance of selecting the appropriate reference set for comparing firms to

determine efficient costs, C∗i .

We suggest that conditioning a firm’s production process on its operational

environment provides more reliable peers. Because Norway has extensive ex-

perience with revenue cap regulation since 1997, we use a dataset of 123 Nor-

wegian electricity distribution firms to test and compare three models: 1) an

unconditional DEA benchmarking model; 2) a conditional DEA benchmark-

ing model; and 3) the Norwegian regulator’s model. We explicitly analyze

two effects of conditioning: 1) the effects of a different peer selection; and 2)

the effect of compensating for environmental variables under the conditional

approach. We also demonstrate the effect of conditioning on the aggregate

efficient costs, firms’ profits, and consumers’ prices for the distribution ser-

vice. We see, for the Norwegian case, that the use of a conditional approach

will lead to a reduction in aggregate efficient cost, but the main effect is a

reallocation of revenue between firms, leading to changes in relative prof-

itability and customer prices in the industry.

Even though we use Norway as a case study, our empirical application is rel-

evant for the European regulators using nonparametric benchmarking meth-

ods to determine revenue caps. Our analysis is also relevant for general cases
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in which nonparametric benchmarking is applied to compare decision-making

units in different environments.

The remainder of this paper is organized as follows. Section 2 explains the

implementation of yardstick regulation via benchmarking and the challenges

of separating managerial inefficiency and operational heterogeneity. Section

3 shows that the conditional framework is appropriate when heterogeneous

firms are benchmarked against each other. Section 4 presents our empirical

strategy and our data. Section 5 summarizes the empirical findings. Section

6 shows the effects of conditioning for regulation. Section 7 concludes.

2 Revenue cap regulation via benchmarking

2.1 Revenue cap regulation

A revenue cap regime can be implemented via the observed costs, C, of the

firms (Joskow, 2007) and formalized as

Ri = α · C∗i + (1− α) · Ci, (1)

where the capped revenue Ri for firm i is determined by its actual observed

cost Ci and efficient cost C∗i . The parameter α weights the actual and ef-

ficient costs with 0 < α < 1, according to the strength of the regulatory

system.

Obviously, the observed firm-specific costs available to the regulator are influ-

enced by firms’ managerial inefficiency and the different operational environ-

ments. The major challenge for the regulator is to determine the firm-specific

revenue caps, Ri, such that they account for the environmental effects, mean-

ing that firms will only be compensated for environmental disadvantages, not

managerial inefficiency.
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2.2 Benchmarking and managerial inefficiency

In regulatory practice, the efficient cost, C∗i , is often determined by means of

an unconditional nonparametric benchmarking method, where data envelop-

ment analysis (DEA), developed by Charnes et al. (1978), is the most popular

variant.3 DEA estimates the unknown technology or production set Ψ from

a given sample of observed vectors of inputs xi ∈ Rp
+ and outputs yi ∈ Rq

+

used by the firms i = 1, ..., n, and where p and q represent the number of

input and output factors, respectively. The boundary of Ψ is the frontier

and represents the estimated unknown technology (see Appendix A.1 for the

standard DEA). Comparing each individual firm to this frontier determines

the firm’s specific managerial efficiency. Solving a linear program assuming

constant returns to scale (CRS) according to Charnes et al. (1978) provides

efficiency scores θ̂ ∈ Rn such that 0 ≤ θ̂i ≤ 1 for i = 1, ..., n.4 The efficiency

estimate for firm i, i.e., θ̂i, is a measure relative to the frontier, which is

determined by fully efficient observations j ∈ {1, ..., n} with θ̂j = 1, i.e., the

peers.

In the unconditional case, DEA does not consider external factors. Hence,

all observations belong to the reference set of the particular observation of

3Frontier models are widely applied in performance measurement. The theoretical

foundations derive from Koopmans (1957), Debreu (1959) and Farrell (1957). In regulatory

practice, nonparametric approaches have outperformed parametric methods due to their

easy implementation and interpretation, which is often why regulators favor their use. See

Bogetoft and Otto (2011) for a comparison and critical evaluation of the approaches in

regulatory practice.
4Regulators often assume CRS as proposed by Charnes et al. (1978), because it implies

that any observed production plan can be arbitrarily scaled up and down, and it implies

that all convex combinations of two observed production plans are assumed to be feasible.

The validity of these assumptions, which are beyond the scope of this paper, are not

further discussed.
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interest and potentially serve as its peers irrespective of their operational en-

vironments. However, this involves the risk of evaluating an observation to

an infeasible frontier when external factors are disadvantageous or beneficial,

respectively, to its production process.

2.3 Managerial inefficiency versus operational hetero-

geneity

It is worthwhile to emphasize that the external factors can have different

channels through which they influence firms’ performance. Bădin et al.

(2012) point out that environmental factors may influence the technology

itself represented by the boundary of the production set Ψ, thus causing a

frontier shift, the distribution of inefficiency, or both. The regulator has to

compensate for the resulting cost disadvantages only from exogenous frontier

shifts due to different environments, and not for managerial inefficiency.

We will assume that the environmental impact can be measured by a set

of vectors zi ∈ Rr for i = 1, ..., n, where r is the number of environmen-

tal factors. In practice, regulators use second-stage regressions (Bjørndal

et al., 2010; Agrell et al., 2014) to control for the heterogeneity of opera-

tional environments on the frontier. The z-variables are regressed on the

DEA estimates to determine the impact of the operational environments on

efficiency. The efficiency scores are then adjusted to compensate for the im-

pact of z-variables. One concern, however, is that second-stage regressions

are only useful when z-variables fulfill the separability condition (Bădin et al.,

2012; Simar and Wilson, 2007).5 But when separability is given, there is no

5Separability is given if z-variable does not influence the attainable set, and thus, the

frontier. Only then do second-stage regressions provide meaningful results to explain the

differences in the distribution of inefficiency.
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frontier shift due to environmental differences and a compensation by means

of second-stage regressions will fail to set efficient revenue caps.

In addition, if z-variables cause a frontier shift, and thus are not separable

which is usually the case, DEA efficiency scores from the first step lack eco-

nomic sounding, since they are based on a frontier that production units are

unable to reach (Bădin et al., 2012). Using second-stage regressions ignores

the potential impact of z-variables on the frontier and their potential impact

on the distribution of inefficiency. Therefore, compensation based on the

two-stage approach is likely to capture multiple effects and lead to under- or

overcompensation of the individual regulated firms, which becomes apparent

in a too high or too low C∗i , and therefore a too high or too low Ri.

3 Conditional benchmarking

Conditional nonparametric benchmarking approaches, which do not require

the separability condition, can account for the multiple effects of the opera-

tional environment on a firm’s performance6 depending on how the reference

sets, i.e. the group of firms use to compare against the firm of interest,

are selected. By means of kernel estimation the reference sets are restricted

with respect to z-variables, prior to measuring actual performance such that

firms are only compared to others with similar environments.7 Compensa-

6To incorporate external factors into the performance evaluation, conditional efficiency

estimation was proposed initially by Cazals et al. (2002) in the order-m framework and

further developed by Daraio and Simar (2005), Daraio and Simar (2007b), and Daraio and

Simar (2007a). The approach aims to compare only units that operate under similar op-

eration environments, i.e. the selection of the reference group for a particular observation

is conditional on their z-variables.
7Thus, conditioning the performance evaluation on z-variables assumes that the frontier

is feasible for the firm to reach, and that the efficiency scores are meaningful (Bădin et al.,
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tion for the resulting cost disadvantages is only based on the frontier shift,

thus leading to an adequate implementation of the revenue cap scheme.

3.1 Constructing a conditional efficiency estimator

The conditional DEA estimator is based on an attainable production set,

Ψ̂z, conditioned on a set of z-variables and implies the estimation of a condi-

tional distribution function where the production process is conditional to a

particular level of z (Daraio and Simar, 2007b; Bădin et al., 2010).8 The lat-

ter requires applying a smoothing technique. Therefore, we perform Kernel

estimation with an Epanechnikov kernel K(·) as in, e.g., Daraio and Simar

(2005) and Daraio and Simar (2007b).9 The Kernel is defined as

Kh = K((zi − zk)/h) (2)

where zi and zk are vectors of z-variables for a unit i and it’s reference

unit k, respectively, and h is the vector of selected bandwidths. For each of

the environmental variables we compute a bandwidth based on least squares

cross validation (Hall et al., 2004; Li and Racine, 2007, 2008). Note that

the bandwidth selection procedure relies on estimating the conditional prob-

ability distribution function of y, given a particular level of z.10 Hall et al.

(2004) emphasize that their proposed method assigns large smoothing pa-

rameters to components of z that are irrelevant for estimating the density of

y. Therefore, the sizes of the selected bandwidths themselves already con-

tain information about the impact of particular z-variables on the production

2012).
8The statistical properties of this estimator are derived in Kneip et al. (2008) and its

consistency is established in Jeong et al. (2010).
9The authors suggest using kernels with compact support in the framework of condi-

tional boundary estimation.
10See Hall et al. (2004) for a detailed presentation of the method.
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output y. We then use the obtained bandwidths to estimate the Kernel func-

tion in Equation 2 to compute kernel probabilities. Firms closely located to

firm i in terms of z thereby receive higher probabilities to be selected into

the reference set of the observation of interest, whereas small (or even zero)

kernel probabilities are assigned to firms with very different operational en-

vironments than firm i.

As shown in Daraio and Simar (2007b), the conditional DEA efficiency esti-

mate for firm i under the assumption of CRS is given by

θ̂ci = min{θ | θxi ≥
∑n

j|zi−h≤zj≤zi+h
λjxj, yi ≤

∑n

j|zi−h≤zj≤zi+h
λjyj, (3)

and λj ≥ 0 for j = 1, ..., n},

where the vector h ∈ Rr represents bandwidths of appropriate size. For each

observation, the bandwidths determine the range of z in which other observa-

tions are considered being similar. Hence, we consider only the observations

within this range as potential peers for the unit of interest and select them

into the respective reference group. That is, we restrict the reference set of

firm i to firms with positive kernel probabilities.

3.2 Bias-correction

DEA efficiency scores are based on finite samples of observations and con-

struct a best-practice frontier, i.e. by construction they are upward-biased

Simar and Wilson (1998). We correct for the bias in θ̂ and θ̂c by applying the

m-bootstrap first proposed by Kneip et al. (2008), and extended by Simar

and Wilson (2011).11 Unlike the naive bootstrap, this approach allows con-

sistent bias-correction by drawing bootstrap subsamples of size m = nκ from

11As a variant of the original procedure, we also use the kernel probabilities in order to

construct the bootstrap samples for the conditional case, which is consistent with the idea

of conditioning the production process and is supposed to give even more precise insights
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the given sample of size n with κ ∈ (0, 1). Each of the b = 1, ...B bootstrap

samples (replications) provides a random subsample of size m which we use

to compute the bootstrapped vector of efficiency scores denoted as θ̂m,b ∈ Rn.

The bias for the unconditional DEA and the conditional DEA is defined as

ˆbiasB(θ̂) =
(m
n

)2/(p+q+1)

·

(
B−1

B∑
b=1

θ̂m,b − θ̂

)
(4)

ˆbiasB(θ̂c) =
(m
n

)2/(p+q+1)

·

(
B−1

B∑
b=1

θ̂cm,b − θ̂c
)

(5)

where the factor (m/n)2/(p+q+1) controls for the effect of different sample sizes

in both the true world and bootstrap world (Simar and Wilson, 2008). Then,

we obtain bias-corrected efficiency scores, θ̂ and θ̂c by subtracting the bias

from θ̂ and θ̂c repsectively.

θ̃ = θ̂ − ˆbiasB(θ̂) (6)

θ̃c = θ̂c − ˆbiasB(θ̂c) (7)

Cazals et al. (2002) show that subsampling also overcomes the outlier sen-

sitivity of convex nonparametric frontier models such as DEA models. Al-

though the statistical literature does not precisely define outliers, they can

be understood as atypical observations that possibly influence the efficiency

estimates of other data points if they distort the frontier Simar (2003). By

drawing m out of n observations from the sample, we reduce the influence

of potential outliers since they will not always be drawn. Therefore, the

computed biases in Equations 4 and 5 are robust toward outliers and helps

us tackle the problem. We do not delete outliers from the sample because

they give us important information about the heterogeneity of operational

environments and the effects on the production frontier.12

about the effect of z-variables on the production process.
12Regulators also need to include all firms in the analysis.
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4 Empirical strategy and data

4.1 Empirical strategy

Our objective is to demonstrate that conditioning a firm’s production process

on its operational environment gives us a better yardstick for determining ef-

ficient cost. Therefore, we compare the outcomes of the unconditional model

used in regulation with our proposed conditional model to show the effects of

conditioning on efficiency estimates, revenue caps, firms’ profits, and prices

consumers have to pay. As mentioned, we estimate three different models:

1. The bias-corrected unconditional DEA model (θ̃).

2. The bias-corrected conditional DEA model (θ̃c).

3. The unconditional DEA model with second-stage regression based on

the bias-corrected unconditional DEA scores used by the Norwegian

regulator (θ̃NV E).

We run 2,000 replications to obtain the bias-corrected efficiency estimates

by the m-bootstrap where drawing the reference sets depends on the respec-

tive kernel probabilities. We select m = 60 using the leave-one-out-order-m

algorithm proposed by Daraio and Simar (2007a) and Simar (2003) based

on Cazals et al. (2002). Note that θ̃NV E are based on θ̃, and we correct

these estimates by the effects of the environmental factors using the second-

stage procedure described in Amundsveen et al. (2014).13 The first effect

of conditioning, i.e., different a different peer selections, becomes obvious

when comparing θ̃ to θ̃c. The second effect of conditioning i.e. compensating

differently for z-variables becomes obvious when comparing θ̃c to θ̃NV E.

13For comparability, we use the bias-corrected unconditional DEA scores as the starting

point in the two-stage procedure.
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4.2 Data

Our dataset comprise 123 Norwegian electricity distribution firms regulated

by the Norwegian Water Resources and Energy Directorate (NVE). Since the

deregulation of the Norwegian power market in 1990, the regulatory regime

for distribution and regional transmission firms14 has gone through several

phases. In the first years after deregulation, firms were subject to a cost plus

(rate of return) regulation with rather week efficiency incentives. In 1997,

revenue cap regulation with benchmarking was introduced with five-year reg-

ulation periods.

Firm-specific efficiency requirements in each of the first two regulation peri-

ods, were based on DEA analysis of historical cost and output data. After

2007, the efficiency incentives were further strengthened with the introduc-

tion of a yearly revenue cap implementation and annual updates of the rev-

enue caps based on DEA analyses.15

4.2.1 Inputs and outputs

Table 1 lists the input and output variables in our dataset corresponding

to those used in the regulatory benchmarking model. The input variable

measures total expenditures(TotEx), which comprise five cost elements: the

value of lost load (VOLL), thermal power losses, capital depreciation, op-

eration and maintenance expenses, and return on capital.16 We follow the

14The TSO is subject to a separate regulation, which we do not discuss in this paper.
15A more detailed discussion of the different regulatory phases is given by Bjørndal et al.

(2010) and Amundsveen and Kvile (2015).
16Most of the firms also own and operate part of the regional transmission network, and

NVE reallocates part of this cost to the (local) distribution activity. For simplicity, we do

not include the reallocated cost in our analyses, and our results may differ somewhat from

the efficiency measurements published by NVE.
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practice of NVE and construct our benchmarks based on average data over a

five-year period, having adjusted the data to the price level of a base year.17

Output variables measure the number of customers, length of the high volt-

age network, and the number of network stations (transformers).

Table 1: Definitions of variables.

Variable Name Sub-variable Unit

Input

TotEx x

O&M costs 1000 NOK

Value of lost load (VOLL) 1000 NOK

Thermal power losses 1000 NOK

Capital depreciation 1000 NOK

Return on capital 1000 NOK

Outputs

Customers yCus - No. of customers

High voltage lines yHV - Kilometers

Network stations yNet - No. of stations

Environment

Average distance to road zDis - Meters

HV lines underground zUnd - Share of

HV network (0-1)

Forest (coniferous) zFor - Share of HV network

affected (0-1)

17We use an industry-specific price index for adjusting operations and maintenance costs

and the consumer price index for the VOLL costs. Thermal losses are valued at the average

system price for the base year. Capital depreciation is based on reported (nominal) book

values, and the return on capital is calculated using the nominal rate of return set by the

regulator for the base year.
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4.2.2 Environmental variables

We use three variables to measure heterogeneous operational conditions (see

Table 1). The first, zDis, is the average distance between the road network

and a firm’s network, representing the increased difficulty of maintaining

a network that is not easily accessible. The second, zUnd, is the share of

underground cables that may imply cost disadvantages because of expensive

installation as well as cost advantages in terms of fewer outages and lower

VOLL. The third is the share of fast-growing forest, zFor that may represent

a cost disadvantage due to the added cost of forest clearing.18

Table 2 lists the summary statistics for the 123 distribution firms. We use

average data for the period 2008-2012, and we set 2012 as the base year for

adjustment of the cost data. Note that averaging the data does not affect

the environmental variables, since their values are constant over time in our

dataset.

5 Results

5.1 Selected bandwidths

Table 3 lists the computed bandwidths.19 Given that they are the smoothing

parameters for estimating the conditional density of the multivariate kernel

function, they inform us about the impact of the z-variables on the produced

18We do not consider the two composite geographical variables used by NVE for this

period. With these two variables NVE combines several sub-variables, which involves

the use of principal component analysis (PCA). The nature of these variables prevents us

from obtaining reasonable bandwidths that remain stable over multiple runs. Nevertheless,

excluding both variables does not affect the overall analysis.
19The estimates have been scaled so that they are comparable with the corresponding

z-values. For the Epanechikov kernel the scaling factor is
√

5.
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Table 2: Summary statistics (n = 123).

Input Outputs Environment

TotEx yCus yHV yNet zDis zUnd zFor

Mean 95045.6 22669.7 796.2 1006.6 227.8 0.3386 0.1191

Std. dev. 188994.6 59221.2 1328.0 1893.4 208.6 0.1755 0.0994

Minimum 8456.2 1014.2 54.0 59.0 70.4 0.0571 0.0000

Median 35738.9 6386.8 324.8 369.4 142.9 0.3060 0.1191

Maximum 1579179.2 547693.0 8494.6 13491.4 1056.4 0.8641 0.3916

Notes: Average data for the period 2008-2012; 2012 is base year for adjustment of the cost

data.

output y. Therefore, they indicate a respective z-variable’s importance for

selecting the reference set in our conditional efficiency estimation.

For the distance to road variable zDis, Table 3 shows a very large bandwidth

compared to the median value of 142.9 shown in Table 2. Thus, this variable

is smoothed out in the kernel density estimation, which implies that the

overall impact of zDis on output y is limited, and therefore, the reference sets

are not restricted by zDis. The magnitudes of bandwidths for the other two

variables, 0.29615 for zUnd and 0.12891 for zFor, are considerably smaller.

For interpretation, we again compare the bandwidths to the median values

in Table 2, i.e., 0.306 for zUnd and 0.1191 for forest zFor, respectively. We

suggest that the exogenously induced cost disadvantages, which would be

measured as inefficiency, if not controlled for, are most likely due to zUnd and

zFor.
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Table 3: Estimated bandwidths for z-variables

Variable Bandwidth

Average distance to road zDis 1299522861

HV lines underground zUnd 0.29615

Forest (coniferous) zFor 0.12891

5.2 Reference sets and selected peers

To illustrate how estimated bandwidths affect the selection of the firms com-

prising the reference set, when individual firms are benchmarked, we start by

looking at a firm which we will denote i0. Figure 1 shows the two-dimensional

contour plots of the kernel density function for firm i0 indicated by the yellow

point. Its values for zDis, zUnd, and zFor are 162, 0.5236, and 0.1307, respec-

tively. We only select firms with positive kernel density values as members

of firm i0’s reference set, i.e., any firm i in the sample for which the values

of each z-variable j ∈ {Dis, Und, For} satisfies |zij − zi0j| ≤ hj.

The shaded areas in both panels of Figure 1 represent the respective combina-

tions of two z-variables for which firms obtain positive kernel density values.

The left panel shows that the possible peers of firm i0 will be firms with

zUnd and zFor values within the range of [0.2274, 0.8197] and [0.0018, 0.2596],

respectively, i.e., the 70 firms indicated by black dots. Gray dots indicate

firms that are too different from firm i0 to be selected in its reference set.

The shaded area in the right panel is not limited in the dimension of dis-

tance, which is due to its large bandwidths. Note that this shaded area also

includes gray-colored firms because they are similar in terms of zDis but not

in terms of zUnd, and therefore, do not belong to the reference set of firm i0.

Given that the kernel centers around firm i0, the density estimation produces
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Figure 1: Kernel densities and reference set for firm i0 .

a reference set specific to each firm. Figure 2 shows that both the size of the

reference set and number of peers differ between the unconditional and the

conditional approaches. The blue crosses and the black circles in Figure 2

indicate the number of selected peers for each firm by model. The number

of selected peers for firm i is the number of firms out of its reference set that

serve as peers for this firm in at least one of the bootstrap samples.20 For

almost all firms, note that unconditional DEA selects more peers for efficiency

evaluation than conditional DEA. The green line is the number of identical

peers within both groups. In extreme cases the overlap of selected peers

is very small or even zero, which is particularly true for firms with a small

number of selected peers under unconditional DEA. In fact, Figure 2 shows

20If λmbij is the weight of firm j in the reference set of firm i in bootstrap sample b, we

let λ
m

ij = B−1
∑B

b=1 λ
m
bij denote the average weight of firm j for efficiency measurement of

firm i. The number of selected peers for firm i counts the firms j for which λ
m

ij > 0.

17



that when unconditional DEA is used, each firm in our sample is evaluated

against a frontier spanned by peers with dissimilar operational environments

(for a detailed list of the sizes of reference sets and identical and different

peers in unconditional and conditional models see Appendix 7).
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Figure 2: Number of peers.

5.3 Efficiency estimates

We focus on our three efficiency measures (θ̃, θ̃c, θ̃NV E) to demonstrate the

effect of differences with respect to reference sets and peer selection. Table

4 lists the descriptive statistics of the estimated efficiency scores.

As expected, the statistics of θ̃c exceed their unconditional counterparts for

θ̃. For example, the median efficiency score is 0.6977 when exogenous factors

are accounted for and greater than 0.6557 where the frontier is estimated
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without considering heterogeneous operation environments. The difference

between the point estimates indicates that exogenous factors indeed produce

cost disadvantages for the median firm, shifting its feasible frontier such that

its efficiency increases by roughly 4 percent. Hence, if θ̃ scores are used for

any further analysis, the median firm will be evaluated based on a technically

infeasible frontier.

Comparing θ̃c with θ̃NV E estimates reveals that efficiency is higher when

the correction for external factors is made via second-stage regression. We

interpret this finding as empirical evidence of biased performance measures

and note that this bias results from both the underlying and economically

meaningless θ̃ estimates and the second-stage regression, which assumes that

z-variables do not affect the frontier. Based on these results, it is likely

that NVE compensates both the frontier shifts due to exogenous variables

and the managerial inefficiency because the effects of both on the estimated

technology are not appropriately separated.

Table 4: Descriptive statistics of efficiency estimates.

Estimator Min Median Mean Max∗ Std. dev.

1. Unconditional DEA θ̃ 0.4003 0.6557 0.6744 0.9607 0.1195

2. Conditional DEA θ̃c 0.4277 0.6977 0.7141 1.0000 0.1343

3. NVE DEA θ̃NV E 0.4322 0.7246 0.7387 1.0061 0.1232

Note: All estimates are based on bias-corrected efficiency scores. ∗Maximum

values can differ from 1 due to bias-correction.

The rank correlations shown in Table 5 further illustrate the relationship be-

tween the estimators. We see that the second-stage adjustment under NVEs

method does not affect the firm ranking very much, since the correlation

between θ̃ and θ̃NV E is as high as 0.96, while the ranking under conditional
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DEA is less correlated with the rankings based on the other two estima-

tors. This could imply that the relative effects of adjustment for exogenous

cost drivers are greater with the conditional DEA method than with NVEs

current procedure.

Table 5: Rank correlations between efficiency estimates.

θ̃ θ̃c θ̃NV E

θ̃ 1.00 0.89 0.96

θ̃c 1.00 0.88

θ̃NV E 1.00

5.4 Impact of the exogenous factors on the frontier

In addition to the bandwidths obtained as mentioned above, we want to ana-

lyze the impact of the environmental variables on the production process by

using the ratio of conditional to unconditional efficiency scores. Bădin et al.

(2012) emphasize that unconditional measures of efficiency are economically

meaningless if z-variables impact the frontier since units are compared to

infeasible production plans. Knowing that conditional measures control for

this, the ratio, therefore, informs us about the local effect of z-variables on

the attainable frontier.21 The ratio ρ is defined as

ρ =
θ̃c

θ̃
(8)

where we refer to the bias-corrected measures. The ratio ρ takes the value

of 1 if both measures are equal, i.e. there is no frontier shift, whereas other

values imply that the feasible frontier shifts due to z-variables. A ratio larger

21In this paper, this is independent of the inherent efficiency of the firms which the full

frontier estimations are supposed to reduce by regulatory incentives.
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than 1 implies that the conditional exceeds the unconditional efficiency score

indicating cost disadvantages due to the external factors, whereas ratios with

values smaller than 1 indicate cost advantages. To analyze the local effect

of the exogenous factors on the feasible frontier, we plot the ratio of θ̃c to

θ̃. Both panels in Figure 3 sort firm-specific efficiency ratios in an increasing

order of the values of zUnd and zFor.
22

Notably, the ratios of the two performance measures differ from 1 for almost

all firms; the range is roughly 0.9 to 1.4. Hence, z-variables significantly affect

production. Also, in 95 of the 123 firms, the ratio, based on bias-corrected

efficiency estimates, is larger than 1. Therefore, the frontier-shifting factors

mainly lead to cost disadvantages.
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Figure 3: Impact of exogenous factors on the frontier.

6 Effects for regulation

The three models also demonstrate that the choice of benchmarking model,

including how to compensate for the effect of exogenous factors, has impor-

22From the bandwidth analysis we know that the frontier shift is mainly driven by these

two factors.

21



tant regulatory effects for firms’ customers and owners. We start by looking

at the impact on the aggregate efficient costs and then look in detail at firm-

specific profitability (return on capital) and the average prices custumers

pay per kWh. We base our calculations on the current revenue cap model

used by the Norwegian regulator (NVE). Similar to Equation 1, as well as

the DEA-based mechanism proposed by Bogetoft (1997), the revenue cap for

firm i is set by

Ri = α · (C∗i + ∆i) + (1− α) · Ci, (9)

where α = 0.6. The efficient costs C∗i are either calculated by θ̃NV Ei · Ci or

as θ̃ci · Ci. The yardstick formula 9 is applied every year to set the annual

revenue caps, but in order to simplify the presentation we will drop the time

subscripts in our notation23.

NVE calibrates the revenue caps, by adding the amount ∆i to the efficient

cost of each firm24, in order to ensure that revenue equals cost for the industry

as a whole, i.e.,
∑
R =

∑
C. The rationale for the calibration, as described

in Amundsveen and Kvile (2015) and Bjørndal et al. (2010), is to allow the

representative firm, with an efficiency equal to the industry (cost-weighted)

average, to have a return on its capital equal to the regulated rate of return.

23We focus on the most important features of the Norwegian regulation. In practice,

there is a two-year time lag in the reporting; the revenue caps in year t must be based on

the data available after year t−2. We assume that the average of the data for 2008-2012 is

representative of a typical year, and we do not consider the timing of the revenue stream.

Many firms also own and operate part of the regional transmission network, but we do

not consider this part of their revenue caps.
24In the present regulation model, the calibration takes the form

∆i =

∑
C −

∑
C∗∑

BV
BVi,

where BVi is the total book value of capital for firm i. The use of book values in the

calibration formula is done to correct for a suspected age bias in the capital costs.
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Given the calibration scheme, firms that have above-average efficiency scores

will earn more than the regulated rate of return, while firms with below-

average efficiency scores will earn less.

6.1 Effect on aggregate efficient costs

Because of the revenue calibration performed by NVE, the compensation

scheme for exogenous factors will have no effect on aggregate revenue. In or-

der to study aggregate effects, we will therefore focus on efficient costs. The

first row in Table 6 shows the aggregate efficient cost from the unconditional

DEA model, i.e.,
∑
C∗(θ̃), and the second row shows what the compensation

for the exogenous factors will be when it is based on one of the estimators θ̃c

or θ̃NV E. The compensation of 893 MNOK under the current NVE regime

is higher compared to the conditional DEA model, where the compensation

equals 534 MNOK. The difference of 359 MNOK illustrates the compensa-

tion for managerial inefficiency, which the regulator allows under the current

regime in addition to the compensation for external factors influencing the

production process. Our findings thus show that the currently implemented

regime overestimates efficient production costs.

Table 6: Aggregate effects (MNOK).

Efficiency estimator v ∈ {c,NV E} θ̃c θ̃NV E

Uncompensated efficient cost
∑
C∗(θ̃) 8,392 8,392

Compensation
∑(

C∗(θ̃v)− C∗(θ̃)
)

534 893

Compensated efficient cost
∑
C∗(θ̃v) 8,926 9,285

Revenue calibration
∑

∆ 2,765 2,405

Industry revenue
∑(

C∗(θ̃v) + ∆
)

11,691 11,691
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Under the current regulatory scheme, where the regulator calibrates the final

revenue caps by adding ∆i to the efficient cost of each firm, the overcom-

pensation for exogenous factors will not affect the aggregate revenue. The

revenue calibration, i.e.,
∑

∆, equals 2,405 MNOK under the current regu-

latory model, whereas it would be 2,765 MNOK with our alternative model.

As shown on the last row of Table 6, the aggregate revenue will be unaffected

by the choice of compensation scheme.

6.2 Effect on firm-specific profits and customer prices

Figure 4 illustrates how the choice of compensation (θ̃c versus θ̃NV E) affects

the owners of the network firms. The columns represent the difference in

firm-specific revenues between NVE’s DEA model and the conditional DEA,

Ri(θ̃
NV E)−Ri(θ̃

c). In order to make the example interesting in a more general

setting, we also show firm-specific effects without the calibration effect, i.e.,

with ∆i = 0, as dots in the figure. We divide the firm-specific revenues by

their total book values, BVi, to see the effects on return on capital. In general,

the effects on return on capital vary from -3.8 (-3.2) percent to +5.4 (+6.0)

percent, where a positive value reflects a higher return on capital under the

NVE model compared to conditional DEA, and where numbers in parenthesis

are effects without calibration. The main effect that we see from the figure is

a reallocation of revenue due to the change in compensation method, and this

is related to the difference in relative efficiency scores under the respective

methods, cf., the difference in rank correlations shown in Section 5.3. The

difference between the calibrated and the uncalibrated effects is related to

the overcompensation of 359 MNOK in the efficient cost level by the NVE

two-stage method, as discussed in the previous section. According to formula

9, 60 percent of this overcompensation will be awarded to the firms, and this
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represents an increase of 0.6 percent in the return on capital for each firm.
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Figure 4: Effect on firms’ profits (rNV E2012 = 4.2%). Dots = uncalibrated

effects.

Figure 5 shows the same differences, Ri(θ̃
NV E) − Ri(θ̃

c), relative to the

total quantity of energy delivered by each firm, Energyi, to approximate

the average charged prices by each firm. The differences range from -0.030

(-0.021) NOK/KWh to +0.042 (+0.047) NOK/KWh, where a positive value

reflects higher prices for customers under the NVE model compared to con-

ditional DEA, and where numbers in parenthesis represent the differences

without calibration, i.e., with ∆i = 0. The average revenue collected from

the customers amount to 0.157 NOK/KWh, hence, the reallocation effect

of the compensatory scheme is considerable. The overcompensation of 359

MNOK in efficient costs amount to an increase, on average, of only 0.003

NOK/KWh in the customer prices, hence the ”overcompensation” effect is

small compared to the reallocation effect.
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Figure 5: Effect on calibrated revenue caps
(∑

Revenue∑
Energy

= 0.157NOK/KWh
)

.

Dots = uncalibrated effects.

7 Conclusion

In its basic notion, nonparametric benchmarking methods, such as data en-

velopment analysis that is implemented by several European energy regu-

lators, cannot disentangle the effects of managerial inefficiency and difficult

operational environments. Under revenue cap regulation, firms should be

compensated for the latter, but not the first. In particular, if environmental

factors are suspected to cause non-controllable costs, a two-stage method is

often used by energy regulators, including a second stage regression to correct

for environmental factors that are not accounted for in the first stage DEA

model. In this setting, the two-stage method is likely to capture multiple

effects, leading to over- or under-compensation of individual firms. Condi-

tional nonparametric benchmarking approaches have been designed to over-

come this challenge, restricting the selection of firms used to compare against
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the firm of interest, to those with similar environments. This paper proposes

a conditional DEA benchmarking model for electricity distribution, and com-

pares it to an unconditional model, as well as the model presently used by

the Norwegian regulator. A dataset of 123 Norwegian electricity distribution

firms is used to illustrate how managerial inefficiency can be estimated in

a meaningful way by comparing among firms operating in comparable envi-

ronments, i.e., a homogeneous technology. The proposed model is used to

compare the effect of conditioning on total efficient costs and revenues, firms’

rate of return, and customers’ prices. Based on the results, we observe that

the use of conditional benchmarking methods in revenue cap regulation may

lead not only to a decrease in aggregate efficient costs, but more importantly

to a reallocation effect that affects the relative profitability of firms and rela-

tive customer prices, and may provide a fairer basis for setting revenue caps.

This insight is relevant when using benchmarks for revenue cap regulation,

and, more generally, when nonparametric benchmarking is used to compare

decision making units in different operational environments.
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A Appendix

A.1 Unconditional DEA

The main idea is to estimate the unknown technology or production set Ψ

from a given sample of observed production units i = 1, ..., n. The set Ψ

contains all input-output-combinations that are feasible to the production

units and is defined as

Ψ =
{

(x, y) ∈ Rp+q
+ | x can produce y

}
with x ∈ Rp

+ and y ∈ Rq
+ being the vectors of inputs and outputs. The

boundary of Ψ is referred to as frontier and serves as the benchmark against

each individual observation is compared to in order to determine its efficiency.

The production set assuming constant returns to scale (CRS), as proposed

by Charnes et al. (1978), is defined as

Ψ̂CRS = {(x, y) ∈ Rp+q
+ | y ≤

∑n

i=1
λiyi, x ≥

∑n

i=1
λixi, (10)

and λi ≥ 0 for i = 1, ..., n}.

Using Ψ̂CRS, the level of inefficiency θ̂i for firm i can be estimated by solving

the following linear program

θ̂i = min{θ | θxi ≥
∑n

j=1
λjxj, yi ≤

∑n

j=1
λjyj, (11)

and λj ≥ 0 for j = 1, ..., n}.

The efficiency estimate θ̂i is the Debreu-Farrell input efficiency score and

indicates how much the unit of interest can reduce its inputs for a given level

of output. If θ̂i = 1 the observation i is considered fully efficient while θ̂i < 1

implies inefficiency.
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A.2 Reference sets and peers in different models

Table 7: Sizes of reference sets and identical and different peers in uncondi-

tional and conditional models.

Firm Ref. set Number of Ref. set Number of Number of Number of Number of

uncond. peers cond. peers identical peers in peers in

uncond. cond. peers uncond./ cond./

not in cond. not in uncond.

1 123 35 58 19 16 19 3

2 123 37 61 15 14 23 1

3 123 26 63 12 12 14 0

4 123 38 60 14 11 27 3

5 123 32 46 11 10 22 1

6 123 24 59 7 7 17 0

7 123 23 28 4 4 19 0

8 123 37 84 31 22 15 9

9 123 32 58 9 8 24 1

10 123 34 58 18 15 19 3

11 123 38 60 16 9 29 7

12 123 31 63 22 11 20 11

13 123 35 59 17 13 22 4

14 123 38 81 31 21 17 10

15 123 37 15 4 4 33 0

16 123 37 82 27 20 17 7

17 123 37 73 22 16 21 6

18 123 38 51 15 12 26 3

19 123 37 67 17 14 23 3

20 123 27 53 11 11 16 0

21 123 36 61 14 13 23 1

22 123 33 59 16 13 20 3

23 123 37 73 20 16 21 4

24 123 38 60 16 11 27 5

25 123 29 19 5 5 24 0

26 123 38 53 18 14 24 4

27 123 37 71 23 15 22 8

28 123 36 8 1 0 36 1

29 123 36 7 2 1 35 1

30 123 33 71 20 14 19 6

31 123 30 8 1 1 29 0
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Table 7: Sizes of reference sets and identical and different peers in uncondi-

tional and conditional models.

Firm Ref. set Number of Ref. set Number of Number of Number of Number of

uncond. peers cond. peers identical peers in peers in

uncond. cond. peers uncond./ cond./

not in cond. not in uncond.

32 123 39 67 21 17 22 4

33 123 35 84 27 21 14 6

34 123 28 46 9 8 20 1

35 123 25 50 10 10 15 0

36 123 39 84 23 19 20 4

37 123 37 68 23 17 20 6

38 123 33 58 17 12 21 5

39 123 38 78 25 19 19 6

40 123 35 73 16 14 21 2

41 123 14 51 5 5 9 0

42 123 33 49 12 11 22 1

43 123 24 60 10 9 15 1

44 123 18 47 5 5 13 0

45 123 31 36 11 8 23 3

46 123 31 59 18 14 17 4

47 123 35 63 16 14 21 2

48 123 35 98 34 23 12 11

49 123 36 92 26 21 15 5

50 123 27 61 13 11 16 2

51 123 36 76 29 21 15 8

52 123 33 65 15 14 19 1

53 123 24 60 13 11 13 2

54 123 37 74 15 14 23 1

55 123 35 15 3 2 33 1

56 123 23 47 12 9 14 3

57 123 34 47 11 8 26 3

58 123 38 65 21 16 22 5

59 123 40 81 33 25 15 8

60 123 36 98 28 25 11 3

61 123 27 64 13 12 15 1

62 123 36 106 37 25 11 12

63 123 42 104 34 30 12 4

64 123 37 105 39 27 10 12
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Table 7: Sizes of reference sets and identical and different peers in uncondi-

tional and conditional models.

Firm Ref. set Number of Ref. set Number of Number of Number of Number of

uncond. peers cond. peers identical peers in peers in

uncond. cond. peers uncond./ cond./

not in cond. not in uncond.

65 123 39 63 21 15 24 6

66 123 34 65 10 8 26 2

67 123 38 68 21 14 24 7

68 123 26 57 14 9 17 5

69 123 29 70 19 11 18 8

70 123 32 56 13 12 20 1

71 123 32 39 10 6 26 4

72 123 36 90 35 22 14 13

73 123 40 61 19 15 25 4

74 123 17 53 10 9 8 1

75 123 39 65 19 15 24 4

76 123 36 4 3 2 34 1

77 123 36 79 27 21 15 6

78 123 37 91 31 23 14 8

79 123 25 65 13 11 14 2

80 123 33 54 12 10 23 2

81 123 33 50 6 5 28 1

82 123 41 67 26 17 24 9

83 123 37 46 12 10 27 2

84 123 35 28 11 4 31 7

85 123 31 56 15 6 25 9

86 123 35 69 21 12 23 9

87 123 34 47 9 8 26 1

88 123 37 81 29 19 18 10

89 123 40 93 30 25 15 5

90 123 38 73 19 15 23 4

91 123 38 62 18 15 23 3

92 123 32 56 8 7 25 1

93 123 35 41 13 5 30 8

94 123 36 60 14 12 24 2

95 123 32 88 26 15 17 11

96 123 25 56 15 8 17 7

97 123 34 62 16 11 23 5
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Table 7: Sizes of reference sets and identical and different peers in uncondi-

tional and conditional models.

Firm Ref. set Number of Ref. set Number of Number of Number of Number of

uncond. peers cond. peers identical peers in peers in

uncond. cond. peers uncond./ cond./

not in cond. not in uncond.

98 123 38 88 31 22 16 9

99 123 37 60 18 16 21 2

100 123 37 65 20 14 23 6

101 123 34 76 21 15 19 6

102 123 29 24 10 5 24 5

103 123 36 44 12 8 28 4

104 123 39 66 21 17 22 4

105 123 33 70 15 10 23 5

106 123 31 64 20 13 18 7

107 123 35 44 12 10 25 2

108 123 37 61 17 15 22 2

109 123 34 50 11 8 26 3

110 123 37 81 30 21 16 9

111 123 36 25 11 4 32 7

112 123 37 97 28 24 13 4

113 123 34 43 13 10 24 3

114 123 23 13 5 5 18 0

115 123 38 62 17 13 25 4

116 123 38 61 19 15 23 4

117 123 34 62 19 13 21 6

118 123 38 58 19 14 24 5

119 123 30 59 17 12 18 5

120 123 13 16 2 2 11 0

121 123 32 28 9 6 26 3

122 123 34 91 27 19 15 8

123 123 29 76 21 16 13 5

Average 34 60 17 13 21 4

Min 13 4 1 0 8 0

Max 42 106 39 30 36 13
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