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Fair risk allocation in illiquid markets

PETER CSOKA

Abstract

Let us consider a financially constrained leveraged financial firm having some divisions
which have invested into some risky assets. Using coherent measures of risk the sum of the
capital requirements of the divisions is larger than the capital requirement of the firm itself,
there is some diversification benefit that should be allocated somehow for proper
performance evaluation of the divisions. In this paper we use cooperative game theory and
simulation to assess the possibility to jointly satisfy three natural fairness requirements for
allocating risk capital in illiquid markets: Core Compatibility, Equal Treatment Property and
Strong Monotonicity.

Core Compatibility can be viewed as the allocated risk to each coalition (subset) of divisions
should be at least as much as the risk increment the coalition causes by joining the rest of the
divisions. Equal Treatment Property guarantees that if two divisions have the same stand-
alone risk and also they contribute the same risk to all the subsets of divisions not containing
them, then the same risk capital should be allocated to them. Strong Monotonicity requires
that if a division weakly reduces its stand-alone risk and also its risk contribution to all the
subsets of the other divisions, then as an incentive its allocated risk capital should not
increase. Analyzing the simulation results we conclude that in most of the cases it is not
possible to allocate risk in illiquid markets satisfying the three fairness notions at the same

time, one has to give up at least one of them.

Keywords: Market Microstructure, Coherent Measures of Risk, Market Liquidity, Funding
Liquidity, Portfolio Performance Evaluation, Risk Capital Allocation, Risk Contributions,

Totally Balanced Games, Simulation
JEL classification: C71, G10
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Igazsagos kockazatfelosztas nem likvid piacokon

CSOKA PETER

Osszefoglald

Tekintslink egy tSkeattételes pénziigyi vallalatot, amelynek nem likvid portfélidkat tartd
diviziéi vannak! Koherens kockazati mértékek hasznédlata esetén a diviziok
tékekovetelményének Osszege nagyobb, mint a vallalat t6kekovetelménye, diverzifikacios
elény keletkezik, amelyet valahogy el kell osztani a diviziok jobb teljesitményértékelése
végett. Ebben a tanulmanyban kooperativ jatékelmélet és szimulacio segitségével elemezziik
azt, hogy mennyire lehet nem likvid piacon harom természetesnek tin6 igazsagossagi
kovetelmény alapjan felosztani a kockéazatot: ezek a magbeliség (Core Compatibility), az
egyenl6 kezelés (Equal Treatment Property) és az er6s monotonitas (Strong Monotonicity).

A magbeliség kovetelménye az, hogy a diviziok tetszéleges koaliciojara (részhalmazara)
legalabb annyi kockézatot allokaljunk, mint amekkora kockazatnovekedést okoz az, ha a
koalici6 csatlakozik a tobbi divizibhoz. Az egyenlGen kezelés tulajdonsag azt garantalja, hogy

ha két divizi6 annyira szimmetrikus, hogy ugyanaz a kockazatuk és a diviziok Osszes, Gket

ss07

s s07

kevesebb kockézatot tesz hozza, akkor (6sztonzésképpen) a raosztott téke nem névekedhet. A
szimulacios eredményeket elemezve arra a végkovetkeztetésre jutunk, hogy a legtobb esetben
nem likvid piacokon nem lehetséges a harom igazsagossagi kovetelményt egyszerre

teljesiteni, valamelyikr6l le kell mondanunk.

Targyszavak: piaci mikrostruktiira, koherens kockazati mértékek, piaci likviditas,
finanszirozasi  likviditds,  portfolidteljesitmény-értékelés,  tékeallokacid,  teljesen

kiegyensulyozott jatékok, szimulacié

JEL kéd: C71, G10
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Abstract

Let us consider a financially constrained leveraged financial firm having some
divisions which have invested into some risky assets. Using coherent measures of
risk the sum of the capital requirements of the divisions is larger than the capital
requirement of the firm itself, there is some diversification benefit that should be
allocated somehow for proper performance evaluation of the divisions. In this paper
we use cooperative game theory and simulation to assess the possibility to jointly sat-
isfy three natural fairness requirements for allocating risk capital in illiquid markets:
Core Compatibility, Equal Treatment Property and Strong Monotonicity.

Core Compatibility can be viewed as the allocated risk to each coalition (subset)
of divisions should be at least as much as the risk increment the coalition causes by
joining the rest of the divisions. Equal Treatment Property guarantees that if two
divisions have the same stand-alone risk and also they contribute the same risk to
all the subsets of divisions not containing them, then the same risk capital should be
allocated to them. Strong Monotonicity requires that if a division weakly reduces its
stand-alone risk and also its risk contribution to all the subsets of the other divisions,
then as an incentive its allocated risk capital should not increase. Analyzing the
simulation results we conclude that in most of the cases it is not possible to allocate
risk in illiquid markets satisfying the three fairness notions at the same time, one has

to give up at least one of them.
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Funding Liquidity, Portfolio Performance Evaluation, Risk Capital Allocation, Risk
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1 Introduction

Let us consider a financially constrained financial firm having some divisions (subunits)
which have invested into some risky assets and have some liabilities. As a cushion against
possible future losses, some capital (equity) should be held by the firm, otherwise it would
not be credible that it is able to pay back its liabilities. A coherent measure of risk (Artzner,
Delbaen, Eber, and Heath, 1999) assigns a number to the profit and loss distribution of
the value of the portfolio of the firm at a specific future point of time. When gross assets
(without netting the liabilities) are taken as the portfolio of the firm, then the measure
of risk reflecting the preferences of the regulator or the firm is negative, its absolute value
can be seen as a “safe valuation” of the assets. The capital requirement in this case can
be calculated in the following way: liabilities minus the safe value of the assets determined
by the measure of risk. Since the capital should be kept by the firm in riskless assets,
dividing the returns of the divisions by the respective capital requirements can serve as a
performance evaluation measure. Using coherent measures of risk the sum of the capital
requirements of the divisions is larger than the capital requirement of the firm itself, there
is some diversification benefit hat should be allocated somehow (for more details and
applications see Denault (2001), Kalkbrener (2005), Buch and Dorfleitner (2008), Homburg
and Scherpereel (2008), Kim and Hardy (2009), and Cséka, Herings, and Kéczy (2009)
among others).

Cséka and Herings (2014) extend the usual cooperative game theory approach (risk
allocation games) to handle the problem of risk capital allocation when the divisions might
have illiquid assets by combining the notions of Cséka, Herings, and Kéczy (2009) and
Acerbi and Scandolo (2008). To define a cooperative game one should assign a payoff to
all coalitions of players, that is to all subsets of the divisions. In a risk allocation game the
payoff of a coalition is the opposite of its risk, where risk is measured by using a coherent
measure of risk on the possible realizations of the value of the portfolio of the coalition.
When having illiquid portfolios, the realization value of the portfolio of a coalition in a
certain state depends on how easy it is to trade its assets (captured by random marginal
demand curves) and on the required composition of the portfolio (called liquidity policy).
To analyze how funding constraints affect fair risk allocation, in this paper we will use
cash liquidity policies with short sale constraints, where a certain amount of cash should
be generated and short sales are not allowed.! The random marginal demand curves lead
to different optimal trades (sales) to satisfy the cash liquidity policy of the firm. After
executing optimal trades by the coalition of divisions, the realized value of the resulting

portfolio is determined by using the best bid prices of the resulting assets. Since the

'To cover the risk of upward moving prices, usually the proceeds of a short sale are not allowed to be

used in another transaction.



coalitions of the divisions could trade at the same time, they face an externality problem:
their optimal trade depends on the trades done by the other divisions outside the coalition.
Cséka and Herings (2014) argue that the most reasonable way to handle this problem is
that the divisions outside the coalition at hand remains inactive, so their portfolios can be
considered as fixed and they define risk allocation games with liquidity this way.

Having the payoffs of the coalitions allows us to use standard game theory concepts (like
the Shapley value (Shapley, 1953) or the nucleolus (Schmeidler, 1969)) as risk allocation
rules to split up the risk capital of the firm to its divisions in any possible situations. In
this paper we will assess the possibility to jointly satisfy three fairness requirements for
allocating risk capital in illiquid markets introduced by Cséka and Pintér (2014): Core
Compatibility, Equal Treatment Property and Strong Monotonicity. Core Compatibility is
satisfied if the risk of the firm is allocated in such a way that no coalition of the divisions
would have a lower risk by being alone. Such allocations are said to be in the core of the
game. Csdka and Pintér (2014) notes that Core Compatibility can also be viewed as the
allocated risk to each coalition of divisions should be at least as much as the risk increment
the coalition causes by joining the rest of the divisions. Equal Treatment Property guar-
antees that if two divisions have the same stand-alone risk and also they contribute the
same risk to all subsets of divisions not containing them, then the same risk capital should
be allocated to them. Strong Monotonicity requires that if a division weakly reduces its
stand-alone risk and also its risk contribution to all subsets of the other divisions, then as
an incentive its allocated risk capital should not increase.

A subgame is obtained by considering a subset of the divisions of the firm and looking
the resulting risk allocation game. A totally balanced game has a non-empty core in all
of its subgames. Csdéka and Herings (2014) show that the class of risk allocation games
with liquidity coincides with the class of totally balanced games, generalizing the result
by Cséka, Herings, and Kdéczy (2009) for risk allocation game without liquidity. The
coincidence means that firstly, any totally balanced game can be generated by a properly
chosen risk allocation game with or without liquidity and secondly, it also means that any
risk allocation game with or without liquidity is totally balanced, that is Core Compatibility
alone can be satisfied. However, Cséka and Pintér (2014) show that on the class of totally
balanced games the Shapley value is the only risk allocation rule satisfying Equal Treatment
Property and Strong Monotonicity at the same time. However, it is well-known that the
Shapley value does not satisfy Core Compatibility in general, hence in theory the three
requirements are irreconcilable.

Looking at the impossibility problem from a practical perspective, the Shapley value
in a random but realistic risk allocation game with liquidity is not always expected to

satisfy Core Compatibility. Hence we can assess the possibility to allocate risk in a fair



way in illiquid markets by checking the average Core Compatibility of the Shapley value
in such random risk environments with liquidity considerations. In the simulation we will
consider first 3, then 4 divisions and simulate 100 000 random risk allocation games with
liquidity. We will see that for 3 divisions in at least 30%, for 4 divisions in at least 50
% of the cases the Shapley value (being the only risk allocation rule which satisfies Equal
Treatment Property and Strong Monotonicity at the same time) does not satisfy Core
Compatibility, and for more divisions we can expect that the tendency continues. So we
can say that it is most of the time not possible to allocate risk in illiquid markets satisfying
the three fairness notions at the same time, one has to give up at least one of them.

We are aware of two papers doing similar simulations. Homburg and Scherpereel (2008)
are also checking the average Core Compatibility of the Shapley value (among other rules),
but in their setting Value at Risk is used (which is not a coherent measure of risk) and
there are no liquidity constraints. In their paper for 3 and 4 divisions the average Core
Compatibility of the Shapley value becomes 80-90%, but using Value at Risk the resulting
game is not totally balanced, and hence that result says nothing about the other two
fairness requirements. Balog, Bétyi, Cséka and Pintér (2014) discuss analytically which
out of the three fairness properties are met by seven different risk allocation methods. They
also simulate random risk allocation games with coherent measures of risk, for normal and
also for fat tailed return distributions. Without liquidity and for normal distribution our
results are comparable. However, they do not take into account illiquid assets.

The structure of the paper is as follows. In Section 2 we define risk allocation games
with liquidity constraint. Section 3 defines the Shapley value and discusses some of its
main properties to be used as fair. Section 4 contains the simulation results and Section 5

concludes.

2 Risk allocation games with liquidity constraints

We consider a firm with n divisions, whose risk capital should be allocated. Risk envi-

ronments with liquidity considerations are defined by Cséka and Herings (2014) and are
denoted by (N, J, S, 7,0, m, L, p), where

e N is the set of divisions,

e S is the set of states of nature,

state of nature s € S occurs with probability m, > 0, where ) _ 7, = 1,
e we have cash and J is the set of risky assets,
e "= (0i,0,) € R x R’ = P is the initial portfolio of division 4,
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e {m}} is the Marginal Demand Curve of asset j in state s € S,

e [ C R’/*! is the liquidity policy, the set of portfolios which is deemed acceptable,

and

e p is a coherent measure of risk.

Next, we define all above mentioned elements in detail. We follow Cetin, Jarrow and
Protter (2004), Jarrow and Protter (2005) and Acerbi and Scandolo (2008) in modeling
the order book for asset j in state s € S by a marginal demand curve mj. A function is
cadlag if it is right continuous with left limits and ladcag if it is left continuous with right

limits.

Definition 2.1. The marginal demand curve (MDC) for asset j € J in state s € S is
given by the map m; : R\ {0} — R satisfying

(i) m3(x) > mi(a') if x < 2;

(ii) m$ is cadlag at z < 0 and ladcag at = > 0.

For asset j the amount m}(x) for x > 0 shows the marginal revenue the firm can get

S

J
denotes the best bid and m?(0;) the best ask price.

The liquidation value of a portfolio will be needed to calculate attainable portfolios.

by selling it, whereas m?(x) for x < 0 represents the marginal cost of buying it; mS(O;“)

Definition 2.2. The liquidation mark-to-market value of a portfolio p € P in state s € §
is defined by

(p) = po + Z /pg m;(z)dx. (1)
jeg V0
The liquidation mark-to-market value of a portfolio equals to the portfolio’s cash plus
the revenue that the firm gets by selling long positions minus the cost, which has to be
paid to close short positions.
The set of portfolios attainable from some given portfolio p € P in state s € S by
liquidating all or part of it is given by

A*(p) ={a € Pl q=€(po,ps —qs)}

Given a portfolio p and liquidating p; — ¢ results in portfolio ¢ where the cash is pg
plus the liquidation value of p; — q;.

The liquidity policy (Acerbi and Scandolo, 2008) incorporates the requirements imposed
by a regulator or the contractual obligations that have to be met, and specifies that the

portfolio of the firm should belong to the set L. C P. In this paper we consider cash
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liquidity policies with short sale constraints, where the portfolio should contain at least
¢ > 0 units of cash and short sales are not allowed: L(c) = {p € P|py > c and p; > 0}.

For a portfolio p € P, we denote the assets hold long by J*(p) = {j € J | p; > 0} and
the assets hold short by J~(p) ={j € J | p; < 0}.

Definition 2.3. The uppermost mark-to-market value of a portfolio p € P in state s € S
is defined by

u® po+ > mi0N)p+ Y mi07)p;. (2)

J€J*(p) JEJ~(p)

In the uppermost mark-to-market value of a portfolio long positions are evaluated by
using the best bid prices and short positions are valued by using the best ask prices.

Artzner, Delbaen, Eber, and Heath (1999) have introduced coherent measures of risk.
A measure of risk is a function p : R® — R measuring the risk of a realization vector from
the perspective of the present. In our simulations we use a particular coherent measure of
risk, the k-Expected Shortfall (Acerbi and Tasche, 2002), which is the average of the worst
100k percent of the losses.

After completing the definition of a risk environment with liquidity considerations
(N, J,S,7,0,m, L, p) we can use tools from cooperative game theory to analyze them.

Let N denote the finite set of players. A cooperative game with transferable utility
(game, for short) is a function v : 2V — R such that v(()) = 0. The class of games with
player set N is denoted by G. For a game v € GV and a coalition C' € 2V, a subgame vc
is obtained by restricting v to the subsets of C'.

An allocation is a vector x € RY, where z; is the payoff of player i € N. An allocation
z yields payoff 2(C) = Y, o 2; to a coalition C' € 2V. An allocation z € RY is called
Efficient, if x(N) = v(N) and Coalitionally Rational if x(C) > v(C) for all C € 2V. The
core (Gillies, 1959) is the set of Efficient and Coalitionally Rational allocations. The core
of game v is denoted by core (v). A game is totally balanced, if each of its subgame has a
non-empty core. Let G denote the class of totally balanced games with player set N.

The question is how to define the cooperative game where the divisions (players) hold
illiquid portfolios. Cséka and Herings (2014) argue that the most reasonable way to han-
dle externalities in this setting is to assume that the complement of coalition C' remains
inactive. The portfolios which are attainable for coalition C' in state s € S are given by
A5(0(C)), where 0(C') = >, 0. Inactivity of the complementary coalition means that
those divisions stick to their initial portfolio (N \ C).

Definition 2.4. Given a risk environment with liquidity considerations (N, J, S, 7,8, m, L, p)

and a coalition of divisions C' C N, the realization vector X (C') of coalition C' is defined



X3(C) =sup{u’(q)|q € A*(6(C)) and ¢+ O0(N\C) € L*}, seS.

When calculating X*(C'), we consider the portfolios of the divisions outside the coalition
as fixed, and liquidate the portfolios of the divisions in C' in such a way that the resulting

portfolio of the firm is attainable and satisfies the liquidity policy.

Definition 2.5. Given a risk environment with liquidity considerations (N, J, S, 7,0, m, L, p),
the risk allocation game with liquidity constraints is the game (N, v), where the value func-
tion v : 2V — R is defined by

v(C) = —p(X(C)), Ce2V. (3)

Let T';; denote the family of risk allocation games with liquidity constraints with set of
players N.

Next, we introduce three fairness properties of risk allocation rules.

3 The Shapley value as a risk allocation rule

Throughout the paper we consider single-valued risk allocation rules. The function v :
A — RV, defined on A C GV, is called risk allocation rule on the class of games A if
Y ien @i = v(IV), that is if the value of the whole firm is allocated, where ¢; specifies how
much the assets of division ¢ is valued according to ¢.

Let v € GY and i € N be a game and a player, and for all C C N let v}{(C) =
v(C'U{i}) — v(C) denote player i’s marginal contribution to coalition C' in game v. Then
v, is called player i’s marginal contribution function in game v. Player ¢ is a null-player in
game v, if v; = 0. Moreover, players i and j are equivalent in game v, i ~* j, if for any
C C N such that 7,5 ¢ C we have that v}(C) = v/,(C).

J

Definition 3.1. For any game v € GV the Shapley value (Shapley, 1953) of player i , ¢;

is given by

o) = ¥ o)LA= e (@)
CCN\{i}

The Shapley value can be interpreted as follows. Players are entering into a room in
all possible permutations |N|! with equal probability. The Shapley value of a player is the
expected marginal contribution she makes to the coalition preceding her. Players before
her can enter |C|! ways, players after her can enter |V \ C| — 1)! ways.

Csdka and Pintér (2014) introduce four basic properties (axioms) a risk allocation rule

should satisfy.



Definition 3.2. The risk allocation rule ¢ on class A C GV satisfies

e Core Compatibility if for each v € A: ¥ (v) € core (v),
o Equal Treatment Property if for each v € A, 4,j € N: i ~¥ j implies ¢;(v) = ¢;(v),
e Strong Monotonicity if for any v,w € A, i € N: v, < w} implies ¢;(v) < ¢;(w).

The financial interpretations of the axioms are as follows.

Core Compatibility is satisfied if the risk allocation rule results in a core allocation, in
which the risk of firm is allocated in such a way that no coalition of the divisions would
have a lower risk by being alone. Cséka and Pintér (2014) notes that Core Compatibility
can also be viewed as the allocated risk to each coalition of divisions should be at least as
much as the risk increment the coalition causes by joining the rest of the divisions.

Equal Treatment Property guarantees that if two divisions have the same stand-alone
risk and also they contribute the same risk to all subsets of divisions not containing them,
then the same risk capital should be allocated to them.

Strong Monotonicity requires that if a division weakly reduces its stand-alone risk and
also its risk contribution to all subsets of the other divisions, then as an incentive its
allocated risk capital should not increase.

Cséka and Herings (2014) show that the class of risk allocation games with liquidity
coincides with the class of totally balanced games, generalizing the result by Csoka, Herings,
and Kéczy (2009) for risk allocation games without liquidity. The coincidence means that
at first, any totally balanced game can be generated by a properly chosen risk allocation
game with or without liquidity and secondly, it also means that any risk allocation game
with or without liquidity is totally balanced, that is Core Compatibility alone can be
satisfied. Note that the coincidence remains valid in our setting (using cash liquidity
policies with short sale constraints), since they show that using any liquidity policy the
generated game is totally balanced, and any totally balanced game can be generated by
using any liquidity policy with perfectly liquid assets. However, Cséka and Pintér (2014)
show that on the class of totally balanced games the Shapley value is the only risk allocation
rule concept satisfying Equal Treatment Property and Strong Monotonicity at the same
time, but it is well-known that it does not satistfy Core Compatibility in general, hence the
three requirements are irreconcilable. Thus the Shapley value in a random risk allocation
game with liquidity is not always expected to satisfy Core Compatibiliy. Hence we assess
the possibility to allocate risk in a fair way when we have illiquid markets by checking the
average Core Compatibility of the Shapley value in such random risk environments with

liquidity considerations.



4 Simulation results

In the simulation we will consider first n = 3, then n = 4 divisions with the following
parameters and simulate 100 000 random risk allocation games with liquidity. We have
1000 states of nature having equal probability of occurrence, S = {1,...,1000}. One can
look at it as considering daily market changes for 4 years. We have cash (euros) and
j = n risky assets, the set of possible portfolios is P = R x R™. The initial portfolios of the
divisions in million units in case of 3 players are given by §* = (1,1,0,0), §* = (2,0,1,0) and
6% = (3,0,0,1); in case of four players they are given by ' = (1,1,0,0,0), 6* = (2,0, 1,0,0),
63 = (3,0,0,1,0) and #* = (0,0,0,0,1). Thus each division has some non-negative cash
and 1 million units of an asset in which the other divisions have no positions. We normalize
the initial price of each risky asset to be 1000 and say that the initial investment into risky
assets for each division is 1000 million euros.

To define {m3}, the Marginal Demand Curve (MDC) of asset j in state s € S we need
the following random numbers, where m € {1,...,100 000} labels the risk allocation game,
s € S corresponds to the state and j € {1,...,n} refers to the asset:
it
r;, the logarithmic return of asset j is uniformly distributed between 1% and 4%.

e Random covariance matrices ¥™ € R™*" where X7, the daily standard deviation of

e Joint normal distribution of the returns (r;) with mean 0 and covariance ™.

e Let the market risk driver be A; = 1000 x €7 and let the liquidity risk driver k; be
uniformly distributed between 1 and 50.

e We will use the exponential MDCs analyzed by Acerbi and Scandolo (2008), where
for state s € S mi(r) = Aje_k';'m for z # 0.

Note that in state s the larger £ is, the less liquid the market of asset j is. The best bid
of asset j is calculated as m$(07) = AZ.

The liquidity policy is the following: the portfolio of the firm should contain at least ¢
million euros and short sales are not allowed: L(c) = {p € P|py > ¢ and p; > 0}.

To define the risk allocation game with liquidity constraints consider Definition 2.4.
Since both for 3 and 4 divisions the firm has in total 1 4+ 2 + 3 = 6 million euros and for
each coalition of the divisions the portfolio (and hence the cash) of the divisions outside of
the division is given, each coalition should generate a = ¢ — 6 million euros by selling its
assets in an optimal way. We will consider three cases: a = 0, @ = 10 and a = 15. Note
that if @ = 0 (and thus ¢ = 6, then there is no need to liquidate any assets.

Even though short sales are not allowed at the firm level, a coalition of divisions could

short sale assets owned by divisions outside the coalition, but it is not fair to allocate those



proceeds to the coalition, thus we assume that a coalition can only generate cash by selling
the assets of its divisions.? It follows from the calculations by Acerbi and Scandolo (2008)
that ¢7(C), the optimal amount in millions to trade (sell) from asset i by division i in
coalition C' € N in state s € S is given by

1
£(C) = 5log(L +A°(C)), (5)
where the marginal cost of liquidation per euro liquidated, A*(C') is given as
s a
NO) === (6)

As
Zieo k_g —a

The realization vector of coalition C' € N in state s € S is given by

Xo(C0) =) A (0" = (C)) +a (7)
ieC
since t{(C') determines how much division ¢ should trade and the remaining portfolio is
valued by the uppermost value, which is the best bid, while coalition C' generates a million
euros.

The measure of risk p is the expected shortfall with & = 1% and k = 5%. For each
coalition C' € 2% the risk allocation game with liquidity is defined by v(C) = —p(X(C)),
then the Shapley value is calculated by Equation (4). Then coalitional rationality of
the Shapley value should be checked for each coalition. If coalitional rationality is not
violated, then we have a core allocation and add one to a counter. If coalitional rationality
is violated, then the counter is not changing. After simulating 100 000 risk allocation games
with liquidity we divide the counter by 100 000 and get the average Core Compatibility of
the Shapley value. Example 4.1 illustrates the simulation by showing the calculations for

one realization of a risk allocation game with liquidity for 3 divisions.

Example 4.1. Let a = 15, k = 1% and let us see a realization of a risk allocation game
for 3 divisions.

The names of the columns of Table 1 are the coalitions (C'), but the first three coalitions
can also be seen as the individual divisions (j). The table has three blocks: lines 1-3, 4-8
and 9-11. In the first two blocks we just have one state s, reflecting the realization of one
day out of 1000. In the third block other data from other 999 simulated days are also used.

In the first block for a particular day (s) for each asset (j) we can see the realized

logarithmic returns (r3), the corresponding market risk drivers (best bid prices, A%) and

2If we allowed short selling assets owned by divisions outside the coalition, then the optimal trade
of each coalition would be the same as the optimal trade of the grand coalition, the firm itself, weakly

decreasing the trading cost of the coalitions.
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C,j 1 2 3 (1,2}  {1,3} {23} {1,2,3}

re | —188% —2.72% —2.94%

A 981.39  973.20  971.06

ks 270 4967  35.18

A(C) | 00430 32662 1.1902  0.0407  0.0398  0.4659  0.0379
£(C) | 0.0156 0.0148  0.0145 0.0138
£5(C) 0.0292 0.0008 0.0077  0.0007
£(C) 0.0223 0.0011  0.0109  0.0011
X5(C) | 981.07 959.77 964.42 1954.28  1952.15  1941.21  2925.36
p(X(C)) | —896.59 —902.86 —942.33 —1815.86 —1905.34 —1893.40 —2817.90
v(C) | 896.59  902.86  942.33 181586  1905.34  1893.40  2817.90
6(C) | 919.70 91686 981.34  1836.56  1901.04  1898.20  2817.90

Table 1: One realization of a risk allocation game with liquidity

the realized liquidity risk drivers (k5) rounded to two decimals. Each asset had a falling
best bid price, asset 1 is the most liquid and asset 2 is the less liquid.

In the second block of Table 1 the marginal cost of liquidation per euro liquidated,
A*(C) is calculated by Equation (6) for a particular day (s). The resulting optimal trades
by division j are given by ¢3(C') using Equation (5), the realization vector of the coalitions
X*(C) are coming from Equation (7). For instance when divisions 2 and 3 trade together in
coalition {2, 3} instead of alone, then the marginal cost of liquidation per euro is decreased
from 3.2662 and 1.1902 to 0.4659; the trades required are also decreased from 0.0292 and
0.0223 to 0.0077 and 0.0109; and the values of the portfolios taking into the liquidity
considerations are increasing from 959.774964.42= 1924.19 to 1941.21, the coalition is
saving on the trading costs.

In the last block of Table 1 first we can see the measure of risk of the coalitions p(X(C)),
which is the average of the worst & = 1% of the portfolio values, that is the average of
the opposite of the lowest 10 (=1000 x 1%) realizations of X*(C'). The risk of the firm,
-2817.90 can be interpreted as 2819.90 million euros is a safe valuation of the assets using
the preferences of the regulator or the firm. Hence 3000-2819.90=180.1 million euros is
the capital (equity) requirement of the firm, which, on the other side of the balance sheet
means that 180.1 million euros should be invested into a safe assets by the owners of the
firm. Note that we can again see diversification effects when combining individual divisions.
From v(C) = —p(X(C)) the Shapley value of division j, ¢;(v) is calculated using Equation
(4) and ¢(C) = >, ¢;(v) is what the coalitions get when risk is allocated by the Shapley
value. To get Core Compatibility for each C' the inequality v(C') < ¢(C') should hold, but

11



for coalition {1, 3} it is violated, the payoff (safe valuation of the assets) to coalition {1, 3}
would be higher when they are without division 2 than when the payoff is allocated by
the Shapley value to them, hence the Shapley value in this example is not in the core, it

allocates capital requirements in an unfair way.

After simulating 100 000 risk allocation games with liquidity the average Core Compat-
ibility of the Shapley value are displayed using different parameter settings for 3 divisions
in Table 2 and for 4 divisions in Table 3.

‘ a = 0 a = 10 a = 15
59.2% 62.8% 67.8%
59.9% 64.7% 70.7%

k=1%
k= 5%

Table 2: Average Core Compatibility of the Shapley value in case of 3 divisions

\ a=0 a=10 a=15
30.7% 41.7%  44.2%
40.2% 42.8%  46.5%

=1%
k= 5%

Table 3: Average Core Compatibility of the Shapley value in case of 4 divisions

Depending on the number of divisions each simulation lasted for about 2-5 minutes using
an average computer. Repeating the simulations the numbers only changed by about 0.1-
0.3%. We can confidently say that the average Core Compatibility of the Shapley value
is about 60-70 % for 3 divisions and about 40-47 % for 4 divisions. Both for 3 and for 4
divisions increasing the cash to be generated in the liquidity policy (a) clearly increases
Core Compatibility by about 5 to 10 percentage points, due to the extra diversification in
liquidity risk on top of market risk. Increasing k, the percentage of outcomes from which
the expected shortfall is calculated is also increasing Core Compatibility by about 0.5 to 3

percentage points. Note that both effects are lower for 4 divisions.

5 Conclusion

To conclude, we have observed in the simulations that for 3 divisions in at least 30%, for 4
divisions in at least 50 % of the cases the Shapley value (being the only risk allocation rule
which satisfies Equal Treatment Property and Strong Monotonicity at the same time) does
not satisfy Core Compatibility, and for more divisions we can expect that the tendency
continues. So we can state that in most of the cases it is not possible to allocate risk in

illiquid markets satisfying the three fairness notions (Equal Treatment Property and Strong
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Monotonicity and Core Compatibility) at the same time, one has to give up at least one of
them. Balog, Batyi, Cséka and Pintér (2014) suggest that either the Shapley value (being

not stable) or the nucleolus (being not incentive compatible) can be a good candidate.
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