
Csóka, Péter

Working Paper

Fair risk allocation in illiquid markets

IEHAS Discussion Papers, No. MT-DP - 2015/9

Provided in Cooperation with:
Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences

Suggested Citation: Csóka, Péter (2015) : Fair risk allocation in illiquid markets, IEHAS Discussion
Papers, No. MT-DP - 2015/9, ISBN 978-615-5447-68-6, Hungarian Academy of Sciences, Institute of
Economics, Budapest

This Version is available at:
https://hdl.handle.net/10419/129874

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/129874
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

   
 

MŰHELYTANULMÁNYOK                           DISCUSSION PAPERS  

 

INSTITUTE OF ECONOMICS, CENTRE FOR ECONOMIC AND REGIONAL STUDIES,  

HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, 2015 
 

MT-DP – 2015/9 
 
 
 

Fair risk allocation in illiquid markets 

PÉTER  CSÓKA



 

2 
 

Discussion papers 
MT-DP – 2015/9 

 
Institute of Economics, Centre for Economic and Regional Studies,  

Hungarian Academy of Sciences 
 

KTI/IE Discussion Papers are circulated to promote discussion and provoque comments.  
Any references to discussion papers should clearly state that the paper is preliminary. 

Materials published in this series may subject to further publication. 

Fair risk allocation in illiquid markets 

Author: 

 
Péter Csóka 

research fellow 
Momentum Game Theory Research Group 

Institute of Economics - Centre for Economic and Regional Studies 
Hungarian Academy of Sciences 

and Department of Finance, Corvinus University of Budapest 
e-mail: csoka.peter@krtk.mta.hu 

 
 
 

February 2015 

ISBN 978-615-5447-68-6 
ISSN 1785 377X 



 

3 
 

Fair risk allocation in illiquid markets 
 

PÉTER CSÓKA 

 

Abstract 

 

Let us consider a financially constrained leveraged financial firm having some divisions 

which have invested into some risky assets. Using coherent measures of risk the sum of the 

capital requirements of the divisions is larger than the capital requirement of the firm itself, 

there is some diversification benefit that should be allocated somehow for proper 

performance evaluation of the divisions. In this paper we use cooperative game theory and 

simulation to assess the possibility to jointly satisfy three natural fairness requirements for 

allocating risk capital in illiquid markets: Core Compatibility, Equal Treatment Property and 

Strong Monotonicity.  

Core Compatibility can be viewed as the allocated risk to each coalition (subset) of divisions 

should be at least as much as the risk increment the coalition causes by joining the rest of the 

divisions. Equal Treatment Property guarantees that if two divisions have the same stand-

alone risk and also they contribute the same risk to all the subsets of divisions not containing 

them, then the same risk capital should be allocated to them. Strong Monotonicity requires 

that if a division weakly reduces its stand-alone risk and also its risk contribution to all the 

subsets of the other divisions, then as an incentive its allocated risk capital should not 

increase. Analyzing the simulation results we conclude that in most of the cases it is not 

possible to allocate risk in illiquid markets satisfying the three fairness notions at the same 

time, one has to give up at least one of them. 
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Igazságos kockázatfelosztás nem likvid piacokon 

 

CSÓKA PÉTER  

 

 

Összefoglaló 

 

Tekintsünk egy tőkeáttételes pénzügyi vállalatot, amelynek nem likvid portfóliókat tartó 

divíziói vannak! Koherens kockázati mértékek használata esetén a divíziók 

tőkekövetelményének összege nagyobb, mint a vállalat tőkekövetelménye, diverzifikációs 

előny keletkezik, amelyet valahogy el kell osztani a divíziók jobb teljesítményértékelése 

végett. Ebben a tanulmányban kooperatív játékelmélet és szimuláció segítségével elemezzük 

azt, hogy mennyire lehet nem likvid piacon három természetesnek tűnő igazságossági 

követelmény alapján felosztani a kockázatot: ezek a magbeliség (Core Compatibility), az 

egyenlő kezelés (Equal Treatment Property) és az erős monotonitás (Strong Monotonicity).  

A magbeliség követelménye az, hogy a divíziók tetszőleges koalíciójára (részhalmazára) 

legalább annyi kockázatot allokáljunk, mint amekkora kockázatnövekedést okoz az, ha a 

koalíció csatlakozik a többi divízióhoz.  Az egyenlően kezelés tulajdonság azt garantálja, hogy 

ha két divízió annyira szimmetrikus, hogy ugyanaz a kockázatuk és a divíziók összes, őket 

nem tartalmazó koalíciójához is ugyanakkora kockázattal járulnak hozzá, akkor ugyanannyi 

kockázatot kell rájuk osztani. Az erős monotonitás azt követeli meg, hogy ha egy divízió 

gyengén csökkenti az egyéni kockázatát és a többi divízió tetszőleges koalíciójához is 

kevesebb kockázatot tesz hozzá, akkor (ösztönzésképpen) a ráosztott tőke nem növekedhet. A 

szimulációs eredményeket elemezve arra a végkövetkeztetésre jutunk, hogy a legtöbb esetben 

nem likvid piacokon nem lehetséges a három igazságossági követelményt egyszerre 

teljesíteni, valamelyikről le kell mondanunk. 

 

Tárgyszavak: piaci mikrostruktúra, koherens kockázati mértékek, piaci likviditás, 

finanszírozási likviditás, portfólióteljesítmény-értékelés, tőkeallokáció, teljesen 

kiegyensúlyozott játékok, szimuláció 
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Abstract

Let us consider a financially constrained leveraged financial firm having some

divisions which have invested into some risky assets. Using coherent measures of

risk the sum of the capital requirements of the divisions is larger than the capital

requirement of the firm itself, there is some diversification benefit that should be

allocated somehow for proper performance evaluation of the divisions. In this paper

we use cooperative game theory and simulation to assess the possibility to jointly sat-

isfy three natural fairness requirements for allocating risk capital in illiquid markets:

Core Compatibility, Equal Treatment Property and Strong Monotonicity.

Core Compatibility can be viewed as the allocated risk to each coalition (subset)

of divisions should be at least as much as the risk increment the coalition causes by

joining the rest of the divisions. Equal Treatment Property guarantees that if two

divisions have the same stand-alone risk and also they contribute the same risk to

all the subsets of divisions not containing them, then the same risk capital should be

allocated to them. Strong Monotonicity requires that if a division weakly reduces its

stand-alone risk and also its risk contribution to all the subsets of the other divisions,

then as an incentive its allocated risk capital should not increase. Analyzing the

simulation results we conclude that in most of the cases it is not possible to allocate

risk in illiquid markets satisfying the three fairness notions at the same time, one has

to give up at least one of them.
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1 Introduction

Let us consider a financially constrained financial firm having some divisions (subunits)

which have invested into some risky assets and have some liabilities. As a cushion against

possible future losses, some capital (equity) should be held by the firm, otherwise it would

not be credible that it is able to pay back its liabilities. A coherent measure of risk (Artzner,

Delbaen, Eber, and Heath, 1999) assigns a number to the profit and loss distribution of

the value of the portfolio of the firm at a specific future point of time. When gross assets

(without netting the liabilities) are taken as the portfolio of the firm, then the measure

of risk reflecting the preferences of the regulator or the firm is negative, its absolute value

can be seen as a “safe valuation” of the assets. The capital requirement in this case can

be calculated in the following way: liabilities minus the safe value of the assets determined

by the measure of risk. Since the capital should be kept by the firm in riskless assets,

dividing the returns of the divisions by the respective capital requirements can serve as a

performance evaluation measure. Using coherent measures of risk the sum of the capital

requirements of the divisions is larger than the capital requirement of the firm itself, there

is some diversification benefit hat should be allocated somehow (for more details and

applications see Denault (2001), Kalkbrener (2005), Buch and Dorfleitner (2008), Homburg

and Scherpereel (2008), Kim and Hardy (2009), and Csóka, Herings, and Kóczy (2009)

among others).

Csóka and Herings (2014) extend the usual cooperative game theory approach (risk

allocation games) to handle the problem of risk capital allocation when the divisions might

have illiquid assets by combining the notions of Csóka, Herings, and Kóczy (2009) and

Acerbi and Scandolo (2008). To define a cooperative game one should assign a payoff to

all coalitions of players, that is to all subsets of the divisions. In a risk allocation game the

payoff of a coalition is the opposite of its risk, where risk is measured by using a coherent

measure of risk on the possible realizations of the value of the portfolio of the coalition.

When having illiquid portfolios, the realization value of the portfolio of a coalition in a

certain state depends on how easy it is to trade its assets (captured by random marginal

demand curves) and on the required composition of the portfolio (called liquidity policy).

To analyze how funding constraints affect fair risk allocation, in this paper we will use

cash liquidity policies with short sale constraints, where a certain amount of cash should

be generated and short sales are not allowed.1 The random marginal demand curves lead

to different optimal trades (sales) to satisfy the cash liquidity policy of the firm. After

executing optimal trades by the coalition of divisions, the realized value of the resulting

portfolio is determined by using the best bid prices of the resulting assets. Since the

1To cover the risk of upward moving prices, usually the proceeds of a short sale are not allowed to be

used in another transaction.
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coalitions of the divisions could trade at the same time, they face an externality problem:

their optimal trade depends on the trades done by the other divisions outside the coalition.

Csóka and Herings (2014) argue that the most reasonable way to handle this problem is

that the divisions outside the coalition at hand remains inactive, so their portfolios can be

considered as fixed and they define risk allocation games with liquidity this way.

Having the payoffs of the coalitions allows us to use standard game theory concepts (like

the Shapley value (Shapley, 1953) or the nucleolus (Schmeidler, 1969)) as risk allocation

rules to split up the risk capital of the firm to its divisions in any possible situations. In

this paper we will assess the possibility to jointly satisfy three fairness requirements for

allocating risk capital in illiquid markets introduced by Csóka and Pintér (2014): Core

Compatibility, Equal Treatment Property and Strong Monotonicity. Core Compatibility is

satisfied if the risk of the firm is allocated in such a way that no coalition of the divisions

would have a lower risk by being alone. Such allocations are said to be in the core of the

game. Csóka and Pintér (2014) notes that Core Compatibility can also be viewed as the

allocated risk to each coalition of divisions should be at least as much as the risk increment

the coalition causes by joining the rest of the divisions. Equal Treatment Property guar-

antees that if two divisions have the same stand-alone risk and also they contribute the

same risk to all subsets of divisions not containing them, then the same risk capital should

be allocated to them. Strong Monotonicity requires that if a division weakly reduces its

stand-alone risk and also its risk contribution to all subsets of the other divisions, then as

an incentive its allocated risk capital should not increase.

A subgame is obtained by considering a subset of the divisions of the firm and looking

the resulting risk allocation game. A totally balanced game has a non-empty core in all

of its subgames. Csóka and Herings (2014) show that the class of risk allocation games

with liquidity coincides with the class of totally balanced games, generalizing the result

by Csóka, Herings, and Kóczy (2009) for risk allocation game without liquidity. The

coincidence means that firstly, any totally balanced game can be generated by a properly

chosen risk allocation game with or without liquidity and secondly, it also means that any

risk allocation game with or without liquidity is totally balanced, that is Core Compatibility

alone can be satisfied. However, Csóka and Pintér (2014) show that on the class of totally

balanced games the Shapley value is the only risk allocation rule satisfying Equal Treatment

Property and Strong Monotonicity at the same time. However, it is well-known that the

Shapley value does not satisfy Core Compatibility in general, hence in theory the three

requirements are irreconcilable.

Looking at the impossibility problem from a practical perspective, the Shapley value

in a random but realistic risk allocation game with liquidity is not always expected to

satisfy Core Compatibility. Hence we can assess the possibility to allocate risk in a fair
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way in illiquid markets by checking the average Core Compatibility of the Shapley value

in such random risk environments with liquidity considerations. In the simulation we will

consider first 3, then 4 divisions and simulate 100 000 random risk allocation games with

liquidity. We will see that for 3 divisions in at least 30%, for 4 divisions in at least 50

% of the cases the Shapley value (being the only risk allocation rule which satisfies Equal

Treatment Property and Strong Monotonicity at the same time) does not satisfy Core

Compatibility, and for more divisions we can expect that the tendency continues. So we

can say that it is most of the time not possible to allocate risk in illiquid markets satisfying

the three fairness notions at the same time, one has to give up at least one of them.

We are aware of two papers doing similar simulations. Homburg and Scherpereel (2008)

are also checking the average Core Compatibility of the Shapley value (among other rules),

but in their setting Value at Risk is used (which is not a coherent measure of risk) and

there are no liquidity constraints. In their paper for 3 and 4 divisions the average Core

Compatibility of the Shapley value becomes 80-90%, but using Value at Risk the resulting

game is not totally balanced, and hence that result says nothing about the other two

fairness requirements. Balog, Bátyi, Csóka and Pintér (2014) discuss analytically which

out of the three fairness properties are met by seven different risk allocation methods. They

also simulate random risk allocation games with coherent measures of risk, for normal and

also for fat tailed return distributions. Without liquidity and for normal distribution our

results are comparable. However, they do not take into account illiquid assets.

The structure of the paper is as follows. In Section 2 we define risk allocation games

with liquidity constraint. Section 3 defines the Shapley value and discusses some of its

main properties to be used as fair. Section 4 contains the simulation results and Section 5

concludes.

2 Risk allocation games with liquidity constraints

We consider a firm with n divisions, whose risk capital should be allocated. Risk envi-

ronments with liquidity considerations are defined by Csóka and Herings (2014) and are

denoted by (N, J, S, π, θ,m, L, ρ), where

• N is the set of divisions,

• S is the set of states of nature,

• state of nature s ∈ S occurs with probability πs > 0, where
∑

s∈S πs = 1,

• we have cash and J is the set of risky assets,

• θi = (θi0, θ
i
J) ∈ R× RJ = P is the initial portfolio of division i,
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• {ms
j} is the Marginal Demand Curve of asset j in state s ∈ S,

• L ⊆ RJ+1 is the liquidity policy, the set of portfolios which is deemed acceptable,

and

• ρ is a coherent measure of risk.

Next, we define all above mentioned elements in detail. We follow Çetin, Jarrow and

Protter (2004), Jarrow and Protter (2005) and Acerbi and Scandolo (2008) in modeling

the order book for asset j in state s ∈ S by a marginal demand curve ms
j . A function is

càdlàg if it is right continuous with left limits and làdcàg if it is left continuous with right

limits.

Definition 2.1. The marginal demand curve (MDC) for asset j ∈ J in state s ∈ S is

given by the map ms
j : R \ {0} 7→ R satisfying

(i) ms
j(x) ≥ ms

j(x
′) if x < x′;

(ii) ms
j is càdlàg at x < 0 and làdcàg at x > 0.

For asset j the amount ms
j(x) for x > 0 shows the marginal revenue the firm can get

by selling it, whereas ms
j(x) for x < 0 represents the marginal cost of buying it; ms(0+

j )

denotes the best bid and ms(0−j ) the best ask price.

The liquidation value of a portfolio will be needed to calculate attainable portfolios.

Definition 2.2. The liquidation mark-to-market value of a portfolio p ∈ P in state s ∈ S
is defined by

`s(p) = p0 +
∑
j∈J

∫ pj

0

ms
j(x)dx. (1)

The liquidation mark-to-market value of a portfolio equals to the portfolio’s cash plus

the revenue that the firm gets by selling long positions minus the cost, which has to be

paid to close short positions.

The set of portfolios attainable from some given portfolio p ∈ P in state s ∈ S by

liquidating all or part of it is given by

As(p) = {q ∈ P | q0 = `s(p0, pJ − qJ)}.

Given a portfolio p and liquidating pJ − qJ results in portfolio q where the cash is p0

plus the liquidation value of pJ − qJ .

The liquidity policy (Acerbi and Scandolo, 2008) incorporates the requirements imposed

by a regulator or the contractual obligations that have to be met, and specifies that the

portfolio of the firm should belong to the set L ⊂ P . In this paper we consider cash
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liquidity policies with short sale constraints, where the portfolio should contain at least

c ≥ 0 units of cash and short sales are not allowed: L(c) = {p ∈ P |p0 ≥ c and pJ ≥ 0}.
For a portfolio p ∈ P, we denote the assets hold long by J+(p) = {j ∈ J | pj > 0} and

the assets hold short by J−(p) = {j ∈ J | pj < 0}.

Definition 2.3. The uppermost mark-to-market value of a portfolio p ∈ P in state s ∈ S
is defined by

us(p) = p0 +
∑

j∈J+(p)

ms
j(0

+)pj +
∑

j∈J−(p)

ms
j(0
−)pj. (2)

In the uppermost mark-to-market value of a portfolio long positions are evaluated by

using the best bid prices and short positions are valued by using the best ask prices.

Artzner, Delbaen, Eber, and Heath (1999) have introduced coherent measures of risk.

A measure of risk is a function ρ : RS → R measuring the risk of a realization vector from

the perspective of the present. In our simulations we use a particular coherent measure of

risk, the k-Expected Shortfall (Acerbi and Tasche, 2002), which is the average of the worst

100k percent of the losses.

After completing the definition of a risk environment with liquidity considerations

(N, J, S, π, θ,m, L, ρ) we can use tools from cooperative game theory to analyze them.

Let N denote the finite set of players. A cooperative game with transferable utility

(game, for short) is a function v : 2N → R such that v(∅) = 0. The class of games with

player set N is denoted by GN . For a game v ∈ GN and a coalition C ∈ 2N , a subgame vC

is obtained by restricting v to the subsets of C.

An allocation is a vector x ∈ RN , where xi is the payoff of player i ∈ N . An allocation

x yields payoff x(C) =
∑

i∈C xi to a coalition C ∈ 2N . An allocation x ∈ RN is called

Efficient, if x(N) = v(N) and Coalitionally Rational if x(C) ≥ v(C) for all C ∈ 2N . The

core (Gillies, 1959) is the set of Efficient and Coalitionally Rational allocations. The core

of game v is denoted by core (v). A game is totally balanced, if each of its subgame has a

non-empty core. Let GNtb denote the class of totally balanced games with player set N .

The question is how to define the cooperative game where the divisions (players) hold

illiquid portfolios. Csóka and Herings (2014) argue that the most reasonable way to han-

dle externalities in this setting is to assume that the complement of coalition C remains

inactive. The portfolios which are attainable for coalition C in state s ∈ S are given by

As(θ(C)), where θ(C) =
∑

i∈C θ
i. Inactivity of the complementary coalition means that

those divisions stick to their initial portfolio θ(N \ C).

Definition 2.4. Given a risk environment with liquidity considerations (N, J, S, π, θ,m, L, ρ)

and a coalition of divisions C ⊂ N, the realization vector X(C) of coalition C is defined
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by

Xs(C) = sup{us(q)|q ∈ As(θ(C)) and q + θ(N \ C) ∈ Ls}, s ∈ S.

When calculating Xs(C), we consider the portfolios of the divisions outside the coalition

as fixed, and liquidate the portfolios of the divisions in C in such a way that the resulting

portfolio of the firm is attainable and satisfies the liquidity policy.

Definition 2.5. Given a risk environment with liquidity considerations (N, J, S, π, θ,m, L, ρ),

the risk allocation game with liquidity constraints is the game (N, v), where the value func-

tion v : 2N → R is defined by

v(C) = −ρ(X(C)), C ∈ 2N . (3)

Let Γrl denote the family of risk allocation games with liquidity constraints with set of

players N.

Next, we introduce three fairness properties of risk allocation rules.

3 The Shapley value as a risk allocation rule

Throughout the paper we consider single-valued risk allocation rules. The function ψ :

A → RN , defined on A ⊆ GN , is called risk allocation rule on the class of games A if∑
i∈N φi = v(N), that is if the value of the whole firm is allocated, where φi specifies how

much the assets of division i is valued according to φ.

Let v ∈ GN and i ∈ N be a game and a player, and for all C ⊆ N let v′i(C) =

v(C ∪ {i})− v(C) denote player i’s marginal contribution to coalition C in game v. Then

v′i is called player i’s marginal contribution function in game v. Player i is a null-player in

game v, if v′i = 0. Moreover, players i and j are equivalent in game v, i ∼v j, if for any

C ⊆ N such that i, j /∈ C we have that v′i(C) = v′j(C).

Definition 3.1. For any game v ∈ GN the Shapley value (Shapley, 1953) of player i , φi

is given by

φi(v) =
∑

C⊆N\{i}

v′i(C)
|C|!(|N \ C| − 1)!

|N |!
i ∈ N. (4)

The Shapley value can be interpreted as follows. Players are entering into a room in

all possible permutations |N |! with equal probability. The Shapley value of a player is the

expected marginal contribution she makes to the coalition preceding her. Players before

her can enter |C|! ways, players after her can enter |N \ C| − 1)! ways.

Csóka and Pintér (2014) introduce four basic properties (axioms) a risk allocation rule

should satisfy.
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Definition 3.2. The risk allocation rule ψ on class A ⊆ GN satisfies

• Core Compatibility if for each v ∈ A: ψ(v) ∈ core (v),

• Equal Treatment Property if for each v ∈ A, i, j ∈ N : i ∼v j implies ψi(v) = ψj(v),

• Strong Monotonicity if for any v, w ∈ A, i ∈ N : v′i ≤ w′i implies ψi(v) ≤ ψi(w).

The financial interpretations of the axioms are as follows.

Core Compatibility is satisfied if the risk allocation rule results in a core allocation, in

which the risk of firm is allocated in such a way that no coalition of the divisions would

have a lower risk by being alone. Csóka and Pintér (2014) notes that Core Compatibility

can also be viewed as the allocated risk to each coalition of divisions should be at least as

much as the risk increment the coalition causes by joining the rest of the divisions.

Equal Treatment Property guarantees that if two divisions have the same stand-alone

risk and also they contribute the same risk to all subsets of divisions not containing them,

then the same risk capital should be allocated to them.

Strong Monotonicity requires that if a division weakly reduces its stand-alone risk and

also its risk contribution to all subsets of the other divisions, then as an incentive its

allocated risk capital should not increase.

Csóka and Herings (2014) show that the class of risk allocation games with liquidity

coincides with the class of totally balanced games, generalizing the result by Csóka, Herings,

and Kóczy (2009) for risk allocation games without liquidity. The coincidence means that

at first, any totally balanced game can be generated by a properly chosen risk allocation

game with or without liquidity and secondly, it also means that any risk allocation game

with or without liquidity is totally balanced, that is Core Compatibility alone can be

satisfied. Note that the coincidence remains valid in our setting (using cash liquidity

policies with short sale constraints), since they show that using any liquidity policy the

generated game is totally balanced, and any totally balanced game can be generated by

using any liquidity policy with perfectly liquid assets. However, Csóka and Pintér (2014)

show that on the class of totally balanced games the Shapley value is the only risk allocation

rule concept satisfying Equal Treatment Property and Strong Monotonicity at the same

time, but it is well-known that it does not satisfy Core Compatibility in general, hence the

three requirements are irreconcilable. Thus the Shapley value in a random risk allocation

game with liquidity is not always expected to satisfy Core Compatibiliy. Hence we assess

the possibility to allocate risk in a fair way when we have illiquid markets by checking the

average Core Compatibility of the Shapley value in such random risk environments with

liquidity considerations.
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4 Simulation results

In the simulation we will consider first n = 3, then n = 4 divisions with the following

parameters and simulate 100 000 random risk allocation games with liquidity. We have

1000 states of nature having equal probability of occurrence, S = {1, . . . , 1000}. One can

look at it as considering daily market changes for 4 years. We have cash (euros) and

j = n risky assets, the set of possible portfolios is P = R×Rn. The initial portfolios of the

divisions in million units in case of 3 players are given by θ1 = (1, 1, 0, 0), θ2 = (2, 0, 1, 0) and

θ3 = (3, 0, 0, 1); in case of four players they are given by θ1 = (1, 1, 0, 0, 0), θ2 = (2, 0, 1, 0, 0),

θ3 = (3, 0, 0, 1, 0) and θ4 = (0, 0, 0, 0, 1). Thus each division has some non-negative cash

and 1 million units of an asset in which the other divisions have no positions. We normalize

the initial price of each risky asset to be 1000 and say that the initial investment into risky

assets for each division is 1000 million euros.

To define {ms
j}, the Marginal Demand Curve (MDC) of asset j in state s ∈ S we need

the following random numbers, where m ∈ {1, . . . , 100 000} labels the risk allocation game,

s ∈ S corresponds to the state and j ∈ {1, . . . , n} refers to the asset:

• Random covariance matrices Σm ∈ Rn×n, where Σm
jj, the daily standard deviation of

rj, the logarithmic return of asset j is uniformly distributed between 1% and 4%.

• Joint normal distribution of the returns (rj) with mean 0 and covariance Σm.

• Let the market risk driver be Aj = 1000× erj and let the liquidity risk driver kj be

uniformly distributed between 1 and 50.

• We will use the exponential MDCs analyzed by Acerbi and Scandolo (2008), where

for state s ∈ S ms
j(x) = As

je
−ksjx for x 6= 0.

Note that in state s the larger ksj is, the less liquid the market of asset j is. The best bid

of asset j is calculated as ms
j(0

+) = As
j .

The liquidity policy is the following: the portfolio of the firm should contain at least c

million euros and short sales are not allowed: L(c) = {p ∈ P |p0 ≥ c and pJ ≥ 0}.
To define the risk allocation game with liquidity constraints consider Definition 2.4.

Since both for 3 and 4 divisions the firm has in total 1 + 2 + 3 = 6 million euros and for

each coalition of the divisions the portfolio (and hence the cash) of the divisions outside of

the division is given, each coalition should generate a = c − 6 million euros by selling its

assets in an optimal way. We will consider three cases: a = 0, a = 10 and a = 15. Note

that if a = 0 (and thus c = 6, then there is no need to liquidate any assets.

Even though short sales are not allowed at the firm level, a coalition of divisions could

short sale assets owned by divisions outside the coalition, but it is not fair to allocate those
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proceeds to the coalition, thus we assume that a coalition can only generate cash by selling

the assets of its divisions.2 It follows from the calculations by Acerbi and Scandolo (2008)

that tsi (C), the optimal amount in millions to trade (sell) from asset i by division i in

coalition C ∈ N in state s ∈ S is given by

tsi (C) =
1

ksi
log(1 + λs(C)), (5)

where the marginal cost of liquidation per euro liquidated, λs(C) is given as

λs(C) =
a∑

i∈C
As

i

ksi
− a

. (6)

The realization vector of coalition C ∈ N in state s ∈ S is given by

Xs(C) =
∑
i∈C

As
i (θ

i − tsi (C)) + a, (7)

since tsi (C) determines how much division i should trade and the remaining portfolio is

valued by the uppermost value, which is the best bid, while coalition C generates a million

euros.

The measure of risk ρ is the expected shortfall with k = 1% and k = 5%. For each

coalition C ∈ 2N the risk allocation game with liquidity is defined by v(C) = −ρ(X(C)),

then the Shapley value is calculated by Equation (4). Then coalitional rationality of

the Shapley value should be checked for each coalition. If coalitional rationality is not

violated, then we have a core allocation and add one to a counter. If coalitional rationality

is violated, then the counter is not changing. After simulating 100 000 risk allocation games

with liquidity we divide the counter by 100 000 and get the average Core Compatibility of

the Shapley value. Example 4.1 illustrates the simulation by showing the calculations for

one realization of a risk allocation game with liquidity for 3 divisions.

Example 4.1. Let a = 15, k = 1% and let us see a realization of a risk allocation game

for 3 divisions.

The names of the columns of Table 1 are the coalitions (C), but the first three coalitions

can also be seen as the individual divisions (j). The table has three blocks: lines 1-3, 4-8

and 9-11. In the first two blocks we just have one state s, reflecting the realization of one

day out of 1000. In the third block other data from other 999 simulated days are also used.

In the first block for a particular day (s) for each asset (j) we can see the realized

logarithmic returns (rsj), the corresponding market risk drivers (best bid prices, As
j) and

2If we allowed short selling assets owned by divisions outside the coalition, then the optimal trade

of each coalition would be the same as the optimal trade of the grand coalition, the firm itself, weakly

decreasing the trading cost of the coalitions.
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C, j 1 2 3 {1, 2} {1, 3} {2, 3} {1, 2, 3}
rsj −1.88% −2.72% −2.94%

As
j 981.39 973.20 971.06

ksj 2.70 49.67 35.18

λs(C) 0.0430 3.2662 1.1902 0.0407 0.0398 0.4659 0.0379

ts1(C) 0.0156 0.0148 0.0145 0.0138

ts2(C) 0.0292 0.0008 0.0077 0.0007

ts3(C) 0.0223 0.0011 0.0109 0.0011

Xs(C) 981.07 959.77 964.42 1954.28 1952.15 1941.21 2925.36

ρ(X(C)) −896.59 −902.86 −942.33 −1815.86 −1905.34 −1893.40 −2817.90

v(C) 896.59 902.86 942.33 1815.86 1905.34 1893.40 2817.90

φ(C) 919.70 916.86 981.34 1836.56 1901.04 1898.20 2817.90

Table 1: One realization of a risk allocation game with liquidity

the realized liquidity risk drivers (ksj ) rounded to two decimals. Each asset had a falling

best bid price, asset 1 is the most liquid and asset 2 is the less liquid.

In the second block of Table 1 the marginal cost of liquidation per euro liquidated,

λs(C) is calculated by Equation (6) for a particular day (s). The resulting optimal trades

by division j are given by tsj(C) using Equation (5), the realization vector of the coalitions

Xs(C) are coming from Equation (7). For instance when divisions 2 and 3 trade together in

coalition {2, 3} instead of alone, then the marginal cost of liquidation per euro is decreased

from 3.2662 and 1.1902 to 0.4659; the trades required are also decreased from 0.0292 and

0.0223 to 0.0077 and 0.0109; and the values of the portfolios taking into the liquidity

considerations are increasing from 959.77+964.42= 1924.19 to 1941.21, the coalition is

saving on the trading costs.

In the last block of Table 1 first we can see the measure of risk of the coalitions ρ(X(C)),

which is the average of the worst k = 1% of the portfolio values, that is the average of

the opposite of the lowest 10 (=1000 × 1%) realizations of Xs(C). The risk of the firm,

-2817.90 can be interpreted as 2819.90 million euros is a safe valuation of the assets using

the preferences of the regulator or the firm. Hence 3000-2819.90=180.1 million euros is

the capital (equity) requirement of the firm, which, on the other side of the balance sheet

means that 180.1 million euros should be invested into a safe assets by the owners of the

firm. Note that we can again see diversification effects when combining individual divisions.

From v(C) = −ρ(X(C)) the Shapley value of division j, φj(v) is calculated using Equation

(4) and φ(C) =
∑

j∈C φj(v) is what the coalitions get when risk is allocated by the Shapley

value. To get Core Compatibility for each C the inequality v(C) ≤ φ(C) should hold, but
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for coalition {1, 3} it is violated, the payoff (safe valuation of the assets) to coalition {1, 3}
would be higher when they are without division 2 than when the payoff is allocated by

the Shapley value to them, hence the Shapley value in this example is not in the core, it

allocates capital requirements in an unfair way.

After simulating 100 000 risk allocation games with liquidity the average Core Compat-

ibility of the Shapley value are displayed using different parameter settings for 3 divisions

in Table 2 and for 4 divisions in Table 3.

a = 0 a = 10 a = 15

k = 1% 59.2% 62.8% 67.8%

k = 5% 59.9% 64.7% 70.7%

Table 2: Average Core Compatibility of the Shapley value in case of 3 divisions

a = 0 a = 10 a = 15

k = 1% 39.7% 41.7% 44.2%

k = 5% 40.2% 42.8% 46.5%

Table 3: Average Core Compatibility of the Shapley value in case of 4 divisions

Depending on the number of divisions each simulation lasted for about 2-5 minutes using

an average computer. Repeating the simulations the numbers only changed by about 0.1-

0.3%. We can confidently say that the average Core Compatibility of the Shapley value

is about 60-70 % for 3 divisions and about 40-47 % for 4 divisions. Both for 3 and for 4

divisions increasing the cash to be generated in the liquidity policy (a) clearly increases

Core Compatibility by about 5 to 10 percentage points, due to the extra diversification in

liquidity risk on top of market risk. Increasing k, the percentage of outcomes from which

the expected shortfall is calculated is also increasing Core Compatibility by about 0.5 to 3

percentage points. Note that both effects are lower for 4 divisions.

5 Conclusion

To conclude, we have observed in the simulations that for 3 divisions in at least 30%, for 4

divisions in at least 50 % of the cases the Shapley value (being the only risk allocation rule

which satisfies Equal Treatment Property and Strong Monotonicity at the same time) does

not satisfy Core Compatibility, and for more divisions we can expect that the tendency

continues. So we can state that in most of the cases it is not possible to allocate risk in

illiquid markets satisfying the three fairness notions (Equal Treatment Property and Strong
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Monotonicity and Core Compatibility) at the same time, one has to give up at least one of

them. Balog, Bátyi, Csóka and Pintér (2014) suggest that either the Shapley value (being

not stable) or the nucleolus (being not incentive compatible) can be a good candidate.
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