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Supplementary Material

Dynamic Linear Panel Regression Models

with Interactive Fixed Effects

Hyungsik Roger Moon? Martin Weidner?

December 22, 2014

S.1 Proof of Identification (Theorem 2.1)

Proof of Theorem 2.1. Let Q(f, A, f) = E(HY - [B-X — Af’H?, )\O,fo,w>, where § €

RE X € RV*E and f € RT*E, We have

QB )

SE{T [ = 8- X = Af) (V= 8- X = Af)] V£, 0]
SE{T [0 = A = (5= 8) - X+ e) (O = Af = (5= 5 X +e)] A0, 12w}
Aﬂ,fo,w}

+E (T [0 = Af = (8= 5% X) (A°F7 = A = (5= 8- X)| |2 £, w}

J/

=E [Tr (€'e)

-

=Q*(8,1.f)

In the last step we used Assumption ID(i7). Since E [Tr (e'e) ‘/\07 1o, w} is independent of 3, A, f,
we find that minimizing Q(f3, A, f) is equivalent to minimizing Q*(3, A, f). We decompose
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Q*(B, A, f) as follows
Q' (B )
—E{Te [\ = Af = (8= 8 X) (NS = Af = (B ) X)| |\ 0w
—E{Te [\ = A = (8= 8 X) Mo (A8 = AF = (8= 8- X)| A%, 0w}
FE{Te [\ = A = (8= 8%) - X) Posoy (A8 = A7 = (8= 8% X) | [2%, 1w}

= B {T [((37% = 859) - Xis) Moy (39 = 559) - Xi50)] |20, 12,0}

(.

FE{T [0 A = (8= 5 X) Py (F" =0 = (3-8 X)| ]\, %},

=Q™(BA.f)

where (pheh — g0hishy . Xhigh = ZK (B,, — B°)X,.. A lower bound on Qe ("M )) is

m=Ki+1
given by

thgh (ﬂhigh, )\)

> : E{T [ high _ gOhighy .y "M~ high _ gOhighy .y ] ‘/\07 O,w}
- XGRNX(g}rlRI}rrank(w)) r ((5 /8 ) hgh) ()\,)\,’w) ((6 6 ) hgh) f

min(N,T)

- Z Hoy {E [«ﬁhigh — ghiehy . Xnigh) (whigh — gty . X lgh)

r=R+R+rank(w)

(S.1.1)

Since Q*(3, A, f), QMeh(MeEM X)), and QY%(B, \, f), are expectations of traces of positive
semi-definite matrices we have Q*(3, \, f) > 0, Q™Msb(5™E" X) > 0, and Q"(3, A, f) > 0 for
all 3, A\, f. Let 3, A and f be the parameter values that minimize Q(f3, A, f), and thus also
Q*(B, )\, f). Since Q*(8°,\% f%) = 0 we have Q*(3, )\, f) = ming,;Q*(3,\, f) = 0. This
implies thgh(Bhigh A) = 0 and Q"%(B, ), f) = 0. Assumption ID(v), the lower bound (S.1.1),
and thgh(Bhigh, A) = 0 imply that 5hlgh [Ohieh - Using this we find that

Q" (8, M, )

“E {Tr [ PN = (B = ) X ) (W0 = AT = (B - o) Xlow)} PR w} ,

> mfinE{ [()\Ofo’ A — (B = pYovy. X10W>/ (Aofo’ A = (B = gy Xlow)} )AO, 10, w}
=E {Tr [(WO’ (3™ = 390%) - Xiow ) My (X% = (5™ — goiov) Xlow)} g, w} ,

(S.1.2)



where (BIOW — %) . Xy = fill(Bl — B7)X;. Since Q°%(3, A, f) = 0 and the last expression

in (S.1.2) is non-negative we must have

_ / _
E {TI' |:<)\0f0/ B (/610W . ﬂO,lOW) . Xlow) M;\ <>\0f0, B (ﬁIOW _ 60,10W) X Xlow):| )\07 f07'U)} = 0.
Using M5 = M;Mj5 and the cyclicality of the trace we obtain from the last equality that

Tr{M;AM;} — 0,

where A = E {(A"fo’ — (B = 1) Xiow ) (A = (B = 5) - X )

trace of a positive semi-definite matrix is only equal to zero if the matrix itself is equal to zero,

Y F0, w] . The

so we find
M5 AM5 =0,

This together with the fact that A itself is positive semi definite implies that (note that A
positive semi-definite implies A = CC’ for some matrix C', and M5AM; = 0 then implies
M;\C = 0, ie. C'= P;\O)

A = P;AP5,
and therefore rank(A) < rank(P5) < R. We have thus shown that
ronke { B | (1019 = (3 = 57%) - X ) (3017 = (B = %) X ) ¥ 2] < .
We furthermore find
R > rank {E |:<)\0f01 . (Blow . ﬁO,low) . X10W> </\Of0/ . (Blow i 50,1OW) . X10W> )/\0’ f07w} }
Z rank {MwE |:</\0f0/ . (BIOW . /80,10W) . Xlow) Pfo (}\OfO/ . (BIOW i ﬁO,lOW) . Xlow) Mw‘)\o’ fO’ U}:| }
+ rank {PwE |:<)\0f0/ . (Blow _ /80710W) _X10W> Mfo ()\OfOI . (Blow o ﬁO,IOW) i Xlow) Pﬂ)‘)\o’ fO’w:| }
> rank [M,\° f fOAY M,
+ rank {IE [((ﬁlow — plewy. X10W> Mo ((Blow — %) ‘Xlow) PR fo,w} } .

Assumption ID(iv) guarantees that rank (Mw)\ofo’fo)\O'Mw) = rank ()\Ofo’fo)\m) = R, ie. we

must have

B |:<(Blow B ﬁogoW) 'Xlow> Mo <(Blow B ﬁO,lOW) 'Xlow>/ ‘)\07 fo,w} —0.

According to Assumption ID(7i7) this implies Blow = %oV je. we have 3 = 3°. This also
implies Q*(3, A, f) = ||A\°f” — Af'||% = 0, and thereofere Af’ = X" f*. g



S.2 Examples of Error Distributions

The following Lemma provides examples of error distributions that satisty ||e|| = O,(y/max(N,T))
as N,T — oo. Example (i) is particularly relevant for us, because those assumptions on e;; are

imposed in Assumption 5 in the main text, i.e. under those main text assumptions we indeed
have ||e]| = O,(y/max(N,T)).

Lemma S.2.1. For each of the following distributional assumptions on the errors e, 1 =

L...,N, t=1,...,T, we have |le|| = Op(y/max(N,T)).

(i) The ey are independent across i and t, conditional on C, and satisfy E(ey|C) = 0, and
E(e}|C) is bounded uniformly by a non-random constant, uniformly over i,t and N,T.
Here C can be any conditioning sigma-field, including the empty one (corresponding to

unconditional expectations).

(ii) The ey follow different MA(o0) process for each i, namely

en= WUyt fori=1l.. N t=1.T, (S.2.1)
7=0
where the uy, 1 =1...N, t = —o0...T are independent random variables with Eu; = 0

and Eug, uniformly bounded across i,t and N,T. The coefficients 1, satisfy

2
Zo TN Vir < B, Zo Jmax, Y| < B, (S.2.2)

for a finite constant B which is independent of N and T

(i4i) The error matriz e is generated as e = o'/?uX'? where u is an N x T matriz with
independently distributed entries uy and Eu; = 0, Eu?, = 1, and Euj, is bounded uniformly
across i,t and N,T. Here o is the N x N cross-sectional covariance matrix, and ¥ is the

T x T time-serial covariance matriz, and they satisfy

N T
max Zl o] < B, max ; Snl < B, (S.2.3)

for some finite constant B which is independent of N and T. In this example we have

Eeitejr = Uijztr'



Proof of Lemma S.2.1, Example (i). Latala (2005) showed that for a N x T matrix e with

independent entries, conditional on C, we have

1/2 1/2

E (|le] |C) < ¢q max + max +
) J

3 >c>]1/4 ,

where ¢ is some universal constant. Since we assumed uniformly bounded 4’th conditional

moments for e;; we thus have |le|| = Op(VT) +Op(VN)+Op((TN)V*) = O,(\/max(N,T)). n

S E () B0

Example (ii). Let ¢; = (¢y;,...,%y;) be an N x 1 vector for each j > 0. Let U_; be an
N x T sub-matrix of (u;) consisting of uy, 1 =1...N,t=1—7j,...,T —j. We can then write

equation (S.2.1) in matrix notation as

I
s

diag(v;) U_;
0

J

diag(v;) U_; + v,

Il
\M“]

Il
o

J

where we cut the sum at 7', which results in the remainder ryp = 372 .., diag(y;) U-;. When

approximating an MA(oo) by a finite MA(T') process we have for the remainder

E(lrrlle) =3 Y Elwr)y < ond D > v

where o2 is the variance of u;. Therefore, for T — oo we have

(IrnrllF)?
E <—N > — 0,

which implies (||ry7|r)° = Op(N), and therefore ||ryr|| < [ryellr = Op(VN).

Let V be the N x 2T matrix consisting of u;, 1 =1...N,t=1-T,...,T. For j=0...T
the matrices U_; are sub-matrices of V', and therefore ||[U_;|| < ||V]|. From example (i) we know
that ||V|| = O,(y/max(N,2T)). Furthermore, we know that || diag(¢;)| < max; (|¢¥]).



Combining these results we find

lell < Z I diag () [ 1] + lIrwr

Z maX ‘ww
Z maX W@J‘

< (’)p( max(N,T)) .

IN

) IV + 0p(VN)

< max(N, 2T)) + 0,(VN)

This is what we wanted to show. g

Example (iii). Since o and ¥ are positive definite, there exits a symmetric N x N matrix ¢ and
a symmetric T x T matrix 1 such that 0 = ¢ and ¥ = ¢)%. The error term can then be generated
as e = ¢ut), where u is an N x T' matrix with iid entries u; such that E(u;) = 0 and E(u},) < oo.
Given this definition of e we immediately have Ee;; = 0 and Ee;ejr = 0,;2;,,. What is left to
show is that |le|| = O,(y/max(N,T)). From example (i) we know that ||u|| = O,(y/max(N,T)).
Using the inequality ||o|| < v/]lo]i [o]l = |lo]l1, where ||o|; = ||o]|« because o is symmetric
we find

lol < llofly = max Z o3| < L,
i=1
and analogously |5 < L. Since [Jo]| = 6] and [ Z]| = ], we thus find [le] < lolllull]] <
LO,(y/max(N,T)), i.e. |le]| = Op(y/max(N,T)). &

S.3 Comments on assumption 4 on the regressors

Consistency of the LS estimator B requires that the regressors not only satisfy the standard
non-collinearity condition in assumption 4(i), but also the additional conditions on high- and
low-rank regressors in assumption 4(ii). Bai (2009) considers the special cases of only high-
rank and only low-rank regressors. As low-rank regressors he considers only cross-sectional
invariant and time-invariant regressors, and he shows that if only these two types of regressors
are present, one can show consistency under the assumption plimy ., Wyr > 0 on the re-
gressors (instead of assumption 4), where Wxr is the K x K matrix defined by Wyr gk, =

(NT)~' Tr(Myo X}, Myo Xy,). This matrix appears as the approximate Hessian in the profile



objective expansion in theorem 4.1, i.e. the condition plimy ., Wyr > 0 is very natural in the
context of the interactive fixed effect models, and one may wonder whether also for the general
case one can replace assumption 4 with this weaker condition and still obtain consistency of
the LS estimator. Unfortunately, this is not the case, and below we present two simple counter

examples that show this.

(i) Let there only be one factor (R = 1) f? with corresponding factor loadings A}. Let there
only be one regressor (K = 1) of the form X; = w;vy + AV f°. Assume that the N x 1
vector w = (wy,...,wy)’, and the T" x 1 vector v = (vy,...,vy)" are such that the N x 2
matrix A = (A\°,w) and and the T x 2 matrix F' = (f°,v) satisfy plimy ;_o, (A'A/N) > 0,
plimy 7 (F'F/T) > 0. In this case, we have Wy = (NT) ™! Tr(Mo vw’ Myo wv'), and
therefore plimy o, Wnr = plimy 7o (NT) ™" Tr(Myo vw' Myo wv') > 0. However, (3 is
not identified because 3°X + A\’ f¥ = (8 +1)X —w/, i.e. it is not possible to distinguish
(B, N, f) = (8% ) and (B, ), f) = (B° + 1, —w,v). This implies that the LS estimator
is not consistent (both 3° and 3° + 1 could be the true parameter, but the LS estimator

cannot be consistent for both).

(ii) Let there only be one factor (R = 1) f? with corresponding factor loadings \). Let the N x
1 vectors \°, w; and w, be such that A = (A%, wy, w,) satisfies plimy 7, (AA/N) > 0. Let
the T'x 1 vectors f?, vy and v, be such that F' = (f°, vy, v,) satisfies plimy ., (F'F/T) >
0. Let there be four regressors (K = 4) defined by X; = wiv], Xo = wevh, X3 =
(w1 + A”)(vg + £0), Xy = (wy + A°)(vy + f°). In this case, one can easily check that
plimy . Wnr > 0. However, again (3, is not identified, because Zizl BoXy + A fY =
S (B 1) X — (A wy +ws) (F + vy +v), d.e. we cannot distinguish between the true
parameters and (3, A, f) = (8°+1, =\ —w; —wy, f¥ +v; +v;). Again, as a consequence

the LS estimator is not consistent in this case.

In example (ii), there are only low-rank regressors with rank(X;) = 1. One can easily check
that assumption 4 is not satisfied for this example. In example (i) the regressor is a low-rank
regressor with rank(X) = 2. In our present version of assumption 4 we only consider low-rank
regressors with rank rank(X) = 1, but (as already noted in a footnote in the main paper) it is
straightforward to extend the assumption and the consistency proof to low-rank regressors with
rank larger than one. Independent of whether we extend the assumption or not, the regressor
X of example (i) fails to satisfy assumption 4. This justifies our formulation of assumption 4,
because it shows that in general the assumption cannot be replaced by the weaker condition



S.4 Some Matrix Algebra (including Proof of Lemma A.1)

The following statements are true for real matrices (throughout the whole paper and supplemen-
tary material we never use complex numbers anywhere). Let A be an arbitrary n X m matrix.
In addition to the operator (or spectral) norm ||A|| and to the Frobenius (or Hilbert-Schmidt)

norm ||A||g, it is also convenient to define the 1-norm, the oco-norm, and the max-norm by
n m
[Al = max 2 Al s I Alle = max Z; Al s [l Allmee = maxx max |Ay| -
1= j=
Lemma S.4.1 (Some useful Inequalities). Let A be an n x m matriz, B be an m X p matriz,

and C and D be n x n matrices. Then we have:

(i) Al < [|Alp < [[A] rank (4)"2
(i) [[AB|| < [[AllIBIl ,
(i) | ABllp < [|Al 1Bl < [[All£ 1Bl

()  [Te(AB)| < [[Al|lpl|Bllp,  forn=p,
(v) T (O)] < |Crank (C)
(vi) IC) < Tr(C) for C' symmetric and C' > 0,

(vii) A < AL [[A]l
(viii) || Allmax < A < vrm || Allmax ,
(ix) |A'CA| < ||A'DA]|l, for C symmetric and C < D.
For C, D symmetric, and i =1,...,n we have:
() (C) + p (D) < pi(C+ D) < py(C) + (D)
(zi) 1 (C) < p(C+ D), Jor D >0,
(zir)  p(C) = [ID]| < p(C+ D) < i (C)+ || D] -
Proof. Here we use notation s;(A) for the i’th largest singular value of a matrix A.
(i) We have ||A|| = s1(A), and ||A||% = er.inlk(A)(si(A))?. The inequalities follow directly from
this representation. (ii) This inequality is true for all unitarily invariant norms, see e.g. Bhatia

(1997). (iii) can be shown as follows
|AB||5 = Tr(ABB'A’)
= Tr[|| B[ AA" — A(|| B|]’T — BB')A']
< ||B|PTx(AA) = | B|* |Al7 |



where we used that A(||B||?T — BB’)A’ is positive definite. Relation (iv) is just the Cauchy
Schwarz inequality. To show (v) we decompose C' = UDQO’ (singular value decomposition),
where U and O are n x rank(C') that satisfy U'U = O'O =1 and D is a rank(C') x rank(C)
diagonal matrix with entries s;(C'). We then have ||O| = |U|| = 1 and || D|| = ||C|| and therefore

Tr(C)| = |Te(UDO")| = |Tx(DO'U)|
rank(C)
= Z U;DO/U%‘
i=1
rank(C)
< Y IDIONV] = rank(C) [ C]| -
i=1
For (vi) let e; be a vector that satisfied |le;]| = 1 and ||C|| = €|Ce;. Since C' is symmetric
such an e; has to exist. Now choose e;, © = 2,...,n, such that e;, ¢ = 1,...,n, becomes a
orthonormal basis of the vector space of n x 1 vectors. Since C' is positive semi definite we
then have Tr (C) = ). eiCe; > e;Ce; = ||C||, which is what we wanted to show. For (vii) we
refer to Golub and van Loan (1996), p.15. For (viii) let e be the vector that satisfies ||e]] = 1
and ||A'CA| = ¢/A’CAe. Since A'C'A is symmetric such an e has to exist. Since C' < D we
then have ||C|| = (e/!A")C(Ae) < (¢!A")D(Ae) < ||A'DA||. This is what we wanted to show. For
inequality (ix) let e; be a vector that satisfied |le;|| = 1 and ||A'C'A|| = €] A’C'Ae;. Then we have
|ACA| = eADAe; — e\ A (D — C)Aey < ejA'DAe; < ||ADA|. Statement (x) is a special
case of Weyl’s inequality, see e.g. Bhatia (1997). The Inequalities (xi) and (xii) follow directly
from (ix) since p,,(D) > 0 for D > 0, and since —||D|| < u;(D) < ||D|| fori=1,...,n. 1

Definition S.4.2. Let A be an n X r; matriz and B be an n X ro matriz with rank(A) = ry

and rank(B) = 1. The smallest principal angle 045 € [0,7/2] between the linear subspaces
span(A) = {Aa|la € R} and span(B) = {Bb|b € B"} of R™ is defined by
'A'B
cos(f4p) = max ma a b

0fackr obek™ || Aal[[[Bb]|

Lemma S.4.3. Let A be an n x r1 matriz and B be an n X ro matriz with rank(A) = r; and
rank(B) = ry. Then we have the following alternative characterizations of the smallest principal

angle between span(A) and span(B)

: _ M A
sin0a.n) = 0ackn | Aall
o IMaBY
0£beR2 || B



Proof. Since |Mp Aa|*+ ||Pg Aal|* = ||Aal|? and sin(04 p)? + cos(6a5)* = 1, we find that
proving the theorem is equivalent to proving

[P Aall . [[PaBb
— mm ——.

cos(@A,B):O#eer |Aa| — oteer || AD||

This result is theorem 8 in Galantai, Hegedus (2006), and the proof can be found there. 1
Proof of Lemma A.1. Let
$1(2) =minTr [(Z = Af) (2" = fA)]

So(Z) = m]}nTr(ZMf zZ",

S3(Z) = minTr(Z’ M\ Z) ,

S4(Z) = min Tr(M5 Z My zZ",
/\,f

S5(Z) = Z wi(Z2'2)

S6(Z) = Z wi(ZZ2")
i=R+1

The theorem claims
S1(Z) = So(Z) = S5(Z) = Sy(Z) = S5(Z) = Se(2) .
We find:

(i) The non-zero eigenvalues of Z'Z and ZZ' are identical, so in the sums in S5(Z) and in

S¢(Z) we are summing over identical values, which shows S5(Z) = Se(Z2).
(ii) Starting with S;(Z) and minimizing with respect to f we obtain the first order condition
NZ=XNX\f".

Putting this into the objective function we can integrate out f, namely

Te[(Z =AY (Z=M)] =Tx(Z'Z — Z'\f)

(

Tv (Z'Z — Z'ANXN) NN )
(
(Z'

Tr

Z'7Z — Z'AXNXN)TTNA)N Z)
Z) .

This shows S1(Z) = S3(Z). Analogously, we can integrate out A to obtain S;(Z) = S»2(Z2).

Tr

10



(iii) Let M5 be the projector on the N — R eigenspaces corresponding to the N — R smallest
eigenvalues' of ZZ', let P; = Iy — M,
ZZ'. We then know that the matrix P[22’ — wgly|P; — M3[ZZ' — wrly|Mj is positive

semi-definite. Thus, for an arbitrary N x R matrix A with corresponding projector M)y

and let wg be the R’'th largest eigenvalue of

we have

0 < Te { (P[22’ — wily)P; = M3 22 — wpln|Ms) (My — M5)*}
=Tr { (Px[ZZ, — WRHN]PX + Mx[ZZ/ — UJR]IN]Mx) (MA — Mx)}
=Tr[Z' My Z] — Tx [Z' M5 Z] + wg [rank(M),) — rank(M5)] ,

and since rank(M5) = N — R and rank(M,) < N — R we have
T [Z2' M5 Z] < Tv[Z' M, Z] .

This shows that A5 is the optimal choice in the minimization problem of S3(Z), i.e. the
optimal A = \ is chosen such that the span of the N-dimensional vectors XT (r=1...R)
equals to the span of the R eigenvectors that correspond to the R largest eigenvalues of
Z7'. This shows that S3(Z) = Ss(Z). Analogously one can show that Sa(Z) = S5(2).

(iv) In the minimization problem in S;(Z) we can choose A such that the span of the N-
dimensional vectors Xr (r = 1...Ry) equals to the span of the R; eigenvectors that
correspond to the R; largest eigenvalues of ZZ’. In addition, we can choose fsuch that
the span of the T-dimensional vectors ﬁ (r = 1...Ry) equals to the span of the R,
eigenvectors that correspond to the (R; + 1)-largest up to the R-largest eigenvalue of Z'Z.
With this choice of A and fwe actually project out all the R largest eigenvalues of Z'Z
and ZZ'. This shows that Sy(Z) < S5(Z). (This result is actually best understood by

using the singular value decomposition of Z.)

We can write MXZM]V: Z — Z, where
Z =P ZM;+ZP;.

Since rank(Z) < rank(P; Z My)+rank(Z P5) = Ri+ Ry = R, we can always write Z = \f'

If an eigenvalue has multiplicity m, we count it m times when finding the N — R smallest eigenvalues. In

this terminology we always have exactly N eigenvalues of ZZ’, but some may appear multiple times.

11



for some appropriate N x R and T' x R matrices A\ and f. This shows that

S4(Z) = min Tr(M5 Z M7 Z')
A

> min T((Z-Z)(Z-2))
{Z : rank(Z)<R}

= minTr [(Z = Af) (2 = N)] = $i(2)

Thus we have shown here S1(Z) < S4(Z) < S5(Z), and actually this holds with equality
since S1(Z) = S5(Z) was already shown above.

S.5 Supplement to the Consistency Proof (Appendix A)

Lemma S.5.1. Under assumptions 1 and j there exists a constant By > 0 such that for the

matrices w and v introduced in assumption 4 we have

w' Myow — Bow' w >0, wpal,

v Mpv — Byv'v >0, wpal.

Proof. We can decompose w = w w, where w is an N x rank(w) matrix and w is a rank(w) x K
matrix. Note that w has full rank, and M, = M.

By assumption 1(i) we know that A”’A”/N has a probability limit, i.e there exists some
B; > 0 such that AY\° /N < Bilr wpal. Using this and assumption 4 we find that for any

R x 1 vector a # 0 we have

M, X al>  a A" M,\a _ B

= > — al.
BSIE d NN B WP
Applying Lemma S.4.3 we find
V' Myowb _ a’)\O’Mw)\Oa> B .
mn ——>— = min ———— > — | wpal.
0£beRrank(w) O/ W' Wb o£acRE  a/ A7 \V¢q B, P

Therefore we find for every rank(w) x 1 vector b that b (W' Myow — (B/By)w'w )b > 0, wpal.
Thus @' My w — (B/B;)w'w > 0, wpal. Multiplying from the left with @' and from the
right with @ we obtain w’ Myow — (B/B;)w'w > 0, wpal. This is what we wanted do show.

Analogously we can show the statement for v. g

As a consequence of the this lemma we obtain some properties of the low-rank regressors

summarized in the following lemma.
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Lemma S.5.2. Let the assumptions 1 and 4 be satisfied and let Xiowo = Zfill o X; be a linear

combination of the low-rank regressors. Then there exists some constant B > 0 such that

min HXIOW’Q Mye X{OW’O‘H > B wpal
{a€RK1 [|af|=1} NT ’ ’
_ | M0 Xiow,a Mpo Xl o Myo|
{aGRgll}ﬁiynzl} NT > B, wpal.
Proof. Note that ||Myo Xiowa Mo X[\, o Myo|| < || Xiow.a Mo X{oy, o] Decause [ My =1, i.e.

if we can show the second inequality of the lemma we have also shown the first inequality.

We can write Xy, = wdiag(a)v'.

Lemma S.4.1 we find

Using Lemma S.5.1 and part (v), (vi) and (ix) of

| Myo Xiowa Mo X1y o Myol| = || Myo w diag(a’) v/ Mo v diag(e) w'Myo|
> By || My wdiag(a) v" vdiag(a’) w' M,ol|

B
> ?0 Tr [Myo wdiag(a’) v" vdiag(a’) w'M,o]
1
B
= ?0 Tr [v diag(a’) w' Myow diag(a’) V']
1

B
> ?0 ||v diag(a’) w' M,ow diag(a’) v'||
1

B2
> ?O ||lv diag(a) w'w diag(a’) /|
1

B2
> F% Tr [v diag(a’) w'w diag(a’) v']
i

B (Xt ]
K12 ow,a<} ow, o

Thus we have ||Myo Xiow.a Mo X{,y, o Myo|| /(NT) > (By/K1)* o WY a , where the Ki x K
matrix Wy is defined by Wy, = (NT)'Tr (X, X)), i.e. it is a submatrix of Wyr. Since
Wt and thus Wi converges to a positive definite matrix the lemma is proven by the inequality

above.

Using the above lemmas we can now prove the lower bound on §§3’T(/B, f) that was used in

the consistency proof. Remember that

. 1
SO (5, f) = NT Tr

K K !
(AO £ (8- ﬁk)Xk> My (AO U+ - ﬁk)Xk> P30,

k=1 k=1

13



We want to show that under the assumptions of theorem 3.1 there exist finite positive constants

ag, a1, Ao, az and ay such that

ao Hﬂlow o ﬁ(),lowll2
- 2
Hﬁlow o ﬁO,IOW” +a ||ﬁlow . 60,10WH + ay
— ag Hﬁhigh . ﬁ(),hith —ay Hﬁhigh o 50,hith Hﬁlow o ﬁ ,

(B, f) >

wpal.

Proof of the lower bound on gﬁ%(ﬁ, f). Applying Lemma A.1 and part (xi) of Lemma S.4.1
we find that

S5, 1) 2 o i [(A "+ Z B = BuX ) (AO 1+ Z (8% — B X >]
:%MRH[()\OJCOHLZ — ) wl“z) (Aofol‘i‘z —3) wl"’l)

! K
(/\0 U+ Z — Bwi Uz) BP0 w) Z (B, = B) Xm
P m=K,
+ Z(ﬁ?n_ﬁ )X, P <)\0f0,+z — b wl”l)
m;Kl -
m=K1 m=K1
1 al
ZW“RH[(AOPI"’_Z@ 51) wlvz) (AOfO/jLZ - B) wl“l)
=1
! K
()\0 fO/ + Z ﬁl wy Ul) P(/\o’w) Z (ﬂ?n — ﬁm)Xm
P m=K1
+ Z(ﬁ?n_ﬁ )X, P <)\0f0,+z —0) wl”l)]
m=K1

1
> NT P+l <)\0 o+ Z — Bw Uz) (AO 7+ Z — 8w Uz)
— as Hﬁhigh o ﬁﬂ,hith —ay Hﬁhigh . 50,hith Hﬁlow o /80,10W|| ’ Wpal,

where a3 > 0 and a4 > 0 are appropriate constants. For the last step we used part (xii) of
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Lemma S.4.1 and the fact that

1 K Kq
7 | 2 (B = B X0 Py (AO P+ - By vz) H
m=K1 =1
. ) X MO for wv,
< K high _ 20,high m K low _ 20,low l ) )
< 6 [l = o | S| (|2 o |

Our assumptions guarantee that the operator norms of A\ f%/ VNT and X,, / V' NT are bounded
from above as N, T — oo, which results in finite constants a3 and ay.

We write the above result as §§3)T(ﬁ, f) > pige(A’A)/(NT) + terms containing 3" where
we defined A = X0 f¥ 4+ 325 (80— 3,) wy v Also write A = Ay + Ay + Az, with A} = M, A Pjpo =
My A fY Ay = Py AMpo = S0 (8) — B) wiv) Mpo, Ay = Py APpo = Py, A0 f + 3750 (89 —
B;) w;v; Py. We then find A’A = A1 Ay + (A, + AS)(As + As) and

AA > AA— (a2A + a Y2 A (a'?Ag + a7V2Ay)
= [AllAl — (a — 1) AéAg] + (1 — ail)A/QAQ y

where > for matrices refers to the difference being positive definite, and a is a positive number.
We choose a = 1+ pup(A}A1)/(2]]A3]]?). The reason for this choice becomes clear below.

Note that [A]A; — (a — 1) A} As] has at most rank R (asymptotically it has exactly rank R).
The non-zero eigenvalues of A’A are therefore given by the (at most) R non-zero eigenvalues
of [A1A; — (a — 1) A3 A3] and the non-zero eigenvalues of (1 —a~1) A, Ay, the largest one of the
latter being given given by the operator norm (1 — a™')||As||>. We therefore find

1 1 _
7 M (AA) = o i [(A1A; — (a — 1) AjA3) + (1 —a ") AQA]

1 : . / /
2 N7 min {(1 —a™")|[Aa]*, pg[A1AL— (a — 1) A3As]}

Using Lemma S.4.1(xii) and our particular choice of a we find
fr [A1Ar — (0 — 1) A3As] > pp(A1Ar) — [l(a — 1) A54;s
1
= §NR(A,1A1) :

Therefore

1 1 . 2 || Az |?
— A'A) > Al A 1
NT Py ( ) > ONT (A1 A1) mln{ T2 A5 |2 + pp(ALA)
1 [ Ao|? pp(A1Ar)
T NT 2| AP + pp(A1Ar) |
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where we used ||A]| > ||As]| and [|A]| > || Az]|.

Our assumptions guarantee that there exist positive constants cg, ¢, ¢o and c¢3 such that

A )\OfO, us wlvl ow ow
1AL I s~ g0 — gyl o gy o — o)) wpat

VNT = VNT =~ VNT
/ 0 )\0/ Mw )\0 or
pr(ALAL) _ Hr (f f ) > ¢y, wpal,
NT NT
[N O TS S ,
NT T M > (B = Byy) wi, vf, Mpo > (B, — B,) v, w,
=1 lo=1

ow ow 2
Z C3 ||6l - 6071 H 9 Wpa‘l )
were for the last inequality we used Lemma S.5.2.

We thus have

1 C3 Hﬁlow o ﬂO,lOWHQ
— AA) > :
NT ’uRH( ) 2 1+ % (Co+01 Hﬁlow _ﬁo,lowH)Z

wpal .

c2c3 — 2¢9 _ 2 ;
he s 1= 7 and ag = 20 We thus obtain

Defining ay =

1 ag Hﬁlow o ﬁo,me?
— A'A) >
NT “RH( ) Hﬁlow . ﬁO,lowHQ T Hﬁlow o 50,1OWH + ay

, wpal,

i.e. we have shown the desired bound on gj(?)T(ﬁ, )

S.6 Regarding the Proof of Corollary 4.2

As discussed in the main text, the proof of Corollary 4.2 is provided in Moon and Weidner (2013).
All that is left to show here is that the matrix Wyt = WNT()\O, 19, X},) does not become singular

as N, T — oo under our assumptions.

Proof. Remember that

1
WNT = ﬁTI’(MfO )(]/€1 M)\O sz) .
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The smallest eigenvalue of the symmetric matrix W (A°, f°, X;) is given my

. CL/ WNTCL
W = min ————
x (Wnr) (acBK, az0}  ||a2
1 K K
= min —Tr|M X, | M X
{acRK, a0} NT ||al|? a (; o k) : <k21 e k)]
_ min Tr [Mfo (Xl/ow © + X}/ﬁgh,a) MAO (XIOW,SO + Xhigh,a)}
{a eRK1, o € RK2 NT ([le]l* + [[¢]l?) 7
a#0, ¢ #0}

where we decomposed a = (¢, /), with ¢ and a being vectors of length K; and K&, respectively,

and we defined linear combinations of high- and low-rank regressors?

Ky K
Xlow,<p = § 2 Xl ) Xhigh,a = E Oy, X
=1 m=Ki1+1

We have Mo = M( w) P(M ow)s Where w is the N x K; matrix defined in assumption 4, ¢.e.
M w)is an N x (R+ K;) matrix, while Myow is also an N x K; matrix. Using this we obtain
A

x Wxr)
1
= min Tr M (X +X'~ Mo oy (Xiow.po + Xhnigh,a
e TR ™ M (oK) Mty i+ i)
¢ #0, o # 0}
+Tr [Mfo (Xllow,go + Xllligh,a) P(MAOU)) (X10W7<P + Xhigh,a)} }
1
= min Tr (Mo X]in o M, Xhigh,a
(perki acrie NT (\lel2+llall2){ My Kiigno Mooy Ko
@ #0, a#0}

+ Tr [Mfo (Xllow,(p + Xllqigh,a) P(MAOU)) (XIOW#P + Xhigh,a):|
(S.6.1)

We note that there exists finite positive constants c¢1, ¢s, ¢3 such that
1

7T (Mo Xiion o Mxo wy Xnigna] > cillal|®, wpal,
T Mo (Ko + Xligna) Ptn (Kiows + Xuigna)] >
%Tr [ Mo Xio o Pt gw) Xiowp] = €2 Hs@HQ wpal,
ST Mo X, Pty Xnignal >~ flolllol] , wpal,
%Tr [ Mo Xii41,.0 Pt ow) Xnigha| >0, (S.6.2)
2As in assumption 4 the components of a are denoted ag, 41, ..., ax to simplify notation.
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and we want to justify these inequalities now. The second and the last equation in (S.6.2) are
true because e.g. Tr [Mfo Xllligh,a P, ow) Xhigh’a} = Tr [Mfo X P, gw) Xnigh,a Mfo}, and
the trace of a symmetric positive semi-definite matrix is non-negative. The first inequality in

(S.6.2) is true because rank(f°) +rank(\°, w) = 2R + K and using Lemma A.1 and assumption

igh,a

4 we have

1 1
NTHOAHQ [Mfo Xhlgh,a M()\D,w) Xhigh,oz} > NT||O{_||2/L2R+K1+1 [Xhigh,a Xﬁligh,a} > b , Wpalj

i.e. we can set ¢; = b. The third inequality in (S.6.2) is true because according Lemma S.4.1(v)

we have
1 K
WTT [Mfo Xllow’go P(M)\()w) Xhigh,a} > — _1 ||X10W,80 | ||Xhlgh04||
K1
> — NT H low,p |F HXhlghaHF
Xk Xk
Y A P e e,
NGl F =1
>

—5 el el

where we used that assumption 4 implies that HX k/ VN TH < (' holds wpal for some constant
F
C as, and we set c3 = K| K; Ky C?. Finally, we have to argue that the third inequality in (S.6.2)

holds. Note that X| P(M)\ow) KXiow,p = X{OVW Mo Xiow,p, i.€. we need to show that

ow,p
1
~7 [Myo Xio o Myo Xiow o] > 2|l
Using part (vi) or Lemma S.4.1 we find
1 1
ﬁTr [ Mo Xiow.p Mo Xiow,p] = NTT r [Myo Xiow,, Mo Xy, v Mo]

= NT HM)\O Xlow RZ) Mfo Xlow P MAO H

and according to Lemma S.5.2 this expression is bounded by some positive constant times ||p||?
(in the lemma we have ||| = 1, but all expressions are homogeneous in ||¢||).
Using the inequalities (S.6.2) in equation (S.6.1) we obtain
1

(Wnr) > min —————{aa|* + max [0, cof|¢l|* — eslell]al]
" et e ToP S ol ¢ [ I}
w0 #0, a#0}
2
> min e ,  wpal.
27 3+ c

Thus, the smallest eigenvalue of Wy is bounded from below by a positive constant as N, T —

o0, i.e. Wyt is non-degenerate and invertible. §
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S.7 Proof of Examples for Assumption 5

Proof of Example 1. We want to show that the conditions of Assumption 5 are satisfied.
Conditions (i)-(iii) immediately follow by the assumptions of the example.
For condition (iv), notice that Cov (X, Xs|C) = E (U Uss). Since |3°] < 1 and sup,, E(e2) <

00, it follows that

1 N T 1 N T
72 2 |Cov (X XilO)| = =0 D7 [E(UlL)]

i=1 t,s=1 i=1 t,s=1

[e.9]

N T
— Z Z Z |(B°)PT9E (es1—peis—q)| < 00.

For condition (v), notice by the independence between the sigma field C and the error terms

{e;i+} that we have for some finite constant M,

| X
Z ‘COV <6ans, ewa|C) ‘

N T
1

N T oo
- NT? Z Z Z ‘ p+qE ezteis—peiueiv—q) - (ﬁ())pE (6it6is—p) (60)(1 E (eiueiv—q)

IN

% S 1M It =u}I{s—p=v—q}+1{t =v—q}I{s — p=u}]

T T
- T% Z DI TS RS - S | =D St
e 2
B T min{s,v} 0 o 2k 1 T - O o
2 M7 2. 18 —Zlﬁ
s, =1 k=—oc0 s,u=1 v,t=1

s—u>0 v—t>0
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Notice that

T min{s,v}

_Z Z |ﬁos+v 2k

s,v=1 k=—oc0

9 T S v o - 9 T s .
2 3DV C ) D Dl Cil

s=2 v=1 k=—o00 s=1 k=—o0
T oo
_ _Zz‘ﬂos Uz‘ﬁoﬂ %Zz‘ﬂ()’ﬂ
s=2 v=1 s=1 [=0
2
_ 6031}
\m TSEQ;’ L= |oP
2
: #(1-)
( |50 )Z| ‘ _|60‘2
= 0(1),

and

T LS e “—TZZW I z\ﬁo (1—_):()(1).

s,u=1 s=1 u=1
s—u>0

Therefore, we have the desired result that

| N7 N N
NT2 Z Z ‘COV <€itXis> eiuXiv|C)‘ =0, (1).

i=1 t,s,u,v=1

PRELIMINARIES FOR PROOF OF EXAMPLE 2

e Although we observe X;; for 1 <t¢ < T, here we treat that Z;; = (e, X;;) has infinite past

and future over time. Define

Gli)=CVo({Xys:7<s<t}) and H. (i) =CVo({Zy:T7<s<t}).

Then, by definition, we have G- (¢) , H. (i) C F~ (i) for all 7,¢, 4. By Assumption (iv) of Ex-

ample 2, the time series of {X;; : —0o <t < oo} and {Z;; : —oo <t < oo} are conditional

a— mixing conditioning on C uniformly in 7.

e Mixing inequality: The following inequality is a conditional version of the a-mixing in-

equality of Hall and Heyde (1980, p. 278). Suppose that X;; is a Fi-measurable ran-
dom variable with E <|X¢tlmax{p’q} \C) < 0o, where p,q > 1 with 1/p + 1/q < 1. Denote
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1 Xitlle,, = (E (| Xl IC))"/? . Then, for each i, we have

1

-1
[Cov (X, XitmlO) < 811Xl [ Xitsmlle,y am * 7 (). (87.1)

Proof of Example 2. Again, we want to show that the conditions of Assumption 5 are satis-
fied. Conditions (i)-(iii) immediately follow by the assumptions of the example.

For condition (iv), we apply the mixing inequality (S.7.1) with p = ¢ > 4. Then, we have

N T
1
7 2 O |Cov (Xu, X0
=1 t,s=1
2 L s 5 N T1T-m
< W;;g |Cov (X4, Xigam|C)| = W;mzo ; |Cov (Xit, Xit1m|C)|
16 N.TT ’
- ﬁz ||Xit||C7p [ Xitmlle, aom (1) 7
=1 m=0 t=1
< 16 supHXanp) Zam
m=0
< 0,(1),

where the last line holds since sup, ; HXitHZ,p = O, (1) for some p > 4 as assumed in the example

p=2 p—2
(2),and > jamd =>.0 m P =0O(1) due to ¢ > 34;—21 and p > 4.

m=0

For condition (v), we need to show

| N N N
NT2 Z Z ‘COV <€itXis> eiuXiv|C)‘ =0,(1).

i=1 t,s,u,v=1

Notice that

Cov (eit)?isa eiu)?iv|c> )

=
)ﬂw}—‘
M=

E <eitjziseiu)?ivyc) —-E (&tiis‘C) E (eiu)?ivlc> ‘

|
2 —
:%Mﬂ %Mﬂ

T2
=1 t,s 1
1 N T _ B 1 N ) T N 9
< sp2 3 Rt + 53 (5 e (k)
i=1 t,s,u,v=1 i—1 Py
= I+1II, say.

First, for term I, there are finite number of different orderings among the indices t, s, u, v. We

consider the case t < s < u < v and establish the desired result. The rest of the cases are the
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same. Note that

’ﬂ
’ﬂ
?r‘
H

N
Il
—
~+~
I
_
£
Il
o
T
o
I
=)

IN

N T
1 1 ~ ~
N E = E E ‘E (eit (Xit+k€it+k+lXit+k+l+m) ’C)‘

i=1 t=1  0<i,;m<k
0<k+l+m<T—t

+% i % Z Z ’E [(eit)?it%) <€it+k+l)?it+k+l+m> ’C}

i=1 t=1  0<k,m<l
0<k+I4+m<T—t

—-E <€itjzz't+k‘c> E <eit+k+ljzit+k+l+m|c) ‘

N T
1 1 ~ -
+N Z Z Z E (eitXitJrk‘C) E (eit+k+lXit+k+l+m|C>

i=1 t=1  0<k,m<l
0<k+I+m<T—t

N T
1 1 ~ ~
+N Z T2 Z Z ’E [(eitXineinH) Xit+k+l+m|c:| ’

i=1 t=1 0<p,l<m
0<k+I4+m<T—t

= [1 +IQ+[3+[4, say.

3|

By applying the mixing inequality (S.7.1) to ‘E <eit (Xit+keit+k+l)~(it+k+l+m> |C>‘ with e;; and

th+kezt+k+let+k+l+ma we have
‘E (eit <Xit+k6it+k+lXit+k+l+m> |C>’

< 8leillc,

Xit+keit+k+lXit+k+l+m‘ c
7q

~ 1—1_1
Xz't+k+l+mHC3 a " (l)a

< 8leale, .

Xit+kHC y | €ittht ||c,3q

where the last inequality follows by the generalized Holder’s inequality. Choose p = 3¢ > 4.
Then,

N T

8 1
Il S NZITQZ Z ||eitl|C,p

t=1 0<l,;m<k
0<k+l+m<T t

Xit+k:HC7p l€itn+illc, Xz’t+k+l+m‘ .

~ 1—-L
< 8 (sup ||eit\|(23’p> (sup HXinH ) Tz Z Z a,
bt ut t=1  0<l,m<k
0<k+l+m<T—t
2 v 2 - 2 -7
< 8 (SUP HeitHc,p) (sup HXit-Hc‘ ) Zk‘ a, °
it it C.p P
S Op (1)7
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2
where the last line holds since we assume in the example (2) that (supi el p) (supz- . > =
’ ’ ' Cp
1

O, (1) for some p > 4,, and > ~_, m2am ¥ = Yo o m> < = 0 (1) due to ¢ > 34;)1—31 and

Xz't—i—k ’

p>4.

By applying similar argument, we can also show that

IQ, Ig, [4 - Op (1) .

S.8 Supplement to the Proof of Theorem 4.3

Notation E; and Vare and Cove: In the remainder of this supplementary file we write Ec,

Vare and Cove for the expectation, variance and covariance operators conditional on C, i.e.

Ec(A) = E(A|C), Varc(A) = Var(A|C) and Cove(A, B) = Cov(A, B|C).

What is left to show to complete the proof of Theorem 4.3 is that Lemma B.1 and Lemma B.2
in the main text appendix hold. Before showing this, we first present two further intermediate

lemmas.

Lemma S.8.1. Under the assumptions of Theorem 4.3 we have for k =1,..., K that

(a) 1P Xill = 0,(VNT) ,
(b) 1XkProll = 0,(VNT) ,
) 1PyoeXill = 0p(N*?),

) [ ProePpol| = Op(1) -

(c
(d
Proof of Lemma S.8.1. # Part (a): We have

[Py Xil = [IX°OYA0) TIAY X |
< IACOAN) YA X |
< I A) A X[ = Op(N V2N X
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where we used part (i) and (ii) of Lemma S.4.1 and Assumption 1. We have
N 2

Ec (Z )\?r)?mt)
i=1

()% (X7,) }

E [(A5,)*Varc (X))

E{Ec [IXXell3] } =E

ﬁ
Il
—
-
Il
—

M=
M=
WE

I
&=

- TM-
]~

ﬁ
Il
—
o~
Il

1 =1

I
NE
NE
] =

\Z
I
—_
o
Il
—

=
3

1

Oy

where we used that Xk,it is mean zero and independent across 7, conditional on C, and our
bounds on the moments of X, and X ;. We therefore have |AYX||p = O,(VNT) and the
above inequality thus gives || Py Xg|| = O,(VT) = 0,(V/NT).

# The proof for part (b) is similar. As above we first obtain | X,Pp| = ||PpX;] <
Op(T*1/2)||f0')Zl’€||F. Next, we have

Ee |1/ %13

2
Ec (Z X, 7,t>

T

2 fOEe (fszt;(kzs)

M= 114
M= 11

,2
Il
—
I
—
o

%

R 2
> (mtax 721)

r=1

,S

N T
Z Z |Cove (X,it; Xkis)|

i=1 t,s=1

IN

= O0,(TY ")) O,(NT) = 0,(NT?),

where we used that uniformly bounded E||f2[|*T¢ implies that max, |f2| = O,(TY#+9). We
thus have || f”X}||2 = 0,(TVN) and therefore || X;Pjo|| = 0,(v/NT).
# Next, we show part (c). First, we have

B {Ee [(INexillr)’] } = { Ee Zi( ZA?retim)

r=1j t=1
R N T
“2{30 3 3 e et
r=14,j,l=1t,5=1



where we used that E¢ (e;:e;5 X j: Xk js) is only non-zero if i = [ (because of cross-sectional
independence conditional on C) and ¢t = s (because regressors are pre-determined). We can thus
conclude that [|\"'eX}||r = O,(NVT). Using this we find
1PyoeXi] = A (A"A") AV e X
< A ATAY) TN e X
< IXNIATAY) I eXillr = Op(N~H3)O,(NVT) = Oy(VNT) .

This is what we wanted to show.

# For part (d), we first find that \/% Hfo’e)\o = 0, (1), because

I

07,10 2 N T 2
E { Ec (%) - E LEC (ZZeztff’A‘))

where we used that e;; is independent across ¢ and over ¢, conditional on C. Thus we obtain

1PyoePpol| = AN INe fO(F )7 £
< INIOPN) A e ML
< Op(NV2) O, (NN ef O (T™HO(TY?) = O, (1) ,

where we used part (i) and (ii) of Lemma S.4.1. 1

Lemma S.8.2. Suppose that A and B are a T'xT and an N x N matrices that are independent
of e, conditional on C, such that Ec (HAH?,) = O, (NT) and E. (HBH;) = O, (NT), and let

Assumption 5 be satisfied. Then there exists a finite non-random constant cq such that

(a) Ee ({Tr[(¢'e — Ee (¢e)) Al}*) < co N Ee (AII}) .

(b) Ee <{Tr [(e¢’ — Ee (e€')) B]}2> < TEc (|B]%) .
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Proof. # Part (a): Denote Ay, to be the (¢, s)" element of A. We have

T T
Tr{(e'e — E¢ ('e)) A} = ZZ e'e — Ec (e'e)),, Ais
t;l s;l N
= Z Z <Z €it€is — ezteis))> Ats-
t=1 s=1 =1

Therefore

Ee (Tr{(c'e — E¢ (¢e)) A})?

T T N
= Z Z Z Ec <Z (eieis — Ec (eitez‘s))> <Z (€jpejq — Ec <€jpejq))) Ec (AtsApg) -
t=1 s=1 p=1 g=1 i=1 j=1
Let ¥ = Ec(e?). Then we find
N N
Ec { (Z (exess — Ec (ezteis») (Z (ejpeiq — Ee <€Jpejq))> }
i=1 j=1
N N
= Z Z {Ec (eucisejpesq) — Ee (€ieis) Ec (ejpejq)}
i=1 j=1
YiXis if (t=p)#(s=gq) and (i =7)
_ Yt s if (t=¢q)# (s=p) and (i =j)
Ee (ej) =33 if t=s=p=¢q) and (i =j)
0 otherwise.
Therefore,
T T N T N
Ee (Tr{('e — Ec (¢'e)) A})? < Z Z SiXis (Ee (A7) + Ee (A As)) + Z Z (Ec (e,) — X7,) Ec A7,
t=1 s=1 i=1 t=1 i=1
Define X! = diag (X;1, ..., Xi7) . Then, we have
T T N N
DY D TS (Eed) = Ee (Z Tr (A'S AEi))
t=1 s=1 i=1 i=1
al 2 al 2
< D Ee Al < 3 [ Ee ANl
i=1 i=1
< ¥ (suph ) el (S.8.1)
it
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Also,

T T N N
3D SuNiEe (AuAy) = Ee [ Tr(STAAYY)
t=1 s=1 i=1 i=1
< DB [SAl A < D018 Re AT
=1 i=1
< N (supZ?t) Ee || Al3 . (S5.8.2)
it
Finally,
T N
Z Z (EC (eft) - E?t) EcAy < N <S1ip Ee (ei)) Ee ||A||i“7 (5.8.3)
t=1 i=1 !

and sup,, E¢ (e},) is assumed bounded by Assumption 5(vi).
# Part (b): The proof is analogous to that of part (a). §

Proof of Lemma B.1. # For part (a) we have

Tr Pf()@ P/\OXk

Tr (Pyo ¢’ Po Py XiPpo )

T ¢—

< <= 1PoePol [P 1P0]

1
= 77 0,(1) 0,(VNT) O,(1)
= 0p<1)7

where the the second last equality follows by Lemma S.8.1 (a) and (d).
# To show statement (b) we define ¢ ,;; = eit)?k,ﬁ. We then have

1 - R 200N 7 0 0
\/WTI' (PAO €Xk) = Z ( N ) N\/_ Z Z )\’L’I‘A]qgk},ijt :

r,g=1 rq t=1 4,5=1

—Ak ,rq

We only have Ec (¢ k.ijtC k,lms) # 0 if t = s (because regressors are pre-determined) and ¢ = [

and j = m (because of cross-sectional independence). Therefore

1 T N
E {EC (Ai,rq)} =EK {N?’T Z Z >\ir)\jq>\lr)\mq EC (Ck,ijtgk,lms)}

ts*l'ijlm—l

N3T Z Z E /\227«)‘]2(1 Ec Ckz]t)} =O(1/N) = Op(l)'

t=1 4,5=1
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We thus have Ay ,, = 0,(1) and therefore also \/%Tr (P/\o e)N(,’C) = 0,(1).
# The proof for statement (c) is similar to that of statement (b). Define &, ;,, = eit)N(kﬁiS —
Ec <eit)~(k7i5>. We then have

1 ! v I v - f/f ! .~
\/WTr {Pfo [e X, — Ec (6 Xk)}} = T7q221 (T) Zl Z ftrfsqgk,its'
—Brg ’
Therefore
| X T
Ec (Birg) = o 2o D JufuafurFosBe (Sritsbigu)
ij=1 t,s,:,vll . : ) )
< (H;’B;X|ftr|> AN Z Z ‘COVC <6ith,is,€quk,ju>
) z,jvzus,;,v 1 ) )
= (m%X|ftr’> m : Z ‘COVC (eith,is,eka,w)

where we used that that uniformly bounded E|| f°||**¢ implies that max; |f2.| = O, (T “+9).
# Part (d) and (e): We have [|X* (AYA") 71 (f7f) " V]| = O, (NT)2), [lell = O,(N/?),
| Xk = Op(VNT) and || PyoePpo| = Op(1), which was shown in Lemma S.8.1. Therefore:

1
VNT

TI‘ (epf() e/ ]\4’)\0 Xk fO (fO/fO)fl ()\O/)\O)fl )\0/)

1
— ﬁﬁ (PyoePypoe’ Myo X, fO(f7£0)~H (AYA%) 1 AY)

R
< —— || PyoeP
= \/W” A0 1o

which shows statement (d). The proof for part (e) is analogous.

el Xkl £ (£ F2) 7 A TN = Op(NTY2) = 0,(1) .

# To prove statement (f) we need to use additionally ||Pyo e X} || = 0,(N?/?), which was also
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shown in Lemma S.8.1. We find

1
TI‘ (G/M)\O Xk; Mf() 6/ )\0 ()\0/)\0)*1 (fO/fO)fl fOI)
VvNT

_ ;VTTr (¢/Myo X € P XY (AX0) 71 (2 f0) 1 1)

]1VTTr (€' Myo Xy Ppo e Pyo X> (A"X0) 71 (f7 )71 f%)
—J_” ellllBxo e XEIHIA A2 (P 12) 17

- mllelllleHIIPAo€Pf0||||A° O WA |

=0,(1) .

# Now we want to prove part (g) and (h) of the present lemma. For part (g) we have

]1VTTI {[66, . EC (66/)] M)\o Xk fO (f()/fo)—l ()\0/)\0)—1 )\0/}
1

— mTr {[e€' — Ec (e€)] Myo Xy fO (f ) (AYA%) 1A}

+

\/%Tr {[ee’ — Ec (e€')] Myo X Ppo fO (£ f0)71 (AYA0)1 )\0/}
1

= T {lee’ = e (ee)] Moo X /7 (77f)7 737 A%

1
* VNT
= \/%Tr {[e€' — Ec (e€)] Myo Xy fO (f )" (A"A%) 71 A"} 4 0,(1

Thus, what is left to prove is that \/%Tr {[e€’ — Ec (e€)] Myo Xy fO (fUfO)1 (AYA%)1AY} =
0p(1). For this we define

lee’ — Ee (ee)| H)kafo

12 (£ )~ (VA0 Y|

By = My Xy £ (£ (A0 A
Using part (i) and (ii) of Lemma S.4.1 we find
1Billr < RY?|| B
< RIS ) AN A
< RYXillp || £ (O£ OTAD) T
and therefore

Ee (|| Bell%) < R (FF0) 7 XA Be (I Xk]7)
=0(),

29



where we used E¢ (| Xk[2) = O(NT), which is true since we assumed uniformly bounded

moments of Ymt. Applying Lemma S.8.2 we therefore find

1 / / ? T 2\ __
Be (T (1~ Be ()] B} ) < co o e (1) = of0)

and thus
1
vVNT

which is what we wanted to show. The proof for part (h) is analogous.

Tr {[ee’ — E¢ (e€)] Br} = 0,(1) ,

# Part (i): Conditional on C the expression e%X; X!, — Ec (e? X;; X!,) is mean zero, and it
is also uncorrelated across i. This together with the bounded moments that we assume implies

that

] T
Vare {ﬁ Z [e?t Xy X, — Ec (e?t X f{;t)] } = 0,(1/N) = 0,(1),

i=1 t=1
which shows the required result.
# Part (j): Define the K x K matrix A = NT ZZ 1 Zt L eR (X + X)) (X — X;;)". Then

we have

Mz

T
1
> el (X X — Xy X)) = 5 (A+A).

1 t=1

NT

A

Let By be the N x T matrix with elements By ;; = €% (Xt + Xpir). We have ||By| < || Billr =
O,(VNT), because the moments of By, ;; are uniformly bounded. The components of A can be
written as Aj, = Tr[Bl(%k Xr)']. We therefore have

1
[ Al = pprank(Xe — ) [ Bl Xk — Aill -
We have X, — X, = )?k Ppo + Pyo )?k Mpo. Therefore rank(X, — &) < 2R and

)

+[[Po %)) = EONVETIVAT) = (1),

where we used Lemma S.8.1. This shows the desired result. §

2R =
Ay < —HBzH (|| % Pro

—+ HP/\O )Z'k Mfo

I/\

=t

Proof of Lemma B.2. Let ¢ be a K-vector such that ||c|| = 1. The required result follows by
the Cramer-Wold device, if we show that

ZZelt%nc = N (0,dQc) .

'thl
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For this, define §;, = e;Xj;,c. Furthermore define &,, = &/, = {yra, wWith M = NT and
m=TG—1)+te€{l,..., M}. We then have the following:

(i) Under Assumption 5(i), (i7), (iz7) the sequence {¢,,, m = 1,..., M} is a martingale dif-
ference sequence under the filtration F,,, = C V o({&,, : n < m}).

(ii) E(&},) is uniformly bounded, since by Assumption 5(vi) Ece$, and Ee (|| X3]|**€) are uni-
formly bounded by a non-random constant (applying Cauchy-Schwarz and the law of

iterated expectations).

(iif) & S0 &2 = Qe+ o,(1).
2
This is true, because firstly under our assumptions we have E¢ { [% M (&, - Ec(ﬁfn))] } =

Ee { 3 S0y (€2~ Ee(€2))" } = Op(1/M) = op(1), implying that we have 1 301, €, =
= SMEe(€2) +0,(1). We furthermore have = M Ee(€2) = Vare(M—Y2 M ¢ )
and using the result in equation (14) of the main text we find Vare(M /2 Z%zl ) =
Vare(NT)" 2SN 7T €)= dQc + 0,(1).

These three properties of {£,,, m = 1,..., M} allow us to apply Corollary 5.26 in White (2001),
which is based on Theorem 2.3 in Mcleish (1974), to obtain that \/LM SM € —a N(0,dQc).
This concludes the proof, because \/LM Mg = ﬁ SN S euXen

S.9 Expansions of Projectors and Residuals

The incidental parameter estimators fand \ as well as the residuals € enter into the asymptotic
bias and variance estimators for the LS estimator B To describe the properties of J?, X and e, it
is convenient to have asymptotic expansions of the projectors Ms(3) and M f(ﬁ) that correspond
to the minimizing parameters A(3) and f(/3) in equation (4). Note that the minimizing \(3) and
fA(ﬁ) can be defined for all values of 3, not only for the optimal value g = B The corresponding
residuals are e(8) =Y — - X — ;\\(ﬁ) f’(ﬂ)
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Theorem S.9.1. Under Assumptions 1, 3, and 4(i) we have the following expansions

K

M;(8) = Myo + Mi” + M£2> =7 (B, — 8 MY + M ()

k=1

= B0) M) + M (8)

Mx

M) = Mo + M(” + M

:1

K
e(3) = Myo e Mo +A(1 Z +A(rem)(5) ,
=1

where the spectral norms of the remainders satisfy for any series nyp — 0

(rem)
Sup 0 ‘ e (6)H 0 =0,(1) ,
| 5-5 | <mry 18 = B2+ (NT) 2 [le][ 18 = B°l + (NT)=3/2 e}
(rem)
Sup 0 HMJ? (ﬁ)H 0 =0,(1),
(]| | <nyry 1B = B2+ (NT)" 2 [lel[ |8 = G° + (NT)=3/ |le|?
up e )] o

i <rry VDIG = P+ el 18— 1 + (NT) T [elP
and we have rank(e™™(3)) < TR, and the expansion coefficients are given by

M) = = Myoe fO(f7 )7 OX) TN = AT () ()Y e My
M) = = Mo X 7 (£ £9)7H 0N TIAY = X0 (X7 () X My
M = Myoe £ (70 (VA TN e £ (F7f0) 7T (VA% TN

AT TN TS TS AT (NN TSSO T My

= Myo e Myo e’ X (XVA%) 7 (f2F9)7H (A7) 710

— XN T TEAYA) TENY e Mo €f Miyo

= Myoe fO (O£ NSO T My

+ AT TN (PO TR My e fO (S F0) T TN TN,
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analogously
M) = = My e X (XA ()Y — (50T OON) TN e Mo
M) = = Myo XA (XX ()7 = fO (FV 10 A TN X Mo
ME = Mo e X0 (AA) 7 (£ 1)1 A0 (AN ()
+ FO L TN TEAY e £ (£ 1) T A T AY e My
= Mo Myoe £ (£ £ (XA (£ F0) 7
= fOI TN TSSO T e My e Mo
— Mo e X (A"A0) 7 (FY )TN (AYAY) T AY e Mo
+ V)TN TN e Mo & AT (NN (ST )T

and finally

&) = My X, Mo ,

el = —Myoe Mpo ' X A"AN) 7 (f7f0) 1 f”
= X0 (YA T (PO Myo e Myo
— Myoe fO(f7F)) 7 A"A) A e Myo .

Proof. The general expansion of M5(f3) is given Moon and Weidner (2013), and in the theorem
we just make this expansion explicit up to a particular order. The result for M f(ﬁ) is just

obtained by symmetry (N < T, A < f, e < ¢/, X < Xj). For the residuals € we have
€=M (Y—Z 5ka> =M [e— (B-p") - x + 207
k=1

and plugging in the expansion of M5 gives the expansion of €. We have e(3) = Ay + PN -
X(B)F(B), where Ag = e — 3, (8, — 82 Xi. Therefore 8™ (3) = A, + Ay + As with A} = Ay —
Mo Ag Mo, Ay = A f — X(ﬁ)f’(ﬁ), and Az = —¢t”). We find rank(A;) < 2R, rank(As) < 2R,
rank(As) < 3R, and thus rank(e®™(3)) < 7R, as stated in the theorem. §

Having expansions for M5(3) and M7(3) we also have expansions for P5(3) = In—M5(3) and
Pf(ﬂ) =Ir—M f(ﬁ ). The reason why we give expansions of the projectors and not expansions of
A(B) and f(f3) directly is that for the latter we would need to specify a normalization, while the
projectors are independent of any normalization choice. An expansion for X(ﬁ) can for example
be defined by A\(3) = P5(8)A\% in which case the normalization of X(ﬁ) is implicitly defined by

the normalization of \°.

33



S.10 Consistency Proof for Bias and Variance Estimators

(Proof of Theorem 4.4)

It is convenient to introduce some alternative notation for the Definition 1 in Section 4.3 of the

main text.

Definition Let I' : R — R be the truncation kernel defined by I'(x) = 1 for |z| < 1, and
['(x) = 0 otherwise. Let M be a bandwidth parameter that depends on N and T'. For an N x N

matriz A with elements A;; and a T X T matriz B with elements Bys we define

(i) the diagonal truncations AT = diag[(Ay)iz1

..........

(ii) the right-sided Kernel truncation of B, which is a T x T matriz B™R with elements

Bire® =T (521) By, for t < s, and BE™® =0 otherwise.

Here, we suppress the dependence of B™"R on the bandwidth parameter M. Using this

notation we can represent the estimators for the bias in Definition 1 as follows:
D 1 runc
Bl,k = NTI‘ |:PJ?(/€\/X]€>t R] 5
5 o 1 ~~\ truncD T A=1 N1 Y
Boo= 2T [@@)™ P My X (PR ONTA]
oy 1 ~ truncD NI TN —1 77
By = T [(@0)™° M X AON (D F) -
Before proving Theorem 4.4 we establish some preliminary results.
Corollary S.10.1. Under the Assumptions of Theorem 4.3 we have v NT (B — 60> = 0,(1).
This corollary directly follows from Theorem 4.3.
Corollary S.10.2. Under the Assumptions of Theorem 4.4 we have
1P5 = Pyl = [[M5 = M| = O(N72)

pr— Pro = 0,(T7?).

— HM]?—Mfo

Proof. Using |le]| = O,(NY?) and || X;|| = O,(N) we find that the expansion terms in Theo-
rem S.9.1 satisfy

)
HMx,e

= OP(N_1/2) ) HMX(QE)

= OP<N_1) ) HM’A(\’I;

‘ —0,(1).

Together with corollary S.10.1 the result for HMX — Mo H immediately follows. In addition we
have P; — Pyo = —M5 + Mjo. The proof for M7 and P is analogous. 1
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Lemma S.10.3. Under the Assumptions of Theorem 4.4 we have

@
I
-
o~
Il
—_

Lemma S.10.4. Let f and f° be normalized as J?’J?/T =1 and f¥f°/T = 1. Then, under

the assumptions of Theorem 4.4, there exists an R x R matrices H = Hyr such that®
|F-ru]| =00, R=x a7t =0,

Furthermore

H/\ o~ A~ o~ o~ o~

AONT(FHTF = AN T (07 | = 0, (NTH2)

Lemma S.10.5. Under the Assumptions of Theorem 4.4 we have

(i) N~ \Ee(e'Xg) — (@ X) ™ || = 0,(1)
(ii) N1 ||Be(e'e) — (@ 0)™™P|| = 0,(1) ,
(iii) 71 ‘Ec@e')—(ag)““@ = 0,(1).

Lemma S.10.6. Under the Assumptions of Theorem 4.4 we have

(i) N7 @ x| = o
(i) N @) = 0,1,
(iii) T ||(@e)™ P = 0,(1) .

The proof of the above lemmas is given in the supplementary material. Using these lemmas

we can now prove Theorem 4.4.

Proof of Theorem 4.4, Part I: show W=Ww-+ 0p(1).

3We consider a limit N,7 — oo and for different N, T different H-matrices can be chosen, but we write H

instead of Hy7 to keep notation simple.
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Using |Tr (C)| < ||C||rank (C') and corollary S.10.2 we find

‘ka ~WNT sk |

_ (NT)_lTr [(MX — M) Xp, MAX,’@] +(NT) " Tr [MAO X, <Mf— Mfo) X;Q]

< 2105 — Mol 1 M X s [ 7 = Mo | X 11X
2R _ 2R _
= WOP(N )OP<NT) + WOP(T )Op(NT)

= 0p(1) .
Thus we have W = Wy + 0p(1) =W +0,(1). 1

Proof of Theorem 4.4, Part II: show Q = Q + 0p(1).

Let Qnp = 5 S, S, €2 Xy X, We have Q = Qur + op(1) = Q4+ A + Ay + 0,(1) =
QO+ op(1), where A; and A, are defined in Lemma S.10.3, and the lemma states that A; and
Ay are 0,(1). 1

Proof of Theorem 4.4, Part III: show B, = B; + op(1).
Let By vt = N7 Tr[Pjo Ec (¢/ Xj)]. According to Assumption 6 we have By, = By nr+0,(1).
What is left to show is that By nr = El,k + 0,(1). Using |Tr (C)] < ||C|| rank (C) we find

5 1 runc
By g, — 31‘ = —Tr [Pf(?Xk)t R}

N

1
EC |:NTF(PfO 6, Xk):| -

1
< ‘—Tr Ppo = Pf) (@ X,)"™"]

Tr Pro [EC (¢ Xp) — (@ X,c)“““CR}}’

|

R runc
+ 5 1Pl ||Be (¢ Xi) = @X0)™""

\N
<2y -1 i

We have || Pjo|| = 1. We now apply Lemmas S.10.5, S.10.2 and S.10.6 to find
Bujr = Bi| = N1 (O,(N V) O,(MNT'S) + 0,(N)) = 0,(1)
This is what we wanted to show. 1

Proof of Theorem 4.4, final part: show B, = B, + 0p(1) and By = Bs + 0p(1).
Define
1

By gy nT = ?Tr [Ec (ee') Mo X, fo (fO’fO)—l (/\0/)\0)—1 )\o/] .
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According to Assumption 6 we have Bsj = Bajpnyr + 0,(1). What is left to show is that
B2,k,NT = §2,k + Op(1>. We have

Ba = Bau Z%TY [Ec (ee’) Myo X f* (f7 1) 7 (AA")THAY]
1 ~~y\ trunc IR R /A ~/
— T [@@) P 2 X F (P (V)R]
:%Tr [( )truncD MA X <f0 (fOIfO)—l ()\O/)\O)—l )\o/ _ f(f,f)_l (3\\/}:)_1 X/)}
T [@2)™ (Mo = M) X5 £0 ()7 ON) A7)

4T [Be (o) = (@2)™P] Mo X, £ (75 (00N) A7}

Using |Tr (C)| < ||C]| rank (C') (which is true for every square matrix C, see the supplementary

material) we find

o runc _ A I U N O s
B~ Boy TH el [ )T )TN = FRT BRI
T H AA/ truncD ) HM/\O . MAH ||Xk|| HfO fOlfO) ()\Ol)\O /\OIH
2 [[Be ey = @™ Il [177 (10 000 A
Here we used | Mp|| = HM]? = 1. Using || X = Op(VNT), and applying Lemmas S.10.2,

S.10.4, S.10.5 and S.10.6, we now find

]BM ~ By

_r [Oﬂ) O,((NT)"?) 0,(N-2)
£ O,(T) 0,(N"12) O,(NT)"?) O,((NT) ™)

+0,(T) Op((NT)?) Oy (NT) ™) | = 0,(1) -

This is what we wanted to show. The proof of B; = Bs + 0p(1) is analogous. I

S.11 Proof of Intermediate Lemma

Here we provide the proof of some intermediate lemmas that were stated and used in Sec-
tion S.10, but not proved yet, in order to keep that section more readable. The following lemma

gives a useful bound on the maximum of (correlated) random variables

Lemma S.11.1. Let Z;, « = 1,2,...,n, be n real valued random variables, and let v > 1 and

B > 0 be finite constants (independent of n). Assume max; Ec|Z;|7 < B, i.e. the ~y’th moment
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of the Z; are finite and uniformly bounded. For n — oo we then have

max |Z;| = O, (nl/'y) . (S.11.1)

Proof. Using Jensen’s inequality one obtains B¢ max; |Z;| < (B¢ max; | Z;]")"" < (B¢ S \Z,) <

(n max; Ee|Zi|")"" < n}/Y BY/7. Markov’s inequality then gives equation (S.11.1). &

Lemma S.11.2. Let

N
Zlglt)T =N"V? Z [eit Xkir — Ec (€t Xkir)]
i=1
N
2 = N7y ek — Ee (eh)] -
i=1
T
2 =Ty [eh — e ()]
t=1
Under assumption 5 we have
PR
]EC ‘Zlg,lt)T S B )
4
Ec <B,
i 14
Ee ’Zi(g) <B,

for some B > 0, i.e. the conditional expectations ZW , 7% , and Z are uniformly bounded
k,tT tT

over t, T, ort, respectively.

Proof. # We start with the proof for Zk . Define Zk iri = €itXpir — Ec (€itXkir). By assump-
tion we have finite 8'th moments for e; and X} ;. uniformly across k,i,¢, 7, and thus (using
Cauchy Schwarz inequality) we have finite 4th moment of Z,St)m uniformly across k,i,t,7.
For ease of notation we now fix k,¢,7 and write Z; = Z,g t)” We have E¢(Z;) = 0 and
Ec(Z:Z;ZcZ;) = 0 if i ¢ {j,k,1} (and the same holds for permutations of 4,7, k,l). Using

this we compute

N 4 N
C<Z Zi> = Y Ee(ZiZ;Z7)
=1

ik, l=1
=3 Ec (2] Z}) +ZEC (Z4)
Z#J
N
—321{-«:(; ) Be (28) + 3 {Be (7)) -3 [Be (22)]°} .
1,j=1 =1



Since we argued that E¢ (Z!) is bounded uniformly, the last equation shows that Z,St)T =
N2 Z,St)m. is bounded uniformly across k,t, 7. This is what we wanted to show.

# The proofs for Zt(z) and Zi(g) are analogous. 1

Lemma S.11.3. For a T x T matriz A we have*

HAtruncRH S M HAtruncRH = M max max |At7'| ,
max t  t<r<t+M

Proof. For the 1-norm of A™™R we find

t+M

H14‘cruncRH1 :trznla)% Z ’AtT’

T=t+1
<M max |Ag|= M[ATR|

t<r<t+M max

and analogously we find the same bound for the co-norm HA“““CR”OO. Applying part (vii) of

Lemma S.4.1 we therefore also get this bound for the operator norm ||A™<R||. g
Proof of Lemma S.10.3. # We first show A4, = (NT)"' 2N, 327 ¢2 (XZ-tXZ-’t — éat%’t) =
0p(1). Let By = Xy — Q?l-t, By = €4Xy, and Bsj = e?t/\?it. Note that By, By, and B3z can

either be viewed as K-vectors for each it, or equivalently as N x T" matrices By ;, By, and B3y
for each k =1,..., K. We have Ay = (NT)™' 3, >, (BruBj ;4 + BB ), or equivalently

1
1,k1ky — WTI" (Bl,lef,%,kg -+ BzyleLkQ) .

Using | M5 — Myo|| = Op(N~V2), | M7 — Mpo|| = Op(N~V2), ||Xi]| = Op(VNT) = O,(N), we
find for By = (Myo — M3) X Mpo + M5 Xy, (Mpo — M) that || By || = O,(N*/2). In addition we
have rank(B; ;) < 4R. We also have

| Boi||* < | Ball

N T 2
= (Z Z e?txlg,it)

i;l t;l N
<(Lxa) (Lra) -awnonn
=1 t=1 =1 t=1

4For the boundaries of 7 we could write max(1,t— M) instead of t — M, and min(7, ¢+ M) instead of t + M,
to guarantee 1 < 7 < T'. Since this would complicate notation, we prefer the convention that A, =0 for ¢t < 1

ort<loft>Tort>T.
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which implies ||Ba || = O,(VNT'), and analogously we find ||Bs ;|| = O,(VNT'). Therefore

4R
[Avats] € 5= (1B Bl + 1 B 1B )
4R
= 7 (O (N0, (VNT) + O,(VNT)OH(N')) = 0,(1) .

This is what we wanted to show.

# Finally, we want to show Ay = (NT)"' 2N 2T (2 —€2) X X, = 0p(1). According
to theorem S.9.1 we have e — ¢ = Cy + (5, where we defined C = — Z,ﬁ;l (Bk — ﬁg) X, and
Cy = Zszl (Bk - ﬁg) (Pyo Xy Mo+ Xy Pro) + Pyoe Mo + e Ppo — elt) — gtem) which satisfies
|Cy]| = O,(N'2), and rank(Cy) < 11R (actually, one can easily prove < 5R, but this does not

follow from theorem S.9.1). Using this notation we have
L NI
Ay = NT ; ; eit + €it) (Crie + Coit) Xan Xy

which can also be written as

K
~ 1 1
AQ,klkz = kzl (6k3 - 623) (C5,k1k2k3 + Cﬁ,klkzks) NT (CQ C3 k1k2> + WTr <C2 C4,k1k2) )
3=

where we defined

C3 rko,it = Cit Xy it Xhg it

Cy ko it = eithl ithQ it

05 k‘lekg - NT Z Z eltX]ﬂ lthQ 7,th3 it

=1 t=1
1 N T
Cﬁkkk:—g g €it Xir it Xt it Xpon i
sR1R2K3 NT it Vky it Vko it<N k3 it -
i=1 t=1

Again, since we have uniformly bounded 8'th moments for e;; and Xy ;;, we find

1C3 ko |I* < N Ceria ||

@



i.e. ||Cskks || = Op(VNT). Furthermore

1Crkall? < N Csptria |7

N T
_ E E 2 2
- ezt Xkl it sz it

=1 t=1

~2 2 52
E g - max max (X7 . X )
. ”>z 1N t=1.. T( kit Tk, it

P2 P2
Jmax max (Xkl’ité\,’kmt)

[\
VoY
Il >
) S

A
S —
Mﬂ
\i/

bS]
—~
=
~
~—
S
—~
—~
=
=
~—
&
)
+
a2
N2
|
QS
—~
—~
=
~
~—
z
Ny
—

Here we used the assumption that X has uniformly bounded moments of order 8 + € for some

€>0. Wealso used 50, 37, @ <300 3 e
For C'5 we find

N T
1 1
Cg Jk1koks — <W Z Z e?t) (NTXkl Zth2 lthg lt)
= O,(

i.e. C15J€1k21€3 = OP(D’ and analogousb’ 06,k1k2k3 = OP(1>7 since sz\il Zle €z2t < sz\il Z;F:I ezzt'

Using these results we obtain

Az s < = ZHﬂkg 00| 1Cosatats + Gl + IO ot |+ S NCol [
k3=1
_ 0,(NT)"2)0,(1) + 2B 0, (v2)0,(VNT) + 22 0 (N12)0,(NT)) = 0,1
= O,((NT) )0,(1) + NT o( )Op( ) + NT o( )op((NT)*") = 0,(1) .

This is what we wanted to show. §

Remember that the truncation Kernel I'(.) is defined by I'(x) =1 for |z| < 1 and I'(x) =0
otherwise. Without loss of generality we assume in the following that the bandwidth parameter
M is a positive integer (without this assumption, one needs to replace M everywhere below by

the largest integer contained in M, but nothing else changes).

Proof of Lemma S.10.4. By Lemma S.10.2 we know that asymptotically Pf is close to Pjo
and therefore rank(PrPp) = rank(PpoPp) = R, i.e. rank(Pffo) = R asymptotically. We can

therefore write f: PffOH , where H = Hyr is a non-singular R x R matrix.
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We now want to show ||H|| = O,(1) and ||H!|| = O,(1). Due to our normalization of 7
and 0 we have H = (f'P;f°/T)~" = (f'f°/T)~", and therefore || H=|| < ||f][|lf°/T = O,(1).
We also have f = fOH + (P; — Ppo) f°H, and thus H = f*f/T — f¥(P; — Ppo) f°H/T, i.c.
|H|| < Opy(1) + |H||O, (T~'/?) which shows ||H|| = O,(1). Note that all the following results
only require |H|| = O,(1) and ||[H'|| = O,(1), but apart from that are independent of the

choice of normalization.

The advantage of expressing f in terms of P; as above is that the result HPJ?— Pro
O, (Tﬁl/ 2) of Lemma S.10.2 immediately implies

|7-rr| =00
The FOC wrt A in the minimization of the first line in equation (4) reads
AN AN AN K ~ ~
N f = (Y — Zﬁka> f. (S.11.2)
which yields

Bo- ) | F(7F)”

>)
I
>/ 1
o
&H
<
|
gk
N

Pof® (£Pp°) ()

B K
WEEDY (62—@) Xy +e
k=1

_ )0 (H’)_l N0 (Pf_ Pf0> 0 <f0lpff0> -1 (H,)_l

4 A0 f0r g0 [(fO'Pff(]) -t (fo/f())—l} (H/)ﬂ

S (- 5) %t e

k=1

+ Pe (5ppg?) ™

We have (fOIP]?fO/T)_l — (fof0/T)! = O,(T~/?), because P;— Pp|| = O, (T~"/?) and

fYf9/T by assumption is converging to a positive definite matrix (or given our particular

choice of normalization is just the identity matrix Ig) In addition, we have |e| = O,(VT),
| Xk]| = Op(VNT) and by corollary S.10.1 also 13 — 8| = O,(1/V'NT). Therefore

[f-x a7 =00 s113)

which is what we wanted to prove.
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Next, we want to show

N (e @yt
(W) ( E ) _ 0, (N |
(BI) - (rormy o, omy s

Let A=N-"'XXand B=N-! (H)"* A” \° (H")~". Using (S.11.3) we find

1A - B[ = [X’ 4 (H)! AO'} [X 0 (H')*I] + [X’ —(H)! )\0’] [X + A\ (H’)*l}

1
x|
= NO,(N'2)0,(1) = 0, (N2 .

)\0/)\0 -1
(5)

and thus also [|[B7!|| = O,(1), and therefore |A™Y|| = O,(1) (using ||[A — B|| = o0,(1) and
applying Weyl’s inequality to the smallest eigenvalue of B). Since A1 —B~! = A~Y{(B—-A)B~!
we find

By assumption 1 we know that

= 0,(1) .

A =B < [[A7Y] [[B7Y] A - B]
=0, (N_l/Q) :

Thus, we have shown the first statement of (S.11.4), and analogously one can show the second
one. Combining (S.11.3), (S.11.2) and (S.11.4) we obtain

i Q -1 E -1 ]/c\/ - 20 ()\0/)\0)_1 (fO/f0>1 fO/
e v) vwoww\ v ) 1) 7

N
[ (XX>1 (f’f)l fooaw? <<H>1A“’A°<H'>1>1 (H’fo’fOH)l H'f©
- (32) (£ _
@)

N T VT

~ o~

/~ ~ ~
which is equivalent to the statement in lemma. Note also that A (A X)~! (f'f)~! f’ is independent

of H, i.e. independent of the choice of normalization. g
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Proof of Lemma S.10.5. # Part A of the proof: We start by showing that

N*l

Ec [e'Xk - (e'Xk)““mR} H —0,(1) . (S.11.5)

Let A =¢'X;, and B = A — A™R_ By definition of the left-sided truncation (using the equal
weight kernel I'(.)) we have B;, = 0 for t < 7 < t+ M and By, = A;, otherwise. By assumption 5
we have E¢(A;) =0 for ¢t > 7. For t < 7 we have E¢(A,) = Zf\il Ec(€eitXk,ir). We thus have
Ec(Bi;) =0 for 7 <t+ M, and E¢B,, = Zfil Ec(e; Xk, ir) for 7 >t 4+ M. Therefore

T
|Ec(B)], = max z; [Ee(Bir)|
T N T
< ) . _ (46
= tI:nla}%’ Z ZEC(etik,ZT) < NtI:nlaT Z C(T t) OP(N) ,
T=t+M+1 |i=1 T=t+M+1
where we used M — oo. Analogously we can show ||E¢(B)||,, = 0,(N). Using part (vii) of

Lemma S.4.1 we therefore also find ||E¢(B)|| = 0,(V), which is equivalent to equation (S.11.5)

that we wanted to show in this part of the proof. Analogously we can show that

‘ — 0,(1). (S.11.6)
Using Lemma S.11.3 we have

<M max max N7 e, Xy, — Ee (e, X))

N7 e — Be (/X))

N
Z [eith,iT - E¢ (eith,iT)]

=1

Z(l)

kitr|

< M max max N7!
L t<r<t+M

< M N~Y2 max max
t  t<r<t+M

4
ZW 1" is bounded uniformly across ¢ and 7.

According to Lemma S.11.2 we know that Ec |Z;

Applying Lemma S.11.1 we therefore find max; max;,<¢+n Zt(Tl) = O0,((MT)Y*). Thus we

have

Z(l)

M N7Y? max max o

t t<r<t+M

=0, (M N2 (MT)"*) = 0,(1) .
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Here we used M?/T — 0. Analogously we can show that

N—l H[ele o EC (6/6)]truncD ‘ _ 0p(1) :
T ||[ee’ — Ee (ee')]" P ‘ =0,(1) .
# Part C of the proof: Finally, we want to show that
N7 H[G’Xk — & X)) = 0,(1) (S.11.7)

According to theorem S.9.1 we have € = Myoe M jo+€yem, Where €rem, = @gl)—Zszl (Bk — 62) @;1)—1—
elrem)  We then have

’ + N—l H [PfOGIM)\oXkrmnCR

N—l [ele . /éer]truncR

S N_1 H[el Xk]truncR

rem

‘ + N_1 H [6/P)\0Xk]trunCR

Using corollary S.10.1 we find that the remainder term satisfies ||erem || = O,(1). Using Lemma S.11.3
we find

<

N-1 H [ Xk]truncR

-~
6rem,t

Xk’,T

I
€rem max
t,T

max ||eremt| || Xe.r||
t,T

zlg=z[g =R

<

o
[¢]
g
+E
kel
>
ol
3

M
S Nop

where we used the fact that the norm of each column eéyep ¢ is smaller than the operator norm

(1)OP(N1/2T1/8) = 0,(1) ,

of the whole matrix €. In addition we used Lemma S.11.1 and the fact that N=Y2||X, || =
\/N—1 Zfil X3 has finite 8'th moment in order to show max, || X}, .|| = O,(NY/2T'/®). Using

again Lemma S.11.3 we find

N—l H [Pfo 6/]\4)\0)(vk]truncR

[SNTIM max (£ (7 £0)7 e Mo X |
< NTEMlel NG 07| max (A1) max || X |
= N M O,(N'2) O,(T"?) O,(T ™) Oy (N2 TY%) = 0,(1)

and

H [GIP)\O Xk]truncR

J

~1/2 ~1/2 30 —1407 {0y—1 -1 oy
’ <N MtI:nlE.l..T (N Zew\Z) (NTIAT AT max, (N Z/\j X]t>

T=1...
)

= N71/2Mop(Tl/g)Op(l)Op(Tl/8> = 0,(1).
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Thus, we proved equation (S.11.7). Analogously we obtain

N*l

[6/6 _ /é/é\]truncD

[66/ . A/e\/] truncD

T*l

# Combining (S.11.5), (S.11.6) and (S.11.7) shows that N=! ||Ec(e/X},) — (€ Xk)t“mCR

0p(1). The proof of the other two statements of the lemma is analogous. 1

) _

Proof of Lemma S.10.6. Using theorem S.9.1 and S.10.1 we find ||¢]| = O,(N'/?). Applying
Lemma S.11.3 we therefore find

el max [[.X, -]

< O, (NV2)0,(N'2TV/5) = 0,(MT").

runc M
N7 @ X)) < 5 max [7 Xl

N t,T ’
M .

< o max [l [[ X
M

< -

=N
M
N

where we used the result max, | Xy .|| = O,(N/2T1/#) that was already obtained in the proof
of the last theorem.

The proof for the statement (ii) and (iii) is analogous. B

S.12 Proofs for Section 5 (Testing)

Proof of Theorem 5.1. Using the expansion for Lyr(f) in Lemma S.1 in the supplementary
material of Moon and Weidner (2013) we find for the derivative (the sign convention ¢, = 3% — £,

results in the minus sign below)

OLnT  — KoK K .
= —%T Zg Z Z Z €ry €ny - - - eﬁgilL(g) (/\ 12 X, X,{l,...,Xﬁgﬂ)

8ﬁk g=2 k1=0 k2=0 Kg—1=0
. 2 1 1
= [2Wnr(B -3 )]k - \/WCNT,k + WVRLNT,k + WVRzNT,k: ;
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where

Witkik, = 5 L& (0 7, Xy, X))
G
1 .
Cnrp = 7L L@ (X O Xy, Xo, .. X
NIk = Do 2. g (€0) (A%, £, Xk, Xo 0)
Ge
_ g (9) (0 ¢0
= LY (A X
g; QW ( 7f7 ky €, 76) )
and
VBNt = — Z g(e0)? " LW (X 0, Xy, Xo, ..., Xo) ,
g=Ge+1
- _ Z g LY (X, £° Xy, e, ve)
g=Ge+1
co  g-1 g—1 K K
V Ry NT K = Z g Z ( ) Z Z R ()
g=3 r=1 1=1 =1

L9 (X % Xp, Xy oo Xiyo Xos -, Xo)

> g—1 X - 0
— 3 ( )Z_ D = ) 5, = )

L9 £ Xpy Xiyy ooy Xiyeyeove)
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The above expressions for Wy and Cyp are equivalent to their definitions given in theorem
4.1. Using the bound on L9 we find®

wr, 2, ()

g=Ge+1

5200<1+Ge)2NT’\‘/)% (%)G [1_ (%)]_3:()},(\/%),

X [e'e) g—1 . 1 X
|\VRonT k| < coNT Xl 292 (g > Z\ﬁk Bl ——— Xl

NT g=3 r=1 \/_
o1l e\
Zlﬁk N
RS gyl gl el

9=3

||X || 0 \X H ||6||

where ¢y = 8 Rdpax (A%, f°)/2 and ¢; = 16dpyax (A’ fo)/dmm()\o, f°) both converge to a constants
as N,T — oo, and the very last inequality is only true if 4¢; (Zile |67 — \”X il el > <

RVNT T UNT
1, and ¢ > 0 is an appropriate positive constant. To show VRy 7. = 0,(NT) we used

gcmf i Zwk &)

Assumption 3*. From the above inequalities we find for 7y, — oo

sup VBN (O _ 1)
— 0, (1),
(8]|8-p°||<nnry  VNT

sup M —0,(1).
{ﬁiH/@—/@O”SUNT} NT HB _ﬁ H

Thus Ry (5) = Ry nr(8) + Ront(0) satisfies the bound in the theorem. 1

Proof of Theorem 5.2. Using Theorem 4.3 it is straightforward to show that WD}, has
limiting distribution 2.

For the LR test we have to show that the estimator ¢ = (N T)_lTr(g(B) ’é’(ﬁ)) is consistent
for ¢ = Ece?. As already noted in the main text we have ¢ = Lyr <B>, and using our expansion
and v/ NT-consistency of E we immediately obtain

1

c= NT Tr(MyeMoe') + o0p(1) .

"Here we use (}) < 4™
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Alternatively, one could use the expansion of € in Theorem S.9.1 to show this. From the above

result we find

- 1
¢ — —=Tr(ee)

1
T =7 | Tr(PyoeMpoe’) + Tr(ePpoe’)| + 0p(1)

2R
< NT H€||2 + Op(l) = Op(l) .

By the weak law of large numbers we thus have

N T
.1 9
CZWZZeit—i—op(l):c—i-op(l),

i=1 t=1
i.e. ¢is indeed consistent for ¢. Having this one immediately obtains the result for the limiting
distribution of LR} .

For the LM test we first want to show that equation (9) holds. Using the expansion of € in

Theorem S.9.1 one obtains
VNT(VLyr)y = — \/%Tr (X;€)
= 2VNT Wy (B-8")] + %C(”(AO, £ Xpe) + %0@)(»’, £, X, e)
2
VNT

)

= [T W (5-#) + 5 Cna] o)

~ VNT [VLyr(B)] +0,(1).

which is what we wanted to show. Here we used that |Tr (X,et™)| < 7R||X,][et™| =
O,(N32). Note that | Xy|| = O,(N), and Theorem S.9.1 and v/ NT-consistency of 3 imply
[etem)|| = O,(v/N). We also used the expression for V Ly7(3) given in Theorem 5.1, and the
bound on VRy7((3) given there.

We now use equation (10) and W= W +o0,(1), 0= Q+o0,(1), and B= B+ 0,(1) to obtain

LMy — (C—BYW'H'HW QW 'H\ *HW(C - B) .
Under Hy we thus find LMY —4 X2 8

S.13 Additional Monte Carlo Results

We consider an AR(1) model with R factors

R
Yi = p"Yiiq + Z)‘?r fo + €.

r=1
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We draw the e;; independently and identically distributed from a t-distribution with five degrees
of freedom. The A). are independently distributed as A(1,1), and we generate the factors
from an AR(1) specification, namely f;. = p; f{_|, + s, for each r = 1,..., R, where u, ~
iidMN (0, (1 — pfc)a2). For all simulations we generate 1000 initial time periods for f and Yj
that are not used for estimation. This guarantees that the simulated data used for estimation
is distributed according to the stationary distribution of the model.

For R =1 this is exactly the simulation design used in the main text Monte Carlo section,
but DGP’s with R > 1 were not considered in the main text. Table S.1 reports results, where
R = 1 is used both in the DGP and for the LS estimation. Table S.2 reports results, where
R =1 is used in the DGP, but R = 2 is used for the LS estimation. Table S.3 reports results,
where R = 2 is used both in the DGP and for the LS estimation. The results in Table S.1
and S.2 are identical to those reported in the main text Table 1 and 2, except that we also

report results for the CCE estimator. The results in Table S.3 are not contained in the main

text.
The CCE estimator is obtained by using Atproxy = N'Y".(Yi, Yis1) as a proxy for the
factors an then estimating the parameters p, A1, A2, ¢ = 1,..., N, via OLS in the linear

regression model Yy = pY; ;1 + )\ﬂﬁﬂro"y + Aigﬁ%mxy + e

The performance of the CCE estimator in Table S.1 and S.2 are identical (up to random
MC noise), because the number of factors need not be specified for the CCE estimator, and the
DGP’s in Table S.1 and S.2 are identical. These tables show that for R = 1 in the DGP the CCE
estimator performs very well. From Chudik and Pesaran (2013) we expect the CCE estimator
to have a bias of order 1/7 in a dynamic model, which is confirmed in the simulations: the bias
of the CCE estimator shrinks roughly in inverse proportion to T', as T' becomes larger. The 1/T
bias of the CCE estimator could be corrected for, and we would expect the bias corrected CCE
estimator to perform similarly to the bias corrected LS estimator, although this is not included
in the simulations.

However, if there are R = 2 factors in the true DGP, then it turns out that the proxies Atpmxy
do not pick those up correctly. Table S.3 shows that for some parameter values and sample sizes
(e.g. p° =03 and T = 10, or p° = 0.9 and T = 40) the CCE estimator is almost unbiased, but
for other values, including T' = 80, the CCE estimator is heavily biased if R = 2. In particular,
the bias of the CCE estimator does not seem to converge to zero as T' becomes large in this
case. In contrast, the correctly specified LS estimators (i.e. correctly using R = 2 factors in
the estimation) performs very well according to Table S.3. However, an incorrectly specified

LS estimator, which would underestimate the number of factors (e.g. using R = 1 factors in
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estimation instead of the correct number R = 2) would probably perform similarly to the CCE
estimator, since not all factors would be corrected for. Overestimating the number of factors
(i.e. using R = 3 factors in estimation instead of the correct number R = 2) should, however,

not pose a problem for the LS estimator, according to Moon and Weidner (2013).
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Tables with Simulation Results

P’ =0.3 p’ =09
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T=5 M=2 bias |0.1232 -0.1419 -0.0713 -0.1755 | 0.0200 -0.3686 -0.2330  -0.3298
std 0.1444 0.1480 0.0982 0.1681 | 0.0723 0.1718 0.1301 0.2203
rmse | 0.1898 0.2050 0.1213 0.2430 | 0.0750 0.4067  0.2669 0.3966
T =10, M =3 bias | 0.1339 -0.0542 -0.0201 -0.0819 | 0.0218 -0.1019 -0.0623 -0.1436
std 0.1148 0.0596  0.0423 0.0593 | 0.0513 0.1094 0.0747 0.0972
rmse | 0.1764 0.0806  0.0469 0.1011 | 0.0557 0.1495 0.0973 0.1734
T =20, M =4 bias | 0.1441 -0.0264 -0.0070 -0.0405 | 0.0254 -0.0173 -0.0085  -0.0617
std 0.0879 0.0284  0.0240 0.0277 | 0.0353 0.0299 0.0219 0.0406
rmse | 0.1687 0.0388  0.0250 0.0491 | 0.0434 0.0345 0.0235 0.0739
T =40, M =5 bias | 0.1517 -0.0130 -0.0021  -0.0200 | 0.0294 -0.0057 -0.0019  -0.0281
std 0.0657 0.0170 0.0160 0.0166 | 0.0250 0.0105 0.0089 0.0162
rmse | 0.1654 0.0214 0.0161 0.0260 | 0.0386 0.0119 0.0091 0.0324
T =80, M =6 bias | 0.1552 -0.0066 -0.0007 -0.0100 | 0.0326 -0.0026 -0.0006 -0.0136
std 0.0487 0.0112 0.0109 0.0111 | 0.0179 0.0056  0.0053 0.0073
rmse | 0.1627 0.0130 0.0109 0.0149 | 0.0372 0.0062 0.0053 0.0154

Table S.1: Same as Table 1 in main paper, but also reporting pooled CCE estimator of Pesaran (2006).
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' =0.3 p’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T=5 M=2 bias | 0.1239 -0.5467 -0.3721 -0.1767 | 0.0218 -0.9716 -0.7490 -0.3289
std 0.1454 0.1528 0.1299 0.1678 | 0.0731 0.1216 0.1341 0.2203
rmse | 0.1910 0.5676  0.3942 0.2437 | 0.0763 0.9792 0.7609 0.3958
T =10, M =3 bias | 0.1343 -0.1874 -0.1001 -0.0816 | 0.0210 -0.4923 -0.3271 -0.1414
std 0.1145 0.1159 0.0758 0.0592 | 0.0518 0.1159 0.0970 0.0971
rmse | 0.1765 0.2203  0.1256 0.1008 | 0.0559 0.5058 0.3412 0.1715
T =20, M =4 bias | 0.1451 -0.0448 -0.0168 -0.0407 | 0.0255 -0.1822 -0.1085 -0.0618
std 0.0879 0.0469  0.0320 0.0277 | 0.0354 0.0820 0.0528 0.0404
rmse | 0.1696 0.0648 0.0362 0.0492 | 0.0436 0.1999 0.1207 0.0739
T =40, M =5 bias | 0.1511 -0.0161 -0.0038 -0.0199 | 0.0300 -0.0227 -0.0128 -0.0282
std 0.0663 0.0209 0.0177 0.0167 | 0.0250 0.0342 0.0225 0.0164
rmse | 0.1650 0.0264 0.0181 0.0260 | 0.0390 0.0410 0.0258 0.0326
T =80, M =6 bias | 0.1550 -0.0072 -0.0011 -0.0100 | 0.0325 -0.0030 -0.0010 -0.0136
std 0.0488 0.0123 0.0115 0.0111 | 0.0182 0.0064 0.0057 0.0074
rmse | 0.1625 0.0143 0.0116 0.0149 | 0.0372 0.0071  0.0058 0.0155

Table S.2: Same as Table 2 in main paper, but also reporting pooled CCE estimator of Pesaran (2006).
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' =0.3 p’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T=5 M=2 bias | 0.1861 -0.4968 -0.3323 -0.1002 | 0.0309 -0.9305 -0.7057 -0.2750
std 0.1562 0.1910 0.1580 0.2063 | 0.0801 0.1644 0.1754 0.2302
rmse | 0.2429 0.5322 0.3680 0.2294 | 0.0859 0.9449 0.7272 0.3586
T =10, M =3 bias | 0.1989 -0.1569 -0.0758 0.0036 | 0.0326 -0.4209 -0.2732 -0.1040
std 0.1185 0.1018 0.0700 0.1074 | 0.0543 0.1607 0.1235 0.1070
rmse | 0.2315 0.1870  0.1031 0.1074 | 0.0633 0.4505 0.2998 0.1492
T =20, M =4 bias | 0.2096 -0.0592 -0.0185 0.0520 | 0.0366 -0.0741 -0.0406 -0.0310
std 0.0884 0.0377  0.0287 0.0711 | 0.0356 0.0859  0.0552 0.0512
rmse | 0.2274 0.0702 0.0341 0.0881 | 0.0511 0.1134 0.0686 0.0599
T =40, M =5 bias | 0.2174 -0.0275 -0.0054 0.0759 | 0.0404 -0.0134 -0.0047 -0.0012
std 0.0649 0.0192 0.0170 0.0500 | 0.0239 0.0166 0.0122 0.0281
rmse | 0.2269 0.0335 0.0179 0.0908 | 0.0469 0.0214 0.0131 0.0281
T =80, M =6 bias | 0.2232 -0.0134 -0.0016 0.0873 | 0.0433 -0.0052 -0.0012  0.0125
std 0.0472 0.0118 0.0113 0.0364 | 0.0164 0.0066 0.0058 0.0176
rmse | 0.2281 0.0179 0.0114 0.0946 | 0.0463 0.0084 0.0059 0.0216

Table S.3: Analogous to Table 2 in main paper, but with R = 2 correctly specified, and also reporting pooled
CCE estimator of Pesaran (2006).
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