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VECTOR QUANTILE REGRESSION

G. CARLIER, V. CHERNOZHUKOV, AND A. GALICHON

Abstract. We propose a notion of conditional vector quantile function and a vector

quantile regression.

A conditional vector quantile function (CVQF) of a random vector Y , taking values

in Rd given covariates Z = z, taking values in Rk, is a map u 7→ QY |Z(u, z), which is

monotone, in the sense of being a gradient of a convex function, and such that given that

vector U follows a reference non-atomic distribution FU , for instance uniform distribution

on a unit cube in Rd, the random vector QY |Z(U, z) has the distribution of Y conditional

on Z = z. Moreover, we have a strong representation, Y = QY |Z(U,Z) almost surely, for

some version of U .

The vector quantile regression (VQR) is a linear model for CVQF of Y given Z. Under

correct specification, the notion produces strong representation, Y = β (U)> f(Z), for

f(Z) denoting a known set of transformations of Z, where u 7→ β(u)>f(Z) is a monotone

map, the gradient of a convex function, and the quantile regression coefficients u 7→ β(u)

have the interpretations analogous to that of the standard scalar quantile regression. As

f(Z) becomes a richer class of transformations of Z, the model becomes nonparametric,

as in series modelling. A key property of VQR is the embedding of the classical Monge-

Kantorovich’s optimal transportation problem at its core as a special case.

In the classical case, where Y is scalar, VQR reduces to a version of the classical QR,

and CVQF reduces to the scalar conditional quantile function. Several applications to

diverse problems such as multiple Engel curve estimation, and measurement of financial

risk, are considered.
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1. Introduction

Quantile regression provides a very convenient and powerful tool for studying depen-

dence between random variables. The main object of modelling is the conditional quantile

function (CQF) (u, z) 7→ QY |Z(u, z), which describes the u-quantile of the random scalar Y

conditional on a k-dimensional vector of regressors Z taking a value z. Conditional quantile

function naturally leads to a strong representation via relation:

Y = QY |Z(U,Z), U | Z ∼ U(0, 1),

where U is the latent unobservable variable, normalized to have a uniform reference dis-

tribution, and is independent of regressors Z. The mapping u 7→ QY |Z(u, Z) is monotone,

namely non-decreasing, almost surely.

Quantile regression (QR) is a means of modelling the conditional quantile function. A

leading approach is linear in parameters, namely, it assumes that there exists a known Rp-
valued vector f(Z), containing transformations of Z, and a (p × 1 vector-valued) map of

regression coefficients u 7→ β(u) such that

QY |Z (u | z) = β (u)> f(z),

for all z in the support of Z and for all quantile indices u in (0, 1). This representation

highlights the vital ability of QR to capture differentiated effects of the explanatory variable

Z on various conditional quantiles of the dependent variable Y (e.g., impact of prenatal

smoking on infant birthweights).1 The model is flexible in the sense that, even if the model is

not correctly specified, by using more and more suitable terms f(Z) we can approximate the

true CQF arbitrarily well. Moreover, coefficients u 7→ β(u) can be estimated via tractable

linear programming method (Koenker and Basset, 1978).

The principal contribution of this paper is to extend these ideas to the cases of vector-

valued Y , taking values in Rd. Specifically, a vector conditional quantile function (CVQF)

of a random vector Y , taking values in Rd given the covariates Z, taking values in Rk, is

a map (u, z) 7→ QY |Z(u, z), which is monotone with respect to u, in the sense of being a

1Quantile regression has found many applications to econometrics (wage structure, program evaluation,

demand analysis, income inequality), biometrics, finance, technometrics, and other areas of statistical anal-

ysis. Applications include inter alia the study of the wage structure (Buchinski 1994, 1997; Chamberlain

1994; Poterba and Rueben 1995; Angrist, Chernozhukov, and Fernandez-Val, 2006); endogenous treatment

effect in program evaluation (Abadie, Angrist and Imbens 2001; Chernozhukov and Hansen, 2005); demand

analysis (Deaton 1997); wealth inequality (Gosling, Machin and Meghir 2000); health economics (Abrevaya

2001); and finance (Engle and Manganelli 2004; White, Kim, and Manganelli 2008; Adrian and Brunnermeier

2011; Chernozhukov and Umantsev 2001), and many more, see Koenker (2005)’s monograph.



VECTOR QUANTILE REGRESSION 3

gradient of a convex function, which implies that

(QY |Z(u, z)−QY |Z(u, z))>(u− u) ≥ 0 for all u, u ∈ (0, 1)d, z ∈ Z, (1.1)

and such that the following strong representation holds with probability 1:

Y = QY |Z(U,Z), U | Z ∼ U(0, 1)d, (1.2)

where U is latent random vector uniformly distributed on (0, 1)d. We can also use other

non-atomic reference distributions FU on Rd, for example, the standard normal distribution

instead of uniform distribution (as we can in the canonical, scalar quantile regression case).

We show that this map exists and is unique under mild conditions, as a consequence of

Brenier’s polar factorization theorem. This notion relies on a particular, yet very important,

notion of monotonicity for maps Rd → Rd, which we adopt here.

We define vector quantile regression (VQR) as a model of CVQF, particularly a linear

model. Specifically, under correct specification, our linear model takes the form:

QY |X(u | z) = β(u)>f(z),

where u 7→ β(u)>f(z) is a monotone map, in the sense of being a gradient of convex

function; and u 7→ β(u) is a map of regression coefficients from (0, 1)d to the set of p × d
matrices with real entries. This model is a natural analog of the classical QR for the scalar

case. In particular, under correct specification, we have the strong representation

Y = β(U)>f(Z), U | Z ∼ U(0, 1)d, (1.3)

where U is uniformly distributed on (0, 1)d conditional on Z. (Other reference distributions

could also be easily permitted.)

We provide a linear program for computing u 7→ β(u) in population and finite samples.

We shall stress that this formulation offers a number of useful properties. In particular,

the linear programming problem admits a general formulation that embeds the optimal

transportation problem of Monge-Kantorovich-Brenier, establishing a useful intellectual link

to an important area of optimization and functional analysis (see, e.g. Villani, 2005).

Our paper also connects to a number of interesting proposals for performing multivariate

quantile regressions, which focus on inheriting certain (though not all) features of uni-

variate quantile regression– for example, minimizing an asymmetric loss, ordering ideas,

monotonicity, equivariance or other related properties, see, for example, some key proposals

(including some for the non-regression case) in Chaudhuri (1996), Koltchinskii (1997), and

Serfling (2004), Hallin et al (2010), Kong and Mizera (2010), Belloni and Winkler (2011),

and the references therein. Our proposal is quite different from all of these excellent pro-

posals in that it targets to simultaneously reproduce two fundamentally different properties
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of quantile regression in higher dimensions – namely the deterministic coupling property

(1.3) and the monotonicity property (1.1).2 This is the reason we deliberately don’t use

adjective “multivariate” in naming our method. By using a different name we emphasize

the major differences of our method’s goals from those of the other proposals. This also

makes it clear that our work is complementary to other works in this direction. We discuss

other connections, including to some of our own work, as we present our main results.

We organize the rest of the paper as follows. In Section 2, we introduce and develop the

properties of CVQF. In Section 3, we introduce and develop the properties of VQR as well

its linear programming implementation. In Section 4, we provide computational details of

the discretized form of the linear programming formulation, which is useful for practice and

computation of VQR with finite samples. In Section 5, we implement VQR in an empirical

example, providing the testing ground for these new concepts. We provide proofs of all

formal results of the paper in the Appendix.

2. Conditional Vector Quantile Function

2.1. Conditional Vector Quantiles as Gradients of Convex Functions. We consider

a random vector (Y,Z) defined on a complete probability space (Ω1,A1,P1). The random

vector Y takes values in Rd. The random vector Z is a vector covariate, taking values in Rk.
Denote by FY Z the joint distribution function of (Y,Z), by FY |Z the (regular) conditional

distribution function of Y given Z, and by FZ the distribution function Z. We also consider

random vectors V defined on a complete probability space (Ω0,A0,P0), which are required

to have a fixed reference distribution function FU . Let (Ω,A,P) be the a suitably enriched

complete probability space that can carry all vectors (Y,Z) and V with distributions FY Z

and FU , respectively, as well as the independent (from all other variables) standard uniform

random variable on the unit interval.3 The symbols Y, Z, U , YZ, UZ denote the support

of FY , FZ , FU , FY Z , FUZ , and Yz denotes the support of FY |Z(·|z).

We assume that the following condition holds:

2Note that it is not possible to reproduce all “desirable properties” of scalar quantile regression in higher

dimensions, so various proposals focus on achieving different sets of properties. Thus we remark that there

is no holy grail in dimension greater than 1, in reference to the following remark in Koenker (2005): “the

search for a satisfactory notion of multivariate quantiles has become something of a quest for the statistical

holy grail in recent years.”.
3Formally, this product space takes the form (Ω,A,P) = (Ω0,A0,P0)×(S1,A1,P1)×((0, 1), B(0, 1),Leb),

where ((0, 1), B(0, 1),Leb) is the canonical probability space, consisting of the unit segment of the real line

equipped with Borel sets and the Lebesgue measure. We need this for measure-theoretic reasons, in order

to claim the required strong representation.
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(N) FU has a density fU with respect to the Lebesgue measure on Rd with a convex

support set U .

The distribution FU describes a reference distribution for a vector of latent variables U ,

taking values in Rd, that we would like to link to Y via a strong representation of the form

mentioned in the introduction. This vector will be one of many random vectors V having

a distribution function FU , but there will only be one V = U , in the sense specified below,

that will provide the required strong representation. The leading cases for the reference

distribution FU include:

• the standard uniform distribution on the unit d-dimensional cube, U(0, 1)d, and

• the standard normal distribution N(0, Id) over Rd.

Our goal here is to create a deterministic mapping that transforms a random vector U

with distribution FU into Y such that Y conditional on Z has the conditional distribution

FY |Z . That is, we want to have a strong representation property like (1.2) that we stated in

the introduction. Moreover, we would like this transform to have a monotonicity property,

as in the scalar case. Specifically, in the vector case we require this transform to be a

gradient of a convex function, which is a plausible generalization of monotonicity from the

scalar case. Indeed, in the scalar case the requirement that the transform is the gradient of

a convex map reduces to the requirement that the transform is non-decreasing. We shall

refer to the resulting transform as the conditional vector quantile function (CVQF). The

following theorem shows that such map exists and is uniquely determined by the stated

requirements.

Theorem 2.1 (Conditional Vector Quantiles as Conditional Brenier Maps). Sup-

pose condition (N) holds.

(i) There exists a measurable map (u, z) 7→ QY |Z(u, z) from UZ to Rd, such that for each

z in Z, the map u 7→ QY |Z(u, z) is the unique (FU -almost everywhere) gradient of convex

function such that, whenever V ∼ FU , the random vector QY |Z(V, z) has the distribution

function FY |Z(·, z), that is,

FY |Z(y, z) =

∫
1{QY |Z(u, z) ≤ y}FU (du), for all y ∈ Rd. (2.1)

(ii) Moreover, there exists a random variable V such that P-almost surely

Y = QY |Z(U,Z), and U | Z ∼ FU . (2.2)

The theorem is our first main result that we announced in the introduction. It should be

noted that the theorem does not require Y to have an absolutely continuous distribution,
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it holds for discrete and mixed outcome variables; only the reference distribution for the

latent variable U is assumed to be continuous. It is also noteworthy that in the classical

case of Y and U being scalars we recover the classical conditional quantile function as well

as the strong representation formula based on this function (Matzkin 2003, Koenker, 2005).

Regarding the proof, the first assertion of the theorem is a consequence of fundamental

results due to McCann (1995) (as, e.g, stated in Villani (2003), Theorem 2.32) who in turn

refined the fundamental results of Brenier (1991). These results were obtained in the case

without conditioning. The second assertion is a consequence of Dudley-Philipp (1983) result

on abstract couplings in Polish spaces.

Remark 2.1 (Monotonicity). The transform (u, z) 7→ (QY |Z(u, z), z) has the following

monotonicity property:

(QY |Z(u, z)−QY |Z(u, z))>(u− u) ≥ 0 ∀u, u ∈ U , ∀z ∈ Z. (2.3)

Remark 2.2 (Uniqueness). In part (i) of the theorem, u 7→ QY |Z(u, z) is equal to a

gradient of some convex function u 7→ ϕ(u, z) for FU -almost every value of u ∈ U and it

is unique in the sense that any other map with the same properties will agree with it FU -

almost everywhere. In general, the gradient u 7→ ∇uϕ(u, z) exists FU -almost everywhere,

and the set of points Ue where it does not is negligible. Hence the map u 7→ QY |Z(u, z) is

still definable at each ue ∈ Ue from the gradient values ϕ(u, z) on u ∈ U\Ue, by defining it at

each ue as a smallest-norm element of {v ∈ Rd : ∃uk ∈ U \Ue : uk → ue,∇uϕ(uk, z)→ v}.

Let us assume further that the following condition holds:

(C) For each z ∈ Z, the distribution FY |Z(·, z) admits a density fY |Z(·, z) with respect

to the Lebesgue measure on Rd.

Under this condition we can recover U uniquely in the following sense:

Theorem 2.2 (Inverse Conditional Vector Quantiles). Suppose conditions (N) and

(C) holds.

Then there exists a measurable map (y, z) 7→ Q−1Y |Z(y, z), mapping YZ to Rd, such that

for each z in Z, the map y 7→ Q−1Y |Z(y, z) is the inverse of u 7→ QY |Z(u, z) in the sense that:

Q−1Y |Z(QY |Z(u, z), z) = u,

for almost all u under FU . Furthermore, we can construct U in (2.2) as follows,

U = Q−1Y |Z(Y,Z), and U | Z ∼ FU . (2.4)
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It is also of interest to state a further implication, which occurs under (N) and (C).

Corollary 2.1 (Conditional Forward and Backward Monge-Ampère Equations).

Assume that conditions (N) and (C) hold and, further, that the map u 7→ QY |Z(u, z) is

continuously differentiable and injective for each z ∈ Z. Under this condition, the following

conditional forward Monge-Ampère equation holds for all (u, z) ∈ UZ :

fU (u) = fY |Z(QY |Z(u, z), z)det[DuQY |Z(u, z)] =

∫
δ(u−Q−1Y |Z(y, z))fY |Z(y, z)dy, (2.5)

where δ is the Dirac delta function in Rd and Du = ∂/∂u>. Reversing the roles of U and

Y , we also have the following conditional backward Monge-Ampère equation holds for all

(u, z) ∈ YZ:

fY |Z(y, z) = fU (Q−1Y |Z(y, z))det[DyQ
−1
Y |Z(y, z)] =

∫
δ(y −QY |Z(u, z))fU (u)du. (2.6)

The latter expression is useful for linking the conditional density function to the condi-

tional vector quantile function and for setting up maximum likelihood estimation of condi-

tional quantile functions, which we comment on in the concluding section. Equations (2.5)

and (2.6) are partial differential equations of the Monge-Ampère type, carrying an addi-

tional index z ∈ Z. These equations could be used directly to solve for conditional vector

quantiles given conditional densities. In the next section we describe a variational approach

to recovering conditional vector quantiles.

2.2. Conditional Vector Quantiles as Optimal Transport. Under additional moment

assumptions, the CVQF can be characterized and even defined as solutions to a regres-

sion version of the Monge-Kantorovich-Brenier’s optimal transportation problem or, equiv-

alently, a conditional correlation maximization problem.

We assume that the following conditions hold:

(M) The second moment of Y and the second moment of U are finite, namely∫ ∫
‖y‖2FY Z(dy, dz) <∞ and

∫
‖u‖2FU (du) <∞.

We consider the following optimal transportation problem with conditional independence

constraints:

min
V
{E‖Y − V ‖2 : V | Z ∼ FU}, (2.7)

where the minimum is taken over all random vectors V defined on the probability space

(Ω,F ,P). Under condition (M) we will see that a solution exists and is given by V = U

constructed in the previous section.
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Remark 2.3 (Matching Factor Interpretation for Latent Vector U). The variational

formulation (2.7) immediately provides a useful interpretation for U – they can be thought

as latent factors, independent of each other and explanatory variables Z and having a

prescribed marginal distribution FU , and that best explain the variation in Y . Therefore,

the conditional vector quantile model (2.2) provides a non-linear latent factor model for

Y with factors U solving the matching problem (2.7). This interpretation suggests that

this model may be useful in applications which require measurement of multidimensional

unobserved factors, for example, cognitive ability, persistence, and various other latent

propensities; see, for example, Cunha, Heckman, Schennach (2010) .

The problem (2.7) is the conditional version of the classical Monge-Kantorovich problem

with Brenier’s quadratic costs, which was solved by Brenier in considerable generality in the

unconditional case. In the unconditional case, the canonical Monge problem is to transport

a pile of coal with mass distributed across production locations via FU into a pile of coal with

mass distributed across consumption locations via FY , and it can be rewritten in terms of

random variables V and Y . We are seeking to match Y with a version of V that is closest in

mean squared sense subject to V having a prescribed distribution. Our conditional version

above (2.7) imposes the additional conditional independence constraint V | Z ∼ FU .

The problem above is equivalent to covariance maximization problem subject to the

prescribed conditional independence and distribution constraints:

max
V
{E(V >Y ) : V | Z ∼ FU}, (2.8)

where the maximum is taken over all random vectors V defined on the probability space

(Ω,F ,P). This type of problem will be convenient for us, as it most directly connects

to convex analysis and leads to a convenient dual program. This form also connects to

unconditional multivariate quantile maps defined Ekeland, Galichon, Henry (2010), who

employed them for purposes of risk analysis. Here, we pursue the conditional version and

connect these to the conditional Brenier functions defined in the previous section4.

The dual program to (2.8) can be stated as:

min
(ψ,ϕ)

E(ϕ(V,Z) + ψ(Y,Z)) : ϕ(u, z) + ψ(y, z) ≥ u>y, for all (z, y, u) ∈ Z × R2d, (2.9)

where V is any vector such that V | Z ∼ FU , and minimization is performed over Borel

maps (y, z) 7→ ψ(y, z) from Z × Rd to R ∪ {+∞} and (u, z) 7→ ϕ(z, u) from Z × Rd to

4In the unconditional context, the previous section is noteworthy. Indeed, as in the seminal work of

McCann (1995), it leads to a more general definition of vector/multivariate quantiles in that it does not

require moment assumptions.
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R ∪ {+∞}, where y 7→ ψ(y, z) and u 7→ ϕ(u, z) are lower-semicontinuous for each value

z ∈ Z.

Theorem 2.3 (Conditional Vector Quantiles as Optimal Transport). Suppose con-

ditions (N), (C), and (M) hold.

(i) There exists a pair of maps (u, z) 7→ ϕ(u, z) and (y, z) 7→ ψ(y, z) = ϕ∗(y, z), each

mapping from Rd × Z to R, that solve the problem (2.9). For each z ∈ Z, the maps

u 7→ ϕ(u, z) and y 7→ ϕ∗(y, z) are convex and are Legendre transforms of each other:

ϕ(u, z) = sup
y∈Rd

{u>y − ϕ∗(y, z)}, ϕ∗(y, z) = sup
u∈Rd

{u>y − ϕ(u, z)},

for all (u, z) ∈ UZ and (y, z) ∈ YZ.

(iii) We can take the gradient (u, z) 7→ ∇uϕ(u, z) of (u, z) 7→ ϕ(u, z) as the conditional

vector quantile function, namely, for each z ∈ Z, QY |Z(u, z) = ∇uϕ(u, z) for almost every

value u under FU .

(iv) We can take the gradient (y, z) 7→ ∇yϕ∗(y, z) of (y, z) 7→ ϕ∗(y, z) as the conditional

inverse vector quantile function, namely, for each z ∈ Z, Q−1Y |Z(y, z) = ∇yϕ(z, y) for almost

every value y under FY |Z(·, z).

(v) The vector U = Q−1Y |Z(Y,Z) is a solution to the primal problem (2.8) and is unique

in the sense that any other solution U∗ obeys U∗ = U almost surely under P. The primal

(2.8) and dual (2.9) have the same value.

(vi) The maps u 7→ ∇uϕ(u, z) and y 7→ ∇ϕ∗y(y, z) are inverses of each other: for each

z ∈ Z, and for almost every u under FU and almost every y under FY |Z(·, z)

∇yϕ∗(∇uϕ(u, z), z) = u, ∇uϕ(∇yϕ∗(y, z), z) = y.

This theorem provides a number of analytical properties, formalizing the variational

interpretation of conditional vector quantiles, providing the potential functions (u, z) 7→
ϕ(u, z) and (y, z) 7→ ϕ∗(y, z), which are mutual Legendre transforms, and whose gradients

are the conditional vector quantile functions and its inverse. Intellectually this problem is

a conditional generalization of the fundamental results by Brenier as presented in Villani

(2005), Theorem 2.12.

Example 2.1 (Conditional Normal Vector Quantiles). Here we consider the normal

conditional vector quantiles. Consider the case where

Y | Z ∼ N(µ(Z),Ω(Z)).
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Here z 7→ µ(z) is the conditional mean function and z 7→ Ω(z) is a conditional variance

function such that Ω(z) > 0 (in the sense of symmetric matrices) for each z ∈ Z with

E‖Ω(Z)‖ + E‖µ(Z)‖2 < ∞. The reference distribution is given by U | Z ∼ N(0, I). Then

we have the following conditional vector quantile model:

Y = µ(Z) + Ω1/2(Z)U,

U = Ω−1/2(Z)(Y − µ(Z)).

Here we have the following conditional potential functions

ϕ(u, z) = µ(z)>u+
1

2
u>Ω1/2(z)u,

ψ(y, z) =
1

2
(y − µ(z))>Ω−1/2(z)(y − µ(z)),

which are mutual Legendre transforms, and the following conditional vector quantile func-

tions:

QY |Z(u, z) = ∇uϕ(u, z) = µ(z) + Ω1/2(z)u,

Q−1Y |Z(y, z) = ∇yψ(y, z) = Ω−1/2(z)(y − µ(z)).

It is not easy but also not difficult to show that V = U solves the covariance maximization

problem (2.8). An interesting feature of this example is that the conditional vector quantile

functions are linear.

3. Vector Quantile Regression

3.1. Linear Formulation. Here we use the following notation:

• We let X = f(Z) denote a vector of regressors formed as transformations of Z,

such that the first component of X is 1 (intercept term in the model) and such

that conditioning on X is equivalent to conditioning on Z. The dimension of X is

denoted by p and we shall denote X = (1, X−1) with X−1 ∈ Rp−1.

In practice, X would often consist of a constant and some polynomial or spline trans-

formations of Z as well as their interactions. Note that conditioning on X is equivalent to

conditioning on Z if, for example, a component of X contains a one-to-one transform of Z.

Denote by FX the distribution function of X and FUX = FUFX . Let X denote the

support of FX and UX the support of FUX . We define linear vector quantile regression

model (VQRM) as the following linear model of CVQF.
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(L) The following linearity condition holds:

Y = QY |X(U,X) = β0(U)>X, U | X ∼ FU ,

where u 7→ β0(u) is a map from U to the set Mp×d of p × d matrices such that

u 7→ β0(u)>x is a monotone, smooth map, in the sense of being a gradient of a

convex function:

β0(u)>x = ∇uΦx(u), Φx(u) := (B0(u)>x), for all (u, x) ∈ UX ,

where u 7→ B0(u) is C1 map from U to Rd, and u 7→ B0(u)>x is a strictly convex

map from U to R.

The parameter β(u) is indexed by the quantile index u ∈ U and is a d×pmatrix of quantile

regression coefficients. Of course in the scalar case, when d = 1, this matrix reduces to a

vector of quantile regression coefficients. This model is a natural analog of the classical

QR for scalar Y where the similar regression representation holds. One example where

condition (L) holds was Example 2.1, describing the conditional normal vector regression.

It is of interest to specify other examples where condition (L) holds or provides a plausible

approximation.

Example 3.1 (Saturated Specification). The regressors X = f(Z) with E‖f(Z)‖2 < ∞
are saturated with respect to Z, if, for any g ∈ L2(FZ) , we have g(Z) = X>αg. In this case

the linear functional form (L) is not a restriction. For p < ∞ this can occur if and only if

Z takes on a finite set of values Z = {z1, . . . , zp}, in which case we can write:

QY |X(u,X) =

p∑
j=1

QY |Z(u, zj)1(Z = zj) =: B0(u)>X,

B0(u) :=


QY |Z(u, z1)

>

...

QY |Z(u, zp)
>

 , X :=


1(Z = z1)

...

1(Z = zp)

 .

Here the problem is equivalent to considering p unconditional vector quantiles in populations

corresponding to Z = z1, . . . , Z = zp.

The rationale for using linear forms is two-fold – one is convenience of estimation and

representation of functions and another one is approximation property. We can approximate

a smooth convex potential by a smooth linear potential, as the following example illustrates

for a particular approximation method.

Example 3.2 (Linear Approximation). Let (u, z) 7→ ϕ(u, z) be of class Ca with a > 1

on the support (u, z) ∈ UZ = [0, 1]d+k. Consider a trigonometric tensor product basis of
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functions {(u, z) 7→ qj(u)fl(z), j ∈ N, l ∈ N} in L2[0, 1]d+k. Then there exists a JL vector

(γjl : j ∈ {1, ..., J}, l ∈ {1, ..., L}) such that the linear map:

(u, z) 7→ ΦJL(u, z) :=
J∑
j=1

L∑
l=1

γjlqj(u)fl(z) =: BL
0 (u)>fL(z),

where BL
0 (u) = (

∑J
j=1 γjlqj(u), l ∈ {1, ..., L}) and fL(z) = (fl(z), l ∈ {1, ..., L}), provides

uniformly consistent approximation of the potential and its derivative:

lim
J,L→∞

sup
(u,z)∈UZ

(
|ϕ(u, z)− ΦJL(u, z)|+ ‖∇uϕ(u, z)−∇uΦJL(u, z)‖

)
= 0.

The approximation property provides a rationale for the linear specification (1.3). If the

linear specification does not hold we say that the model is misspecified. If the model is

flexible enough, then the approximation error is small, and we effectively ignore the error

when assuming (1.3). However, when constructing a sensible estimator we must allow the

possibility that the model is misspecified, which means we can’t really force (1.3) onto data.

Our proposal for estimation presented next does not force (1.3) onto data, but if (1.3) is

true, then the true conditional vector quantile function would be recovered perfectly as a

result (in population).

3.2. Linear Program for VQR. Our approach to multivariate quantile regression is

based on the multivariate extension of the covariance maximization problem with a mean-

independence constraint:

max
V
{E(V >Y ) : V ∼ FU , E(X | V ) = E(X)}. (3.1)

Note that the constraint condition is a relaxed form of the previous independence condi-

tion.

Remark 3.1. The new condition V ∼ FU , E(X | V ) = E(X) is weaker than V | X ∼ FU ,

but the two conditions coincide if X is saturated relative to Z, as in Example 3.1, in which

case E(g(Z)V ) = EX ′αgV = E(X ′αg)E(V ) = Eg(Z)EV for every g ∈ L2(FZ). More

generally, this example suggests that the richer X is, the closer the mean-independence

condition becomes to the conditional independence.

The relaxed condition is sufficient to guarantee that the solution exists not only when

(L) holds, but more generally when the following quasi-linear assumption holds.
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(QL) We have a quasi-linear representation a.s.

Y = β(Ũ)>X, Ũ ∼ FU , E(X | Ũ) = E(X),

where u 7→ β(u) is a map from U to the set Mp×d of p × d matrices such that

u 7→ β(u)>x is a gradient of convex function for each x ∈ X and a.e. u ∈ U :

β(u)>x = ∇uΦx(u), Φx(u) := (B(u)>x),

where u 7→ B(u) is C1 map from U to Rd, and u 7→ B(u)>x is a strictly convex map

from U to R.

This condition allows for a degree of misspecification, which allows for a latent factor

representation where the latent factor obeys the relaxed independence constraints.

Theorem 3.1. Suppose conditions (M), (N) , (C), and (QL) hold.

(i) The random vector Ũ entering the quasi-linear representation (QL) solves (3.1).

(ii) The quasi-linear representation is unique a.s. that is if we also have Y = β(U)>X

with U ∼ FU ,E(X | U) = EX, u 7→ X>β(u) is a gradient of a strictly convex function in

u ∈ U a.s., then U = Ũ and X>β(Ũ) = X>β(Ũ) a.s.

(iii) Under condition (L) and assuming that E(XX>) has full rank, Ũ = U a.s. and U

solves (3.1). Moreover, β0(U) = β(U) a.s.

The last assertion is important – it says that if (L) holds, then the linear program with

the relaxed independence constraint will find the true linear vector quantile regression in

the population.

3.3. Dual Program for Linear VQR. As explained in details in the appendix, the dual

of (3.1) reads

inf
(ψ,b)

E(ψ(X,Y )) + Eb(V )>E(X) : ψ(x, y) + b(u)>x ≥ u>y, ∀ (y, x, u) ∈ YXU , (3.2)

where V ∼ FU , where the infimum is taken over all continuous functions (y, x) 7→ ψ(y, x),

mapping YX to R and u 7→ b(u) mapping U to R, such that E(ψ(X,Y )) and Eb(V ) are

finite.

Since for fixed b, the largest ψ which satisfies the pointwise constraint in (3.2) is given

by

ψ(x, y) := sup
u∈U
{u>y − b(u)>x},
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one may equivalently rewrite (3.2) as the minimization over continuous b of∫
sup
u∈U
{u>y −B(u)>x}FY |X(dx, dy) +

∫
b(u)>E(X)FU (du).

By standard arguments, the infimum over continuous functions coincides with the one over

smooth or simply integrable functions.

Theorem 3.2. Under (M) and (QL), we have that the optimal solution to the dual is given

by functions:

ψ(x, y) = sup
u∈U
{u>y −B(u)>x}, b(u) = B(u).

This result can be recognized as a consequence of strong duality of the linear program-

ming.

3.4. The dual and the primal relations in general. In this subsection we do not

assume condition (QL) and wish to study which information (3.1) can give regarding the

dependence of X and Y . Once again, a good starting point is duality. Without (QL), the

existence of optimal functions ψ and B is not obvious, and is proven under the following

assumptions:

(G) The support of W = (X−1, Y ), say W, is a closure of an open bounded convex

subset of Rp−1+d, the density fW of W is uniformly bounded from above and does

not vanish anywhere on the interior ofW. The set U is a closure of an open bounded

convex subset of Rd, and the density fU is strictly positive over U .

Theorem 3.3. Suppose that condition (G) holds.

(i) The dual problem (3.2) admits at least a solution (ψ,B) such that

ψ(x, y) = sup
u∈U
{u>y −B(u)>x}.

(ii) Moreover, under the same condition, the map

(x, y) 7→ ψ(x, y),

is differentiable for FY X-almost every (y, x) ∈ YX .

The first result is a consequence of a non-trivial argument given in the proof. The second

is a consequence of generalized envelope theorems by Milgrom and Segal (2002).

We next discuss the implications of the existence of the solution to a dual program and

of smoothness conditions of maps ψ and B.
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Suppose that Ũ solves (3.1) and (ψ,B) solves its dual (3.2). Recall that, without loss of

generality, we can take ψ as a function given by

ψ(x, y) = sup
u∈U
{u>y −B(u)>x}. (3.3)

Observe that (x, y) 7→ ψ(x, y) is convex in both arguments. The primal-dual relations give

ψ(x, y) +B(u)>x ≥ u>y for all (x, y, u) ∈ XYU ,

and almost-surely

ψ(X,Y ) +B(Ũ)>X = Ũ>Y.

Since ψ is convex and is given by (3.3), it follows that we have:

(−B(Ũ), Ũ) ∈ ∂ψ(X,Y ), or, equivalently, (X,Y ) ∈ ∂ψ∗(−B(Ũ), Ũ).

If (x, y) 7→ ψ(x, y) is differentiable in both arguments for FY X -a.e. (x, y) ∈ YX , then we

have that almost-surely:

Ũ = ∇yψ(X,Y ), −B(Ũ) = ∇xψ(X,Y ).

Problems (3.1) and (3.2) have thus enabled us to find:

• Ũ ∼ FU : E(X | Ũ) = 0 and ψ convex,

• such that (X,Y ) ∈ ∂ψ∗(−b(Ũ), Ũ).

Quasi-linear specification of vector quantile regression rather asks whether we can write

Y = ∇u(B(Ũ)>X) := ∇uΦX(Ũ) with u 7→ Φx(u) := B(ũ)>x is convex in u for fixed x. We

now wish to explain that smoothness of u 7→ B(ũ) is tightly related to quasi-linearity.

Note that since ψ is smooth, and if B is smooth, then ψ solves the vectorial Hamilton-

Jacobi equation:

∇xψ(x, y) +B(∇yψ(x, y)) = 0. (3.4)

In addition, if B are smooth then, by the envelope theorem,

Y = ∇uB(Ũ)>X = ∇uΦX(Ũ).

We then see that ϕ and B are consistent with vector quantile regression estimation, but we

are still short of the convexity requirement. The lemma below shows that convexity holds

over support of Ũ given X = x. However, this convexity is weaker than condition (QL),

which imposes convexity over entire u ∈ U , the marginal support of Ũ .

Lemma 3.1. Suppose that the dual program admits a solution, then

ΦX(Ũ) = Φ∗∗X (Ũ)

P -almost surely, where Φ∗∗x denotes the convex envelope of Φx.
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3.5. Connecting to Scalar Quantile Regression. We consider the connection to the

canonical, scalar quantile regression problem, where Y is scalar and for each probability

index t, the linear functional form x 7→ x>β(t) is used. Koenker and Bassett define linear

quantile regression as X>β(t) with β(t) solving the minimization problem

β(t) ∈ arg min
β∈Rp

E(ρt(Y −X>β)), (3.5)

where the loss function ρt is given by ρt(z) := tz− + (1− t)z+ with z− and z+ denoting as

usual the negative and positive parts of z. The above formulation makes sense and β(t) is

unique under the following simplified conditions:

(QR) E|Y | <∞, (y, x) 7→ fY |X(y, x) is uniformly continuous, and E(wXX>) is positive-

definite, for w = fY |X(X ′β(t), X).

For further use, note that (3.5) can be conveniently rewritten as

min
β∈Rp
{E(Y −X>β)+ + (1− t)EX>β}. (3.6)

Koenker and Bassett showed that this convex program admits as dual formulation

max{E(AtY ) : At ∈ [0, 1], E(AtX) = (1− t)EX}. (3.7)

An optimal β = β(t) for (3.6) and an optimal rank-score variable At in (3.7) may be taken

to be

At = 1(Y > X>β(t)), (3.8)

and thus the constraint E(AtX) = (1− t)EX reads:

E(1(Y > X>β(t))X) = (1− t)EX. (3.9)

which simply are the first-order conditions for (3.6).

We say that the specification of quantile regression is quasi-linear if

t 7→ x>β(t) is increasing on (0, 1). (3.10)

Define the rank variable Ũ =
∫ 1
0 Atdt, then under this assumption we have that

At = 1(Ũ > t),

and the first-order conditions imply that for each t ∈ (0, 1)

E1(Ũ ≥ t) = (1− t), E1(Ũ ≥ t)X = (1− t)EX.

The first property implies that Ũ ∼ U(0, 1) and the second property can be easily shown

to imply the mean-independence condition:

E(X | Ũ) = EX.
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Thus quantile regression naturally leads to the mean-independence condition and the quasi-

linear latent factor model. This is the reason we used mean-independence condition as

a starting point in formulating the vector quantile regression. Moreover, in both vector

and scalar cases, we have that, when the conditional quantile function is linear (not just

quasi-linear), the quasi-linear representation coincides with the linear representation and Ũ

becomes fully independent of X.

The following result explains the connection more formally.

Theorem 3.4 (Connection to Scalar Quantile Regression). Suppose that (QR) hods.

(i) If (3.10) holds, then for Ũ =
∫ 1
0 Atdt we have the quasi-linear model holding

Y = X>β(Ũ) a.s., Ũ ∼ U(0, 1) and E(X | Ũ) = E(X).

Moreover, Ũ solves the correlation maximization problem with a mean-independence con-

straint:

max{E(V Y ) : V ∼ U(0, 1), E(X | V ) = E(X)}. (3.11)

(ii) The quasi-linear representation above is unique almost surely. That is, if we also have

Y = β(U)>X with U ∼ U(0, 1),E(X | U) = EX, u 7→ X ′β(u) is increasing in u ∈ (0, 1)

a.s., then Ũ = U and X ′β(Ũ) = X ′β(U) a.s.

(iii) Consequently, if the conditional quantile function is linear, namely QY |X(u) =

X>β0(u), so that Y = X>β0(U), then the latent factors in the quasi-linear and linear spec-

ifications coincide, namely U = Ũ , and so do the model coefficients, namely β0(U) = β(U).

4. Implementation of Vector Quantile Regression

In practice to implement computation or estimation, we shall have to discretize the

problems. In this section, we shall specialize the previous results to the case when the

distribution ν of (X,Y ), and the distribution µ of U , are discrete. The primarily case we

have in mind is the case when an empirical sample of the distribution of (X,Y ) is observed,

and when the distribution of U is approximated on a grid, but our setting allows to cover

more general cases, hence we shall allow for nonuniform weights νj of observations (xj , yj),

as well as irregular grids for the sample points of uk and nonuniform weights µk.

The observations are response variables yj ∈ Rd and regressors xj ∈ Rp (1 ≤ j ≤ n). It is

assumed that the constant is included as a regressor, thus one assumes that the first entry

of xj is equal to one, that is xj1 = 1. Let Y be the n × d matrix of row vectors yj and X

the n × r matrix of row vectors xj . By assumption, the first column of X is thus made of

ones. Let ν be a n× 1 matrix such that νj is the probability of observation (Xj , Yj) (hence
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νj ≥ 0 and
∑

j νj = 1). Let m be the number of points of U . Let U be a m × d matrix,

where the ith row stands for vector ui ∈ Rd. Let µ be a m × 1 matrix such that µi is the

probability weight of ui (hence µi ≥ 0 and
∑

k µk = 1).

One looks for a m×n matrix π such that πij is the joint probability of (ui, Xj , Yj) which

maximizes

Eπ

[
U>Y

]
=
∑
ij

πijy
>
j ui = Tr(U ′πY )

subject to constraint (X,Y ) ∼ ν, which rewrites π′1m = ν, where 1m is a m × 1 vector of

ones, and subject to constraints U ∼ µ and E [X | U ] = E [X], which rewrites πX = µE[X],

where x = ν ′X is a 1× r vector.

Hence, the µ-QR problem in the discrete case is given in its primal form by

max
π≥0

Tr
(
U ′πY

)
(4.1)

π′1m = ν [ψ]

πX = µE[X] [b]

where the square brackets show the associated Lagrange multipliers and in its dual form by

min
ψ,b

ψ′ν + E[X]b′µ (4.2)

ψ1′m +Xb′ ≥ Y U ′
[
π′
]

where ψ is a n× 1 vector, and b is a m× r matrix.

Problems (4.1) and (4.2) are two linear programming problems dual to each other. How-

ever, in order to implement them on standard numerical analysis softwares such as R or

Matlab coupled with a Linear Programming software such as Gurobi, we need to convert

matrices into vectors. This is done using the vec operation, which is such that if A is a p×q
matrix, vec(A) is a pq×1 matrix such that vec (A)i+p(j−1) = Aij . The use of the Kronecker

product will also greatly facilitate computations. Recall that if A is a p× q matrix and B

is a p′ × q′ matrix, then the Kronecker product A⊗B is the pp′ × qq′ matrix such that for

all relevant choices of indices i, j, k, l,

(A⊗B)i+p(k−1),j+q(l−1) = AijBkl.

The fundamental property linking Kronecker products and the vec operator is

vec
(
BXAT

)
= (A⊗B) vec (X) .

Introduce vecπ = vec (π), the optimization variable of the “vectorized problem”. Note

that the variable vecπ is a mn × 1 vector. The objective function rewrites Tr (U ′πY ) =
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vecπ′vec (UY ′); as for the constraints, vec (1′mπ) = (In ⊗ 1′m) vecπ is a n × 1 vector; and

vec (πX) = (X ′ ⊗ Im) vecπ is a mr×1 vector. Thus we can rewrite the linear VQR program

as:

max
vecπ≥0

vec
(
UY ′

)′
vecπ(

In ⊗ 1′m
)
vecπ = vec

(
ν ′
)(

X ′ ⊗ Im
)
vecπ = vec (µE[X])

(4.3)

which is a LP problem with mn variables and mr+n constraints. The constraints (In ⊗ 1′m)

and (X ′ ⊗ Im) are very sparse, which can be taken advantage of from a computational point

of view.

5. Empirical Illustration

We demonstrate the use of the approach on a classical application of Quantile Regression

since Koenker and Bassett (1982): Engel’s (1857) data on household expenditures, including

199 Belgian working-class households surveyed by Ducpetiaux in 1855, and 36 observations

from all over Europe surveyed by Le Play on the same year. Due to the univariate nature of

classical QR, Koenker and Bassett limited their focus on the regression of food expenditure

over total income. But in fact, as seen in Figure 1 Engel’s dataset is richer and classifies

household expenses in nine broad categories: 1. Food; 2. Clothing; 3. Housing; 4. Heating

and lighting; 5. Tools; 6. Education; 7. Safety; 8. Medical care; and 9. Services. This

allows us to have a multivariate dependent variable. While we could in principle have d = 9,

we focus for illustrative purposes on a two-dimensional dependent variable (d = 2), and we

choose to take Y1 as food expenditure ( category #1) and Y2 as housing and domestic

fuel expenditure (category #2 plus category #4). We take X = (X1, X2) with X1 = 1

and X2=total expenditure as an explanatory variable. Descriptive statistics are offered in

Table 1.

Table 1. Descriptive statistics

Minimum Maximum Median Average

Food 242,32 2032,68 582,54 624,15

Shelter+Fuel 11,17 660,24 113,36 136,62

Clothing 5,00 520,00 111,76 135,54

Else 0,00 1184,40 39,50 69,21

Total 377,06 4957,83 883,99 982,47
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Figure 1. An excerpt from Engel’s [26] compilation of Ducpetiaux’s data

on household expenditure. The total expendable income is broken down

into nine categories: 1 Food (Nahrung ) 2. Clothing (Kleidung) 3. Housing

(Wohnung) 4. Heating and Lighting (Heizung und Beleuchtung) 5. Tools

(Geräthe) 6. Education (Erziehung) 7. Public safety (Öffentliche Sicherheit)

8. Health (Gesundheitspflege) 9. Personal service (persönliche Dienstleistun-

gen).

5.1. One-dimensional VQR. To begin with, we run a pair of one-dimensional VQRs,

where we regress:

(i) Y1=food on X=income and a constant (Figure 2, left panel, in green) and

(ii) Y2=housing and fuel on X=income and a constant (Figure 2, right panel, in green).

The curves drawn here are u→ x>β(u) for five quartiles of the income x (0%, 25%, 50%,

75%, 100%), and the corresponding probabilistic representations are

Y1 = β1 (U1)
>X and Y2 = β2 (U2)

>X (5.1)

with U1 ∼ U ([0, 1]) and U2 ∼ U ([0, 1]). While U1 is interpreted as a protensity to consume

food, and U2 is intepreted as a protensity to consume the housing good, it is hard to make

sense of joint protensities in this model.

As explained above, when d = 1, VQR is very closely connected to classical quantile

regression. Hence, in Figure 2, we also draw the classical quantile regression (in red). In

each case, the curves exhibit very little difference between classical quantile regression and

vector quantile regression. Small differences occur, since vector quantile regression in the

scalar case can be shown to impose the fact that map t → At in (3.7) is nonincreasing,
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which is not necessarily the case with classical quantile regression under misspecification.

As can be seen in Figure 2, the difference, however, is minimal.

From the plots in Figure 2, it is also apparent that one-dimensional VQR can also suffer

from the “crossing problem,” namely the fact that x>β(t) may not be monotone with respect

to t. Indeed, the fact that t→ At is nonincreasing fails to imply the fact that t→ x>β(t) is

nondecreasing. However, we see that the crossing problem is modest in the current example.

Running a pair of one-dimensional Quantile Regressions is interesting, but it fails to

convey the information about the joint conditional dependence in Y1 and Y2 (given X). In

other words, representations (5.1) are not informative about the joint protensity to consume

food and income. One could also wonder whether food and housing are locally complements

(respectively locally substitute), in the sense that, conditional on income, an increase in the

food consumption is likely to be associated with an increase (respectively a decrease) in the

consumption of the housing good. All these questions can only be answered with higher-

dimensional VQR.
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Figure 2. Classical quantile regression (red) and one-dimensional vector

quantile regression (green) with income as explanatory variable and with: (i)

Food expenditure as dependent variable (Left) and (ii) Housing expenditure

as dependent variable (Right). The maps t → β(u)>x are plotted for five

values of income x (quartiles).

5.2. Bidimensional VQR. In contrast, the two-dimensional vector quantile regression

with Y = (Y1, Y2) as a dependent variable yields a representation

Y1 =
∂b

∂u1
(U1, U2)

>X and Y2 =
∂b

∂u2
(U1, U2)

>X (5.2)
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where (U1, U2) ∼ ν = U([0, 1]2).

Let us make a series of remarks.

• U1 and U2 have an interesting interpretation: U1 is a propensity for food expenditure,

while U2 is a propensity for domestic (housing and heating) expenditure. Let us

explain this denomination. If VQR is specified, then Φx (u) = β (u)> x is convex

with respect to u, and Y = ∇uΦX (U), thus

∂/∂u1 (∂Φx (u1, u2) /∂u1) = ∂2Φx (u1, u2) /∂u
2
1 ≥ 0.

Hence an increase in u1 keeping u2 constant leads to an increase in y1. Similarly,

an increase in u2 keeping u1 constant leads to an increase in y2.

• The quantity U(x, y) = E[U |X = x, Y = y] is a measure of joint propensity of

observation Y = y conditional on X = x. This is a way of rescaling the con-

ditional distribution of Y conditional on X = x into the uniform distribution on

[0, 1]2. If VQR is specified, then (U1, U2) is independent from X, so that U (X,Y )

is a solely a function of Y , which is such that U (X,Y ) ∼ ν = U([0, 1]2). In this

case, Pr (U (X,Y ) ≥ u1, U (X,Y ) ≥ u2) = (1− u1) (1− u2) can be obained to detect

“nontypical” values of (y1, y2).

• Representation (5.2) may also be used to determine if Y1 and Y2 are locally com-

plement or substitute. Indeed, if VQR is specified and (Y1, Y2) are independent

conditional on X, then b (u1, u2) = b1 (u1) + b2 (u2), so that the cross deriva-

tive ∂2b (u1, u2) /∂u1∂u2 = 0. In this case, (5.2) becomes Y1 = ∂b1
∂u1

(U1)
>X and

Y2 = ∂b2
∂u2

(U2)
>X, which is equivalent to two single-dimensional Quantile Regres-

sions. In this case, conditional on X, an increase in Y1 is not associated to an

increase of a decrease in Y2. On the contrary, when (Y1, Y2) are no longer indepen-

dent conditional on X, then the term ∂2b (u1, u2) /∂u1∂u2 is no longer zero. Assume

it is positive. In this case, an increase in the propensity to consume food u1 not only

increases the food consumption y1, but also the housing consumption y2, which we

interpret by saying that food and housing are locally complements.

Going back to Engel’s data, in Figure 3, we set x = (1, 883.99), where x2 = 883.99 is the

median value of the total expenditure X2, and we are able to draw both the one-dimensional

and the two-dimensional representations. The one-dimensional representation (5.1) is pro-

vided in the top part of Figure 3, which expresses Y1 as a function of U1 in the top left pane,

and Y2 as a function of U2 in the top right pane. The two-dimensional representation (5.2)
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is given in the two panes at the bottom of Figure 3. The bottom left pane expresses Y1

as a function of U1 and U2, while the bottom right pane expresses Y2 as a function of U1

and U2. The insights of the two-dimensional representation become apparent. One sees

that while Y1 covaries strongly with U1 and Y2 covaries strongly with U2, there is a sig-

nificant and negative cross-covariation: Y1 covaries negatively with respect to U2, while Y2

covaries negatively with U1. The interpretation is that, for a median level of income, the

food and housing goods are locally substitute. This makes intuitive sense, given that food

and housing goods account for a large share of the surveyed households’ expenditures.
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Figure 3. Predicted outcome conditional on total expenditure equal to

median value, that is X2 = 883.99. Left: food expenditure, Right: housing

expenditure. Top: as predicted by classical quantile regression. Bottom: as

predicted by vector quantile regression.
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Appendix

Appendix A. Proofs for Section 2

A.1. Proof of Theorem 2.1. The first assertion of the theorem is a consequence of the

refined version of Brenier’s theorem given by McCann (1995) (as, e.g, stated in Villani

(2003), Theorem 2.32), which we apply for each z ∈ Z. In particular, this implies that for

each z ∈ Z, the map u 7→ QY |Z(u, z) is measurable.

Next we note that (QY |Z(V,Z), Z) is a proper random vector, hence a measurable map

from (Ω,A) to (Rd+k,B(Rd+k)). For any rectangle A×B ⊂ Rd+k:

P((Y,Z) ∈ A×B) =

∫
B

[∫
A
FY |Z(dy, z)

]
FZ(dz) (A.1)

=

∫
B

[∫
1{(QY |Z(u, z) ∈ A}FU (du)

]
dFZ(dz) (A.2)

= P((QY |Z(V,Z), Z) ∈ A×B), (A.3)

where penultimate equality follows from the previous paragraph. Since measure over rect-

angles uniquely pins down the probability measure on all Borel sets via Caratheodory’s

extension theorem, it follows that the law of (QY |Z(V,Z), Z) is properly defined on all

Borel sets and is equal to that of (Y,Z).

Note that since the above argument works for every (V,Z) with support on UZ, we can

select (V,Z) such that the sigma-field generated by these variables coincides with the Borel

sigma field B(UZ) on UZ generated from the open sets of the topology defined relative to

Rd+k. Hence it must be that the map (u, z) 7→ (QY |Z(u, z), z) is measurable.

To show the second assertion we invoke Dudley-Phillip’s (1983) coupling result given in

their Lemma 2.11.

Lemma A.1 (Dudley-Phillip’s coupling). Let S and T be Polish spaces and Q a law on

S × T , with marginal law µ on S. Let (Ω,A,P) be a probability space and J a random

variable on Ω with values in S and J ∼ µ. Assume there is a random variable W on Ω,

independent of J , with values in a Polish space R and law ν on R having no atoms. Then

there exists a random variable I on Ω with values in T such that (J, I) ∼ Q.

First we recall that our probability space has the form:

(Ω,A,P) = (Ω0,A0,P0)× (Ω1,A1,P1)× ((0, 1), B(0, 1),Leb),

where (0, 1), B(0, 1),Leb) is the canonical probability space, consisting of the unit segment

of the real line equipped with Borel sets and the Lebesgue measure. We use this canonical
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space to carry W , which is independent of any other random variables appearing below,

and which has the uniform distribution on R = [0, 1]. The space R = [0, 1] is Polish and

the distribution of W has no atoms.

Next we apply the lemma to J = (Y,Z) to show existence of I = U , where both J and I

live on the probability space (Ω,A,P) and that obeys the second assertion of the theorem.

The variable J takes values in the Polish space S = Rd×Rk, and the variable I takes values

in the Polish space T = Rd.

Next we describe a law Q on S×T by defining a triple (Y ∗, Z∗, U∗) that lives on a suitable

probability space. We consider a random vector Z∗ with distribution FZ , a random vector

U∗ ∼ FU , independently distributed of Z∗, and Y ∗ = QY |Z(U∗, Z∗) uniquely determined by

the pair (U∗, Z∗), which completely characterizes the law Q of (Y ∗, Z∗, U∗). In particular,

the triple obeys Z∗ ∼ FZ , U∗|Z∗ ∼ FU and Y ∗ | Z∗ = z ∼ FY |Z(·, z). Moreover, the set

{(y∗, z∗, u∗) : ‖y∗ −QY |Z(u, z∗)‖ = 0} ⊂ S × T is assigned probability mass 1 under Q.

By the lemma quoted above, given J , there exists an I = U , such that (J, I) ∼ Q, but

this implies that U |Z ∼ FU and that ‖Y −QY |Z(U,Z)‖ = 0 with probability 1 under P.

A.2. Proof of Theorem 2.2. We condition on Z = z. By reversing the roles of V and Y ,

we can apply Theorem 2.1 to claim that there exists a map y 7→ Q−1Y |Z(y, z) with the prop-

erties stated in the theorem such that Q−1Y |Z(Y, z) has distribution function FU , conditional

on Z = z. Hence for any test function ξ : Rd → R such that ξ ∈ Cb(Rd) we have∫
ξ(Q−1Y |Z(QY |Z(u, z), z))FU (du) =

∫
ξ(u)FU (du).

This implies that for FU -almost every u, we have

Q−1Y |Z(QY |Z(u, z), z) = u.

Hence P-almost surely

Q−1Y |Z(Y,Z) = Q−1Y |Z(QY |Z(U,Z), Z) = U.

Thus we can set U = Q−1Y |Z(Y, Z) P-almost surely in Theorem 2.1.

A.3. Proof of Theorem 2.3. The result follows from Villani (2005), Theorem 2.12.

Appendix B. Proofs for Section 3

B.1. Proof of Theorem 3.1. We first establish part(i). We have a.s.

Y = ∇ΦX(Ũ), with ΦX(u) = B(u)>X.
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For any V ∼ FU such that E(X|V ) = E(X), and Φ∗x(y) := supv∈U{v>y − Φx(v)}, we have

E[ΦX(V ) + Φ∗X(Y )] = EB(V )>E(X) + EΦ∗X(Y ) := M,

where M depends on V only through FU . We have by Young’s inequality

V >Y ≤ ΦX(V ) + Φ∗X(Y ).

but Y = ∇ΦX(Ũ) a.s. implies that a.s.

Ũ>Y = ΦX(Ũ) + Φ∗X(Y ),

so taking expectations gives

EV >Y ≤M = EŨ>Y, ∀V ∼ FU : E(X|V ) = E(X),

which yields the desired conclusion.

We next establish part(ii). We can argue similarly to above to show that

Y = β(U)>X = ∇ΦX(U), for ΦX(u) = B(u)>X,

and that for Φ
∗
x(y) := supv∈U{v>y − Φx(v)} we have a.s.

Ũ>Y = ΦX(Ũ) + Φ∗X(Y ).

Using the fact that Ũ ∼ U and the fact that mean-independence gives E(B(Ũ)>X) =

E(B(U)>X) = EB(Ũ)E(X), we have

E(ŨY ) = E(ψ(X,Y ) +B(Ũ)>X) = E(ψ(X,Y ) +B(U)>X) ≥ E(UY )

but reversing the role of U and U , we also have E(UY ) ≤ E(UY ) and then

E(UY ) = E(ψ(X,Y ) +B(U)>X)

so that, thanks to inequality

ψ(x, y) +B(u)>x ≥ u>y, ∀(u, x, y) ∈ UXY,

we have

ψ(X,Y ) +B(U)>X = U
>
Y, a.s. ,

which means that U solves maxu∈U{u>Y − B(u)>X} which, by strict concavity admits Ũ

as unique solution. This proves that Ũ = U and thus a.s. we have

(β(Ũ)− β(Ũ))>X = 0.
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The part (iii) is a consequence of part (i). Note that by part (ii) we have that Ũ = U a.s.

and (β(U)−β0(U))>X = 0 a.s. Since U and X are independent, we have that, for e1, ..., ep

denoting vectors of the canonical basis in Rp:

0 = E
(
e>j (β(U)− β0(U))>XX>(β(U)− β0(U))ej

)
= E

(
e>j (β(U)− β0(U))>EXX>(β(U)− β0(U))ej

)
≥ mineg(EXX>)E

(
‖(β(U)− β0(U))ej‖2

)
.

Since EXX> has full rank this implies that E‖(β(U) − β0(U))ej‖2 = 0 for each j, which

implies the rest of the claim.

B.2. Proof of Theorem 3.2. We have that any feasible pair (ψ, b) obeys the constraint

ψ(x, y) + b(u)>x ≥ u>y, ∀(y, x, u) ∈ YXU .

Let Ũ ∼ FU : E(X | U) = E(X) be the solution to the primal program. Then for any

feasible pair (ψ, b) we have:

Eψ(X,Y ) + Eb(Ũ)>EX = Eψ(X,Y ) + Eb(Ũ)>X ≥ EY >Ũ .

Moreover, the last inequality holds as equality holds if

ψ(x, y) = sup
u∈U
{u>y −B(u)>x}, b(u) = B(u), (B.1)

which is a feasible pair by (QL). In particular, as noted in the proof of the previous theorem,

we have that

ψ(X,Y ) + b(Ũ)>X = Y >Ũ

It follows that EY >Ũ is the optimal value and it is attained by the pair (B.1).

B.3. Proof of Theorem 3.3. To show part (i). We define notations. Recall that we

consider the dual problem:

inf
(ψ,b)

E(ψ(X,Y )) + Eb(V )>E(X) : ψ(x, y) + b(u)>x ≥ u>y, ∀ (y, x, u) ∈ YXU , (B.2)

where V ∼ FU , where the infimum is taken over all continuous functions.

Write X = (1, X̃>)>, where X̃ denotes the non-constant component of vector X. Let

fW denote the joint density of (X̃, Y ) with support W =W, and FU the distribution of U

with support set U . Assume without loss of generality that

E(X̃) = 0.

Let Wo denote the interior of W. We also partition

b(u) = (ϕ(u), v(u)>)>,
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with u 7→ ϕ(u) mapping U to R, corresponding to the coefficient in front of the constant.

Let us denote by (0, y) the mean of fW :∫
Wo

x̃ FW (dx̃, dy) = 0,

∫
Wo

y FW (dx̃, dy) =: y.

Observe that (0, y) ∈ Wo, since, otherwise, by convexity, FW would be supported on ∂Wo

which would contradict our assumption that fW ∈ L∞(Wo).

With this notation, we wish to prove the existence of optimal potentials for our dual

problem:

inf
ψ,ϕ,v

∫
Wo

ψ(x̃, y)FW (dx̃, dy) +

∫
U
ϕ(u)FU (du) (B.3)

subject to the pointwise constraint that

ψ(x̃, y) + ϕ(u) ≥ u>y − v(u)>x̃, (x̃, y) ∈ W, u ∈ U . (B.4)

Of course, we can take ψ that satisfies

ψ(x̃, y) := sup
u∈U
{u>y − v(u)>x̃− ϕ(u)}

so that ψ can be chosen convex and 1 Lipschitz with respect to y. In particular, we have

ψ(x̃, y)− ‖y − y‖ ≤ ψ(x̃, y) ≤ ψ(x̃, y) + ‖y − y‖. (B.5)

The problem being invariant by the transform (ψ,ϕ) → (ψ + C,ψ − C), for C being an

arbitrary constant, we can add as a normalization the condition that

ψ(0, y) = 0. (B.6)

This normalization and the constraint (B.4) imply that

ϕ(t) ≥ t>y − ψ(0, y) ≥ −‖t‖‖y‖ ≥ −C‖y‖. (B.7)

We note that there is one extra invariance of the problem: if one adds an affine term

q>x̃ to ψ this does not change the cost and neither does it affect the constraint, provided

one modifies b accordingly by subtracting to it the constant vector q. Take then q in the

subdifferential of x̃ 7→ ψ(x̃, y) at 0 and change ψ into ψ − q>x̃, we obtain a new potential

with the same properties as above and with the additional property that ψ(·, y) is minimal

at x̃ = 0, and thus ψ(x̃, y) ≥ 0, together with (B.5) this gives the lower bound

ψ(x̃, y) ≥ −‖y − y‖ ≥ −C (B.8)

where the bound comes from the boundedness ofWo. From now on, C will denote a generic

constant maybe changing from one line to another.

Now take a minimizing sequence (ψn, ϕn, vn) ∈ C(W,R) × C(U ,R) × C(U ,RN ) where

for each n, ψn has been chosen with the same properties as above. Since ϕn and ψn are
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bounded from below (ϕn ≥ −C‖y‖ and ψn ≥ C) and since the sequence is minimizing, we

deduce immediately that ψn and ϕn are bounded sequences in L1. Let z = (x̃, y) ∈ Wo and

r > 0 be such that the distance between z and the complement of Wo is at least 2r, so that

Br(z) is a ball that is at least at distance r from ∂Wo, by assumption there is an αr > 0

such that fW ≥ αr on Br(z). We then deduce from the convexity of ψn:

C ≤ ψn(z) ≤

∫
Br(z)

ψn

|Br(z)|
≤

∫
Br(z)

|ψn|
|Br(z)|

≤
‖ψn‖L1(fW )

|Br(z)|αr
,

where |Br(z)| denotes the volume of Br(z) with respect to the Lebesgue measure, so that

ψn is actually bounded in L∞loc and by convexity, we also have

‖∇ψn‖L∞(Br(z)) ≤
2

R− r
‖ψn‖L∞(BR(z))

whenever R > r and BR(z) ⊂ Wo (see for instance Lemma 5.1 in [12] for a proof of such

bounds). We can thus conclude that ψn is also locally uniformly Lipschitz. Therefore,

thanks to Ascoli’s theorem, we can assume, taking a subsequence if necessary, that ψn
converges locally uniformly to some potential ψ.

Let us now prove that vn is bounded in L1, for this take r > 0 such that B2r(0, y) is

included in Wo. For every x̃ ∈ Br(0), any t ∈ U and any n we then have

−vn(t)>x̃ ≤ ϕn(t)− t>y + ‖ψn‖L∞(Br(0,y)) ≤ C + ϕn(t)

maximizing in x̃ ∈ Br(0) immediately gives

‖vn(t)‖r ≤ C + ϕn(t).

From which we deduce that vn is bounded in L1 since ϕn is.

From Komlos theorem (see [39]), we may find a subsequence such that the Cesaro means

1

n

n∑
k=1

ϕk,
1

n

n∑
k=1

vk

converge a.e. respectively to some ϕ and b. Clearly ψ, ϕ and b satisfy the linear constraint

(B.4), and since the sequence of Cesaro means (ψ′n, φ
′
n, v
′
n) := n−1

∑n
k=1(ψk, φk, vk) is also

minimizing, we deduce from Fatous’ Lemma∫
Wo

ψ(x̃, y)FW (dx̃, dy) +

∫
U
ϕ(u)FU (du)

≤ lim inf
n

∫
Wo

ψ′n(x̃, y)FW (dx̃, dy) +

∫
U
ϕ′n(u)FU (du) = inf(B.3)

which ends the existence proof.
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To show part (ii), we note that a.e. apply the generalized envelope theorem by Milgrom

and Segal (2002). Alternatively this can demonstrated from Rademacher’s theorem.

B.4. Proof of Theorem 3.4. Obviously At = 1 ⇒ Ũ ≥ t, and Ũ > t ⇒ At = 1. Hence

P(Ũ ≥ t) ≥ P(At = 1) = P(Y > β(t)>X) = (1 − t) and P(Ũ > t) ≤ P(At = 1) = (1 − t)
which proves that Ũ is uniformly distributed and {Ũ > t} coincides with {Ũt = 1} a.s. We

thus have E(X1{Ũ > t}) = E(XAt) = EX(1− t) = EXEAt, with standard approximation

argument we deduce that E(Xf(Ũ)) = EXEf(Ũ) for every f ∈ C([0, 1],R) which means

that E(X | Ũ) = E(X).

As already observed Ũ > t implies that Y > β(t)>X in particular Y ≥ β(Ũ − δ)>X for

δ > 0, letting δ → 0+ and using the a.e. continuity of u 7→ β(u) we get Y ≥ β(Ũ)>X. The

converse inequality is obtained similarly by remaking that Ũ < t implies that Y ≤ β(t)>X.

Let us now prove that Ũ solves (3.11). Take V uniformly distributed and mean-independent

from X and set Vt := 1{V > t}, we then have E(XVt) = 0, E(Vt) = (1 − t) but since At

solves (3.7) we have E(VtY ) ≤ E(AtY ). Observing that V =
∫ 1
0 Vtdt and integrating the

previous inequality with respect to t gives E(V Y ) ≤ E(UY ) so that Ũ solves (3.11).

Next we show part(ii). Let us define for every t ∈ [0, 1] B(t) :=
∫ t
0 β(s)ds. Let us also

define for (x, y) in RN+1:

ψ(x, y) := max
t∈[0,1]

{ty −B(t)>x}

thanks to monotonicity condition, the maximization program above is strictly concave in t

for every y and each x ∈ X. We then note that

Y = β(Ũ)>X = ∇B(Ũ)>X a.s.

exactly is the first-order condition for the above maximization problem when (x, y) =

(X,Y ). In other words, we have

ψ(x, y) +B(t)>x ≥ ty, ∀(t, x, y) ∈ [0, 1]×X × R (B.9)

with an equality holding a.s. for (x, y, t) = (X,Y, Ũ), i.e.

ψ(X,Y ) +B(Ũ)>X = UY, a.s. (B.10)

Using the fact that Ũ ∼ U and the fact that mean-independence gives E(B(Ũ)>X) =

E(b(U)>X) = E(X), we have

E(UY ) = E(ψ(X,Y ) +B(Ũ)>X) = E(ψ(X,Y ) +B(U)>X) ≥ E(UY )

but reversing the role of Ũ and U , we also have E(UY ) ≤ E(UY ) and then

E(UY ) = E(ψ(X,Y ) +B(U)>X)
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so that, thanks to inequality (B.9)

ψ(X,Y ) +B(U)>X = UY, a.s.

which means that U solves maxt∈[0,1]{tY −ϕ(t)−B(t)>X} which, by strict concavity admits

Ũ as unique solution.

Part (iii) is a consequence of Part (ii) and independence of Ũ and X. Note that by part

(ii) we have that Ũ = U a.s. and that (β(U) − β0(U))>X = 0 a.s. Since U and X are

independent, we have that

0 = E
(

(β(Ũ)− β0(U))>XX>(β(U)− β0(U))
)

= E
(

(β(U)− β0(U))>EXX>(β(U)− β0(U))
)

≥ mineg(EXX>)E
(
‖(β(U)− β0(U))‖2

)
.

Since EXX> has full rank this implies that E‖(β(U) − β0(U))‖2 = 0, which implies the

rest of the claim.

B.5. Proof of Lemma 3.1. . Define ψx(y) := ψ(x, y). We then have

Y ∈ ∂ψ∗X(U), Y ∈ ∂uψ∗(−b(U), U).

We have that ψx(y) ≤ Φ∗x(y) by definition, hence

ψ∗x(u) ≤ (Φx)∗∗(u) ≤ Φx(u)

where Φ∗∗x denotes the convex envelope of Φx. The duality relations give

Ũ>Y = ψX(Y ) + ΦX(Ũ) = Φ∗X(Y ) + ΦX(Ũ)

and then

Φ∗∗X (Ũ) ≥ Ũ>Y − Φ∗X(Y ) = ΦX(Ũ).

Hence, ΦX(Ũ) = Φ∗∗X (Ũ) almost surely.

Appendix C. Additional Results for Section 2 and Section 3: Rigorous

Proof of Duality for Conditional Vector Quantiles and

Linear Vector Quantile Regression

We claimed in the main text we stated two dual problems for CVQF and VQR without

the proof. In this sections we prove that these assertions were rigorous. Here for simplicity

of notation we assume that X = Z, which entails no loss of generality under our assumption

that conditioning on Z and X is equivalent.
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We shall write X = (1, X̃>)>, where X̃ denotes the non-constant component of vector X.

Let fW denote the joint density of (X̃, Y ) with support W = W, and FU the distribution

of U with support set U . Assume without loss of generality that

E(X̃) = 0.

C.1. Duality for Conditional Vector Quantiles. Let k and d be two integers, K1 be a

compact subset of Rk and K2 and K3 be compact subsets of Rd. Let ν = FW have support

W ⊆ K1 ×K2, and we may decompose ν = m⊗ νx̃ where m denotes the first marginal of

ν. We also assume that m is centered i.e.

x :=

∫
K1

x̃m(dx̃) = 0

Finally, let µ = FU have support U ⊆ K3. We are interested here in rigorous derivation for

dual formulations for covariance maximization under an independence and then a mean-

independence constraint.

Duality for the independence constraint. First consider the case of an independence con-

straint:

sup
θ∈I(µ,ν)

∫
K1×K2×K3

u>y θ(dx̃, dy, du) (C.1)

where I(µ, ν) consists of the probability measures θ on K1×K2×K3 such that ΠX,Y #θ = ν

and ΠX,U#θ = m⊗ µ, namely that∫
K1×K2×K3

ψ(x̃, y)θ(dx̃, dy, du) =

∫
K1×K2

ψ(x̃, y)ν(dx̃, dy), ∀ψ ∈ C(K1 ×K2),

and ∫
K1×K2×K3

ϕ(x̃, u)θ(dx̃, dy, du) =

∫
K1×K3

ϕ(x̃, u)m(dx̃)µ(du), ∀ϕ ∈ C(K1 ×K3).

As already noticed, given a random (X,Y ) such that Law(X,Y ) = ν, (C.1) is related to the

problem of finding U independent of X and having law µ which is maximally correlated to

Y . It is clear that I(µ, ν) is a nonempty (take m ⊗ νx̃ ⊗ µ) convex and weakly ∗ compact

set so that (C.1) admits solutions. Let us consider now:

inf
(ψ,ϕ)∈C(K1×K2)×C(K1×K3)

∫
K1×K2

ψ(x̃, y)ν(dx̃, dy) +

∫
K1×K3

ϕ(x̃, u)m(dx̃)µ(du) (C.2)

subject to the constraint

ψ(x̃, y) + ϕ(x̃, u) ≥ u>y, ∀(x̃, y, u) ∈ K1 ×K2 ×K3. (C.3)

Then we have
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Theorem C.1. The infimum in (C.2)-(C.3) coincides with the maximum in (C.1). This

common value also coincides with the infimum of
∫
K1×K2

ψν +
∫
K1×K2

ϕm ⊗ µ taken over

L1(ν)× L1(m⊗ µ) functions that satisfy the constraint (C.3).

Proof. Let us rewrite (C.2) in standard convex programming form as :

inf
(ψ,ϕ)

F (ψ,ϕ) +G(Λ(ψ,ϕ))

where F (ψ,ϕ) :=
∫
K1×K2

ψν+
∫
K1×K3

ϕm⊗µ, Λ is the linear continuous map from C(K1×
K2)× C(K1 ×K3) to C(K1 ×K2 ×K3) defined by

Λ(ψ,ϕ)(x̃, y, u) := ψ(x̃, y) + ϕ(x̃, u), ∀(x̃, y, u) ∈ K1 ×K2 ×K3

and G is defined for η ∈ C(K1 ×K2 ×K3) by:

G(η) =

{
0 if η(x̃, y, u) ≥ u>y
+∞ otherwise.

It is easy to check that the Fenchel-Rockafellar theorem (see Ekeland and Temam [25])

applies here so that the infimum in (C.2) coincides with

sup
θ∈M(K1×K2×K3)

−F ∗(Λ∗θ)−G∗(−θ). (C.4)

Direct computations give that

−G∗(−θ) =

{ ∫
K1×K2×K3

u>y θ(dx̃, dy, du) if θ ≥ 0

−∞ otherwise.

that Λ∗θ = (ΠX,Y #θ,ΠX,U#θ) and

F ∗(Λ∗θ) =

{
0 if (ΠX,Y #θ,ΠX,U#θ) = (ν,m⊗ µ)

+∞ otherwise.

This shows that the maximization problem (C.4) is the same as (C.1). Therefore the

infimum in (C.2) coincides with the maximum in (C.1). When one relaxes (C.2) to L1

functions, we obtain a problem whose value is less than that of (C.2) (because minimization

is performed over a larger set) and larger than the supremum in (C.1) (direct integration

of the inequality constraint), the common value of (C.1) and (C.2)-(C.3) therefore also

coincides with the value of the L1 relaxation of (C.2)-(C.3).
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C.2. Duality for Linear Vector Quantile Regression. Here we use the notation where

we partition

b(u) = (ϕ(u), v(u)>)>,

with u 7→ ϕ(u) mapping U to R, corresponding to the coefficient in front of the constant.

Let Wo denote the interior of W.

Let us denote by (0, y) the mean of fW :∫
Wo

x̃ FW (dx̃, dy) = 0,

∫
Wo

y FW (dx̃, dy) =: y.

Let us now consider the mean-independent correlation maximization problem:

sup
θ∈MI(µ,ν)

∫
K1×K2×K3

u>y θ(dx̃, dy, du) (C.5)

where MI(µ, ν) consists of the probability measures θ on K1×K2×K3 such that ΠX,Y #θ =

ν, ΠU#θ = µ and according to θ, x̃ is mean independent of u i.e.

〈σθ, v〉 :=

∫
K1×K2×K3

(v(u)>x̃) θ(dx̃, dy, du) = 0, ∀β ∈ C(K3,Rd). (C.6)

Again the constraints are linear so that MI(µ, ν) is a nonempty convex and weak ∗ compact

set so that the infimum in (C.1) is attained. In probabilistic terms, given (X̃, Y ) distributed

according to ν, the problem above consists in finding U with law µ, mean-independent of

X̃ (i.e. such that E(X̃|U) = E(X̃) = 0) and maximally correlated to Y .

We claim that (C.5) is dual to

inf
(ψ,ϕ,b)∈C(K1×K2)×C(K3)×C(K3,Rd)

∫
K1×K2

ψ(x̃, y)ν(dx̃, dy) +

∫
K3

ϕ(u)µ(du) (C.7)

subject to

ψ(x̃, y) + ϕ(u) + v(u)>x̃ ≥ u>y, ∀(x̃, y, u) ∈ K1 ×K2 ×K3. (C.8)

Then we have the following duality result

Theorem C.2. The infimum in (C.7)-(C.8) coincides with the maximum in (C.5). This

common value also coincides with the infimum of
∫
K1×K2

ψν +
∫
K3
ϕm ⊗ ν taken over

L1(ν)× L1(µ)× L1(µ,Rd) functions that satisfy the constraint (C.8).

Proof. Write (C.7)-(C.8) as

inf
(ψ,ϕ,b)

F (ψ,ϕ, b) +G(Λ(ψ,ϕ, b))
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where F (ψ,ϕ, b) :=
∫
K1×K2

ψν+
∫
K3
ϕµ, Λ is the linear continuous map from C(K1×K2)×

C(K3)× C(K3,Rd) to C(K1 ×K2 ×K3) defined by

Λ(ψ,ϕ, b)(x̃, y, u) := ψ(x̃, y) + ϕ(u) + v(u)>x̃, ∀(x̃, y, u) ∈ K1 ×K2 ×K3

and G is as in the proof of theorem C.1. For θ ∈M(K1×K2×K3), one directly checks that

Λ∗θ = (Π
X̃,Y #

θ,ΠU#θ, σθ) (where the vector-valued measure σθ is defined as in (C.6)). We

then get

F ∗(Λ∗θ) =

{
0 if (Π

X̃,Y #
θ,ΠU#θ, σθ) = (ν, µ, 0)

+∞ otherwise.

We then argue exactly as in the proof of theorem C.1 to conclude.
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