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Abstract

This paper considers identification of treatment effects on conditional transition prob-
abilities. We show that even under random assignment only the instantaneous average
treatment effect is point identified. Because treated and control units drop out at differ-
ent rates, randomization only ensures the comparability of treatment and controls at the
time of randomization, so that long run average treatment effects are not point identified.
Instead we derive informative bounds on these average treatment effects. Our bounds do
not impose (semi)parametric restrictions, as e.g. proportional hazards. We also explore
various assumptions such as monotone treatment response, common shocks and positively
correlated outcomes.
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1 Introduction

We consider the effect of an intervention if the outcome is a transition from an initial to a
destination state. The population of interest is a cohort of units that are in the initial state
at the time origin. Treatment is assigned to a subset of the population either at the time
origin or at some later time. Initially we assume that the treatment assignment is random.
One main point of this paper is that even if the treatment assignment is random, only certain
average effects of the treatment are point identified. This is because the random assignment
of treatment only ensures comparability of the treatment and control groups at the time of
randomization. At later points in time treated units with characteristics that interact with
the treatment to increase/decrease the transition probability relative to similar control units
leave the initial state sooner/later than comparable control units, so that these characteristics
are under/over represented among the remaining treated relative to the remaining controls
and this confounds the effect of the treatment.

The confounding of the treatment effect by selective dropout is usually referred to as
dynamic selection. Existing strategies that deal with dynamic selection rely heavily on para-
metric and semi-parametric models. An example is the approach of Abbring and Van den
Berg (2003) who use the Mixed Proportional Hazard (MPH) model (their analysis is gener-
alized to a multistate model in Abbring, 2008). In this model the instantaneous transition
or hazard rate is written as the product of a time effect, the effect of the intervention and
an unobservable individual effect. As shown by Elbers and Ridder (1982) the MPH model
is nonparametrically identified, so that if the multiplicative structure is maintained, iden-
tification does not rely on arbitrary functional form or distributional assumptions beyond
the assumed multiplicative specification. A second example is the approach of Heckman and
Navarro (2007) who start from a threshold crossing model for transition probabilities. Again
they establish semi-parametric identification, although their model requires the presence of
additional covariates besides the treatment indicator that are independent of unobservable
errors and have large support.

In this paper we ask what can be identified if the identifying assumptions of the semi-
parametric models do not hold. We show that, because of dynamic selection, even under
(sequential) random assignment we cannot point identify most average treatment effects of
interest. However, we derive sharp bounds on various non-point-identified treatment effects,
and show under what conditions they are informative. Our bounds are general, since beyond
random assignment, we make no assumptions on functional form and additional covariates,
and we allow for arbitrary heterogenous treatment effects as well as arbitrary unobserved
heterogeneity. The bounds can also be applied if the treatment assignment is unconfounded
by creating bounds conditional on the covariates (or the propensity score) that are averaged
over the distribution of these covariates (or propensity score).

Besides these general bounds we derive bounds under additional (weak) assumptions
like monotone treatment response and positively correlated outcomes. We relate these as-
sumptions to the assumptions made in the MPH model and to assumptions often made in
discrete duration models and structural models. The additional assumptions often tighten
the bounds considerably. We also discuss how to apply our various identification results to
construct asymptotically valid confidence intervals for the respective treatment effects.

There are many applications in which we are interested in the effect of an intervention on
transition probabilities/rates. The Cox (1972) partial likelihood estimator is routinely used
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to estimate the effect of an intervention on the survival rate of subjects. Transition models are
used in several fields. Van den Berg (2001) surveys the models used and their applications.
These models also have been used to study the effect of interventions on transitions. Examples
are Ridder (1986), Card and Sullivan (1988), Bonnal et al. (2007) , Gritz (1993), Ham and
LaLonde (1996), Abbring and Van den Berg (2003), and Heckman and Navarro (2007). A
survey of models for dynamic treatment effects can be found in Abbring and Heckman (2007).

An alternative to the effect of a treatment on the transition rate is its effect on the cdf of
the time to transition or its inverse, the quantile function. This avoids the problem of dynamic
selection. From the effect on the cdf we can recover the effect on the average duration, but we
cannot obtain the effect on the conditional transition probabilities, so that the effect on the
cdf is not informative on the evolution of the treatment effect over time. This is a limitation
since there are good reasons why we should be interested in the effect of an intervention on
the conditional transition probability or the transition/hazard rate. One important reason is
the close link between the hazard rate and economic theory (Van den Berg (2001)). Economic
theory often predicts how the hazard rate changes over time. For example, in the application
to a job bonus experiment considered in this paper labor supply and search models predict
that being eligible for a bonus if a job is found, increases the hazard rate from unemployment
to employment. According to these models there is a positive effect only during the eligibility
period, and the effect increases shortly before the end of the eligibility period. The timing
of this increase depends on the arrival rate of job offers and is an indication of the control
that the unemployed has over his/her reemployment time. Any such control has important
policy implications. This can only be analyzed by considering how the effect on the hazard
rate changes over time.

The evolution of the treatment effect over time is of key interest in different fields. For
instance, consider two medical treatments that have the same effect on the average survival
time. However, for one treatment the effect does not change over time while for the other
the survival rate is initially low, e.g. due to side effects of the treatment, while after that
initial period the survival rate is much higher. As another example research on the effects of
active labor market policies (ALMP), often documents a large negative lock-in effect and a
later positive effect once the program has been completed, see e.g. the survey by Kluve et
al. (2007).

We apply our bounds and confidence intervals to data from a job bonus experiment
previously analyzed by e.g. Meyer (1996). As discussed above economic theory has specific
predictions for the dynamic effect of a re-employment bonus with a finite eligibility period.
Meyer (1996) estimates these dynamic effects using an MPH model. We study what can be
identified if we rely solely on random assignment and some additional (weak) assumptions.
We confirm the effects predicted by theory so that these are not an artefact of the MPH
assumption.

In section 2 we define the treatment effects that are relevant if the outcome is a transition.
Section 3 discusses their point or set identification in the case that the treatment is randomly
assigned. This requires us to be precise on what we mean by random assignment in this
setting. In section 4 we explore additional assumptions that tighten the bounds. In section
5 we derive the confidence intervals. Section 6 illustrates the bounds for the job bonus
experiment. Section 7 concludes.
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2 Treatment effects if the outcome is a transition

2.1 Parametric outcome models

To set the stage for the definition of a treatment effect on a transition, we consider the
effect of an intervention in the Mixed Proportional Hazards (MPH) model. The MPH model
specifies the individual hazard or transition rate θ(t, d(t), V )

θ(t, d(t), V ) = λ(t)γ(t− τ, τ)d(t)V

with t the time spent in the origin state, λ(t), the baseline hazard, d(t), the treatment indi-
cator function at time t, and V , a scalar nonnegative unobservable that captures population
heterogeneity in the hazard/transition rate and has a population distribution with mean 1.
If treatment starts at time τ then d(t) = I(t > τ), i.e. we assume that treatment is an
absorbing state. The nonnegative function γ(t− τ, τ) captures the effect of the intervention,
an effect that depends on the time until the treatment starts τ and the time treated t − τ .
Finally, although γ is common to all units, the effect of the intervention differs between the
units, because it is proportional to the individual V . The ratio of the treated and non-treated
transition rates for a unit with unobservable V is γ(t − τ, τ) for t > τ , so that in the MPH
model γ(t − τ, τ) is the proportional effect of the intervention on the individual transition
rate.

Let d(t) = {d(s), 0 ≤ s ≤ t} be the treatment status up to time t. The MPH model

implies that the population distribution of the time to transition T d(T ) where the superscript
is the relevant treatment history1, has density

f(t|d(t)) = EV
[
V λ(t)γ(t− τ, τ)d(t)e−

∫ t
0 λ(s)γ(s−τ,τ)

d(s)V ds
]
,

and distribution function

F (t|d(t)) = 1− EV
[
e−

∫ t
0 λ(s)γ(s−τ,τ)

d(s)V ds
]
.

The hazard/transition rate given the treatment history is

θ(t|d(t)) = λ(t)γ(t− τ, τ)d(t)EV
[
V |T d(T ) ≥ t

]
.

To define treatment effects in the MPH model we compare groups with different treatment
histories d(t). Let d0(t) and d1(t) be two such histories. We can compare either the average
time-to-transition distribution functions in t, i.e. F (t|d0(t)) and F (t|d1(t)), or the average
transition rates in t, i.e. θ(t|d0(t)) and θ(t|d1(t)). The comparison of the average transition
rates is conditional on survival in the initial state up to time t and the comparison of the
average distribution functions is not conditional on survival. As a consequence if we compare
distribution functions we average over the population distribution of V , but if we compare
transition rates we average over the distribution of V for the subpopulation of survivors up
to time t.

1In this case the treatment history is fully characterized by τ , but we use the more general notation to
accommodate other dynamic treatments.
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Let us take d0(t) = 0, i.e. the unit is in the control group during [0, t], and d1(t) such
that treatment starts at time τ . Then F (t|d1(t)) > F (t|d0(t)) if and only if

1∫ t
τ λ(s)ds

∫ t

τ
λ(s)γ(s− τ, τ)ds > 1, (1)

i.e. if a λ weighted average of the effect on the individual transition rate is greater than
1. This time average hides the change in the treatment effect over the spell. Note that the
comparison of the distribution functions is not confounded by differences in the distribution
of the unobservable V between the treatment and control groups. However, if we compare
the transition rates in t > τ

θ(t|d0(t)) = λ(t)EV
[
V |T d0(T ) ≥ t

]
,

and
θ(t|d1(t)) = λ(t)γ(t− τ, τ)EV

[
V |T d1(T ) ≥ t

]
,

then because
EV
[
V |T d0(T ) ≥ t

]
> EV

[
V |T d1(T ) ≥ t

]
,

if and only if (1) holds, we have that under that condition

θ(t|d1(t))
θ(t|d0(t))

< γ(t− τ, τ).

Therefore if the intervention increases the transition rate on average (as in (1)), then the
ratio of the average treated and control transition rates is strictly smaller than that of the
individual treated and control transition rates. If the intervention decreases the transition
rate on average, then the ratio of the average treated and control transition rates is strictly
larger than that of the individual rates. Hence, the effect of the intervention on the transition
rate is confounded by its differential effect on the distribution of the unobservable among the
treated and controls. The intuition behind this result is that the difference between the
treated and control transition rates is proportional to V and this difference determines the
survival probability. Therefore if (1) holds, for all values of V the survival probability is
smaller for the treated than for the controls and the difference is largest for large values of
V . Therefore the average V among the survivors will be smaller for the treated than for the
controls and this makes that the comparison of the average transition rates of the treated
and controls is confounded by the dynamic selection. This dynamic selection or survivor bias
is not just a feature of the MPH model. It is present in any population where the treatment
and the individual characteristics interact to increase or decrease the transition probability.

Parametric and semi-parametric models for the transition can be used to correct for the
survivor bias in the average treatment effect. In a fully specified MPH model we specify

a distribution for V , so that we can estimate EV
[
V |T d0(T ) ≥ t

]
and EV

[
V |T d1(T ) ≥ t

]
to obtain the correction factor. The MPH model is nonparametrically identified so that
the parametric assumptions can be relaxed. However, that requires that we maintain the
multiplicative specification with a proportional unobservable. As argued by e.g. Van den Berg
(2001) economic models for the hazard rate usually are not multiplicative. In general, such
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models have multiple unobservables that enter in a nonseparable way. Other (semi)parametric
models for dynamic selection as that of Heckman and Navarro (2007) also require strong
maintained assumptions, i.e. the inclusion of additional covariates that are assumed to be
independent of the unobservables (and this assumption cannot be justified by a reference to
randomization) and that have large support. Given the strong assumptions that are needed
to correct for dynamic selection using parametric or semi-parametric models, it is important
to know whether the causal effect of a treatment can be identified without these maintained
assumptions.

2.2 Average treatment effect on transitions

We discuss the definition and identification of treatment effects on transition rates in discrete
time. The definition of causal effects in continuous time adds technical problems (see e.g.
Gill and Robins (2001)) that would distract from the conceptual issues. From now on we
assume that transitions occur at times t = 1, 2, . . ..

We denote the treatment indicator in period t by dt and the treatment history up to and

including period t by dt. Let the potential outcome Y dt
t be an indicator of a transition in

period t if the treatment history up to and including t is dt. If treatment is an absorbing
state, dt is a sequence of 0-s until treatment starts in period τ and the remaining values are
1. It is possible that τ = ∞, the unit is never treated, or τ = 1, the unit is always in the
treated state.

In any definition of the causal effect of a treatment on the transition probability/rate
we must account for dynamic selection. If we do not specify a model for the transition
probability/rate we need to find another way to maintain the comparability of the treatment
and control groups over the spell. The approach that we take in this paper is to consider
average transition probabilities/rates where the average is taken in the same population for
both treated and controls (or in general for different treatment arms). The (semi)parametric
models implicitly do this as well. For instance, in the MPH model the average treatment
effect is γ(t− τ, τ) = γ(t− τ, τ)E(V ). This is the average treatment effect if the composition
of the population would not change over time due to drop out. Because the population
composition does not change, in this hypothetical population the initial balance between the
treated and controls is maintained as well.

As emphasized we are interested in conditional treatment effects, i.e. treatment effects
defined for the survivors in t. Let d1t and d0t be two specific treatment histories. If we do
not maintain comparability of the treatment and control groups by hypothetically shutting
down any dynamic selection, i.e. by averaging over the population at time 0, we have to
define a subpopulation of the treated and controls that has the same composition. To define
the average treatment effect on the transition probability/rate at t we, initially, propose to
average over the subpopulation of individuals who would have survived until time t under d1t.
This is the analogue of the average effect on the treated considered in the static treatment
effect literature. This leads to the following definition

Definition 1 The causal effect of d1t relative to d0t on the transition probability in t is the
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Average Treatment Effect on Treated Survivors (ATETS) defined by

ATETSd1t,d0tt (2)

= E
(
Y d1t
t |Y

d1,t−1

t−1 = 0, . . . , Y d11
1 = 0

)
− E

(
Y d0t
t |Y

d1,t−1

t−1 = 0, . . . , Y d11
1 = 0

)
.

Obvious choices for d1t and d0t are d1t = (0, . . . , 0, 1, . . . , 1) with the first 1 at position
τ , and d0t = (0, . . . , 0). If we make the usual assumption that there is no effect of the

treatment before it starts2, then for these two treatments ATETSd1t,d0tt = 0, t = 1, . . . , τ − 1.
The differential selection only starts after the treatment begins, so that this property of the
ATETSt is consistent with that fact. After the treatment starts there is dynamic selection

and the ATETSd1t,d0tt controls for that by comparing the transition rates for individuals with
a common survival experience.

Note that we are only concerned with the comparability of the treatment and control
groups over the spell, i.e. with the different levels of dynamic selection in the two groups. If
we keep the treatment and control groups comparable over time, there is still the question
how to interpret the time path of the average treatment effect over the spell. In this paper
we do not try to decompose this path into the average treatment effect for a population of
unchanging composition and a selection effect relative to this population. We do not define
the treatment effect for this population, but rather for a population that changes over time
due to dynamic selection, but the dynamic selection is made equal in the treatment and
control group, so that the treatment effect is not confounded by dynamic selection. Again
this is analogous to the difference between the Average Treatment Effect and the Average
Treatment Effect on the Treated in the case of a static treatment effect where the latter is
defined for the population selected for treatment and the treatment effect is for this selective
population.

We also consider the average effect when averaging over the subpopulation of individuals
who would have survived until t under both d0t and d1t

Definition 2 The causal effect of d1t relative to d0t on the transition probability in t is the
Average Treatment Effect on Survivors (ATES) defined by

ATESd1t,d0tt = E
(
Y d1t
t |Y

d1,t−1

t−1 = 0, . . . , Y d11
1 = 0, Y

d0,t−1

t−1 = 0, . . . , Y d01
1 = 0

)
(3)

− E
(
Y d0t
t |Y

d1,t−1

t−1 = 0, . . . , Y d11
1 = 0, Y

d0,t−1

t−1 = 0, . . . , Y d01
1 = 0

)
.

This average effect is discussed in subsection 3.2.3. Below we derive partial identification
results for both ATETS and ATES.

3 Identification of average treatment effects on transitions un-
der random assignment

We now consider identification of the ATETSd1t,d0tt under random treatment assignment. We
first need to define what we mean by random assignment in this case. Let Dt be the indicator

2Abbring and Van den Berg (2003) call this the no-anticipation assumption.
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that treatment is assigned in period t, i.e. the unit is not treated in periods 1, . . . , t−1, selected
for treatment in period t and, because treatment is assumed to be an absorbing state, remains
in the treated state in the subsequent periods. We assume that the treatment is assigned at
the beginning of the period, so that the treated responses are observed in periods t, t+ 1, . . ..
The control treatment d0t is no treatment up to and including t. We distinguish between
three types of randomized assignment

(i) Random assignment of the time of treatment For all t and ds, s = 1, 2, . . .,

Dt⊥
{
Y ds
s , s = 1, 2, . . .

}
.

(ii) Sequential randomization For all t and ds, s ≥ t, with the first t − 1 components
equal to 0,

Dt⊥
{
Y ds
s , s = t, t+ 1, . . .

} ∣∣∣Dt−1 = 0.

(iii) Sequential randomization among survivors For all t and ds, s ≥ t, with the first
t− 1 components equal to 0,

Dt⊥
{
Y ds
s , s = t, t+ 1, . . .

} ∣∣∣Dt−1 = 0, Y 0
t−1 = · · · = Y 0

1 = 0.

Under (i), the period in which the unit enters the treated state is randomly assigned. This
can be implemented at time 0 and a consequence is that some units may have left the initial
state by the time their treatment starts. Under (ii) treatment is assigned randomly in period
t to units that have not been treated before. Again this will select units for treatment that
have left the initial state. Under (iii) the randomization is among the non-treated survivors.

Note for t = 1 this assumption implies that D1 ⊥ Y ds
s , s ≥ 1. Random assignment of the

time of treatment implies sequential randomization, which implies sequential randomization
among survivors. In this paper, we focus on identification of average treatment effects under
sequential randomization.

Assumption 1 Treatment assignment is by sequential randomization among survivors.

Initially we consider the two period case where the transition occurs in period 1, period
2 or after period 2. The main results of this paper can be illustrated in this setting. We
discuss the extension to an arbitrary number of periods in section 3.2.2. For every member
of the population we have a vector of potential outcomes Y 1

1 , Y
0
1 , Y

11
2 , Y 01

2 , Y 00
2 , and a vector

of treatment indicators D1, D2. Let Yt be the observed indicator of a transition in period
t. These observed outcomes Y1, Y2 are related to the potential outcomes by the observation
rules

Y1 = D1Y
1
1 + (1−D1)Y

0
1 , (4)

and
Y2 = D1Y

11
2 + (1−D1)D2Y

01
2 + (1−D1)(1−D2)Y

00
2 . (5)

Because treatment is an absorbing state we have

D1 = 1 ⇒ D2 = 1.
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Assumption 1 is in this case
D1⊥Y 1

1 , Y
0
1 , Y

11
2 , Y 01

2 , Y 00
2 , (6)

and
D2⊥Y 01

2 , Y 00
2

∣∣D1 = 0, Y 0
1 = 0. (7)

Hence, under this assumption we can relate the observed and potential transition probabili-
ties.

Lemma 1 If Assumption 1 holds, then

E(Y1|D1 = 1) = E(Y 1
1 ), (8)

E(Y1|D1 = 0) = E(Y 0
1 ), (9)

E(Y2|Y1 = 0, D1 = 1) = E(Y 11
2 |Y 1

1 = 0), (10)

E(Y2|Y1 = 0, D1 = 0, D2 = 0) = E(Y 00
2 |Y 0

1 = 0), (11)

E(Y2|Y1 = 0, D1 = 0, D2 = 1) = E(Y 01
2 |Y 0

1 = 0). (12)

Proof See Appendix.

3.1 Identification of instantaneous treatment effects

The interpretation of the ATETSd1t,d0tt depends on the treatments d0t, d1t. We distinguish
between instantaneous or short-run effects and dynamic or long-run effects. Throughout d0t
means no treatment up to and including t. The instantaneous effect is the ATE in the first
period of treatment. With two periods in which the treatment can start the two instantaneous
treatment effects are

ATETS1,0
1 = E(Y 1

1 )− E(Y 0
1 ),

and
ATETS01,00

2 = E(Y 01
2 |Y 0

1 = 0)− E(Y 00
2 |Y 0

1 = 0).

Under Assumption 1 it follows from equations (8) and (9) that we can point identify the first
period instantaneous treatment effect

ATETS1,0
1 = ATE1,0

1 = E(Y 1
1 )− E(Y 0

1 ) = E(Y1|D1 = 1)− E(Y1|D1 = 0),

and from equations (11) and (12) that we can point identify the second period instantaneous
treatment effect

ATETS01,00
2 = E(Y 01

2 |Y 0
1 = 0)− E(Y 00

2 |Y 0
1 = 0)

= E(Y2|Y1 = 0, D1 = 0, D2 = 1)− E(Y2|Y1 = 0, D1 = 0, D2 = 0).

9



3.2 Bounds on dynamic treatment effects on transitions

3.2.1 Two periods

With two periods the dynamic treatment effect is the effect in period 2 of a treatment started
in period 1 relative to no treatment in both periods. The relevant ATETS is therefore

ATETS11,00
2 = E(Y 11

2 |Y 1
1 = 0)− E(Y 00

2 |Y 1
1 = 0),

that is the average treatment effect in the second period from treatment started in the first
period for those who survive under treatment in the first period.

Because all that can be deduced from the data is in equations (8)-(12), which hold under
Assumption 1, ATETS11,00

2 is, in general, not point identified. However, the observed transi-
tion probabilities place restrictions on the potential ones. We use these restrictions to derive
sharp bounds on ATETS11,00

2 . The bounds are sharp in the sense that there exist feasible
joint distributions of the potential outcomes which are consistent with the upper bound and
the lower bound.

The first step is to characterize the joint distribution of the potential outcomes. Note
that because treatment is an absorbing state, Y 10

2 is not defined. This means that the joint
distribution of Y 0

1 , Y
1
1 , Y

00
2 , Y 01

2 , Y 11
2 can be fully characterized by the probabilities

p(y11, y
0
1) ≡ Pr(Y 1

1 = y11, Y
0
1 = y01), y11, y

0
1 = 0, 1,

p(y112 , y
01
2 , y

00
2 |y11, y01) ≡ Pr(Y 11

2 = y112 , Y
01
2 = y012 , Y

00
2 = y002 |Y 1

1 = 0, Y 0
1 = 0),

y11, y
0
1, y

11
2 , y

01
2 , y

00
2 = 0, 1.

The ATETS11,00
2 can be expressed as a function of these probabilities.

By Assumption 1 the observed first period transition probabilities impose the restrictions

Pr(Y1 = y1|D1 = 1) =
1∑

y01=0

p(y1, y
0
1), (13)

and

Pr(Y1 = y1|D1 = 0) =
1∑

y11=0

p(y11, y1). (14)

By Assumption 1 the observed second period transition probabilities impose the restrictions

Pr(Y2 = y2|D1 = 1, Y1 = 0) (15)

=

∑1
y012 =0

∑1
y002 =0 p(y2, y

01
2 , y

00
2 |0, 0)p(0, 0) +

∑1
y012 =0

∑1
y002 =0 p(y2, y

01
2 , y

00
2 |0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)

,

and

Pr(Y2 = y2|D1 = 0, D2 = 0, Y1 = 0) (16)

=

∑1
y112 =0

∑1
y012 =0 p(y

11
2 , y

01
2 , y2|0, 0)p(0, 0) +

∑1
y112 =0

∑1
y012 =0 p(y

11
2 , y

01
2 , y2|1, 0)p(1, 0)∑1

y11=0 p(y
1
1, 0)

,
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and

Pr(Y2 = y2|D1 = 0, D2 = 1, Y1 = 0) (17)

=

∑1
y112 =0

∑1
y002 =0 p(y

11
2 , y2, y

00
2 |0, 0)p(0, 0) +

∑1
y112 =0

∑1
y002 =0 p(y

11
2 , y2, y

00
2 |1, 0)p(1, 0)∑1

y11=0 p(y
1
1, 0)

.

Theorem 1 provides closed form expressions for the sharp bounds on ATETS11,00
2 . These

bounds require no assumptions beyond sequential random assignment among survivors. They
allow for arbitrary heterogeneity in treatment response. We explicitly show that the bounds
are sharp. The bounds exist if Pr(Y1 = 0|D1 = 1) > 0, because if this probability is 0 the
subpopulation for which ATETS11,00

2 is defined has no members.

Theorem 1 (Bounds on ATETS) Suppose that Assumption 1 holds. If Pr(Y1 = 0|D1 =
1) = 0, then ATETS11,00

2 is not defined. If Pr(Y1 = 0|D1 = 1) > 0, then we have the following
sharp bounds

Pr(Y2 = 1|D1 = 1, Y1 = 0) (18)

−min

{
1,

1− (1− Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)) Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1)

}
≤ ATETS11,00

2 ≤
Pr(Y2 = 1|D1 = 1, Y1 = 0)

−max

{
0,

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)− 1

Pr(Y1 = 0|D1 = 1)
+ 1

}
.

Proof See Appendix.

As a special case

Corollary 1 If Pr(Y1 = 0|D1 = 1) > 0 and Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)−1 ≤ 0,
then

Pr(Y2 = 1|D1 = 1, Y1 = 0)− 1 ≤ ATETS11,00
2 ≤ Pr(Y2 = 1|D1 = 1, Y1 = 0). (19)

Inspection of the bounds and the proof in the appendix shows that E(Y 11
2 |Y 1

1 = 0) is
point identified. It also shows that the upper and lower bound on E(Y 00

2 |Y 1
1 = 0) are equal

if all treated and all controls survive the first period. Also, corollary 2 shows that if there
is no dynamic selection, i.e. if Pr(Y1 = 0|D1 = 0) = 1 and Pr(Y1 = 0|D1 = 1) = 1, the
dynamic treatment effect ATETS11,00

2 is point identified. If everyone survives the first period
we have under random treatment assignment two directly comparable groups even in the
second period.

Corollary 2 (Point identification) ATETS11,00
2 is point identified if and only if both Pr(Y1 =

0|D1 = 0) = 1 and Pr(Y1 = 0|D1 = 1) = 1.

The information in the bound depends on its width. The best case is that none of the 0
or 1 restrictions is binding and in that case the width of the bounds is

2− Pr(Y1 = 0|D1 = 1)− Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1)
.
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3.2.2 Arbitrary number of periods

In the case of an arbitrary number of periods we only need to consider the effect in period t of
a treatment that starts in period 1 relative to a treatment that starts in a later period before
period t or after period t. We only consider the latter case here, but the bounds for the case
that treatment starts between periods 1 and t can be derived in the same way. The relevant
Average Treatment Effect on Survivors is ATETS1,0

t where 1 and 0 stand for t vectors of 1
and 0, i.e. treatment in all periods and control in all periods, and is defined by

ATETS1,0
t = E

[
Y 1
t

∣∣∣Y 1
t−1 = 0

]
− E

[
Y 0
t

∣∣∣Y 1
t−1 = 0

]
,

with the notation Y t = (Yt, . . . , Y1)
′ that also applies to other variables, the event of survival

treatment up to and including t. Again, note that the superscripts 1 and 0 stand for vectors
of 1 and 0 of appropriate length. The bounds are given in the next theorem.

Theorem 2 (Bounds on ATETS) Suppose that Assumption 1 holds. If Pr
(
Y t−1 = 0|Dt−1 = 1

)
=

0 then ATETS1,0
t is not defined. If Pr

(
Y t−1 = 0|Dt−1 = 1

)
> 0 then

Pr(Yt = 1|Y t−1 = 0, Dt = 1) (20)

−min

{
1,

1− [1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)] Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

}
≤ ATETS1,0

t ≤
Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−max

{
0,

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
− 1

Pr(Y t−1 = 0|Dt−1 = 1)
+ 1

}
.

Proof See Appendix.

As a special case

Corollary 3 If Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ Pr

(
Y t−1 = 0|Dt−1 = 0

)
− 1 ≤ 0, then

Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1 ≤ ATETS11,00
2 ≤ Pr(Yt = 1|Y t−1 = 0, Dt = 1). (21)

Note the similar structure of the bounds in the two period case and the arbitrary t case.

3.2.3 Average treatment effect on survivors

We now present bounds on the average effect on survivors. As in the previous subsection
we only consider the effect in period t of a treatment that started in period 1 relative to
a treatment that starts after period t (if ever). Therefore the relevant Average Treatment
Effect on Survivors ATES1,0

t is

ATES1,0
t = E

[
Y 1
t

∣∣St−1]− E
[
Y 0
t

∣∣St−1] ,
with St = {Y 1

t = 0, . . . , Y 1
1 = 0, Y 0

t = 0, . . . , Y 0
1 = 0}, the event of survival up to and

including t. The bounds are given in Theorem 3.
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Theorem 3 (Bounds on ATES) Suppose that Assumption 1 holds. If
∏t−1
s=1 Pr(Ys = 0|Y s−1 =

0, Ds = 1) +
∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1 ≤ 0, then ATES1,0

t is not defined. If∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1 > 0, then we

have the following sharp bounds

(22)

max

{
0,

(Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1) Pr
(
Y t−1 = 0|Dt−1 = 1

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

+ 1

}

−min

{
1,

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

}
≤ ATES1,0

t ≤

min

{
1,

Pr(Yt = 1|Y t−1 = 0, Dt = 1) Pr
(
Y t−1 = 0|Dt−1 = 1

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

}

−max

{
0,

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

+ 1

}
.

Proof see Appendix.
One difference compared to ATETS1,0

t is that, in general, neither the outcome under
treatment (E

[
Y 1
t |St−1

]
) nor the outcome under no-treatment (E

[
Y 0
t |St−1

]
) is point identi-

fied. One similarity is that both ATES1,0
t and ATETS1,0

t are point identified if
∏t−1
s=1 Pr(Ys =

0|Y s−1 = 0, Ds = 1) = 1 and
∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0) = 1.

4 Bounds on treatment effects on transitions under additional
assumptions

4.1 Monotone Treatment Response, Common Shocks, and Positively Cor-
related Outcomes

The sharp bounds in the previous section did not impose any assumptions beyond random
assignment. In this section, we explore the identifying power of additional assumptions. The
assumptions that we make are implicit in parametric models as the MPH model, and also
in the discrete duration models and structural models presented in this section. A general
discrete duration model for the control and treated outcomes is

Y 0
it = I(αt + Vi − εit ≥ 0),

Y 1
it = I(αt + γit + Vi − εit ≥ 0). (23)

This discrete duration model has a composite error that is the sum of unobserved hetero-
geneity Vi and a random shock εit. The model restricts the joint distribution of the potential
outcomes. A less restrictive model has different random shocks ε0it, ε1it that are independent,
but even in this case the potential outcomes are positively correlated through their depen-
dence on Vi. In the sequel we consider assumptions on the joint distribution of potential
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outcomes in different treatment arms, that are in line with the assumptions implicit in this
model, but do not assume that the potential outcomes are exactly as in this model. These
assumptions will be used in combination with a weaker version of the constant treatment
effect assumption. In the above model the treatment has a positive effect on the survival
time if γit ≤ 0 for all i, t. This is essentially the Monotone Treatment Response (MTR)
assumption introduced by Manski (1997) and Manski and Pepper (2000). Since the assump-
tions introduced in this section do not rely on a particular discrete duration model they are
consistent with nonproportional structural hazard models suggested by Van den Berg (2001).

The Monotone Treatment Response (MTR) is a weaker assumption than homogeneous
treatment effect. As before we denote the event of survival under both d0(t) and d1(t) by St.

Assumption 2 (Monotone Treatment Response (MTR)) For treatment paths d0t, d1t
we have that for all i either

Pr
(
Y d1t
it = 1

∣∣∣Si,t−1) ≥ Pr
(
Y d0t
it = 1

∣∣∣Si,t−1) ,
for all t, or

Pr
(
Y d1t
it = 1

∣∣∣Si,t−1) ≤ Pr
(
Y d0t
it = 1

∣∣∣Si,t−1) ,
for all t.

For t = 1 Assumption 2 implies that for all i

Pr(Y 1
i1 = 1) ≥ Pr(Y 0

i1 = 1),

or
Pr(Y 1

i1 = 1) ≤ Pr(Y 0
i1 = 1).

Note that it is assumed that the effect is either positive or negative for all t. This assumption
can be relaxed at the expense of more complicated bounds.

Assumption 2 refers to the individual transition probability and not to the transition
indicators. These individual transition probabilities are defined with respect to the distribu-
tion of individual idiosyncratic shocks, e.g. ε in the MPH model. The population transition
probabilities that appear in the definition of the ATETS and in Theorem 1 are individual
transition probabilities averaged over the distribution of the individual heterogeneity among
the survivors in both treatment arms.

The next assumption restricts the joint distribution of potential outcomes in the treatment
arms. The assumption essentially imposes that the outcomes in all treatment arms involve
the same random shocks. Consider the discrete duration model in (23). If γit ≤ 0 then
the treated have a larger survival probability in t. Therefore the event that i survives in t
if not treated, i.e. Y 0

it = 0, is equivalent to εit ≥ αt + Vi, so that this event implies that
εit ≥ αt + γit + Vi ≥ 0, i.e. Y 1

it = 0. Note that we assume that the random shock εit is
invariant under a change in treatment status. This is stronger than the assumption that
the distribution of the random shocks is the same whether i is treated or not. The latter
assumption can have random shocks εit, ε̃it in the model above, if we assume that they have
the same distribution. In a structural model the random shocks are often invariant, as is
illustrated in a simple job search model below.
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Assumption 3 (Common Shocks (CS)) For all i, t and treatment paths d0(t) and d1(t)

Pr(Y d1t
it = 0|Si,t−1) ≥ Pr(Y d0t

it = 0|Si,t−1) ⇒ Pr(Y d1t
it = 0|Si,t−1, Y d0t

it = 0) = 1, (24)

and

Pr(Y d1t
it = 0|Si,t−1) ≤ Pr(Y d0t

it = 0|Si,t−1) ⇒ Pr(Y d0t
it = 0|Si,t−1, Y d1t

it = 0) = 1. (25)

Because the right-hand side of (24) is equivalent to Pr(Y d1t
it = 1|Si,t−1, Y d0t

it = 0) = 0,

it is also equivalent to Pr(Y d1t
it = 1, Y d0t

it = 0|Si,t−1) = 0, which in turn is equivalent to

Pr(Y d1t
it ≥ Y

d0t
it |Si,t−1) = 0.

The assumption is satisfied in structural models. Consider for instance a non-stationary
job search model for an unemployed individual as in Van den Berg (1990) or Meyer (1996).
The treatment is a re-employment bonus as discussed in Section 5 below. In each period
a job offer is obtained with probability p(t, Vi). Let Yof,it be the indicator of an offer in
period t and Yof,it = I(εof,it ∈ A(t, Vi)) with A(t, Vi) a set. If the job offer is not under
control of i, the arrival process is the same under treatment and control. The reservation
wage is denoted by ξ1it for the treated and ξ0it for the controls. In general (see Meyer (1996))
ξ1(t, Vi) ≤ ξ0(t, Vi), so that if H is the wage offer c.d.f. we have the acceptance probabilities
1−H(ξ1(t, Vi)) ≥ 1−H(ξ0(t, Vi)). The acceptance indicators are Y 0

ac,it = I(εw,it ≥ ξ0(t, Vi))
and Y 1

ac,it = I(εw,it ≥ ξ1(t, Vi)) with εw,it the wage offer. Because Y 0
it = Yof,itY

0
ac,it and

Y 1
it = Yof,itY

1
ac,it, we see that

Y 1
it = 0⇒ Y 0

it = 0.

Note that the dimension of Vi is arbitrary and that we have two random shocks that have a
structural interpretation and are invariant under a change in treatment status.

If we compare the transition probability Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0) to Pr(Y 00

2 = 1|Y 1
1 =

1, Y 0
1 = 0), i.e. the probability of a transition in period 2 if no treatment was received in

periods 1 and 2 given survival with or without treatment in period 1 to the same probability
given survival without but not with treatment in period 1, then it is reasonable to assume
that the former probability is not larger than the latter. Individuals with Y 1

1 = 0, Y 0
1 = 0

have characteristics that make them not leave the initial state as opposed to individuals with
Y 1
1 = 1, Y 0

1 = 0 that have characteristics that make them leave the initial state if treated
in period 1. If the variables that affect the transition out of the initial state are positively
correlated between periods, then

Pr(Y 00
2 = 1|Y 1

1 = 0, Y 0
1 = 0) ≤ Pr(Y 00

2 = 1|Y 1
1 = 1, Y 0

1 = 0). (26)

To motivate this consider the discrete duration model for those not treated in periods 1, . . . , t

Y 0
it = I(αt + Vi − εit ≥ 0),

and for those who are treated in these periods

Y 1
it = I(αt + γit + Vi − ε̃it ≥ 0).

Note that the Common Shocks assumption is not made. Now Y 0
it = 1 if and only if

Vi − εit ≥ −αt.
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Let k = 1, . . . , t − 1. The conditioning events are Y 0
is = 0, s = 1, . . . , t − 1 and Y 1

is = 0, s =
1, . . . , t− 1, thus

Vi − εis < −αs, s = 1, . . . , t− 1,

Vi − ε̃is < −αs − γis, s = 1, . . . , t− 1,

and Y 0
is = 0, for s = 1, . . . , t− 1, Y 1

is = 0, for s = 1, . . . , k − 1, and Y 1
ik = 1, thus

Vi − εis < −αs, s = 1, . . . , t− 1,

Vi − ε̃is < −αs − γis, s = 1, . . . , k − 1,

Vi − ε̃ik ≥ −αk − γik.

For example, for t = 2 and k = 1 the conditioning events are

Vi − εi1 < −α1, Vi − ε̃i1 < −α1 − γi1,

and

Vi − εi1 < −α1, Vi − ε̃i1 ≥ −α1 − γi1.

Hence if Vi − εi1 and Vi − ε̃i1 are positively related with Vi − εi2 then (26) will in general
hold. Individuals with Y 1

1 = 1, Y 0
1 = 0 are assumed to be more susceptible to a transition in

period 2 than individuals with Y 1
1 = 0, Y 0

1 = 0.
In the general case we have by the same reasoning

Pr(Y 0
t = 1|Y 1

k = 1, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0)

≥ Pr(Y 0
t = 1|Y 1

k = 0, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0)

≥ Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0).

An analogous argument can be made for Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, Y 0
k−1 =

0, . . . , Y 1
0 = 0). These arguments lead to the following assumption

Assumption 4 (Positively Correlated Outcomes (PCO)) For all k = 1, . . . , t − 1 we
have

Pr(Y 0
t = 1|Y 1

k = 1, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0)

≥ Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0),

and

Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, Y 0
k−1 = 0, . . . , Y 1

0 = 0)

≥ Pr(Y 1
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0),

and

Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, Y 0
k−1 = 0, . . . , Y 1

0 = 0)

≥ Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0),

and

Pr(Y 1
t = 1|Y 1

k = 1, Y 1
k−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0)

≥ Pr(Y 0
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0).
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The motivating example shows that PCO does not imply nor is implied by MTR or CS.
The CS assumption is on the contemporaneous correlation of random shocks while PCO
relates to a (positive) relation of the combined random error over time. Since the latter in
general contains an important individual effect, positive correlation is not a strong assump-
tion.

4.2 Bounds under the additional assumptions

We now obtain bounds on ATETS for arbitrary t when we compare a treatment started in
period 1 to no treatment in all periods. Bounds under MTR and CS are given in Theorem 4
and Theorem 5 provides bounds under PCO. Bounds under all three additional assumptions
are in Theorem 6.

Theorem 4 (Bounds on ATETS under MTR and CS for t periods) Suppose Assump-
tions 1, 2, and 3 hold. If Pr

(
Y t−1 = 0|Dt−1 = 1

)
= 0 then ATETS1,0

t is not defined. If
Pr
(
Y t−1 = 0|Dt−1 = 1

)
> 0, then

Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−min

{
1, 1 +

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

−
min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

}
Pr(Y t−1 = 0|Dt−1 = 1)

}
≤ ATETS1,0

t ≤
Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−max

{
0,

[Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1] Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

+
min

{
Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)

}
Pr(Y t−1 = 0|Dt−1 = 1)

}
.

Proof See Appendix.

Theorem 5 (Bounds on ATETS under PCO for t periods) Let Assumptions 1 and 4
hold. If Pr

(
Y t−1 = 0|Dt−1 = 1

)
= 0 then ATETS1,0

t is not defined. If Pr
(
Y t−1 = 0|Dt−1 = 1

)
>

0 and Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1 > 0 for all
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s = 1, . . . , t− 1, then

Pr(Yt = 1|Dt = 1, Y t−1 = 0)−min

{
1, 1− 1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)

Pr(Y t−1 = 0|Dt−1 = 1)
∗

∗
t−1∏
s=1

max
{

0, Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1
}}

≤ ATETS1,0
t ≤

Pr(Yt = 1|Dt = 1, Y t−1 = 0)

−max

{
0,

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)∏t−1
s=1 max{0,Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1}

+ 1

}
.

If Pr
(
Y t−1 = 0|Dt−1 = 1

)
> 0 and Pr(Ys = 0|Y s−1 = 0, Ds = 1)+Pr(Ys = 0|Y s−1 = 0, Ds =

0)− 1 ≤ 0 for some s ≤ t, then

Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1 ≤ ATETS1,0
t ≤ Pr(Yt = 1|Y t−1 = 0, Dt = 1).

Proof See Appendix.

Theorem 6 (Bounds on ATETS under MTR, CS and PCO for t periods) Let the
Assumptions 1-4 hold. If Pr

(
Y t−1 = 0|Dt−1 = 1

)
= 0 then ATETS1,0

t is not defined. If
Pr
(
Y t−1 = 0|Dt−1 = 1

)
> 0, then

Pr(Yt = 1|Dt = 1, Y t−1 = 0)−min

{
1, 1− 1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)

Pr(Y t−1 = 0|Dt−1 = 1)
∗

∗min

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1),

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

}}
≤ ATETS1,0

t ≤
Pr(Yt = 1|Dt = 1, Y t−1 = 0)

−max

0,
(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr

(
Y t−1 = 0|Dt−1 = 0

)
min

{∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 1),

∏t−1
s=1 Pr(Ys = 0|Y s−1 = 0, Ds = 0)

} + 1

 .

Proof See Appendix.

5 Inference

Initially, consider inference on θ0 = ATETS11,00
2 . We assume that Pr(Y1 = 0|D1 = 1) > 0.

From Theorem 1 we then find that the bounds on θ0 can be expressed as

max(a1, a2) =: ` ≤ θ0 ≤ u := min(a3, a4), (27)
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with

a1 = a3 − 1,

a2 = a3 −
1− [1− Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)]Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1)
,

a3 = Pr(Y2 = 1|D1 = 1, Y1 = 0),

a4 = a3 − 1 +
1− Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1)
.

If we observe an iid sample {(Yi1, Yi2, Di1, Di2), i ∈ 1, . . . , n}, then the sample analog of
a = (a1, a2, a3, a4)

′ can easily be constructed, for example

â3 =
1
n

∑n
i=1 1(Yi2 = 1, Di1 = 1, Yi1 = 0)
1
n

∑n
i=1 1(Di1 = 1, Yi1 = 0)

, â1 = â3 − 1,

and analogously for â2 and â4. It is easy to show that as the sample size n goes to infinity

√
n(â− a)⇒ N (0,Σa), (28)

and we can construct a consistent estimator Σ̂a of the 4× 4 matrix Σa (for example, we use
bootstrapping to calculate Σ̂a in our application in Section 6). In the following we assume
that Σa,kk > 0 for all k = 1, 2, 3, 4.3

The identification results in Theorem 2 and 5 on θ0 = ATETS1,0
t can also be expressed

in the form (27) for suitable a = (a1, a2, a3, a4)
′ that can be estimated such that (28) holds

asymptotically. The identified set for θ0 = ATES1,0
t in Theorem 3 can be expressed as

max(a1, a2, a3, a4) ≤ θ0 ≤ min(a5, a6, a7, a8), and the identified set for θ0 = ATETS1,0
t in

Theorem 4 and 6 can be expressed as max(a1, a2, a3) ≤ θ0 ≤ min(a4, a5, a6), but the inference
problem is otherwise analogous, and it is straightforward to generalize the discussion below
to these cases.

5.1 Connection to the Moment Inequality Literature

The inference problem for θ0 that is summarized by (27) and (28) is asymptotically equivalent
to an inference problem on a finite number of moment inequalities that is well-studied in the
literature, for example in Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh
(2008), Rosen (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), and
Andrews and Barwick (2012). To make this connection explicit we define

m(θ) :=


Σ
−1/2
a,11 (a1 − θ)

Σ
−1/2
a,22 (a2 − θ)

Σ
−1/2
a,33 (θ − a3)

Σ
−1/2
a,44 (θ − a4)

 , m̂(θ) :=


Σ̂
−1/2
a,11 (â1 − θ)

Σ̂
−1/2
a,22 (â2 − θ)

Σ̂
−1/2
a,33 (θ − â3)

Σ̂
−1/2
a,44 (θ − â4)

 .

3Since â1 and â3 are perfectly correlated we have Σav = 0 for the vector v = (1,−1, 0, 0)′, implying that
rank(Σa) ≤ 3, but this rank deficiency turns out not to be important for our purposes.
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The bounds (27) can then equivalently be expressed as m(θ0) ≤ 0, which is analogous to
imposing four moment inequalities.4 For convenience we have normalized m(θ) such that each
component of

√
n [m̂(θ)−m(θ)] has asymptotic variance equal to one. Using (28) we obtain

√
n [m̂(θ)−m(θ)]⇒ N (0,Σm), where Σm = AΣaA, withA = diag(Σ

−1/2
a,11 ,Σ

−1/2
a,22 ,−Σ

−1/2
a,33 ,−Σ

−1/2
a,44 ).

An estimator Σ̂m can be constructed analogously.
All the papers on moment inequalities cited above start from choosing an objective func-

tion (or test statistics), whose sample version we denote by Q̂(θ), and then construct a
confidence set for θ0 as

Θ̂(C1−α) = {θ ∈ R : nQ̂(θ) ≤ C1−α}, (29)

where C1−α ≥ 0 is a critical value that is chosen such that confidence 1 − α is achieved
asymptotically, i.e. limn→∞ Pr(θ0 ∈ Θ̂(C1−α)) ≥ 1 − α.5 Various objective functions have
been considered in the literature. For example, the objective function considered in Cher-
nozhukov, Hong, and Tamer (2007) reads in our notation Q̂(θ) = ‖[m̂(θ)]+‖2, where ‖.‖ refers
to the Euclidian norm, and [m̂(θ)]+ := max(0, m̂(θ)), applied componentwise to the vector
m̂(θ).

5.2 Construction of Confidence Intervals

Our specific inference problem is easier than the general inference problem for moment in-
equalities, because in our case the parameter θ0 is just a scalar, and the total number of
inequalities is relatively small. Our goal in the following is therefore to outline a concrete
method of how to construct a confidence interval in that special case.

We choose the objective function Q̂(θ) = ‖[m̂(θ)]+‖2∞, where ‖.‖∞ is the infinity norm,

i.e. we have Q̂(θ) = max{0, m̂1(θ), m̂2(θ), m̂3(θ), m̂4(θ)}2. This objective function is con-
venient for our purposes, because the confidence set defined above then takes the intuitive
form

Θ̂(C1−α)

=

[
max

(
â1 −

c1−αΣ̂
1/2
a,11√
n

, â2 −
c1−αΣ̂

1/2
a,22√
n

)
,min

(
â3 +

c1−αΣ̂
1/2
a,33√
n

, â4 +
c1−αΣ̂

1/2
a,44√
n

)]
,

(30)

where c1−α :=
√
C1−α. This confidence interval can be constructed very easily.

Most Robust Critical Value

The critical value c1−α still needs to be chosen. The problem with choosing the critical value
in moment inequality problems is that this choice depends on the unknown slackness vector

4m(θ) is not actually a moment function, but has a slightly more complicated structure (e.g. a3 is a
conditional probability that can be expressed as the ratio between two moments). This, however, does not
matter for the asymptotic analysis since the estimator m̂(θ) has the same first order asymptotic properties
as it would have in the moment inequality case. We can therefore fully draw on the insights of the existing
literature.

5As discussed in e.g. Andrews and Soares (2010), it is important that the coverage probability is asymp-
totically bounded by 1 − α uniformly over θ0 and over the distribution of the observables. We have only
formulated the pointwise condition here to keep the presentation simple.
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m(θ0), which indicates whether each inequality mk(θ0) ≤ 0 is binding, close to binding, or
far from binding. It is known, however, that the largest (“worst case”) critical value needs
to be chosen if m(θ0) = 0, i.e. if all moment inequalities are binding at the true parameter.
To find this critical value one can use the fact that in this worst case nQ̂(θ) is asymptotically
distributed as ‖[Z]+‖2∞, where Z ∼ N (0,Σm) is a random four vector. Using the estimator

Σ̂m one can simulate this distribution. However, it can easily be shown that the 1−α quantile
of ‖[Z]+‖∞ is always smaller or equal to the following conservative critical value

c1−α = Φ−1
(

1− α

4

)
, (31)

where Φ−1 is the quantile function (the inverse cdf) of the standard normal distribution.
The factor 1/4 that appears here reflects the fact that we have four moment inequalities.
Combining equations (30) and (31) provides a confidence interval that is uniformly valid,
i.e. whose asymptotic size is bounded by α, independent of what the true values of a1, a2, a3
and a4 are.

Critical Value for the Case `� u

The critical values based on the “worst case” where all inequalities are binding (m(θ0) = 0)
can be very conservative if one or multiple inequalities are far from binding (mk(θ0) � 0).6

Furthermore, for the inference on θ0 = ATETS11,00
2 based on Theorem 1, with a’s as given

above, it can easily be shown that if Pr(Y1 = 0|D1 = 1) > 0 and Pr(Y1 = 0|D1 = 0) < 1,
then we have max(a1, a2) =: ` < u := min(a3, a4), implying that m(θ0) = 0 is impossible.
However, what matters for the coverage rate of the confidence interval at finite sample is not
whether ` < u, but whether the difference u − ` is large relative to the standard deviations

Σ
1/2
a,kk of the âk, k = 1, 2, 3, 4. This is what we mean by `� u in the subsection title above.

To formalize this one can consider a pretest of the hypothesis H0 : ` = u, against the
alternative Ha : ` < u, with pretest size αpre

n chosen to be very small, e.g. αpre
n = 0.001� α.7

If the pretest is not rejected, then the critical value (31) should be chosen. If the pretest
is rejected, then the two problems of choosing a suitable lower and upper bound for the
confidence interval Θ̂ completely decouple, because with high confidence we know that for
any θ only one of those bounds can be binding at the same time, implying that at most two
of the moment inequalities m(θ0) ≤ 0 can be binding. In this latter case we can therefore
choose the less conservative critical value

c1−α = Φ−1
(

1− α

2

)
, (32)

when computing the confidence interval (30).

Critical Value for the Case a1 � a2 � u

Analogous to the discussion of (31), the critical value (32) is again potentially conservative
because it is based on the case where two of the inequalities m(θ0) ≤ 0 (for either the lower or

6In addition, the formula (31) only provides an upper bound for the optimal critical value at m(θ0) = 0,
but this second issue is often not very severe. For example, for α = 0.05 and Σm = I4 one finds by simulation
that the 0.95 quantile of ‖[Z]+‖∞, with Z ∼ N (0,Σm), is c0.95 = 2.234, while the much easier to computer
conservative critical value in (31) is Φ−1 (0.9875) = 2.241.

7Theoretically one can assume αpre
n → 0 as n→∞ to avoid asymptotic size distortions due to the pretest.
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the upper bound, respectively) are jointly binding.8 For example, if we find that a1 � a2 � u
(by which we again mean that the null hypotheses H0 : a1 = a2, vs. Ha : a1 < a2, and
H0 : a2 = u, vs. Ha : a2 < u, are rejected with very high confidence), then a natural
confidence interval to report is

Θ̂ =

[
â2 −

Φ−1 (1− α) Σ̂
1/2
a,22√

n
,min

(
â3 +

Φ−1
(
1− α

2

)
Σ̂
1/2
a,33√

n
, â4 +

Φ−1
(
1− α

2

)
Σ̂
1/2
a,44√

n

)]
.

Note that the lower bound of Θ̂ now corresponds to inverting a standard one-sided t-test.
Analogous confidence intervals can obviously be constructed in other cases, e.g. `� a3 � a4
or a2 � a1 � a4 � a3, etc.

The different critical values and corresponding confidence intervals discussed above cor-
respond to cases where different subsets of the inequalities m(θ0) ≤ 0 can be simultaneously
binding, i.e. to a moment selection problem. A much more general discussion of moment
selection is given e.g. in Andrews and Soares (2010). Different confidence intervals than
those discussed here, e.g. based on different objective functions Q̂(θ), can of course also be
considered.

It should be noted that pretesting is not required if we use the approach in Hahn and
Ridder (2014) who obtain a confidence interval by inverting the Likelihood Ratio test for the
composite null and composite alternative test. Their current results do not cover the case
considered here and we did not attempt the non-trivial extension to the case considered here.

6 Application to the Illinois bonus experiment

6.1 The re-employment bonus experiment

Between mid-1984 and mid-1985, the Illinois Department of Employment Security conducted
a randomized social experiment.9 The goal of the experiment was to explore, whether re-
employment bonuses paid to Unemployment Insurance (UI) beneficiaries (treatment 1) or
their employers (treatment 2) reduced the length of unemployment spells.

Both treatments consisted of a $ 500 re-employment bonus, which was about four times
the average weekly unemployment insurance benefit. In the experiment, newly unemployed
UI claimants were randomly divided into three groups:
1. The Claimant Bonus Group. The members of this group were instructed that they would
qualify for a cash bonus of $500 if they found a job (of at least 30 hours) within 11 weeks
and, if they held that job for at least 4 months. A total of 4186 individuals were selected for
this group, and 3527 (84%) agreed to participate.
2. The Employer Bonus Group. The members of this group were told that their next employer
would qualify for a cash bonus of $500 if they, the claimants, found a job (of at least 30 hours)
within 11 weeks and, if they held that job for at least four months. A total of 3963 were
selected for this group and 2586 (65%) agreed to participate.

8It is also conservative, because the information in the correlation matrix Σm is not used to construct (32).
It corresponds to the the most extreme case where both lower bound estimators â1 and â2 (or both upper
bound estimators â3 and â4) are perfectly negatively correlated.

9A complete description of the experiment and a summary of its results can be found in Woodbury and
Spiegelman (1987).
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3. The Control Group, i.e. all claimants not assigned to one of the treatment groups.
This group consisted of 3952 individuals. The individuals assigned to the control group were
excluded from participation in the experiment. In fact, they did not know that the experiment
took place.

The descriptive statistics in Table 2 in Woodbury and Spiegelman (1987) confirm that
the randomization resulted in three similar groups.

6.2 Results of previous studies

Woodbury and Spiegelman (1987) concluded from a direct comparison of the control group
and the two treatment groups that the claimant bonus group had a significantly shorter av-
erage unemployment duration. The average unemployment duration was also shorter for the
employer bonus group, but the difference was not significantly different from zero. In the
USA UI benefits end after 26 weeks and since administrative data were used, all unemploy-
ment durations are censored at 26 weeks. Woodbury and Spiegelman ignore the censoring
and take as outcome variable the number of weeks of insured unemployment.

Meyer (1996) analyzed the same data but focused on the treatment effects on conditional
transition probabilities which allows him to properly account for censoring. Meyer focuses on
the conditional transitions rates because both labor supply and search theory imply specific
dynamic treatment effects. The bonus is only given to an unemployed individual if (s)he
finds a job within 11 weeks and retains it for four months. The cash bonus is the same for all
unemployed. Theory predicts that (i) the transition rate during the eligibility period (first 11
weeks) will be higher in the two treatment groups compared with the control group, and (ii)
that the transition rate in the treatment groups will rise just before the end of the eligibility
period, as the unemployed run out of time to collect the bonus.

To test these predictions, Meyer (1996) estimates a proportional hazard (PH) model
with a flexible specification of the baseline hazard. He uses the treatment indicator as an
explanatory variable. Since there was partial compliance with treatment his estimator can
be interpreted as a intention to treat (ITT) estimator.10 In his analysis Meyer controls for
age, the logarithm of base period earnings, ethnicity , gender and the logarithm of the size of
the UI benefits. He finds a significantly positive effect of the claimant bonus and a positive
but insignificant effect of the employer bonus. A more detailed analysis of the effects for
the claimant group reveals a positive effect on the transition rate during the first 11 weeks
in unemployment, an increased effect during week 9 and 10, and no significant effect on the
transition rate after week 11 as predicted by labor supply and search theory.

6.3 Estimates of bounds

In his study Meyer (1996) relies on the proportionality of the hazard rate to investigate
his hypotheses. We now ask what can be said if the assumptions of the MPH model do
not hold, that is what can be identified if we rely solely on random assignment and the

10The partial compliance is addressed in detail by Bijwaard and Ridder (2005). They introduce a new
method to handle the selective compliance in the treatment group. If there is full compliance in the control
group, their two-stage linear rank estimator is able to handle the selective compliance in the treatment group
even for censored durations. In order to achieve this they assume a MPH structure for the transition rate.
Their estimates indicate that the ITT estimates by Meyer (1996) underestimate the true treatment effect.
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additional assumptions. As Meyer we consider the ITT effect, i.e. we do not correct for
partial compliance. We divide the 24 month observation period into 12 subperiods: week 1-2,
week 3-4, ... , week 23-24. The reason for this is that there is a pronounced even-odd week
effect in the data, with higher transition rate during odd weeks. With these subperiods the
predictions we wish to test are: (i) a positive treatment effect during periods 1-5, i.e.

ATETS1,0
t > 0 , t = 1, . . . , 5,

(ii) no effect after the bonus offer has expired in periods 6-12, i.e.

ATETS1,0
t = 0 , t = 6, . . . , 12,

and (iii) a larger effect of the bonus offer at the end of the eligibility period in period 5, i.e.

ATETS1,0
5 > ATETS1,0

4 .

Note that in this experiment the treatment assignment is in period 1, so that in ATETS1,0
t

the superscripts 1 and 0 are t vectors with components equal to 1 and 0.
We report both the bounds that are obtained by simply replacing the population moments

with their sample analogs, as well as the confidence intervals based on the approach described
in section 5.11 Table 1 presents the upper and the lower bound and the confidence interval
on ATETS1,0

t for the claimant group assuming only random assignment. We find that the
instantaneous treatment effect on the transition probability (week 1-2) is point identified
and indicates a positive effect of the re-employment bonus. The transition probability is
about 2 percentage points higher in the treatment group compared to the control group.
This estimate is statistically significant. From week 3-4 and onwards the bounds are quite
wide. In fact, without further assumptions we cannot rule out that the bonus actually has a
negative impact on the conditional transition probability after week 3. However, the bounds
are nevertheless informative on the average treatment effect in all time periods.

Table 1 also shows that the confidence intervals are marginally wider than the actual
bounds. That is the uncertainty arising from the dynamic selection is far greater than the
uncertainty due to sampling variation.

Next, Table 1 presents bounds under the additional assumptions in Section 4. As ex-
pected, if we impose additional assumptions the bounds are considerably narrower. Under
MTR and CS we can rule out very large negative and very large positive dynamic treatment
effects. Imposing MTR, CS as well as PCO further tightens the bounds. If these assump-
tions hold simultaneously we can, if we disregard sampling variation, rule out that the bonus
offer has a negative effect on the transition rate out of unemployment up to week 20. This
conclusions changes slightly when sampling variation is taken into account.

Let us return to the three hypotheses suggested by labor supply and search theory, and
consider our most restrictive bounds under MTR, CS and PCO. We find that there is a
positive effect of the bonus offer on the conditional transition rate up to week 11. This
confirms the first hypothesis. The upper bound increases in time period 5 (weeks 9-10), but

11The covariance matrix Σa is estimated using bootstrap with 399 replications. Constructing confidence
intervals furthermore requires moment selection, e.g. for the bounds under just random assignment we find
that with very high confidence only one inequality is binding for the lower as well as the upper bound. Details
are available from the authors upon request.
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the lower bound does not increase enough, so that both an increase and no change (and even
a small decrease) in the transition probability out of unemployment are consistent with the
data. Now consider the third hypothesis that there is no effect on the transition rate after
week 11. Again the bounds do not rule out that there is a positive effect on the conditional
transition probability after week 11. These results illustrate that the evidence for the second
and third hypotheses presented by a number of authors rely on the imposed structure, e.g.
proportionality of the hazard or the restrictions implied by a particular discrete duration
model.

7 Conclusions

In this paper, we have derived bounds on treatment effects on conditional transition probabil-
ities under sequential randomization. The partial identification problem arises since random
assignment only ensures comparability of the treatment and control groups at the time of
randomization. In the literature this problem is often refereed to as the dynamic selection
problem. For that reason only instantaneous or short-run effects are point identified, whereas
dynamic or long-run effects in general are not point identified. Our weakest bounds impose no
assumptions beyond sequential random assignment, so that they are not sensitive to arbitrary
functional form assumptions, require no additional covariates and allow arbitrary heteroge-
nous treatment effects as well as arbitrary unobserved heterogeneity. These non-parametric
bounds offer an alternative to semi-parametric methods. They tend to be wide and therefore
we have also derived more informative bounds under additional assumptions that often hold
in semi-parametric reduced form and structural models.

An analysis of data from the Illinois re-employment bonus experiment shows that our
bounds are informative about average treatment effects. It also demonstrates that previ-
ous results on the evolution of the average treatment effect require that assumptions as
the proportionality of the hazard rate or those embodied in a particular (semi-)parametric
discrete-time hazard model hold.

25



References

Abbring, J. H., and J. J. Heckman (2007): Econometric evaluation of social programs,
part III: Distributional treatment effects, dynamic treatment effects, dynamic discrete
choice, and general equilibrium policy evaluation.chap. Handbook of Econometrics, Vol-
ume 6. North Holland.

Abbring, J. H., and G. J. Van den Berg (2003): “The non-parametric identification of
treatment effects in duration models,” Econometrica, 71, 1491–1517.

Andrews, D. W., and P. J. Barwick (2012): “Inference for parameters defined by moment
inequalities: A recommended moment selection procedure,” Econometrica, 80(6), 2805–
2826.

Andrews, D. W., and P. Guggenberger (2009): “Validity of subsampling and plug-in
asymptotic inference for parameters defined by moment inequalities,” Econometric Theory,
25(03), 669–709.

Andrews, D. W., and G. Soares (2010): “Inference for parameters defined by moment
inequalities using generalized moment selection,” Econometrica, 78(1), 119–157.

Bijwaard, G., and G. Ridder (2005): “Correcting for Selective Compliance in a Re-
employment Bonus Experiment,” Journal of Econometrics, 125, 77–111.

Bonnal, L., F. Fougere, and A. Serandon (1997): “Evaluating the impact of French
employment policies on individual labour market histories,” Review of Economic Studies,
64, 683–713.

Card, D., and D. Sullivan (1988): “Measuring the effect of subsidized training programs
on movements in and out of unemployment,” Econometrica, 56, 497–530.

Chernozhukov, V., H. Hong, and E. Tamer (2007): “Estimation and confidence regions
for parameter sets in econometric models1,” Econometrica, 75(5), 1243–1284.

Cox, D. R. (1972): “Regression models and life-tables (with discussion),” Journal of the
Royal Statistical Society, 34, 187–220.

Elbers, C., and G. Ridder (1982): “True and spurious duration dependence: The identi-
fiability of the proportional hazards model,” Review of Economic Studies, 49, 402–411.

Gill, R. D., and J. M. Robins (2001): “Causal Inference for Complex Longitudinal Data:
The Continuous Case,” Annals of Statistics, 29, 1785–1811.

Gritz, R. M. (1993): “The impact of training on the frequency and duration of employ-
ment,” Journal of Econometrics, 57, 21–51.

Hahn, J., and G. Ridder (2014): “Non-standard tests through a composite null and alter-
native in point-identified parameters,” Journal of Econometric Methods, 4, 1–28.

Ham, J. C., and R. J. LaLonde (1996): “The effect of sample selection and initial con-
ditions in duration models: Evidence from experimental data on training,” Econometrica,
64, 175–205.

26



Heckman, J., and S. Navarro (2007): “Dynamic Discrete Choice and Dynamic Treatment
Effects,” Journal of Econometrics, 136, 341–396.

Kluve, J., D. Card, M. Fertig, M. Gora, L. Jacobi, P. Jensen, R. Leetmaa,
L. Nima, E. Patacchini, S. Schaffner, C. Schmidt, B. v. d. Klaauw, and A. We-
ber (2007): Active Labor Market Policies in Europe: Performance and Perspectives.
Springer.

Manski, C. F. (1997): “Monotone treatment response,” Econometrica, 65, 1311–1334.

Manski, C. F., and J. Pepper (2000): “Monotone Instrumental Variables: With an Ap-
plication to the Returns to Schooling,” Econometrica, 68, 115–136.

Meyer, B. D. (1996): “What Have We Learned from the Illinois Reemployment Bonus
Experiment?,” Journal of Labor Economics, 14, 26–51.

Ridder, G. (1986): “An event history approach to the evaluation of training, recruitment
and employment programmes,” Journal of Applied Econometrics, 1, 109126.

Romano, J. P., and A. M. Shaikh (2008): “Inference for identifiable parameters in par-
tially identified econometric models,” Journal of Statistical Planning and Inference, 138(9),
2786–2807.

Rosen, A. M. (2008): “Confidence sets for partially identified parameters that satisfy a
finite number of moment inequalities,” Journal of Econometrics, 146(1), 107–117.

Van den Berg, G. J. (1990): “Nonstationarity in Job Search Theory,” Review of Economic
Studies, 57, 255–277.

(2001): Duration models: specification, identification and multiple durationschap.
Handbook of Econometrics, vol. 6. North-Holland.

Woodbury, S. A., and R. G. Spiegelman (1987): “Bonusses to workers and employers to
reduce unemployment: randomized trials in Illinois,” American Economic Review, 77(4),
513–530.

27



Tables

Table 1: Bounds on ATETS1,0 for the Illinois job bonus experiment

No assumption bounds [A] MTR+CS [B]

Lower-
CI

LB UB Upper-
CI

Lower-
CI

LB UB Upper-
CI

(1) (2) (3) (4) (1) (2) (3) (4)
Week
1-2 0.012 0.023 0.023 0.034 0.012 0.023 0.023 0.034
3-4 -0.145 -0.137 0.094 0.102 0.000 0.011 0.038 0.050
5-6 -0.259 -0.251 0.074 0.082 -0.007 0.004 0.046 0.056
7-8 -0.346 -0.339 0.078 0.086 0.004 0.013 0.063 0.073
9-10 -0.452 -0.444 0.069 0.077 0.000 0.008 0.069 0.079
11-12 -0.552 -0.544 0.062 0.070 0.000 0.008 0.062 0.072
13-14 -0.655 -0.648 0.056 0.064 -0.010 -0.002 0.056 0.064
15-16 -0.750 -0.743 0.051 0.058 -0.004 0.003 0.051 0.058
17-18 -0.844 -0.836 0.049 0.057 -0.007 0.000 0.049 0.057
19-20 -0.943 -0.936 0.049 0.057 -0.011 -0.004 0.049 0.056
21-22 -0.994 -0.953 0.047 0.056 -0.028 -0.021 0.047 0.055
23-24 -0.989 -0.944 0.056 0.064 -0.011 -0.002 0.056 0.064

PCO [C] MTR+CS+PCO [D]

Lower-
CI

LB UB Upper-
CI

Lower-
CI

LB UB Upper-
CI

(1) (2) (3) (4) (1) (2) (3) (4)
Week
1-2 0.012 0.023 0.023 0.034 0.012 0.023 0.023 0.034
3-4 -0.131 -0.123 0.094 0.102 0.002 0.014 0.038 0.049
5-6 -0.209 -0.202 0.074 0.082 -0.004 0.007 0.046 0.055
7-8 -0.256 -0.247 0.078 0.087 0.008 0.016 0.063 0.072
9-10 -0.306 -0.299 0.069 0.077 0.004 0.012 0.069 0.078
11-12 -0.348 -0.340 0.062 0.070 0.004 0.012 0.062 0.071
13-14 -0.388 -0.379 0.056 0.064 -0.004 0.003 0.056 0.064
15-16 -0.419 -0.411 0.051 0.058 0.000 0.007 0.051 0.059
17-18 -0.445 -0.438 0.049 0.057 -0.003 0.005 0.049 0.058
19-20 -0.472 -0.464 0.049 0.057 -0.006 0.001 0.049 0.057
21-22 -0.504 -0.496 0.047 0.063 -0.022 -0.014 0.047 0.055
23-24 -0.523 -0.513 0.056 0.073 -0.006 0.003 0.056 0.065

Notes: CI is 95% confidence intervals. Variances and covariances used to obtain the CI are estimated using
bootstrap (399 replications).
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Appendix A: Proofs

Proof of Lemma 1

Because Assumption 1 implies random assignment in period 1 we have

E(Y1|D1 = 1) = E(Y 1
1 |D1 = 1) = E(Y 1

1 ),

and
E(Y1|D1 = 0) = E(Y 0

1 |D1 = 0) = E(Y 0
1 ).

By the observation rule and by (6)

E(Y2|Y1 = 0, D1 = 1) = E(Y 11
2 |Y 1

1 = 0, D1 = 1) = E(Y 11
2 |Y 1

1 = 0).

For (11)
E(Y2|Y1 = 0, D1 = 0, D2 = 0) = E(Y 00

2 |Y 0
1 = 0, D1 = 0, D2 = 0) =

E(Y 00
2 |Y 0

1 = 0, D1 = 0) = E(Y 00
2 |Y 0

1 = 0),

where the first equality follows from the observation rules, the second from (7), and the third
from (6). Analogously for (12)

E(Y2|Y1 = 0, D1 = 0, D2 = 1) = E(Y 01
2 |Y 0

1 = 0, D1 = 0, D2 = 1) =

E(Y 01
2 |Y 0

1 = 0, D1 = 0) = E(Y 01
2 |Y 0

1 = 0).

Proof of Theorem 1

We express ATETS11,00
2 as a function of the joint distribution of the potential outcomes

ATETS11,00
2 = (A.1)∑1

y002 =0

∑1
y012 =0 p(1, y

01
2 , y

00
2 |0, 0)p(0, 0) +

∑1
y002 =0

∑1
y012 =0 p(1, y

01
2 , y

00
2 |0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)

−
∑1

y112 =0

∑1
y012 =0 p(y

11
2 , y

01
2 , 1|0, 0)p(0, 0) +

∑1
y002 =0

∑1
y012 =0 p(y

11
2 , y

01
2 , 1|0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)

,

because
E(Y 11

2 |Y 1
1 = 0) = (A.2)∑1

y002 =0

∑1
y012 =0 p(1, y

01
2 , y

00
2 |0, 0)p(0, 0) +

∑1
y002 =0

∑1
y012 =0 p(1, y

01
2 , y

00
2 |0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)

,

and
E(Y 00

2 |Y 1
1 = 0) = (A.3)∑1

y112 =0

∑1
y012 =0 p(y

11
2 , y

01
2 , 1|0, 0)p(0, 0) +

∑1
y002 =0

∑1
y012 =0 p(y

11
2 , y

01
2 , 1|0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)

.
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In the remainder of the Appendix we use the following notation

p1(y11) ≡ Pr(Y 1
1 = y11),

p0(y01) ≡ Pr(Y 0
1 = y01),

p11(y112 |y11, y01) ≡ Pr(Y 11
2 = y112 |Y 1

1 = y11, Y
0
1 = y01) , y11, y

0
1, y

11
2 = 0, 1,

p00(y002 |y11, y01) ≡ Pr(Y 00
2 = y002 |Y 1

1 = y11, Y
0
1 = y01) , y11, y

0
1, y

00
2 = 0, 1.

From (15) we have that

E(Y 11
2 |Y 1

1 = 0) = Pr(Y2 = 1|D1 = 1, Y1 = 0). (A.4)

So that if Pr(Y1 = 0|D1 = 1) > 0 then E(Y 11
2 |Y 1

1 = 0) is point-identified. If Pr(Y1 = 0|D1 =
1) = 0 then E(Y 11

2 |Y 1
1 = 0), E(Y 11

2 |Y 1
1 = 0) and ATETS11,00

2 is not defined.
Using the notation above we have

E(Y 00
2 |Y 1

1 = 0) =
p00(1|0, 0)p(0, 0) + p00(1|0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)

. (A.5)

We consider the cases Pr(Y1 = 0|D1 = 0) = 0 and Pr(Y1 = 0|D1 = 0) > 0 separately. If
Pr(Y1 = 0|D1 = 0) > 0 we know from (16)

p00(1|0, 0) =

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)− p00(1|1, 0)p(1, 0)

p(0, 0)
.

Then
E(Y 00

2 |Y 1
1 = 0) =

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)∑1
y01=0 p(0, y

0
1)

−p
00(1|1, 0)p(1, 0)− p00(1|0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)

.

From (13) p(0, 1) = Pr(Y1 = 0|D1 = 1) − p(0, 0) and (14) p(1, 0) = Pr(Y1 = 0|D1 =
0)− p(0, 0) and upon substitution

E(Y 00
2 |Y 1

1 = 0) = (A.6)

Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1)

−p
00(1|1, 0)[Pr(Y1 = 0|D1 = 0)− p(0, 0)]− p00(1|0, 1)[Pr(Y1 = 0|D1 = 1)− p(0, 0)]

Pr(Y1 = 0|D1 = 1)
.

The expected value E(Y 00
2 |Y 1

1 = 0) depends on the unknown probabilities p00(1|1, 0),
p00(1|0, 1) and p(0, 0). Now note that, because p(0, 0) = Pr(Y 0

1 = 0, Y 1
1 = 0) ≤ Pr(Y 0

1 =
0) = Pr(Y1 = 0|D1 = 0) and because p(0, 0) = Pr(Y 0

1 = 0, Y 1
1 = 0) ≤ Pr(Y 1

1 = 0) = Pr(Y1 =
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0|D1 = 1), the function on the right hand side is decreasing in p00(1|1, 0) and increasing in
p00(1|0, 1). Therefore

(Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)− 1) Pr(Y1 = 0|D1 = 0) + p(0, 0)

Pr(Y1 = 0|D1 = 1)
(A.7)

≤ E(Y 00
2 |Y 1

1 = 0) ≤
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)− p(0, 0)

Pr(Y1 = 0|D1 = 1)
+ 1

where the lower bound applies if p00(1|1, 0) = 1 and p00(1|0, 1) = 0, and the upper bound
if p00(1|1, 0) = 0 and p00(1|0, 1) = 1. The lower bound is increasing and the upper bound
decreasing in p(0, 0). By the Bonferroni inequality

p(0, 0) ≥ max{Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1, 0}.

We consider the cases that Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0) − 1 > 0 and that
Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0) − 1 ≤ 0 separately. If Pr(Y1 = 0|D1 = 1) +
Pr(Y1 = 0|D1 = 0) − 1 ≤ 0 then the lower bound on p(0, 0) is 0. Then, by (A.5) we have
E(Y 00

2 |Y 1
1 = 0) = p00(1|0, 1) and since p00(1|0, 1) is not restricted by the observed outcomes

we have
0 ≤ E(Y 00

2 |Y 1
1 = 0) ≤ 1. (A.8)

If Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0)− 1 > 0 we have upon substitution of the lower
bound on p(0, 0) in (A.7)

max

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)− 1

Pr(Y1 = 0|D1 = 1)
+ 1, 0

}
(A.9)

≤ E(Y 00
2 |Y 1

1 = 0) ≤

min

{
1− (1− Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0)) Pr(Y1 = 0|D1 = 0)

Pr(Y1 = 0|D1 = 1)
, 1

}
.

Next, note that Pr(Y1 = 0|D1 = 0) = 0 implies that Pr(Y1 = 0|D1 = 1) + Pr(Y1 = 0|D1 =
0)− 1 ≤ 0.

Finally, we combine these bounds with the results for E(Y 11
2 |Y 1

1 = 0) to obtain bounds
on ATETS11,00

2 .
We now prove that the bounds are the best possible, i.e. for each (lower or upper)

bound we find the parameters of the joint distribution of the potential outcomes p(y11, y
0
1)

and p(y112 , y
01
2 , y

00
2 |y11, y01) such that the bound is binding and satisfy (13)-(17) (5 restrictions).

First, consider the upper bound on ATES11,00
2 and when Pr(Y 00

2 = 1|Y 1
1 = 0) = 0 and

Pr(Y1 = 0|D1 = 0) > 0. This is equivalent to the following restrictions on the parameters

0 =
1∑

y112 =0

1∑
y012 =0

p(y112 , y
01
2 , 1|0, 0) (A.10)

⇔ p(y112 , y
01
2 , 1|0, 0) = 0 , y112 = 0, 1, y012 = 0, 1,
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and

0 =

1∑
y002 =0

1∑
y012 =0

p(y112 , y
01
2 , 1|0, 1) (A.11)

⇔ p(y112 , y
01
2 , 1|0, 1) = 0 , y112 = 0, 1, y012 = 0, 1.

If we set
p(1, 0, 0|0, 1) = p(0, 0, 1|1, 0) = p(0, 1, 1|1, 0) = p(0, 1, 0|1, 0) = 0, (A.12)

the restrictions on the remaining parameters are

Pr(Y2 = 1|D1 = 1, Y1 = 0) (A.13)

=

∑1
y012 =0 p(1, y

01
2 , 0|0, 0)p(0, 0) + p(1, 1, 0|0, 1)p(0, 1)∑1

y01=0 p(0, y
0
1)

,

and
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) (A.14)

=

∑1
y012 =0 p(1, y

01
2 , 1|1, 0)p(1, 0)∑1

y11=0 p(y
1
1, 0)

,

and
Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0) (A.15)

=

∑1
y112 =0 p(y

11
2 , 1, 0|0, 0)p(0, 0) +

∑1
y002 =0 p(1, 1, y

00
2 |1, 0)p(1, 0)∑1

y11=0 p(y
1
1, 0)

,

and

Pr(Y1 = 0|D1 = 1) =
1∑

y01=0

p(0, y01), (A.16)

and

Pr(Y1 = 0|D1 = 0) =
1∑

y11=0

p(y11, 0). (A.17)

We substitute (A.16) and (A.17) into (A.13)-(A.15) to obtain

Pr(Y2 = 1|D1 = 1, Y1 = 0) (A.18)

=
(p(1, 0, 0|0, 0) + p(1, 1, 0|0, 0))p(0, 0) + p(1, 1, 0|0, 1)(Pr(Y1 = 0|D1 = 1)− p(0, 0))

Pr(Y1 = 0|D1 = 1)
,

and
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) (A.19)

=
(p(1, 1, 1|1, 0) + p(1, 0, 1|1, 0))(Pr(Y1 = 0|D1 = 0)− p(0, 0))

Pr(Y1 = 0|D1 = 0)
,

and
Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0) (A.20)
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=
(p(0, 1, 0|0, 0) + p(1, 1, 0|0, 0))p(0, 0)

Pr(Y1 = 0|D1 = 0)

+
(p(1, 1, 0|1, 0) + p(1, 1, 1|1, 0))(Pr(Y1 = 0|D1 = 0)− p(0, 0)

Pr(Y1 = 0|D1 = 0)
.

We now find a solution if p(0, 0) = Pr(Y1 = 0|D1 = 1)+Pr(Y1 = 0|D1 = 0)−1, i.e. p(0, 0)
is at its lower bound. This implies that

p(0, 1) = 1− Pr(Y1 = 0|D1 = 0), p(1, 0) = 1− Pr(Y1 = 0|D1 = 1).

Because p(0, 0) + p(1, 0) + p(0, 1) = 1 this implies that p(1, 1) = 0. Because in all cases
p(0, 0) will be at the lower bound, these values for p(0, 0), p(1, 0), p(0, 1) and p(1, 1) apply
throughout.

By (A.19) the choice of p(0, 0) implies

p(1, 0, 1|1, 0) + p(1, 1, 1|1, 0) (A.21)

=
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
,

with the right hand side less than or equal to 1 if and only if the lower bound in (A.9) is 0.
Next, (A.19) holds if

p(1, 0, 0|0, 0) + p(1, 1, 0|0, 0) = p(1, 1, 0|0, 1) = Pr(Y2 = 1|D1 = 1, Y1 = 0). (A.22)

Finally, (A.20) holds if

p(0, 1, 0|0, 0) + p(1, 1, 0|0, 0) = p(1, 1, 0|1, 0) + p(1, 1, 1|1, 0) (A.23)

= Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0).

If we set
p(1, 1, 1|1, 0)

= min

{
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
,

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)

}
,

and
p(1, 1, 0|0, 0)

= min(Pr(Y2 = 1|D1 = 1, Y1 = 0),Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)),

and
p(0, 0, 0|0, 1) + p(0, 0, 0|1, 0) + p(1, 0, 0|1, 0) = 0,

we have obtained a set of parameters that satisfies all the restrictions with for the remaining
parameters

p(0, 1, 0|0, 1) = 1− Pr(Y2 = 1|D1 = 1, Y1 = 0),
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p(1, 1, 0|1, 0) = 1− Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
,

p(0, 0, 0|0, 0) = 1− Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0),

and if e.g.
p(1, 1, 1|1, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0),

and
p(1, 1, 0|0, 0) = Pr(Y2 = 1|D1 = 1, Y1 = 0),

then p(1, 1, 0|1, 0) = 0 and p(0, 1, 0|0, 0) = 0 and

p(1, 0, 0|0, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0)− Pr(Y2 = 1|D1 = 1, Y1 = 0),

and

p(1, 0, 1|1, 0) =
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
−

Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0).

The cases with

p(1, 1, 1|1, 0) =
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
,

p(1, 1, 0|0, 0) = Pr(Y2 = 1|D1 = 1, Y1 = 0),

and
p(1, 1, 1|1, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0),

p(1, 1, 0|0, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0),

and

p(1, 1, 1|1, 0) =
Pr(Y2 = 1|D1 = 0, D2 = 0, Y1 = 0) Pr(Y1 = 0|D1 = 0)

1− Pr(Y1 = 0|D1 = 1)
,

p(1, 1, 0|0, 0) = Pr(Y2 = 1|D1 = 0, D2 = 1, Y1 = 0),

are dealt with analogously. Besides these two cases we have to find the joint distributions of
the potential outcomes for the case that Pr(Y 00

2 = 1|Y 1
1 = 0) > 0 and Pr(Y1 = 0|D1 = 0) > 0.

The derivation is analogous to the one above. We also have to find the joint distributions
consistent with the lower bound. Again the derivation is analogous. If Pr(Y1 = 0|D1 = 0) = 0
the sharpness of the bounds follows directly.

Proof of Theorem 2
In the remainder of the Appendix we use the following notation.

pdt (1|0, 0) = Pr(Y d
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0),

pdt (1|0, k) = Pr(Y d
t = 1|Y 1

t−1 = 0, . . . , Y 1
1 = 0, Y 0

k = 1, . . . , Y 0
1 = 0),

pdt (1|k, 0) = Pr(Y d
t = 1|Y 1

k = 1, . . . , Y 1
1 = 0, Y 0

t−1 = 0, . . . , Y 0
1 = 0),

where d = 0, 1 and k = 1, . . . , t− 1.
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Under Assumption 3 on random assignment

E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0, Dt = 1). (A.24)

So that if Pr(Y
1
t−1 = 0|D1 = 1) > 0 then E[Y 1

t |Y
1
t−1 = 0] is point-identified, and if Pr(Y

1
t−1 =

0|D1 = 1) = 0 then E[Y 1
t |Y

1
t−1 = 0],E[Y 0

t |Y
1
t−1 = 0] and ATETS1,0

t is not defined.
Next, we have

E
[
Y 0
t |Y

1
t−1 = 0

]
=
p0t (1|0, 0)pt−1(0, 0) +

∑t−1
k=1 p

0
t (1|0, k)pt−1(0, k)

pt−1(0, 0) +
∑t−1

k=1 pt−1(0, k)
. (A.25)

We consider cases that Pr(Y t−1 = 0|D1 = 0) = 0 and Pr(Y t−1 = 0|D1 = 0) > 0 separately.

If Pr(Y
0
t−1 = 0|D1 = 0) > 0 then under Assumption 3 on random assignment

Pr(Yt = 1, Y t−1 = 0|Dt = 0) = Pr(Y 0
t = 1, Y

0
t−1 = 0|Dt = 0) = Pr(Y 0

t = 1, Y
0
t−1 = 0).

Now by the law of total probability

Pr(Y 0
t = 1, Y

0
t−1 = 0) = Pr(Y

1
t−1 = 0, Y 0

t = 1, Y
0
t−1 = 0)

+

t−1∑
k=1

Pr(Y 1
k = 1, . . . , Y 1

1 = 0, Y 0
t = 1, Y

0
t−1 = 0)

= p0t (1|0, 0)pt−1(0, 0) +
t−1∑
k=1

p0t (1|k, 0)pt−1(k, 0).

Therefore (and using again that the treated state is absorbing)

Pr(Yt = 1|Y t−1 = 0, Dt = 0) =
p0t (1|0, 0)pt−1(0, 0) +

∑t−1
k=1 p

0
t (1|k, 0)pt−1(k, 0)

Pr
(
Y t−1 = 0|Dt−1 = 0

)
Solving for p0t (1|0, 0) gives

p0t (1|0, 0) =
Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr

(
Y t−1 = 0|Dt−1 = 0

)
−
∑t−1

k=1 p
0
t (1|k, 0)pt−1(k, 0)

pt−1(0, 0)
.

(A.26)
Then

E
[
Y 0
t |Y

1
t−1 = 0

]
=

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
pt−1(0, 0) +

∑t−1
k=1 pt−1(0, k)

−
∑t−1

k=1 p
0
t (1|k, 0)pt−1(k, 0)−

∑t−1
k=1 p

0
t (1|0, k)pt−1(0, k)

pt−1(0, 0) +
∑t−1

k=1 pt−1(0, k)
.

The expression on the right-hand side is decreasing in p0t (1|k, 0) for all k and increasing in
p0t (1|0, k) for all k. The lower bound is obtained by setting p0t (1|k, 0) at 1 and p0t (1|k, 0) at 0
and the upper bound by setting p0t (1|k, 0) at 0 and p0t (1|k, 0) at 1

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
−
∑t−1

k=1 pt−1(k, 0)

pt−1(0, 0) +
∑t−1

k=1 pt−1(0, k)
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≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
+
∑t−1

k=1 pt−1(0, k)

pt−1(0, 0) +
∑t−1

k=1 pt−1(0, k)
.

Because

Pr(Y t−1 = 0|Dt−1 = 1) = pt−1(0, 0) +

t−1∑
k=1

pt−1(0, k)

and

Pr(Y t−1 = 0|Dt−1 = 0) = pt−1(0, 0) +
t−1∑
k=1

pt−1(k, 0)

we have

[Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1] Pr
(
Y t−1 = 0|Dt−1 = 0

)
+ pt−1(0, 0)

Pr(Y t−1 = 0|Dt−1 = 1)
(A.27)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
− pt−1(0, 0)

Pr(Y t−1 = 0|Dt−1 = 1)
+ 1.

The upper bound is decreasing and the lower bound is increasing in pt−1(0, 0). Next, by the
Bonferroni inequality

pt−1(0, 0) ≥

max
{

Pr(Y 1
t−1 = 0, . . . , Y 1

1 = 0) + Pr(Y 0
t−1 = 0, . . . , Y 0

1 = 0)− 1, 0
}
.

Also with Y0 ≡ 0

Pr(Y 1
t−1 = 0, . . . , Y 1

1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1)

and

Pr(Y 0
t−1 = 0, . . . , Y 0

1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

so that
pt−1(0, 0) ≥

max

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0

}
=

max
{

Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ Pr

(
Y t−1 = 0|Dt−1 = 0

)
− 1, 0

}
.

If
Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ Pr

(
Y t−1 = 0|Dt−1 = 0

)
− 1 ≤ 0
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the lower bound on pt−1(0, 0) is 0, so that since p0t (1|k, 0) for all k is not restricted by the
observed outcomes we have using (A.25) that

0 ≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤ 1. (A.28)

If
Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ Pr

(
Y t−1 = 0|Dt−1 = 0

)
− 1 > 0

we have upon substitution of the lower bound on pt−1(0, 0) into (A.27)

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
− 1

Pr(Y t−1 = 0|Dt−1 = 1)
+ 1 (A.29)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

1− [1− Pr(Yt = 1|Y t−1 = 0, Dt = 0)] Pr
(
Y t−1 = 0|Dt−1 = 0

)
Pr(Y t−1 = 0|Dt−1 = 1)

.

Next, note that Pr(Y t−1 = 0|Dt−1 = 0) = 0 implies that Pr(Y t−1 = 0|Dt−1 = 1) +
Pr(Y t−1 = 0|Dt−1 = 0)− 1 ≤ 0.

Finally, we combine these bounds with the results for E[Y 1
t |Y

1
t−1 = 0] to obtain bounds

on ATETS1,0
2 .

Proof of Theorem 3

We first consider bounds on Pr(Y 1
t = 1|St−1). We observe

Pr(Yt = 1|Yt−1 = 0, . . . , Y1 = 0, Dt = 1, . . . , D1 = 1)

= Pr(Yt = 1|Y t−1 = 0, Dt = 1).

Note that because treatment is absorbing it would suffice to condition on D1 = 1. We keep
the whole t vector Dt in the notation, but observe that Dt = 1 ⇔ D1 = 1. The 0 in the
condition is a t− 1 vector. Under Assumption 3 on random assignment

Pr(Yt = 1, Y t−1 = 0|Dt = 1) = Pr(Y 1
t = 1, Y

1
t−1 = 0|Dt = 1)

= Pr(Y 1
t = 1, Y

1
t−1 = 0).

Now by the law of total probability

Pr(Y 1
t = 1, Y

1
t−1 = 0) = Pr(Y 1

t = 1, Y
1
t−1 = 0, Y

0
t−1 = 0)

+
t−1∑
k=1

Pr(Y 1
t = 1, Y

1
t−1 = 0, Y 0

k = 1, . . . , Y 0
1 = 0)

= p1t (1|0, 0)pt−1(0, 0) +

t−1∑
k=1

p1t (1|0, k)pt−1(0, k).
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Therefore (and using again that the treated state is absorbing)

Pr(Yt = 1|Y t−1 = 0, Dt = 1) =
p1t (1|0, 0)pt−1(0, 0)

Pr
(
Y t−1 = 0|Dt−1 = 1

)
+

∑t−1
k=1 p

1
t (1|0, k)pt−1(0, k)

Pr
(
Y t−1 = 0|Dt−1 = 1

) .
Solving for p1t (1|0, 0) gives

p1t (1|0, 0) =
Pr(Yt = 1|Y t−1 = 0, Dt = 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

(A.30)

−
∑t−1

k=1 p
1
t (1|0, k)pt−1(0, k)

pt−1(0, 0)
.

The expression on the right-hand side is decreasing in p1t (1|0, k) for all k. The lower
bound is obtained by setting p1t (1|0, k) at 1 and the upper bound by setting p1t (1|0, k) at 0.

Pr(Yt = 1|Y t−1 = 0, Dt = 1) Pr
(
Y t−1 = 0|Dt−1 = 1

)
−
∑t−1

k=1 pt−1(0, k)

pt−1(0, 0)

≤ p1t (1|0, 0) ≤
Pr(Yt = 1|Y t−1 = 0, Dt = 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

.

Because

Pr(Y t−1 = 0|Dt−1 = 1) = Pr(Y
1
t−1 = 0) = pt−1(0, 0) +

t−1∑
k=1

pt−1(0, k)

we have
(Pr(Yt = 1|Y t−1 = 0, Dt = 1)− 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

+ 1

≤ p1t (1|0, 0) ≤
Pr(Yt = 1|Y t−1 = 0, Dt = 1) Pr

(
Y t−1 = 0|Dt−1 = 1

)
pt−1(0, 0)

.

The upper bound is decreasing and the lower bound is increasing in pt−1(0, 0), which is
the probability of survival up to and including t− 1 in both treatment arms. The final step
is therefore to obtain a lower bound on pt−1(0, 0). From the proof of theorem 2 we have

pt−1(0, 0) ≥ max
{

Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ Pr

(
Y t−1 = 0|Dt−1 = 0

)
− 1, 0

}
. (A.31)

If
Pr
(
Y t−1 = 0|Dt−1 = 1

)
+ Pr

(
Y t−1 = 0|Dt−1 = 0

)
− 1 ≤ 0

then we are sure that there are survivors in both treatment arms. If this condition holds then
substitution of this lower bound gives the result.

By an analogous argument we obtain the bounds on Pr(Y 0
t = 1|Y 1

t−1, . . . , Y
1
1 = 0, Y 0

t−1 =

0, . . . , Y 0
1 = 0). The bounds on ATES1,0

t follow directly.
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Proof of Theorem 4

Using similar reasoning as above we have that if Pr(Y
1
t−1 = 0|D1 = 1) = 0 then ATETS1,0

t

is not defined. If Pr(Y
1
t−1 = 0|D1 = 1) > 0 we have from (A.24) and (A.27)

Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−
Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr

(
Y t−1 = 0|Dt−1 = 0

)
− pt−1(0, 0)

Pr(Y t−1 = 0|Dt−1 = 1)
− 1

≤ ATETS1,0
t ≤

Pr(Yt = 1|Y t−1 = 0, Dt = 1)

−
[Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1] Pr

(
Y t−1 = 0|Dt−1 = 0

)
+ pt−1(0, 0)

Pr(Y t−1 = 0|Dt−1 = 1)
.

Because the lower bound is increasing in pt−1(0, 0) and the upper bound decreasing in
pt−1(0, 0) we need the lower bound on this probability. We have

pt−1(0, 0) = Pr(Y 1
t−1 = 0, . . . , Y 1

1 = 0, Y 0
t−1 = 0, . . . , Y 0

1 = 0) =

Pr(Y 1
t−1 = 0, Y 0

t−1 = 0|St−2) Pr(Y 1
t−2 = 0, . . . , Y 1

1 = 0, Y 0
t−2 = 0, . . . , Y 0

1 = 0).

By Assumption 2 either

Pr
(
Y 1
i,t−1 = 0Si,t−2

)
≤ Pr

(
Y 0
i,t−1 = 0Si,t−2

)
, (A.32)

or
Pr
(
Y 1
i,t−1 = 0Si,t−2

)
> Pr

(
Y 0
i,t−1 = 0Si,t−2

)
, (A.33)

for all i. Assume that (A.32) holds. By Assumption 3 this implies that

Pr(Y 1
i,t−1 = 0, Y 0

i,t−1 = 1|Si,t−2) = 0,

so that

Pr(Y 1
i,t−1 = 0|Si,t−2) = Pr(Y 1

i,t−1 = 0, Y 0
i,t−1 = 0|Si,t−2) + Pr(Y 1

i,t−1 = 0, Y 0
i,t−1 = 1|Si,t−2)

= Pr(Y 1
i,t−1 = 0, Y 0

i,t−1 = 0|Si,t−2).

Because Assumptions 2 and 3 hold for all t we find by recursion that under that assumption
for all i

Pr(Y 1
i,t−1 = 0, . . . , Y 1

i1 = 0, Y 0
i,t−1 = 0, . . . , Y 0

i1 = 0) =

t−1∏
s=1

Pr(Y 1
is = 0|Y 1

i,s−1 = 0),

so that

pt−1(0, 0) =
t−1∏
s=1

Pr(Y 1
s = 0|Y 1

s−1 = 0) =
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1).
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If Assumption 2 holds with (A.33), then

pt−1(0, 0) =

t−1∏
s=1

Pr(Y 0
s = 0|Y 0

s−1 = 0) =

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0).

We conclude that

pt−1(0, 0) ≥ min

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1),
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)

}
=

min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}

and substitution gives the bounds.

Proof of Theorem 5

Using similar reasoning as above we have that if Pr(Y
1
t−1 = 0|D1 = 1) = 0 then ATETS1,0

t

is not defined. If Pr(Y1 = 0|D1 = 1) > 0 we have under Assumption 3 on random assignment

Pr(Yt = 1|Y t−1 = 0, Dt = 1) = E[Y 1
t |Y

1
t−1 = 0].

Next,

E
[
Y 0
t |Y

1
t−1 = 0

]
=
p0t (1|0, 0)pt−1(0, 0) +

∑t−1
k=1 p

0
t (1|0, k)pt−1(0, k)

pt−1(0, 0) +
∑t−1

k=1 pt−1(0, k)
,

which is an increasing function of p0t (1|0, k) for all k. Since p0t (1|0, k) is not restricted by the

observed outcomes the upper bound on E
[
Y 0
t |Y

1
t−1 = 0

]
is obtained if p0t (1|0, k) = 1 for all

k and by Assumption 4 the lower bound is obtained if p0t (1|0, k) = p0t (1|0, 0) for all k . Then

p0t (1|0, 0) ≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤
p0t (1|0, 0)pt−1(0, 0) +

∑t−1
k=1 pt−1(0, k)

pt−1(0, 0) +
∑t−1

k=1 pt−1(0, k)
.

By the proof of theorem 2 we have

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
(A.34)

= p0t (1|0, 0)pt−1(0, 0) +
t−1∑
k=1

p0t (1|k, 0)pt−1(k, 0),

and upon substitution

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
−
∑t−1

k=1 p
0
t (1|k, 0)pt−1(k, 0)

pt−1(0, 0)
(A.35)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

Pr(Yt = 1|Y t−1 = 0, Dt = 0) Pr
(
Y t−1 = 0|Dt−1 = 0

)
pt−1(0, 0) +

∑t−1
k=1 pt−1(0, k)
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−
∑t−1

k=1 p
0
t (1|k, 0)pt−1(k, 0)−

∑t−1
k=1 pt−1(0, k)

pt−1(0, 0) +
∑t−1

k=1 pt−1(0, k)
.

Both the lower and upper bound is decreasing in p0t (1|k, 0) for all k. Therefore the

lower bound on E[Y 0
t |Y

1
t−1 = 0] is obtained if p0t (1|k, 0) = 1 for all k and by Assumption

4 the upper bound is obtained if p0t (1|k, 0) = p0t (1|0, 0) for all k. Upon substitution of
p0t (1|k, 0) = p0t (1|0, 0) for all k in (A.34) and using that Pr(Y t−1 = 0|Dt−1 = 0) = pt−1(0, 0)+∑t−1

k=1 pt−1(k, 0) we have

p0t (1|0, 0) = Pr(Yt = 1|Y t−1 = 0, Dt = 0). (A.36)

Upon substitution of (A.36) into (A.35) and using that Pr(Y t−1 = 0|Dt−1 = 1) = pt−1(0, 0)+∑t−1
k=1 pt−1(0, k) and Pr(Y t−1 = 0|Dt−1 = 0) = pt−1(0, 0) +

∑t−1
k=1 pt−1(k, 0) we have

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)
pt−1(0, 0)

+ 1 (A.37)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1)pt−1(0, 0)

Pr(Y t−1 = 0|Dt−1 = 1)
+ 1.

The lower bound is increasing and the upper bound decreasing in pt−1(0, 0). Assumption 4
also improves on the Bonferroni inequality for pt−1(0, 0). We have

pt−1(0, 0) =
t−1∏
s=1

Pr(Y 1
s = 0, Y 0

s = 0|Ss−1).

By the Bonferroni inequality and the results above

Pr(Y 1
s = 0, Y 0

s = 0|Ss−1) ≥ max{1− Pr(Y 1
s = 1|Ss−1)− Pr(Y 0

s = 1|Ss−1), 0} ≥

max{1− Pr(Ys = 1|Y s−1 = 0, Ds = 1)− Pr(Ys = 1|Y s−1 = 0, Ds = 0), 0} =

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0},

so that

pt−1(0, 0) ≥
t−1∏
s=1

max{Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0}.

(A.38)
We compare this to the lower bound

max

{
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1, 0

}

that we obtained in the proof of Theorem 2. First, if there is an 1 ≤ s ≤ t− 1 so that

Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 < 0,
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then

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 < 0,

so that if the new lower bound is 0, so is the previous one. Finally, if for all s = 1, . . . , t− 1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 > 0,

then
t−1∏
s=1

[
Pr(Ys = 0|Y s−1 = 0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1

]
≥

t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 1) +
t−1∏
s=1

Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1.

Upon substitution of (A.38) into (A.37) and considering cases Pr(Ys = 0|Y s−1 = 0, Ds =
1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0) − 1 > 0 for all s = 1, . . . , t − 1 and Pr(Ys = 0|Y s−1 =
0, Ds = 1) + Pr(Ys = 0|Y s−1 = 0, Ds = 0)− 1 ≤ 0 for some s ≤ t separately, and substitution
gives the bounds.

Proof of Theorem 6

Under Assumption 3 on random assignment E[Y 1
t |Y

1
t−1 = 0] = Pr(Yt = 1|Y t−1 = 0, Dt =

1), and by the proof of Theorem 5 we have under Assumption 4

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1) Pr
(
Y t−1 = 0|Dt−1 = 0

)
pt−1(0, 0)

+ 1 (A.39)

≤ E
[
Y 0
t |Y

1
t−1 = 0

]
≤

(Pr(Yt = 1|Y t−1 = 0, Dt = 0)− 1)pt−1(0, 0)

Pr(Y t−1 = 0|Dt−1 = 1)
+ 1.

By the proof of Theorem 4 we have under Assumptions 2 and 3

pt−1(0, 0) ≥ min
{

Pr(Y t−1 = 0|Dt−1 = 1),Pr(Y t−1 = 0|Dt−1 = 0)
}
.

Collecting the results and substitution gives the bounds.
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