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Abstract

This paper reviews recent developments in nonparametric identi�cation of mea-
surement error models and their applications in applied microeconomics, in particular,
in empirical industrial organization and labor economics. Measurement error models
describe mappings from a latent distribution to an observed distribution. The iden-
ti�cation and estimation of measurement error models focus on how to obtain the
latent distribution and the measurement error distribution from the observed distrib-
ution. Such a framework may be suitable for many microeconomic models with latent
variables, such as models with unobserved heterogeneity or unobserved state variables
and panel data models with �xed e¤ects. Recent developments in measurement error
models allow very �exible speci�cation of the latent distribution and the measure-
ment error distribution. These developments greatly broaden economic applications
of measurement error models. This paper provides an accessible introduction of these
technical results to empirical researchers so as to expand applications of measurement
error models.
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1 Introduction

This paper provides a concise introduction of recent developments in nonparametric identi�-
cation of measurement error models and intends to invite empirical researchers to use these
new results for measurement error models in the identi�cation and estimation of microeco-
nomic models with latent variables.
Measurement error models describe the relationship between latent variables, which are

not observed in the data, and their measurements. Researchers only observe the measure-
ments instead of the latent variables in the data. The goal is to identify the distribution of
the latent variables and also the distribution of the measurement errors, which are de�ned as
the di¤erence between the latent variables and their measurements. In general, the parame-
ter of interest is the joint distribution of the latent variables and their measurements, which
can be used to describe the relationship between observables and unobservables in economic
models.
This paper starts with a general framework, where "measurements" can be simply ob-

served variables with an informative support. The measurement error distribution contains
the information on a mapping from the distribution of the latent variables to the observed
measurements. I organize the technical results by the number of measurements needed for
identi�cation. In the �rst example, there are two measurements, which are mutually indepen-
dent conditioning on the latent variable. With such limited information, strong restrictions
on measurement errors are needed to achieve identi�cation in this 2-measurement model.
Nevertheless, there are still well known useful results in this framework, such as Kotlarski�s
identity.
However, when a 0-1 dichotomous indicator of the latent variable is available together

with two measurements, nonparametric identi�cation is feasible under a very �exible speci-
�cation of the model. I call this a 2.1-measurement model, where I use 0.1 measurement to
refer to a 0-1 binary variable. A major breakthrough in the measurement error literature is
that the 2.1-measurement model may be nonparametrically identi�ed under mild restrictions.
(see Hu (2008) and Hu and Schennach (2008)) Since it allows very �exible speci�cations, the
2.1-measurement model is widely applicable to microeconomic models with latent variables
even beyond many existing applications.
Given that any observed random variable can be manually transformed to a 0-1 binary

variable, the results for a 2.1-measurement model can be easily extended to a 3-measurement
model. A 3-measurement model is useful because many dynamic models involve multiple
measurements of a latent variable. A typical example is the hidden Markov model. Results
for the 3-measurement model show the symmetric roles which each measurement may play.
In particular, in many cases, it doesn�t matter which one of the three measurements is called
a dependent variable, a proxy, or an instrument.
One may also interpret the identi�cation strategy of the 2.1-measurement model as a non-
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parametric instrumental approach. In that sense, a nonparametric di¤erence-in-di¤erence
version of this strategy may help identify more general dynamic processes with more mea-
surements. As shown in Hu and Shum (2012), four measurements or four periods of data are
enough to identify a rather general �rst-order Markov process. Such an identi�cation result
is directly applicable to the nonparametric identi�cation of dynamic models with unobserved
state variables.
This paper also provides a brief introduction of empirical applications using these mea-

surement error models. These studies cover auction models with unobserved heterogeneity,
dynamic learning models with latent beliefs, �xed e¤ects in panel data models, misreporting
errors in estimation of unemployment rates, cognitive and noncognitive skill formation, and
two-sided matching models. This paper intends to be concise, informative, and heuristic. I
refer to Bound, Brown, and Mathiowetz (2001), Chen, Hong, and Nekipelov (2011), Schen-
nach (2012), and Carroll, Ruppert, Stefanski, and Crainiceanu (2012) for more complete
reviews.
This paper is organized as follows. Section 2 introduces the nonparametric identi�ca-

tion results for measurement error models. Section 3 describes a few applications of the
nonparametric identi�cation results. Section 4 summarizes the paper.

2 Nonparametric identi�cation of measurement error
models.

We start our discussion with a de�nition of measurement. Let X denote an observed random
variable and X� be a latent random variable of interest. We de�ne a measurement of X� as
follows:

De�nition 1 A random variable X with support X is called a measurement of a latent
random variable X� with support X � if the number of possible values in X is larger than or
equal to that in X �.

When X is continuous, the support condition in De�nition 1 is not restrictive whether X� is
discrete or continuous. When X is discrete, the support condition implies that X can only
be a measurement of a discrete random variable with a smaller or equal number of possible
values. In particular, we don�t consider a discrete variable as a measurement of a continuous
variable.

2.1 A general framework

In a random sample, we observe measurement X, while the variable of interest X� is unob-
served. The measurement error is de�ned as the di¤erence X � X�. We may identify the
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distribution function fX of measurement X directly from the sample, but our main interest
is to identify the distribution of the latent variable fX�, together with the measurement er-
ror distribution described by fXjX�. The observed measurement and the latent variable are
associated as follows: for all x 2 X

fX(x) =

Z
X �
fXjX�(xjx�)fX�(x�)dx�; (1)

when X� is continuous, and for all x 2 X = fx1; x2; :::; xLg

fX(x) =
X
x�2X �

fXjX�(xjx�)fX�(x�); (2)

when X� is discrete with support X �= fx�1; x�2; :::; x�Kg : The de�nition of measurement re-
quires L � K. We omit arguments of the functions when it doesn�t cause any confusion. This
general framework may be used to describe a wide range of economic relationships between
observables and unobservables in the sense that the latent variable X� may be interpreted
as unobserved heterogeneity, �xed e¤ects, random coe¢ cients, or latent types in mixture
models, etc.
For simplicity, we start with the discrete case and de�ne

�!p X = [fX(x1); fX(x2); :::; fX(xL)]
T (3)

�!p X� = [fX�(x�1); fX�(x�2); :::; fX�(x�K)]
T

MXjX� =
�
fXjX�(xljx�k)

�
l=1;2;:::;L;k=1;2;:::;K

:

The notation MT stands for the transpose of M . Note that �!p X ; �!p X� ; and MXjX� contain
the same information as distributions fX , fX�, and fXjX�, respectively. Equation (2) is then
equivalent to

�!p X =MXjX�
�!p X� : (4)

The matrix MXjX� describes the linear transformation from RK , a vector space containing
�!p X�, to RL, a vector space containing �!p X . Suppose that the measurement error distribu-
tion, i.e., MXjX� ; is known. The identi�cation of the latent distribution fX� means that if
two possible marginal distributions �!p aX� and �!p bX� are observationally equivalent, i.e.,

�!p X =MXjX�
�!p aX� =MXjX�

�!p bX� ; (5)

then the two distributions are the same, i.e., �!p aX� = �!p bX�. Let h = �!p aX���!p bX�. Equation (5)
implies that MXjX�h = 0. The identi�cation of fX� then requires that MXjX�h = 0 implies
h = 0 for any h 2 RK , or that the matrix MXjX� has a full rank, i.e., Rank

�
MXjX�

�
=

K. This is a necessary rank condition for the nonparametric identi�cation of the latent
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distribution fX�.
In the continuous case, we need to de�ne the linear operator corresponding to fXjX�,

which maps fX� to fX . Suppose that we know both fX� and fX are bounded and integrable.
We de�ne L1bnd (X �) as the set of bounded and integrable functions de�ned on X �, i.e.,1

L1bnd (X �) =

�
h :

Z
X �
jh(x�)j dx� <1 and sup x�2X � jh(x�)j <1

�
: (6)

The linear operator may be de�ned as

LXjX� : L1bnd (X �)! L1bnd (X ) (7)�
LXjX�h

�
(x) =

Z
X �
fXjX�(xjx�)h(x�)dx�:

Equation (1) is then equivalent to

fX = LXjX�fX� : (8)

Following a similar argument, we may show that a necessary condition for the identi�cation
of fX� in the functional space L1bnd (X �) is that the linear operator LXjX� is injective, i.e.,
LXjX�h = 0 implies h = 0 for any h 2 L1bnd (X �). This condition can also be interpreted
as completeness of conditional density fXjX� in L1bnd (X �). We refer to Hu and Schennach
(2008) for detailed discussion on this injectivity condition.
Since both the measurement error distribution fXjX� and the marginal distribution fX�

are unknown, we have to rely on additional restrictions or additional data information to
achieve identi�cation. On the one hand, parametric identi�cation may be feasible if fXjX�

and fX� belong to parametric families (see Fuller (2009)). On the other hand, we may
use additional data information to achieve nonparametric identi�cation. For example, if we
observe the joint distribution of X and X� in a validation sample, we may identify fXjX�

from the validation sample and then identify fX� in the primary sample (see Chen, Hong,
and Tamer (2005)). In this paper, we focus on methodologies using additional measurements
in a single sample.

2.2 A 2-measurement model

Given very limited identi�cation results which one may obtain from equations (1)-(2), a
direct extension is to use more data information, i.e., an additional measurement. De�ne a
2-measurement model as follows:

De�nition 2 A 2-measurement model contains two measurements X 2 X and Z 2 Z of

1We may also de�ne the operator on other functional spaces containing fX� .
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the latent variable X� 2 X � satisfying

X ? Z j X�; (9)

i.e., X and Z are independent conditional on X�:

The 2-measurement model implies that two measurements X and Z not only have distinctive
information on the latent variable X�, but also are mutually independent conditional on the
latent variable.
In the case where all the variables X; Z, and X� are discrete with Z = fz1; z2; :::; zJg,

we may de�ne

MX;Z = [fX;Z(xl; zj)]l=1;2;:::;L;j=1;2;:::;J (10)

MZjX� =
�
fZjX�(zjjx�k)

�
j=1;2;:::;J ;k=1;2;:::;K

and a diagonal matrix

DX� = diag ffX�(x�1); fX�(x�2); :::; fX�(x�K)g : (11)

De�nition 1 implies that K � L and K � J . Equation (9) means

fX;Z (x; z) =
X
x�2X �

fXjX�(xjx�)fZjX�(zjx�)fX�(x�); (12)

which is equivalent to
MX;Z =MXjX�DX�MT

ZjX�. (13)

Without further restrictions to reduce the number of unknowns on the right hand side, point
identi�cation of fXjX�, fZjX�, and fX� may not be feasible.2 But one element that may be
identi�ed from observed MX;Z is the dimension K of the latent variable X�, as elucidated
in the following Lemma:

Lemma 1 Suppose that matricesMXjX� andMZjX� have a full rankK. ThenK = rank (MX;Z) :

Proof. In the 2-measurement model, we haveK � L andK � J . Therefore, rank (MX;Z) �
min fJ;K; Lg = K. Since MXjX� and MZjX� have a full rank K and DX� has rank K by
de�nition of the support, we have rank (MX;Z) = K:

Although point identi�cation may not be feasible without further assumptions, we may
still have some partial identi�cation results. Consider a linear regression model with a

2If MXjX� and MT
ZjX� are lower and upper triangular matrices, respectively, point identi�cation may be

feasible through the so-called LU decomposition. In general, this is also related to the literature on non-
negative matrix factorization, which focuses more on existence and approximation, instead of uniqueness.
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discrete regressor X� as follows:

Y = X�� + � (14)

Y ? X j X�

where X� 2 f0; 1g and E [�jX�] = 0. Here the dependent variable Y takes the place of Z as
a measurement of X�.3 We observe (Y;X) with X 2 f0; 1g in the data as two measurements
of the latent X�. Since Y and X are independent conditional on X�, we may have

jE [Y jX� = 1]� E [Y jX� = 0]j (15)

� jE [Y jX = 1]� E [Y jX = 0]j :

That means the observed di¤erence provides a lower bound on the parameter of interest j�j.
More partial identi�cation results may be found in Bollinger (1996) and Molinari (2008).
Furthermore, the model may be point identi�ed under the assumption that the regression
error � is independent of the regressor X�. (See Chen, Hu, and Lewbel (2009) for details.)
In the case where all the variables X; Z, and X� are continuous, a widely-used setup is

X = X� + � (16)

Z = X� + �0

where X�, �, and �0 are mutually independent with E� = 0. When the error � := X �X� is
independent of the latent variable X�, it is called a classical measurement error. This setup
is well known because the density of the latent variable X� may be written as a closed-form
function of the observed distribution fX;Z . De�ne �X�(t) = E

�
eitX

��
with i =

p
�1 as the

characteristic function of X�. Under the assumption that �Z(t) is absolutely integrable and
does not vanish on the real line, we have

fX� (x�) =
1

2�

Z 1

�1
e�ix

�t�X� (t) dt (17)

�X� (t) = exp

"Z t

0

E
�
XeisZ

�
E [eisZ ]

ds

#
:

This is the so-called Kotlarski�s identity (See Kotlarski (1965) and Rao (1992)). This result
has been used in many empirical and theoretical studies, such as Li and Vuong (1998), Li,
Perrigne, and Vuong (2000), Krasnokutskaya (2011), Schennach (2004a), and Evdokimov
(2010).

3We follow the routine to use Y to denote a dependent variable instead of Z.
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The intuition of Kotlarski�s identity is that the variance ofX� is revealed by the covariance
of X and Z, i.e., var(X�) = cov(X;Z): Therefore, the higher order moments between X
and Z may reveal more moments of X�. If one can pin down all the moments of X�

from the observed moments, the distribution of X� is then identi�ed under some regularity
assumptions. A similar argument may also apply to an extended model as follows:

X = X�� + � (18)

Z = X� + �0:

Suppose � > 0. A naive OLS estimator obtained by regressing X on Z may converge in
probability to cov(X;Z)

var(Z)
, which provides a lower bound on the regression coe¢ cient �. In fact,

we may have explicit bounds as follows:

cov(X;Z)

var(Z)
� � � var(X)

cov(X;Z)
: (19)

However, these bounds may not be tight because the joint independence of X�, �, and �0

may lead to point identi�cation of �. Reiersøl (1950) shows that such point identi�cation is
feasible when X� is not normally distributed. A more general extension is to consider

X = g (X�) + � (20)

Z = X� + �0;

where function g is nonparametric and unknown. Schennach and Hu (2013) generalize Reier-
sol�s result and show that function g and distribution of X� are nonparametrically identi�ed
except for a particular functional form of g or fX�. The model in equation (20) is very close
to a nonparametric regression model with a classical measurement error, except that the
regression error � needs to be independent of the regressor X�.

2.3 A 2.1-measurement model

An arguably surprising result is that we can achieve quite general nonparametric identi�-
cation of a measurement error model if we observe a little more data information, i.e., an
extra binary indicator, than in the 2-measurement model. De�ne a 2.1-measurement model
as follows:4

4I use "0.1 measurement" to refer to a 0-1 dichotomous indicator of the latent variable. I name it the 2.1-
measurement model instead of 3-measurment one in order to emphasize the fact that we only need slightly
more data information than the 2-measurement model, given that a binary variable is arguably the least
informative measurement, except a constant measurement, of a latent random variable.
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De�nition 3 A 2.1-measurement model contains two measurements X 2 X and Z 2 Z and
a 0-1 dichotomous indicator Y 2 Y = f0; 1g of the latent variable X� 2 X � satisfying

X ? Y ? Z j X�; (21)

i.e., (X; Y; Z) are jointly independent conditional on X�:

2.3.1 The discrete case

In the case where X; Z, and X� are discrete, De�nition 1 implies that the supports of
observed X and Z are larger than or equal to that of the latent X�. We start our discussion
with the case where the three variables share the same support. We assume

Assumption 1 The two measurements X and Z and the latent variable X� share the same
support X � = fx�1; x�2; :::; x�Kg.

This condition is not restrictive because the number of possible values in X � may be identi-
�ed, as shown in Lemma 1, and one can always transform a discrete variable into one with
less possible values.
The conditional independence in equation (21) implies5

fX;Y;Z (x; y; z) =
X
x�2X �

fXjX�(xjx�)fY jX�(yjx�)fZjX�(zjx�)fX�(x�): (22)

For each value of Y = y, we may de�ne

MX;y;Z = [fX;Y;Z (xi; y; zj)]i=1;2;:::;K;j=1;2;:::;K (23)

DyjX� = diag
�
fY jX�(yjx�1); fY jX�(yjx�2); :::; fY jX�(yjx�K)

	
:

Equation (22) is then equivalent to

MX;y;Z =MXjX�DyjX�DX�MT
ZjX�. (24)

Next, we assume

Assumption 2 Matrix MX;Z has a full rank K.

Equation (13) then implies MXjX�, DX�, and MZjX� all have a full rank. We may then
eliminate DX�MT

ZjX� to obtain

MX;y;ZM
�1
X;Z =MXjX�DyjX�M�1

XjX� : (25)

5Hui and Walter (1980) �rst consider the case where X� is binary and show that this identi�cation
problem can be reduced to solving a quadratic equation.
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This equation implies that the observed matrix on the left hand side has an inherent
eigenvalue-eigenvector decomposition, where each column inMXjX� corresponding to fXjX�(�jx�k)
is an eigenvector and the corresponding eigenvalue is fY jX�(yjx�k). In order to achieve a unique
decomposition, we require that the eigenvalues are distinctive, and that certain location of
distribution fXjX�(�jx�k) reveals the value of x�k. We assume

Assumption 3 There exists a function ! (�) such that E [! (Y ) jX� = x�] 6= E [! (Y ) jX� = ex�]
for any x� 6= ex� in X �.

Assumption 4 One of the following conditions holds:
1) fXjX�

�
x1jx�j

�
> fXjX�

�
x1jx�j+1

�
;

2) fXjX� (x�jx�) > fXjX� (ex�jx�) for any ex� 6= x� 2 X �;

3) There exists a function ! (�) such that E
�
! (Y ) jX� = x�j

�
> E

�
! (Y ) jX� = x�j+1

�
:

The function ! (�) may be user-speci�ed, such as ! (y) = y, ! (y) = 1(y > y0), or ! (y) =
�(y � y0) for some given y0. We summarize the results as follows:

Theorem 1 (Hu (2008)) Under assumptions 1, 2, 3, and 4, the 2.1-measurement model
in De�nition 3 is nonparametrically identi�ed in the sense that the joint distribution of the
three variables (X; Y; Z), i.e., fX;Y;Z, uniquely determines the joint distribution of the four
variables (X; Y; Z;X�), i.e., fX;Y;Z;X�, which satis�es

fX;Y;Z;X� = fXjX�fY jX�fZjX�fX� : (26)

Theorem 1 provides an exact identi�cation result in the sense that the number of unknown
probabilities is equal to the number of observed probabilities in equation (22). Assumption
1 implies that there are 2K2�1 observed probabilities in fX;Y;Z (x; y; z) on the left hand side
of equation (22). On the right hand side, there are K2 �K unknown probabilities in each
of fXjX�(xjx�) and fZjX�(zjx�), K � 1 in fX�(x�), and K in fY jX�(yjx�) when Y is binary,
which sum up to 2K2�1:More importantly, this point identi�cation result is nonparametric,
global, and constructive. It is constructive in the sense that an estimator may directly mimic
the identi�cation procedure.
When supports of measurementsX and Z are larger than that of X�, we may still achieve

the identi�cation with minor modi�cation of the conditions. Suppose supports X and Z are
larger than X �, i.e., X = fx1; x2; :::; xLg, Z = fz1; z2; :::; zJg, and X � = fx�1; x�2; :::; x�Kg with
L > K and J > K. By combining some values in the supports of X and Z, we may �rst
transform X and Z to eX and eZ so that they share the same support X � as X�. We may then
identify f eXjX� and f eZjX� by Theorem 1 with those assumptions imposed on

� eX; Y; eZ;X�
�
.

However, the joint distribution fX;Y;Z;X� may still be of interest. In order to identify fZjX�
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or MZjX�, we may consider the joint distribution

f eX;Z =
X
x�2X �

f eXjX�fZjX�fX� ; (27)

which is equivalent to
M eX;Z =M eXjX�DX�MT

ZjX�. (28)

Since we have identi�ed M eXjX� and DX� ; we may identify MZjX� ; i.e., fZjX� ; by inverting
M eXjX�. Similar argument holds for identi�cation of fXjX�. This discussion implies that
Assumptions 1 is not necessary. We keep it in Theorem 1 in order to show the minimum
data information needed for nonparametric identi�cation of the 2.1-measurement model.

2.3.2 A geometric illustration

Given that a matrix is a linear transformation from one vector space to another, we provide
a geometric interpretation of the identi�cation strategy. Consider K = 3 and de�ne

�!p Xjx�i =
�
fXjX�(x1jx�i ); fXjX�(x2jx�i ); fXjX�(x3jx�i )

�T
(29)

�!p Xjz =
�
fXjZ(x1jz); fXjZ(x2jz); fXjZ(x3jz)

�T
:

We have for each z

�!p Xjz =
3X
i=1

wzi
��!p Xjx�i � (30)

with wzi = fX�jZ(x
�
i jz) and wz1 + wz2 + wz3 = 1. That means each observed distribution of X

conditional on Z = z is a weighted average of �!p Xjx�1 ;
�!p Xjx�2 , and

�!p Xjx�3 . Similarly, if we
consider the subsample with Y = 1, we have

�!p y1;Xjz =
3X
i=1

wzi
�
�i
�!p Xjx�i

�
(31)

where �i = fY jX�(1jx�i ) and

�!p y1;Xjz =
�
fY;XjZ(1; x1jz); fY;XjZ(1; x2jz); fY;XjZ(1; x3jz)

�T
: (32)

That means vector �!p y1;Xjz is a weighted average of
�
�i
�!p Xjx�i

�
for i = 1; 2; 3; where weights

wzi are the same as in equation (30) from the whole sample. Notice that the direction of basis
vectors

�
�i
�!p Xjx�i

�
corresponding to the subsample with Y = 1 is the same as the direction

of basis vectors �!p Xjx�i corresponding to the whole sample. The only di¤erence is the length
of the basis vectors. Therefore, if we consider a mapping from the vector space spanned
by �!p Xjz to one spanned by �!p y1;Xjz, the basis vectors don�t vary in direction so that they
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are called eigenvectors, and the variation in the length of these basis vectors is given by the
corresponding eigenvalues, i.e., �i. This mapping is in factMX;y;ZM

�1
X;Z on the left hand side

of equation (25). The variation in variable Z guarantees that such a mapping exists. Figure
1 illustrates this framework.

2.3.3 The continuous case

In the case where X; Z, and X� are continuous, the identi�cation strategy may still work
by replacing matrices with integral operators. We state assumptions as follows:

Assumption 5 The joint distribution of (X; Y; Z;X�) admits a bounded density with respect
to the product measure of some dominating measure de�ned on Y and the Lebesgue measure
on X � X � �Z. All marginal and conditional densities are also bounded.

Assumption 6 The operators LXjX� and LZjX are injective.6

Assumption 7 For all x� 6= ex� in X �, the set
�
y : fY jX� (yjx�) 6= fY jX� (yjex�)	 has positive

probability.

Assumption 8 There exists a known function M such that M
�
fXjX� (�jx�)

�
= x� for all

x� 2 X �.

The functional M [�] may be mean, mode, median, or another quantile, which maps a prob-
ability distribution to a point on the real line. We summarize the results as follows:

Theorem 2 (Hu and Schennach (2008)) Under assumptions 5, 6, 7, and 8, the 2.1-measurement
model in De�nition 3 with a continuous X� is nonparametrically identi�ed in the sense that
the joint distribution of the three variables (X; Y; Z), fX;Y;Z, uniquely determines the joint
distribution of the four variables (X; Y; Z;X�), fX;Y;Z;X�, which satis�es equation (26).

This result implies that if we observe an additional binary indicator of the latent variable
together with two measurements, we may relax the additivity and the independence as-
sumptions in equation (16) and achieve nonparametric identi�cation of very general models.
Comparing the model in equation (16) and the 2.1-measurement model, which are both point
identi�ed, the latter is much more �exible to accommodate various economic models with
latent variables.

6LZjX is de�ned in the same way as LXjX� in equation (7).
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Figure 1: Eigenvalue-eigenvector decomposition in the 2.1-measurement model.

Eigenvalue: �i = fY jX�(1jx�i ):

Eigenvector: �!pi = �!p Xjx�i =
�
fXjX�(x1jx�i ); fXjX�(x2jx�i ); fXjX�(x3jx�i )

�T
:

Observed distribution in the whole sample:
�!q 1 = �!p Xjz1 =

�
fXjZ(x1jz1); fXjZ(x2jz1); fXjZ(x3jz1)

�T
:

Observed distribution in the subsample with Y = 1 :
�!q y1 = �!p y1;Xjz1 =

�
fY;XjZ(1; x1jz1); fY;XjZ(1; x2jz1); fY;XjZ(1; x3jz1)

�T
:
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2.3.4 An illustrative example

Here we use a simple example to illustrate the intuition of the identi�cation results. Consider
a labor supply model for college graduates, where Y is the 0-1 dichotomous employment
status, X is the college GPA, Z is the SAT scores, and X� is the latent ability type. We are
interested in the probability of being employed given di¤erent ability, i.e., Pr (Y = 1jX�) ;

and the marginal probability of the latent ability fX�.
We consider a simpli�ed version of the 2.1-measurement model with

Pr (Y = 1jX�) 6= Pr (Y = 1) (33)

X = X� + �

Z = X�0 + �0

where (X�; �; �0) are mutually independent. We may interpret the error term �0 as a perfor-
mance shock in the SAT test. If coe¢ cients  and 0 are known, we may use X= and Z=0

as the two measurements in equation (16) to identify the marginal distribution of ability
without using the binary measurement Y . As shown in Hu and Sasaki (forthcoming), we
may identify all the elements of interest in this model. Here we focus on the identi�cation
of the coe¢ cients  and 0 to illustrate the intuition of the identi�cation results.
Since X� is unobserved, we normalize 0 = 1 without loss of generality. A naive estimator

for  may be from the following regression equation

X = Z + (�� �0) : (34)

The OLS estimator corresponds to cov(X;Z)
var(Z)

=  var(X�)
var(X�)+var(�0) , which is the well-known atten-

uation result with
��� cov(X;Z)var(Z)

��� < jj. This regression equation su¤ers an endogeneity problem
because the regressor, the SAT scores Z, does not perfectly re�ect the ability X� and is neg-
atively correlated with the performance shock �0 in the regression error (�� �0). When an
additional variable Y is available even if it is binary, however, we may use Y as an instrument
to solve the endogeneity problem and identify  as

 =
E [XjY = 1]� E [XjY = 0]
E [ZjY = 1]� E [ZjY = 0] : (35)

This is literally the two-stage least square estimator. The regressor, SAT scores Z, is endoge-
nous in both the employed subsample and the unemployed subsample. But the di¤erence
between the two subsamples may reveal how the observed GPA X is associated with ability
X� through .
The intuition of this identi�cation strategy is that when we compare the employed (Y =

1) subsample with the unemployed (Y = 0) subsample, the only di¤erent element on the
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right hand side of the equation below is the marginal distribution of ability, i.e., fX�jY=1 and
fX�jY=0 in

fX;ZjY=y =

Z
X �
fXjX�fZjX�fX�jY=ydx

�: (36)

If we naively treat SAT scores Z as latent ability X� to study the relationship between
college GPA X and latent ability X�, we may end up with a model with an endogeneity
problem as in equation (34). However, the conditional independence assumption guarantees
that the change in the employment status Y "exogenously" varies with latent ability X�, and
therefore, with the observed SAT scores Z, but does not vary with the performance shock
�0, which is the cause of the endogeneity problem. Therefore, the employment status Y may
serve as an instrument to achieve identi�cation. Notice that this argument still holds if we
compare the employed subsample with the whole sample, which is what we use in equations
(30) and (31) in Section 2.3.2.7

Furthermore, an arguably surprising result is that such identi�cation of the 2.1 measure-
ment model may still be nonparametric and global even if the instrument Y is binary. This
is because the conditional independence assumption reduces the joint distribution fX;Y;Z;X�

to distributions of each measurement conditional the latent variable
�
fXjX� ; fY jX� ; fZjX�

�
,

and the marginal distribution fX� as in equation (26). The joint distribution fX;Y;Z;X� is a
four-dimensional function, while

�
fXjX� ; fY jX� ; fZjX�

�
are three two-dimensional functions.

Therefore, the number of unknowns are greatly reduced under the conditional independence
assumption.

2.4 A 3-measurement model

We introduce the 2.1-measurement model to show the least data information needed for
nonparametric identi�cation of a measurement error model. Given that a random variable
can always be transformed to a 0-1 dichotomous variable, the identi�cation result may still
hold when there are three measurements of the latent variable. In this section, we introduce
the 3-measurement model to emphasize that three observables may play symmetric roles so
that it doesn�t matter which measurement is called a dependent variable, a measurement,
or an instrument variable. We de�ne this case as follows:

De�nition 4 A 3-measurement model contains three measurements X 2 X ; Y 2 Y ; and
Z 2 Z of the latent variable X� 2 X � satisfying

X ? Y ? Z j X�; (37)

7Another way to look at this is that  can also be expressed as

 =
E [XjY = 1]� E [X]
E [ZjY = 1]� E [Z] :
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i.e., (X; Y; Z) are jointly independent conditional on X�:

Based on the results for the 2.1-measurement model, nonparametric identi�cation of the
joint distribution fX;Y;Z;X� in the 3-measurement model is feasible because one may always
replace Y with a 0-1 binary indicator, e.g., I (Y > EY ). In fact, we intentionally write
the results in section 2.3 in such a way that the assumptions and the theorems remain the
same after replacing the binary support f0; 1g with a general support Y for variable Y . An
important observation here is that the three measurements (X; Y; Z) play symmetric roles in
the 3-measurement model. We can impose di¤erent restrictions on di¤erent measurements,
which makes one look like a dependent variable, one like a measurement, and another like
an instrument. But these "assignments" are arbitrary. On the one hand, the researcher
may decide which "assignments" are reasonable based on the economic model. On the other
hand, it doesn�t matter which variable is called a dependent variable, a measurement, or an
instrument variable in terms of identi�cation. We summarize the results as follows:

Corollary 1 Theorems 1 and 2 both hold for the 3-measurement model in De�nition 4.

For example, we may consider a hidden Markov model containing fXt; X
�
t g, where fX�

t g
is a latent �rst-order Markov process, i.e.,

X�
t+1 ? fX�

sgs�t�1 j X�
t : (38)

In each period, we observe a measurement Xt of the latent X�
t satisfying

Xt ? fXs; X
�
sgs 6=t j X�

t : (39)

This is the so-called local independence assumption, where a measurement Xt is independent
of everything else conditional the latent variable X�

t in the sample period. The relationship
among the variables may be shown in the �ow chart as follows.

Xt�1 Xt Xt+1

" " "
�! X�

t�1 �! X�
t �! X�

t+1 �!

Consider a panel data set, where we observed three periods of data fXt�1; Xt; Xt+1g. The
conditions in equations (38) and (39) imply

Xt�1 ? Xt ? Xt+1 j X�
t ; (40)

i.e., (Xt�1; Xt; Xt+1) are jointly independent conditional on X�
t : Although the original model

is dynamic, it may be reduced to a 3-measurement model as in equation (40). Given Corollary
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1, we may nonparametrically identify fXt+1jX�
t
, fXtjX�

t
, fXt�1jX�

t
; and fX�

t
. Under a stationarity

assumption that fXt+1jX�
t+1
= fXtjX�

t
, we may then identify the Markov kernel fX�

t+1jX�
t
from

fXt+1jX�
t
=

Z
X �
fXt+1jX�

t+1
fX�

t+1jX�
t
dx�t+1; (41)

by inverting the integral operator corresponding to fXt+1jX�
t+1
.8 Therefore, it doesn�t really

matter which one of fXt�1; Xt; Xt+1g is treated as measurement or instrument for X�
t . Ap-

plications of nonparametric identi�cation of such a hidden Markov model or, in general, the
3-measurement model can be found in Hu, Kayaba, and Shum (2013), Feng and Hu (2013),
Wilhelm (2013), and Hu and Sasaki (2014), etc.

2.5 A dynamic measurement model

A natural extension to the hidden Markov model in equations (38)-(39) is to relax the local
independence assumption in equation (39) when more periods of data are available. For
example, we may allow direct serial correlation of observed measurement fXtg. To this end,
we assume the following:

Assumption 9 The joint process fXt; X
�
t g is a �rst-order Markov process. Furthermore,

the Markov kernel satis�es

fXt;X�
t jXt�1;X�

t�1
= fXtjX�

t ;Xt�1fX�
t jXt�1;X�

t�1
: (42)

Equation (42) is the so-called limited feedback assumption in Hu and Shum (2012). It implies
that the latent variable in current period has summarized all the information on the latent
part of the process. The relationship among the variables may be described as follows:

�! Xt�2 �! Xt�1 �! Xt �! Xt+1 �!
& l & l & l & l &
�! X�

t�2 �! X�
t�1 �! X�

t �! X�
t+1 �!

For simplicity, we focus on the discrete case and assume

Assumption 10 Xt and X�
t share the same support X �= fx�1; x�2; :::; x�Kg.

We de�ne for any �xed (xt; xt�1)

MXt+1;xtjxt�1;Xt�2 =
�
fXt+1;XtjXt�1;Xt�2(xi; xtjxt�1; xj)

�
i=1;2;:::;K;j=1;2;:::;K

(43)

MXtjxt�1;Xt�2 =
�
fXtjXt�1;Xt�2(xijxt�1; xj)

�
i=1;2;:::;K;j=1;2;:::;K

:

8Without stationarity, one may use one more period of data, i.e., Xt+2, to identify fXt+1jX�
t+1

from the
joint distribution of (Xt; Xt+1; Xt+2) :
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Assumption 11 (i) for any xt�1 2 X , MXtjxt�1;Xt�2 is invertible.
(ii) for any xt 2 X , there exists a (xt�1; xt�1; xt) such thatMXt+1;xtjxt�1;Xt�2,MXt+1;xtjxt�1;Xt�2,

MXt+1;xtjxt�1;Xt�2, and MXt+1;xtjxt�1;Xt�2 are invertible and that for all x
�
t 6= ex�t in X �

�xt�xt�1 ln f (x
�
t ) 6= �xt�xt�1 ln f (ex�t )

where �xt�xt�1 ln f (x
�
t ) is de�ned as

�xt�xt�1 ln f (x
�
t ) : =

�
ln fXtjX�

t ;Xt�1 (xtjx
�
t ; xt�1)� ln fXtjX�

t ;Xt�1 (xtjx
�
t ; xt�1)

�
�
�
ln fXtjX�

t ;Xt�1 (xtjx
�
t ; xt�1)� ln fXtjX�

t ;Xt�1 (xtjx
�
t ; xt�1)

�
:

Assumption 12 For any xt 2 X , E [Xt+1jXt = xt; X
�
t = x

�
t ] is increasing in x

�
t :

Assumption 13 The Markov kernel is stationary, i.e.,

fXt;X�
t jXt�1;X�

t�1
= fX2;X�

2 jX1;X�
1
: (44)

We summarize the results as follows:

Theorem 3 (Hu and Shum (2012)) Under assumptions 9, 10, 11, 12, and 13, the joint dis-
tribution of four periods of data fXt+1;Xt;Xt�1;Xt�2 uniquely determines the Markov transition
kernel fXt;X�

t jXt�1;X�
t�1
and the initial condition fXt�2;X�

t�2
.

For the continuous case and other variations of the assumptions, such as non-stationarity,
I refer to Hu and Shum (2012) for details. A simple extension of this result is the case
where X�

t is discrete and Xt is continuous. As in the discussion following Theorem 1, the
identi�cation results still apply with minor modi�cation of the assumptions.
In the case where X�

t = X� is time-invariant, the condition in equation (42) is not re-
strictive and the Markov kernel becomes fXtjXt�1;X�. For such a �rst-order Markov model,
Kasahara and Shimotsu (2009) suggest to use two periods of data to break the interde-
pendence and use six periods of data to identify the transition kernel. For �xed Xt = xt,
Xt+2 = xt+2, Xt+4 = xt+4, it can be shown that Xt+1; Xt+3; Xt+5 are independent conditional
on X� as follows:

fXt+5;xt+4;Xt+3;xt+2;Xt+1;xt =
X
x�2X �

fXt+5jxt+4;X�fxt+4;Xt+3jxt+2;X�fxt+2:Xt+1;xt;X� :

The model then falls into the framework of the 3-measurement model, where (Xt+1; Xt+3; Xt+5)

may serve as three measurements for each �xed (xt; xt+2; xt+4) to achieve identi�cation.
However, the 2.1-measurement model implies that the minimum data information for non-
parametric identi�cation is in fact "2.1 measurements" instead of "3 measurements". That
is a reason why such a model, even with a time-varying unobserved state variable, can be
identi�ed using only four periods of data as in Hu and Shum (2012).
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2.5.1 Illustrative Examples

In this section, we use a simple example to illustrate the identi�cation strategy in Theorem
3, which is based on Carroll, Chen, and Hu (2010). Consider estimation of a consumption
equation using two samples. Let Y be the consumption, X� be the latent true income, Z be
the family size, and S 2 fs1; s2g be a sample indicator. The data structure may be described
as follows:

fY;XjZ;S =

Z
fY jX�;ZfXjX�;SfX�jZ;Sdx

�: (45)

The consumption model is described by fY jX�;Z , where consumption depends on income and
family size. The self-reported income X may have di¤erent distributions in the two samples.
The incomeX� may be correlated with the family size Z and the income distribution may also
be di¤erent in the two samples. Carroll, Chen, and Hu (2010) provide su¢ cient conditions
for nonparametric identi�cation of all the densities on the right hand side of equation (45).
To illustrate the identi�cation strategy, we consider the following parametric speci�cation

Y = X�� + Z + � (46)

X = X� + S0 + �

X� = g(Z; S) + u;

where (�; ; 0) are unknown parameters. We use an unspeci�ed function g to stress the
correlation, instead of causality, between the income X� and the family size Z.
We focus on the identi�cation of �. If we naively treat X as the latent true income X�,

we have a model with endogeneity as follows:

Y = (X � S0 � �) � + Z + � (47)

= X� + Z � S0� + (� � ��) :

The regressor X is endogenous because it is correlated with the measurement error �. Note
that the income X� may vary with the family size Z and the sample indicator S, which are
independent of �; the source of the endogeneity. Let (z0; z1) and (s0; s1) be possible values
of Z and S, respectively. Since E [�jZ; S] = E [�jZ; S] = 0, we may have a di¤erence-in-
di¤erence estimator for �

� =
[E(Y jz1; s1)� E(Y jz0; s1)]� [E(Y jz1; s0)� E(Y jz0; s0)]
[E(Xjz1; s1)� E(Xjz0; s1)]� [E(Xjz1; s0)� E(Xjz0; s0)]

(48)

The fact that there is no interaction term of Z and S on the right hand side of equation
(47) is not due to our parametric speci�cation but because of the conditional independence
in equation (45).
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In the dynamic model in Theorem 3, we have

fXt+1;Xt;Xt�1;Xt�2 =
X
x�

fXt+1jXt;X�
t
fXtjX�

t ;Xt�1fX�
t ;Xt�1;Xt�2 : (49)

To make it analogical to equation (45), we may re-write equation (49) as

fXt+1;Xt�2jXt;Xt�1 =
X
x�

fXt+1jX�
t ;Xt

fXt�2jX�
t ;Xt�1fX�

t jXt;Xt�1 : (50)

Similar to the previous example on consumption, suppose we naively treat Xt�2 as X�
t

to study the relationship between Xt+1 and (Xt; X
�
t ), say Xt+1 = H (X�

t ; Xt; �), where �
is an independent error term. And suppose the conditional density fXt�2jX�

t ;Xt�1 implies
Xt�2 = G (X�

t ; Xt�1; �), where � represents an independent error term. Suppose we can
replace X�

t by G
�1 (Xt�2; Xt�1; �) to obtain

Xt+1 = H
�
G�1 (Xt�2; Xt�1; �) ; Xt; �

�
; (51)

where Xt�2 is endogenous and correlated with �. The conditional independence in equation
(50) implies that the variation in Xt and Xt�1 may vary with X�

t , but not with the error
�. However, the variation in Xt may change the relationship between the future Xt+1 and
the latent variable X�

t , while the variation in Xt�1 may change the relationship between the
early Xt�2 and the latent X�

t . Therefore, a "joint" second-order variation in (Xt; Xt�1) may
lead to an "exogenous" variation in X�, which may solve the endogeneity problem. Thus,
our identi�cation strategy may be considered as a nonparametric version of a di¤erence-in-
di¤erence argument.
For example, let Xt stand for the choice of health insurance between a high coverage plan

and a low coverage plan. And X�
t stands for the good or bad health status. The Markov

process fXt; X
�
t g describes the interaction between insurance choices and health status. We

consider the joint distribution of four periods of insurance choices fXt+1;Xt;Xt�1;Xt�2. If we
compare a subsample with (Xt; Xt�1) = (high, high) and a subsample with and (Xt; Xt�1) =

(high, low), we should be able to "di¤erence out" the direct impact of health insurance choice
Xt on the choice Xt+1 in next period in fXt+1jX�

t ;Xt
. Then, we may repeat such a comparison

again with (Xt; Xt�1) = (low, high) and (Xt; Xt�1) = (low, low). In both comparisons, the
impact of changes in insurance choice Xt�1 described in fXt�2jX�

t ;Xt�1 is independent of the
choice Xt. Therefore, the di¤erence in the di¤erences from those two comparisons above
may lead to exogenous variation in X�

t as described in fX�
t jXt;Xt�1, which is independent of

the endogenous error due to naively using Xt�2 as X�
t . Therefore, the second-order joint

variation in observed insurance choices (Xt; Xt�1) may serve as an instrument to solve the
endogeneity problem caused by using the observed insurance choice Xt�2 as a proxy for the
unobserved health condition X�

t .
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2.6 Estimation

This paper focuses on nonparametric identi�cation of models with latent variables and its
applications in applied microeconomic models. Given the length limit of the paper, we only
provide a brief description of estimators proposed for the models above. All the identi�cation
results above are at the distribution level in the sense that probability distribution functions
involving latent variables are uniquely determined by probability distribution functions of
observables, which are directly estimable from a random sample of observables. Therefore,
a maximum likelihood estimator is a straightforward choice for these models.
Consider the 2.1-measurement model in Theorem 2, where the observed density is asso-

ciated with the unobserved ones as follows:

fX;Y;Z (x; y; z) =

Z
X �
fXjX�(xjx�)fY jX�(yjx�)fZjX�(zjx�)fX�(x�)dx�: (52)

Our identi�cation results provide conditions under which this equation has a unique solution�
fXjX� ; fY jX� ; fZjX� ; fX�

�
. Suppose that Y is the dependent variable and the model of interest

is described by a parametric conditional density function as

fY jX�(yjx�) = fY jX�(yjx�; �): (53)

Therefore, For a given i.i.d. sample fXi; Yi; Zigi=1;2;:::;N , we may use a sieve maximum
likelihood estimator (Shen (1997) and Chen and Shen (1998)) based on

�b�; bfXjX� ; bfZjX� ; bfX�

�
= argmax

(�;f1;f2;f3)2AN

1

N

NX
i=1

ln

Z
X �
f1(Xijx�)fY jX�(Yijx�; �)f2(Zijx�)f3(x�)dx�;

(54)
whereAN is approximating sieve spaces which contain truncated series as parametric approx-
imations to densities

�
fXjX� ; fZjX� ; fX�

�
. We may impose restrictions, such as Assumption

8, on the sieve spaces AN . The truncated series in the sieve spaces AN are usually linear
combinations of known basis functions, such as polynomials or splines, in which the coef-
�cients are treated as unknown parameters. The number of coe¢ cients may increase with
the sample size N , which makes the approximation more �exible with a larger sample size.
A useful result worth mentioning is that the parametric part of the model may converge
at a fast rate, i.e., b� may be pn consistent and asymptotically normally distributed under
suitable assumptions. We refer to Hu and Schennach (2008) and its supplementary materials
for more discussion on estimation in this framework.
Although the sieve MLE in (54) is quite general and �exible, a few identi�cation results

in this section provide closed-form expressions for the unobserved components as functions
of observed distribution functions, which may lead to straightforward closed-form estima-
tors. In the case where X� is continuous, for example, Li and Vuong (1998) suggest that the
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distribution of the latent variable fX� in equation (17) may be estimated using Kotlarski�s
identity with characteristic functions replaced by corresponding empirical characteristic func-
tions. In general, one may consider a nonlinear regression model in the framework of the
3-measurement model as

Y = g1(X
�) + �, E [�jX�] = 0 (55)

X = g2 (X
�) + �

Z = g3 (X
�) + �0;

where � and �0 are independent of X� and �. Since X� is unobserved, we may normalize
g3 (X

�) = X�. Schennach (2004b) provides a closed-form estimator of g1(�) in the case
where g2 (X�) = X� using Kotlarski�s identity.9 Hu and Sasaki (forthcoming) generalize
that estimator to the case where g2 (�) is a polynomial. Whether a closed-form estimator of
g1 (�) exists or not with a general g2 (�) is a challenging and open question for future research.
In the case where X� is discrete as Theorem 1, the identi�cation strategy may also

lead to a closed-form estimator for the unknown probabilities in the sense that one may
mimic the identi�cation procedure to solve for the unknowns. The eigenvector-eigenvalue
decomposition in equation (25) may be considered as a procedure to minimize the absolute
di¤erence between the left hand side and the right hand side of equations (24) and (25),
in fact, to zero. With a �nite sample, certain estimated probabilities might be outside
[0; 1] : One remedy is to minimize the absolute di¤erence under the restrictions that all the
probabilities are between 0 and 1. When the sample size becomes larger, the probability
of using this remedy should be smaller when all the assumptions hold. This closed-form
estimator performs well in empirical studies, such as An, Baye, Hu, Morgan, and Shum
(2012), An, Hu, and Shum (2010), Feng and Hu (2013), and Hu, Kayaba, and Shum (2013).
Such closed-form estimators have their advantages that there are much fewer nuisance

parameters than indirect estimators, such as the sieve MLE, and that their computation
does not rely on optimization algorithms, which usually involve many iterations and are
time-consuming. An optimization algorithm can only guarantee a local maximum or mini-
mum, while a closed-form estimator is a global one by construction. Although a closed-form
estimator may not always exist, it is much more straightforward and transparent, if avail-
able, than an indirect estimator. Such closed-form estimation may be a challenging but
useful approach for future research.

9Schennach (2007) also provides a closed-form estimator for a similar nonparametric regression model
using a generalized function approach.
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3 Applications in microeconomic models with latent
variables

Amajor breakthrough in the measurement error literature is the nonparametric identi�cation
of the 2.1-measurement model in section 2.3, which allows a very �exible relationship between
observables and unobservables. The generality of these results enables researchers to tackle
many important problems involving latent variables, such as belief, productivity, unobserved
heterogeneity, and �xed e¤ects, in the �eld of empirical industrial organization and labor
economics.

3.1 Auctions with unobserved heterogeneity

Unobserved heterogeneity has been a concern in the estimation of auction models for a long
time. Li, Perrigne, and Vuong (2000) and Krasnokutskaya (2011) use the identi�cation
result of 2-measurement model in equation (16) to estimate auction models with separable
unobserved heterogeneity. In a �rst-price auction indexed by t for t = 1; 2; :::; T with zero
reserve price, there are N symmetric risk-neutral bidders. For i = 1; 2; :::; N , each bidder
i�s cost is assumed to be decomposed into two independent factors as s�t � xi; where xi is
her private value and s�t is an auction-speci�c state or unobserved heterogeneity. With this
decomposition of the cost, it can be shown that equilibrium bidding strategies bit can also
be decomposed as follows

bit = s
�
tai; (56)

where ai = ai (xi) represents equilibrium bidding strategies in the auction with s�t = 1. This
falls into the 2-measurement model given that

b1t ? b2t j s�t : (57)

With such separable unobserved heterogeneity, one may consider the joint distribution of
two bids as follows:

ln b1t = ln s�t + ln a1 (58)

ln b2t = ln s�t + ln a2;

where one may use Kotlarski�s identity to achieve nonparametric identi�cation of the distri-
butions of ln s�t and ln ai. Further estimation of the value distribution from the distribution
of ai (xi) can be found in Guerre, Perrigne, and Vuong (2000).
Hu, McAdams, and Shum (2009) consider auction models with nonseparable unobserved

heterogeneity. They assume the private values xi are independent conditional on an auction-
speci�c state or unobserved heterogeneity s�t . Based on the conditional independence of the
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values, the conditional independence of the bids holds, i.e.,

b1t ? b2t ? b3t j s�t : (59)

This falls into a 3-measurement model, where the three measurements, i.e., bids, are inde-
pendent conditional on the unobserved heterogeneity. Nonparametric identi�cation of the
model then follows.

3.2 Auctions with unknown number of bidders

Since the earliest papers in the structural empirical auction literature, researchers have had
to grapple with a lack of information on N�, the number of potential bidders in the auction,
which is an indicator of market competitiveness. The number of potential bidders may be
di¤erent from the observed number of bidders A due to binding reserve prices, participation
costs, or misreporting errors. When reserve prices are binding, those potential bidders whose
values are less than the reserve price would not participate so that the observed number of
bidders A is smaller than that of potential bidders N�.
In �rst-price sealed-bid auctions under the symmetric independent private values (IPV)

paradigm, each of N� potential bidders draws a private valuation from the distribution
FN�(x) with support [x; x]. The bidders observe N�, which is latent to researchers. The
reserve price r is assumed to be known and �xed across all auctions with r > x. For
each bidder i with valuation xi, the equilibrium bidding function b (xi; N�) can be shown as
follows:

b(xi;N
�) =

(
xi �

R xi
r FN� (s)

N��1ds

FN� (xi)N
��1 for xi � r

0 for xi < r.
(60)

The observed number of bidders is A =
PN�

i=1 1 (xi > r). In a random sample, we observe
fAt; b1t; b2t; : : : ; bAttg for each auction t = 1; 2; :::; T . One can show that

f (At; b1t; b2tjb1t > r; b2t > r) (61)

=
X
N�

f (AtjAt � 2; N�) f (b1tjb1t > r;N�) f (b2tjb2t > r;N�) f (N�jb1t > r; b2t > r) :

That means two bids and the observed number of bidders are independent conditional on
the number of potential bidders, which forms a 3-measurement model. In addition, the fact
that At � N� provides an ordering of the eigenvectors corresponding to fAtjN�

t
: As shown in

An, Hu, and Shum (2010), the bid distribution, and therefore, the value distribution, may be
nonparametrically identi�ed. Furthermore, such identi�cation is constructive and directly
leads to an estimator.
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3.3 Multiple equilibria in incomplete information games

Xiao (2013) considers a static simultaneous move game, in which player i for i = 1; 2; :::; N
chooses an action ai from a choice set f0; 1; :::; Kg. Let a�i denote actions of the other
players, i.e., a�i = fa1; a2; :::; ai�1; ai+1; :::; aNg. The player i�s payo¤ is speci�ed as

ui (ai; a�i; �i) = �i (ai; a�i) + �i (ai) ; (62)

where �i (k) for k 2 f0; 1; :::; Kg is a choice-speci�c payo¤ shock for player i. Here we omit
other observed state variables. These shocks �i (k) are assumed to be private information to
player i, while the distribution of �i (k) is common knowledge to all the players. A widely
used assumption is that the payo¤ shocks �i (k) are independent across all the actions k and
all the players i. Let Pr (a�i) be player i�s belief of other player�s actions. The expected
payo¤ of player i from choosing action ai is thenX

a�i

�i (ai; a�i) Pr (a�i) + �i (ai) � �i (ai) + �i (ai) (63)

The Bayesian Nash Equilibrium is de�ned as a set of choice probabilities Pr (ai) such that

Pr (ai = k) = Pr

��
�i (k) + �i (k) > max

j 6=k
�i (j) + �i (j)

��
: (64)

The existence of such an equilibrium is guaranteed by a Brouwer�s �xed point theorem.
Given an equilibrium, the mapping between the choice probabilities and the expected payo¤
function has also be established by Hotz and Miller (1993).
However, multiple equilibria may exist for this problem, which means the observed choice

probabilities may be a mixture from di¤erent equilibria. Let e� denote the index of equi-
libria. Under each equilibrium e�, the players�actions ai are independent because of the
independence assumption of private information, i.e.,

a1 ? a2 ? ::: ? aN j e�: (65)

Therefore, the observed correlation among the actions contains information on multiple
equilibria. If the support of actions is larger than that of e�, one may simply use three
players�actions as three measurements for e�. Otherwise, if there are enough players, one may
partition the players into three groups and use the group actions as the three measurements.
Xiao (2013) also extends this identi�cation strategy to dynamic games.
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3.4 Dynamic learning models

How economic agents learn from past experience has been an important issue in both em-
pirical industrial organization and labor economics. The key di¢ culty in the estimation of
learning models is that beliefs are time-varying and unobserved in the data. Hu, Kayaba,
and Shum (2013) use bandit experiments to nonparametrically estimate the learning rule us-
ing auxiliary measurements of beliefs. In each period, an economic agent is asked to choose
between two slot machines, which have di¤erent winning probabilities. Based on her own
belief on which slot machine has a higher winning probability, the agent makes her choice of
slot machine and receives rewards according to its winning probability. Although she doesn�t
know which slot machine has a higher winning probability, the agent is informed that the
winning probabilities may switch between the two slot machines.
In additional to choices Yt and rewards Rt, researchers also observe a proxy Zt for the

agent�s belief X�
t . Recorded by a eye-tracker machine, the proxy is how much more time the

agent looks at one slot machine than at the other. Under a �rst-order Markovian assumption,
the learning rule is described by the distribution of the next period�s belief conditional
on previous belief, choice, and reward, i.e., Pr

�
X�
t+1jX�

t ; Yt; Rt
�
. They assume that the

choice only depends the belief and that the proxy Zt is also independent of other variables
conditional on the current belief X�

t . The former assumption is motivated by a fully-rational
Bayesian belief-updating rule, while the latter is a local independence assumption widely-
used in the measurement error literature. These assumptions imply a 2.1-measurement model
with

Zt ? Yt ? Zt�1 j X�
t : (66)

Therefore, the proxy rule Pr (ZtjX�
t ) is nonparametrically identi�ed. Under the local inde-

pendence assumption, one may identify distribution functions containing the latent belief
X�
t from the corresponding distribution functions containing the observed proxy Zt. That

means the learning rule Pr
�
X�
t+1jX�

t ; Yt; Rt
�
may be identi�ed from the observed distribution

Pr (Zt+1; Yt; Rt; Zt) through

Pr (Zt+1; Yt; Rt; Zt) (67)

=
X
X�
t+1

X
X�
t

Pr
�
Zt+1jX�

t+1

�
Pr (ZtjX�

t ) Pr
�
X�
t+1; X

�
t ; Yt; Rt

�
:

The nonparametric learning rule they found implies that agents are more reluctant to �update
down�following unsuccessful choices, than �update up�following successful choices. That
leads to the sub-optimality of this learning rule in terms of pro�ts.
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3.5 Unemployment and labor market participation

Unemployment rates may be one of the most important economic indicators. The o¢ cial
US unemployment rates are estimated using self-reported labor force statuses in the Current
Population Survey (CPS). It is known that ignoring misreporting errors in the CPS may
lead to biased estimates. Feng and Hu (2013) use a hidden Markov approach to identify
and estimate the distribution of the true labor force status. Let X�

t and Xt denote the true
and self-reported labor force status in period t. They merge monthly CPS surveys and are
able to obtain a random sample fXt+1; Xt; Xt�9gi for i = 1; 2; :::; N . Using Xt�9 instead of
Xt�1 may provide more variation in the observed labor force status. They assume that the
misreporting error only depends on the true labor force status in the current period, and
therefore,

Pr (Xt+1; Xt; Xt�9) (68)

=
X
X�
t+1

X
X�
t

X
X�
t�9

Pr
�
Xt+1jX�

t+1

�
Pr (XtjX�

t ) Pr
�
Xt�9jX�

t�9
�
Pr
�
X�
t+1; X

�
t ; X

�
t�9
�
:

With three unobservables and three observables, nonparametric identi�cation is not feasible
without further restrictions. They then assume that Pr

�
X�
t+1jX�

t ; X
�
t�9
�
= Pr

�
X�
t+1jX�

t

�
,

which is similar to a �rst-order Markov condition. Under these assumptions, they obtain

Pr (Xt+1; Xt; Xt�9) (69)

=
X
X�
t

Pr (Xt+1jX�
t ) Pr (XtjX�

t ) Pr (X
�
t ; Xt�9) ;

which implies a 3-measurement model. This model can be considered as an application of
Theorem 1 to a hidden Markov model.
Feng and Hu (2013) found that the o¢ cial U.S. unemployment rates substantially un-

derestimate the true level of unemployment, due to misreporting errors in the labor force
status in the Current Population Survey. From January 1996 to August 2011, the corrected
monthly unemployment rates are 2.1 percentage points higher than the o¢ cial rates on av-
erage, and are more sensitive to changes in business cycles. The labor force participation
rates, however, are not a¤ected by this correction.

3.6 Dynamic discrete choice with unobserved state variables

Hu and Shum (2012) show that the transition kernel of a Markov process fWt; X
�
t g may be

uniquely determined by the joint distribution of four periods of data fWt+1;Wt;Wt�1;Wt�2g.
This result can be directly applied to identi�cation of dynamic discrete choice model with
unobserved state variables. Such a Markov process may characterize the optimal path of
the decision and the state variables in Markov dynamic optimization problems. Let Wt =
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(Yt;Mt), where Yt is the agent�s choice in period t, andMt denotes the period-t observed state
variable, while X�

t is the unobserved state variable. For Markovian dynamic optimization
models, the transition kernel may be decomposed as follows:

fWt;X�
t jWt�1;X�

t�1
= fYtjMt;X�

t
fMt;X�

t jYt�1;Mt�1;X�
t�1
: (70)

The �rst term on the right hand side is the conditional choice probability for the agent�s
optimal choice in period t. The second term is the joint law of motion of the observed and
unobserved state variables. As shown in Hotz and Miller (1993), the identi�ed Markov law
of motion may be a crucial input in the estimation of Markovian dynamic models. One
advantage of this conditional choice probability approach is that a parametric speci�cation
of the model may lead to a parametric GMM estimator. That implies an estimator for
a dynamic discrete choice model with unobserved state variables, where one may identify
the Markov transition kernel containing unobserved state variables, and then apply the
conditional choice probability estimator to estimate the model primitives. Hu and Shum
(2013) extend this result to dynamic games with unobserved state variables.
Although the nonparametric identi�cation is quite general, it is still useful for empirical

research to provide a relatively simple estimator for a particular speci�cation of the model as
long as such a speci�cation can capture the key economic causality in the model. Given the
di¢ culty in the estimation of dynamic discrete choice models with unobserved state variables,
Hu and Sasaki (2014) consider a popular parametric speci�cation of the model and provide
a closed-form estimator for the inputs of the conditional choice probability estimator. Let
Yt denote �rms�exit decisions based on their productivity X�

t and other covariates Mt. The
law of motion of the productivity is

X�
t = �

d + �dX�
t�1 + �

d
t if Yt�1 = d 2 f0; 1g : (71)

In addition, they use residuals from the production function as a proxy Xt for latent X�
t

satisfying
Xt = X

�
t + �t: (72)

Therefore, they obtain
Xt+1 = �

d + �dX�
t + �

d
t+1 + �t+1 (73)

Under the assumption that the error terms �dt and �t are random shocks, they �rst estimate
the coe¢ cients

�
�d; �d

�
using other covariates Mt as instruments. The distribution of the

error term �t may then be estimated using Kotlarski�s identity. Furthermore, they are able
to provide a closed-form expression for the conditional choice probability Pr (YtjX�

t ;Mt) as
a function of observed distribution functions.
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3.7 Fixed e¤ects in panel data models

Evdokimov (2010) considers a panel data model as follows: for individual i in period t

Yit = g (Xit; �i) + �it; (74)

where Xit is a explanatory variable, Yit is the dependent variable, �it is an independent error
term, and �i represents �xed e¤ects. In order to use Kotlarski�s identity, Evdokimov (2010)
considers the event where fXi1 = Xi2 = xg for two periods of data to obtain

Yi1 = g (x; �i) + �i1; (75)

Yi2 = g (x; �i) + �i2:

Under the assumption that �it and �i are independent conditional on Xit, he is able to iden-
tify the distributions of g (x; �i) ; �i1 and �i2 conditional on fXi1 = Xi2 = xg. That means
this identi�cation strategy relies on the static aspect of the panel data model. Assuming
that �i1 is independent of Xi2 conditional Xi1, he then identi�es f (�i1jXi1 = x) ; and simi-
larly f (�i2jXi2 = x), which leads to identi�cation of the regression function g (x; �i) under
a normalization assumption.
Shiu and Hu (2013) consider a dynamic panel data model

Yit = g (Xit; Yi;t�1; Uit; �it) ; (76)

where Uit is a time-varying unobserved heterogeneity or an unobserved covariate, and �it
is a random shock independent of (Xit; Yi;t�1; Uit). They impose the following Markov-type
assumption

Xi;t+1 ? (Yit; Yi;t�1; Xi;t�1) j (Xit; Uit) (77)

to obtain

fXi;t+1;Yit;Xit;Yi;t�1;Xi;t�1 =

Z
fXi;t+1jXit;UitfYitjXit;Yi;t�1;UitfXit;Yi;t�1;Xi;t�1;UitdUit: (78)

Notice that the dependent variable Yit may represent a discrete choice. With a binary Yit
and �xed (Xit; Yi;t�1), equation (78) implies a 2.1-measurement model. Their identi�cation
results require users to carefully check conditional independence assumptions in their model
because the conditional independence assumption in equation (77) is not directly motivated
by economic structure.
Freyberger (2012) embeds a factor structure into a panel data model as follows:

Yit = g (Xit; �
0
iFt + �it) ; (79)
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where �i 2 Rm stands for a vector of unobserved individual e¤ects and Ft is a vector of con-
stants. Under the assumption that �it for t = 1; 2; :::; T are jointly independent conditional
on �i and Xi = (Xi1; Xi2; :::; XiT ), he obtains

Yi1 ? Yi2 ? ::: ? YiT j (�i; Xi) ; (80)

which may form a 3-measurement model. A useful feature of this model is that the factor
structure �0iFt provides a more speci�c identi�cation of the model with a multi-dimensional
individual e¤ects �i than a general argument as in Theorem 2.
Sasaki (2013) considers a dynamic panel with unobserved heterogeneity �i and sample

attrition as follows:

Yit = g (Yi;t�1; �i; �it) (81)

Dt = h (Yit; �i; �it)

Zi = & (�i; �i)

where Zi is a noisy signal of �i and Dt 2 f0; 1g is a binary indicator for attrition, i.e., Yit
is observed if Dit = 1. Under the exogeneity of the error terms, the following conditional
independence holds

Yi3 ? Zi ? Yi1 j (�i; Y2 = y2; D2 = D1 = 1) : (82)

In the case where �i is discrete, the model is identi�ed using the results in Theorem 1. Sasaki
(2013) also extends this identi�cation result to more complicated settings.

3.8 Cognitive and noncognitive skill formation

Cunha, Heckman, and Schennach (2010) consider a model of cognitive and noncognitive
skill formation, where for multiple periods of childhood t 2 f1; 2; :::; Tg, X�

t =
�
X�
C;t; X

�
N;t

�
stands for cognitive and noncognitive skill stocks in period t, respectively. The T childhood
periods are divided into s 2 f1; 2; :::; Sg stages of childhood development with S � T .
Let It = (IC;t; IN;t) be parental investments at age t in cognitive and noncognitive skills,
respectively. For k 2 fC;Ng ; they assume that skills evolve as follows:

X�
k;t+1 = fk;s

�
X�
t ; It; X

�
P ; �k;t

�
; (83)

where X�
P =

�
X�
C;P ; X

�
N;P

�
are parental cognitive and noncognitive skills and �t =

�
�C;t; �N;t

�
is random shocks. If one observes the joint distribution of X� de�ned as

X� =
��
X�
C;t

	T
t=1
;
�
X�
N;t

	T
t=1
; fIC;tgTt=1 ; fIN;tg

T
t=1 ; X

�
C;P ; X

�
N;P

�
; (84)
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one may estimate the skill production function fk;s.
However, the vector of latent factors X� is not directly observed in the sample. Instead,

they use measurements of these factors satisfying

Xj = gj (X
�; "j) (85)

for j = 1; 2; :::;M with M � 3. The variables Xj and "j are assumed to have the same
dimension as X�. Under the assumption that

X1 ? X2 ? X3 j X�; (86)

this leads to a 3-measurement model and the distribution of X� may then be identi�ed from
the joint distribution of the three observed measurements. The measurements Xj in their
application include test scores, parental and teacher assessments of skills, and measurements
on investment and parental endowments. While estimating the empirical model, they assume
a linear function gj and use Kotlarski�s identity to directly estimate the latent distribution.

3.9 Two-sided matching models

Agarwal and Diamond (2013) consider an economy containing n workers with characteristics
(Xi; "i) and n �rms described by

�
Zj; �j

�
for i; j = 1; 2; :::; n. For example, wages o¤ered by

a �rm is public information in Zj or �j. They assume that the observed characteristics Xi

and Zi are independent of other characteristics "i and �j unobserved to researchers. A �rm
ranks workers by a human capital index as

v (Xi; "i) = h (Xi) + "i: (87)

The workers�preference for �rm j is described by

u
�
Zj; �j

�
= g (Zj) + �j: (88)

The preferences on both sides are public information in the market. Researchers are inter-
ested in the preferences, including functions h, g, and distributions of "i and �j.
A match is a set of pairs that show which �rm hires which worker. The observed matches

are assumed as outcomes of a pairwise stable equilibrium, where no two agents on opposite
sides of the market prefer each other over their matched partners. When the numbers of �rms
and workers are both large, it can be shown that in the unique pairwise stable equilibrium
the �rm with the q-th quantile position of preference value, i.e., FU

�
u
�
Zj; �j

��
= q is

matched with the worker with the q-th quantile position of the human capital index, i.e.,
FV (v (Xi; "i)) = q, where FU and FV are cumulative distribution functions of u and v.
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The joint distribution of (X;Z) from observed pairs then satis�es

f (X;Z) =

Z 1

0

f (Xjq) f (Zjq) dq; (89)

This forms a 2-measurement model. Under the speci�cation of the preferences above, i.e.,

f (Xjq) = f"
�
F�1V (q)� h(X)

�
(90)

f (Zjq) = f�
�
F�1U (q)� g(Z)

�
;

the functions h and g may be identi�ed up to a monotone transformation. The intuition
is that under suitable conditions if two workers with di¤erent characteristics x1 and x2
are hired by �rms with the same characteristics, i.e., fZjX (zjx1) = fZjX (zjx2) for all z,
then the two workers must have the same observed part of the human capital index, i.e.,
h (x1) = h (x2). A similar argument also holds for function g. In order to further identify the
model, Agarwal and Diamond (2013) considers many-to-one matching where one �rm may
have two or more identical slots for workers. In such a sample, they may observe the joint
distribution of (X1; X2; Z), where (X1; X2) are observed characteristics of the two matched
workers. Therefore, they obtain

f (X1; X2; Z) =

Z 1

0

f (X1jq) f (X2jq) f (Zjq) dq: (91)

This is a 3-measurement model, for which nonparametric identi�cation is feasible under
suitable conditions.

3.10 Income dynamics

The literature on income dynamics has been focusing mostly on linear models, where identi�-
cation is usually not a major concern. When income dynamics have a nonlinear transmission
of shocks, however, it is not clear how much of the model can be identi�ed. Arellano, Blun-
dell, and Bonhomme (2014) investigate the nonlinear aspect of income dynamics and also
assess the impact of nonlinear income shocks on household consumption.
They assume that the pre-tax labor income yit of household i at age t satis�es

yit = �it + "it (92)

where �it is the persistent component of income and "it is the transitory one. Furthermore,
they assume that "it has a zero mean and is independent over time, and that the persistent
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component �it follows a �rst-order Markov process satisfying

�it = Qt
�
�i;t�1; uit

�
(93)

whereQt is the conditional quantile function and uit is uniformly distributed and independent
of
�
�i;t�1; �i;t�2; :::

�
. Such a speci�cation is without loss of generality under the assumption

that the conditional CDF F
�
�itj�i;t�1

�
is invertible with respect to �it.

The dynamic process fyit; �itg can be considered as a hidden Markov process as fXt; X
�
t g

in equations (38) and (39). As we discussed before, the nonparametric identi�cation is
feasible with three periods of observed income (yi;t�1; yit; yi;t+1) satisfying

yi;t�1 ? yit ? yi;t+1 j �it (94)

which forms a 3-measurement model. Under the assumptions in Theorem 2, the distribution
of "it is identi�ed from f (yitj�it) for t = 2; :::; T � 1. The joint distribution of �it for all
t = 2; :::; T �1 may then be identi�ed from the joint distribution of yit for all t = 2; :::; T �1.
This leads to the identi�cation of the conditional quantile function Qt.

4 Summary

This paper reviews recent developments in nonparametric identi�cation of measurement error
models and their applications in microeconomic models with latent variables. The powerful
identi�cation results promote a close integration of microeconomic theory and econometric
methodology, especially when latent variables are involved. With econometricians developing
more application-oriented methodologies, we expect such an integration to deepen in the
future research.
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