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Abstract

This paper studies inference of preference parameters in semiparametric

discrete choice models when these parameters are not point-identified and the

identified set is characterized by a class of conditional moment inequalities. Ex-

ploring the semiparametric modeling restrictions, we show that the identified

set can be equivalently formulated by moment inequalities conditional on only

two continuous indexing variables. Such formulation holds regardless of the

covariate dimension, thereby breaking the curse of dimensionality for nonpara-

metric inference based on the underlying conditional moment inequalities. We

also extend this dimension reducing characterization result to a variety of semi-

parametric models under which the sign of conditional expectation of a certain

transformation of the outcome is the same as that of the indexing variable.
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1 Introduction

There has been substantial research carried out on partial identification since the

seminal work of Manski. For example, see monographs by Manski (2003, 2007), a

recent review by Tamer (2010), and references therein for extensive details. In its

general form, identification results are typically expressed as nonparametric bounds

via moment inequalities or other similar population quantities. When these unknown

population quantities are high-dimensional (e.g. the dimension of covariates is high in

conditional moment inequalities), there is a curse of dimensionality problem in that

a very large sample is required to achieve good precision in estimation and inference

(see, e.g. Chernozhukov et al. (2013)). In this paper, we propose a method for

inference that avoids the curse of dimensionality by exploiting the model structure.

We illustrate our idea in the context of commonly used discrete choice models.

To explain this issue, suppose that one is interested in identifying a structural

parameter in a binary choice model. In this model, it is quite common to assume

that an individual’s utility function is parametric while making weak assumptions

regarding underlying unobserved heterogeneity. Specifically, consider the following

model

Y = 1{X ′β ≥ ε}, (1.1)

where Y is the binary outcome, X is an observed d dimensional random vector, ε is

an unobserved random variable, β ∈ Γ is a vector of unknown true parameters, and

Γ ⊂ Rd is the parameter space for β.

Without sufficient exogenous variation from covariates, β is only partially iden-

tified. The resulting identification region is characterized by expressions involving

nonparametric choice probabilities conditional on covariates. For example, under the

assumption that the conditional median of ε is independent of X and other regularity

conditions that will be given in Section 2, β is partially identified by

Θ = {b ∈ Γ : X ′b [P (Y = 1|X)− 0.5] ≥ 0 almost surely}. (1.2)

Recently, Komarova (2013) and Blevins (2015) use this type of characterization to

partially identify β. Both papers consider estimation and inference of the identified set

Θ using a maximum score objective function; however, they do not develop inference

methods for the parameter value β based on the conditional moment inequalities in
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(1.2). Unlike theirs, we focus on the issue of dimension reduction in the context of

conditional moment inequalities.

When X contains several continuous covariates but their support is limited, in

order to carry out inference based on the conditional moment inequalities in (1.2), we

need to deal with the nonparametric conditional expectation E(Y |X) = P (Y = 1|X).

For example, Chernozhukov et al. (2013, henceforth CLR) plug in nonparametric (ker-

nel or series based) estimators to form the sup-norm or one-sided Kolmogorov-Smirnov

type statistic. Since it is difficult to carry out inference in a fully nonparametric fash-

ion when d is large, one may attempt to use parametric models to fit the choice

probabilities. However, this can lead to misspecification that may invalidate the

whole partial identification approach. Hence, it is important to develop dimension

reduction methods that avoid misspecification but improve the precision of inference,

compared to fully nonparametric methods.

In this paper, we establish an alternative characterization of Θ that is free from

the curse of dimensionality. One of the main results of this paper (Lemma 1 in Section

2) is that Θ = Θ̃, where

Θ̃ ≡ {b ∈ Γ : X ′b [P (Y = 1|X ′b,X ′γ)− 0.5] ≥ 0 almost surely for all γ ∈ Γ}. (1.3)

This characterization of the identified set Θ enables us to break the curse of dimen-

sionality since we now need to deal with the choice probability conditional on only

two indexing variables. The benefit of using the characterization in Θ̃, as opposed to

Θ, is most clear when we estimate the conditional expectation functions directly. For

instance, when the method of CLR is utilized with (1.2), recall that the dimension of

nonparametric smoothing is d. Whereas, if the same method is combined with (1.3),

note that the dimension of nonparametric smoothing is always 2 even if d is large.

Therefore, the latter method is free from the curse of dimensionality.

The remainder of the paper is organized as follows. In Section 2, we provide a

formal statement about the binary choice model (1.1). In Section 3, we show that

our approach can be extended to the class of semiparametric models under which

the sign of conditional expectation of a certain transformation of the outcome is the

same as that of the indexing variable. This extension covers a variety of discrete

choice models in the literature. Section 4 describes how to construct a confidence

set based on CLR and Section 5 presents some results of Monte Carlo simulation
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experiments that illustrate finite-sample advantage of using the dimension reducing

approach. Section 6 concludes and Section A contains the proofs and some further

results.

2 Conditional moment inequalities for a binary choice

model

To convey the main idea of this paper in a simple form, we start with a binary choice

model. Recall that in the binary choice model (1.1), we have that Y = 1{X ′β ≥ ε}.
Let ΓX denotes the support of X, and assume that at least one element of X is

continuously distributed conditional on all the other elements. Write X = (X1, X̃)

where the distribution of X1 conditional on X̃ = x̃ is absolutely continuous with

respect to the Lebesgue measure for almost every realization x̃.

Let b denote a generic element of Γ and write b = (b1, b̃). Assume that b1 = 1

for all b ∈ Γ. Note that these assumptions ensure that X ′b is a continuous random

variable for any b ∈ Γ. Let Qτ (U |V ) denote the τ quantile of the distribution of

a random variable U conditional on a random vector V . We impose the following

modeling restrictions.

Condition 1. For all x ∈ ΓX , the distribution of ε conditional on X = x admits a

density that is everywhere positive on R and satisfies that Qτ (ε|X = x) = 0 for some

τ ∈ (0, 1).

Condition 1, due to Manski (1985, 1988), allows for nonparametric specification of

the preference shock with a general form of heteroskedasticity. It is known that point

identification of β requires that X1 should have sufficient variation conditional on

the other covariates (see e.g., Manski (1985) and Horowitz (1998)). Nevertheless, the

model induces restrictions on possible values of data generating preference parameters,

which results in set identification of β. To see this, note that Condition 1 implies that

for all x ∈ ΓX ,

P (Y = 1|X = x) > τ ⇔ x′β > 0, (2.1)

P (Y = 1|X = x) = τ ⇔ x′β = 0, (2.2)

P (Y = 1|X = x) < τ ⇔ x′β < 0. (2.3)
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Since X ′b is continuous for any b ∈ Γ, P (Y = 1|X) = τ occurs with zero probability.

The set of observationally equivalent preference parameter values that conform with

Condition 1 can hence be characterized by

Θ = {b ∈ Γ : X ′b [P (Y = 1|X)− τ ] ≥ 0 almost surely}. (2.4)

Given (2.1), (2.2) and (2.3), we also have that

Θ = {b ∈ Γ : b′XX ′β ≥ 0 almost surely}. (2.5)

Namely, the vector b is observationally equivalent to β if and only if the indexing

variables X ′b and X ′β are of the same sign almost surely.

On the other hand, the restrictions (2.1), (2.2) and (2.3) imply that

Q1−τ (Y |X) = 1{X ′β > 0} = Q1−τ (Y |X ′β) almost surely.

In other words, the model induces the semiparametric restriction that with probability

1,

sgn[P (Y = 1|X)− τ ] = sgn[P (Y = 1|X ′β)− τ ] = sgn[X ′β], (2.6)

where sgn(·) is the sign function such that sgn(u) = 1 if u > 0; sgn(u) = 0 if u = 0;

sgn(u) = −1 if u < 0. The sign equivalence (2.6) motivates use of indexing variables

instead of the full set of covariates as the conditioning variables in nonparametric es-

timation of the conditional expectation, thereby breaking the curse of dimensionality

as raised in the discussion above. To be precise, let

Θ̃ ≡ {b : X ′b [P (Y = 1|X ′b,X ′γ)− τ ] ≥ 0 almost surely for all γ ∈ Γ}.

The first key result of our approach is the following lemma showing that the identified

set Θ can be equivalently characterized by Θ̃, which is based on the choice probabilities

conditional on two indexing variables.

Lemma 1. Assume X ′b is a continuous random variable for any b ∈ Γ. Then under

Condition 1, we have that Θ = Θ̃.

To explain the characterization result of Lemma 1, note that the model (1.1) under
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Condition 1 implies that for any γ ∈ Γ,

sgn[P (Y = 1|X ′β,X ′γ)− τ ] = sgn[X ′β] almost surely. (2.7)

Thus, intuitively speaking, for any b that is observationally equivalent to β, equation

(2.7) should also hold for b in place of β in the statement. Define

Θ ≡ {b : X ′b [P (Y = 1|X ′γ)− τ ] ≥ 0 almost surely for all γ ∈ Γ},

Θ ≡ {b : X ′b [P (Y = 1|X ′b)− τ ] ≥ 0 almost surely}.

By similar arguments used in the proof of Lemma 1, it is straightforward to show

that

Θ ⊂ Θ = Θ̃ ⊂ Θ. (2.8)

It is interesting to note that the set inclusion in (2.8) can be strict as demonstrated in

the examples of Appendix A.2. Namely, the set Θ is too restrictive in the sense that

it may exclude the true data generating parameter value β, whereas the set Θ is not

sharp and thus inference based on Θ could admit some b values that are incompatible

with the model restrictions given by (2.4).

The identifying relationship in (2.8) can be viewed as a conditional moment in-

equality analog of well-known index restrictions in semiparametric binary response

models (e.g., Cosslett (1983), Powell et al. (1989), Han (1987), Ichimura (1993), Klein

and Spady (1993), Coppejans (2001)). The main difference between our setup and

those models is that we allow for partial identification as well as a general form of

heteroskedasticty. It is also noted that to ensure equivalent characterization of the

set Θ, we need two indices unlike ones in the point-identified cases.

3 General results for a class of semiparametric mod-

els under sign restrictions

In this section, we extend the dimension reducing characterization approach of the

previous section to a variety of semiparametric models under which the sign of con-

ditional expectation of a certain transformation of the outcome is the same as that

of the indexing variable. We treat univariate and multivariate outcome models in a
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unified abstract setting given as follows.

Let (Y,X) be the data vector of an individual observation where Y is a vector

of outcomes and X is a vector of covariates. The econometric model specifying the

distribution of Y conditional on X depends on a finite dimensional parameter vector

β and is characterized by the following sign restrictions.

Assumption 1. For some set C and some known functions G and H, and for all

c ∈ C, the following statements hold with probability 1. That is, with probability 1,

G(X, c, β) > 0⇐⇒ E (H(Y, c)|X) > 0, (3.1)

G(X, c, β) = 0⇐⇒ E (H(Y, c)|X) = 0, (3.2)

G(X, c, β) < 0⇐⇒ E (H(Y, c)|X) < 0. (3.3)

Let β be the true data generating parameter vector. Assume β ∈ Γ where Γ

denotes the parameter space. Let b be a generic element of Γ. Define

Θ0 = {b ∈ Γ : (3.1), (3.2) and (3.3) hold with b in place of β almost surely for all c ∈ C}.

Note that Θ0 consists of observationally equivalent parameter values that conform

with the sign restrictions of Assumption 1. We impose the following continuity as-

sumption.

Assumption 2. For all c ∈ C and for all b ∈ Γ, the event that G(X, c, b) = 0 occurs

with zero probability.

Under Assumptions 1 and 2, we can reformulate the identified set Θ0 using weak

conditional moment inequalities given by the set

Θ ≡ {b ∈ Γ : G(X, c, b)E (H(Y, c)|X) ≥ 0 almost surely for all c ∈ C}. (3.4)

We now derive the equivalent characterization of the set Θ using indexing variables.

Define

Θ̃ ≡ {b : G(X, c, b)E(H(Y, c)|G(X, c, b), G(X, c, γ)) ≥ 0 almost surely for all (γ, c) ∈ Γ×C}.

The following theorem generalizes the result of Lemma 1.

Theorem 1. Given Assumptions 1 and 2, we have that Θ0 = Θ = Θ̃.
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By taking G(X, c, b) = X ′b and H(Y, c) = Y − τ , both being independent of c, it

is easily seen that the binary choice model of Section 2 fits within this setting. Other

examples are set forth as follows.

Example 1: Ordered choice model under quantile indepen-

dence restriction

Consider an ordered response model with K + 1 choices. Let {1, ..., K + 1} denote

the choice index set. The agent chooses alternative c if and only if

λc−1 < X ′θ + ε ≤ λc (3.5)

where λ0 = −∞ < λ1 < .... < λK < λK+1 =∞. Let λ ≡ (λ1, ..., λK) be the vector of

threshold parameters. Let Y be the observed choice. We are interested in inference

of β ≡ (θ, λ). Lee (1992) and Komarova (2013) studied inference of the ordered

response model under quantile independence restriction. Assume the distribution of ε

conditional on X satisfies Condition 1. Using this restriction, we see that Assumption

1 holds with C = {1, ..., K}, H(Y, c) = 1{Y ≤ c} − τ and G(X, c, b) = X̃ ′cb where

X̃c ≡ (−X ′, l′c)′ with lc being the K dimensional vector (lc,1, ..., lc,K) such that lc,j = 1

if j = c and lc,j = 0 otherwise.

Example 2: Multinomial choice model

Consider a multinomial choice model with K alternatives. Let {1, ..., K} denote the

choice index set. The utility from choosing alternative j is

U j = Xj
′β + εj (3.6)

where Xj ∈ Rq is a vector of observed choicewise covariates and εj is a choicewise

preference shock. The agent chooses alternative k if Uk > U j for all j 6= k. Let X

denote the vector (X1, ..., XK) and Y denote the observed choice. We assume that

the unobservables ε ≡ (ε1, ..., εK) should satisfy the following rank ordering property.

Condition 2. For any pair (s, t) of choices, we have that with probability 1,

Xs
′β > X ′tβ ⇐⇒ P (Y = s|X) > P (Y = t|X). (3.7)
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Manski (1975), Matzkin (1993) and Fox (2007) used Condition 2 as an identifying

restriction in the multinomial choice model to allow for nonparametric unobservables

with unknown form of heteroskedasticity. Goeree et. al. (2005, Proposition 5, p. 359)

showed that it suffices for Condition 2 to assume that the joint distribution of ε

conditional on X for almost every realization of X is exchangeable and has a joint

density that is everywhere positive on RK .

Under Condition 2, Assumption 1 holds for this example by taking C ≡ {(s, t) ∈
{1, ..., K}2 : s < t}, G(X, s, t, b) = (Xs−Xt)

′b and H(Y, s, t) = 1{Y = s}−1{Y = t}.

Example 3: Binary choice panel data with fixed effect

Consider the following binary choice panel data model

Yt = 1{X ′tβ + v ≥ εt}, t ∈ {1, ..., T} (3.8)

where Xt ∈ Rq is a vector of per-period covariates and v is an unobserved fixed effect.

Let X be the vector (X1, ..., XT ). Let Y = (Y1, ..., YT ) denote the vector of outcomes.

Manski (1987) imposed the following restrictions on the transitory shocks εt.

Condition 3. The distribution of εt conditional on (X, v) is time invariant and has

a density that is everywhere positive on R for almost every realization of (X, v).

Under Condition 3 and by Lemma 1 of Manski (1987), Assumption 1 holds for

this example by taking C ≡ {(s, t) ∈ {1, ..., T}2 : s < t}, G(X, s, t, b) = (Xs −Xt)
′b

and H(Y, s, t) = Ys − Yt.

Example 4: Ordered choice panel data with fixed effect

This example is concerned with the ordered choice model of Example 1 in the panel

data context. Let {1, ..., K + 1} denote the choice index set. For each period t ∈
{1, ..., T}, we observe the agent’s ordered response outcome Yt that is generated by

Yt =
K+1∑
j=1

j1{λj−1 < X ′tβ + v + εt ≤ λj}, (3.9)

where v is an unobserved fixed effect and λ0 = −∞ < λ1 < .... < λK < λK+1 = ∞.

Let X and Y denote the covariate vector (X1, ..., XT ) and outcome vector (Y1, ..., YT ),

9



respectively. Suppose the shocks εt also satisfy Manski (1987)’s stationarity assump-

tion given by Condition 3. Under this restriction and by applying the law of it-

erated expectations, we see that Assumption 1 holds for this example by taking

C = {(k, s, t) : k ∈ {1, ..., K}, (s, t) ∈ {1, ..., T}2 such that s < t}, G(X, k, s, t, b) =

(Xt −Xs)
′b and H(Y, k, s, t) = 1{Ys ≤ k} − 1{Yt ≤ k}.

4 The (1− α) level confidence set

This section describes how to construct a confidence set à la CLR. Let v ≡ (x, γ, c)

and V ≡ {(x, γ, c) : x ∈ ΓX , γ ∈ Γ, c ∈ C}. Assume the set V is nonempty and

compact. Define

mb(v) ≡ E (G(X, c, b)H(Y, c)|G(X, c, b) = G(x, c, b), G(X, c, γ) = G(x, c, γ))

×fb,c,γ (G(x, c, b), G(x, c, γ)) ,

where the function fb,c,γ denotes the joint density function of the indexing variables

(G(X, c, b), G(X, c, γ)). Note that for all v ∈ V ,

mb(v) ≥ 0

⇐⇒ E (G(X, c, b)H(Y, c)|G(X, c, b) = G(x, c, b), G(X, c, γ) = G(x, c, γ)) ≥ 0.

Thus we have that

Θ̃ = {b : mb(v) ≥ 0 for all v ∈ V}. (4.1)

Assume that we observe a random sample of individual outcomes and covariates

(Yi, Xi)i=1,...,n. For inference on the true parameter value β, we aim to construct a set

estimator Θ̂ at the (1− α) confidence level such that

lim inf
n−→∞

P (β ∈ Θ̂) ≥ 1− α. (4.2)

We now delineate an implementation of the set estimator Θ̂ based on a kernel

version of CLR. Let K(., .) denote a bivariate kernel function and hn be a band-

width sequence. To estimate the function mb, we consider the following kernel type
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estimator:

m̂b(v) ≡
(
nh2

n

)−1
n∑
i=1

G(Xi, c, b)H(Yi, c)Kn(Xi, v, b), (4.3)

where

Kn(Xi, v, b) ≡ K

(
G(x, c, b)−G(Xi, c, b)

hn
,
G(x, c, γ)−G(Xi, c, γ)

hn

)
. (4.4)

Let ui (b, c, γ) ≡ H(Yi, c)− E(H(Yi, c)|G(Xi, c, b), G(Xi, c, γ)). Define

T (b) ≡ infv∈V
m̂b(v)

σ̂b(v)
, (4.5)

where

σ̂2
b (v) ≡ n−2h−4

n

n∑
i=1

û2
i (b, c, γ)G2(Xi, c, b)K

2
n(Xi, v, b),

ûi (b, c, γ) ≡ H(Yi, c)−

[
n∑
j=1

Kn(Xj, (Xi, γ, c), b)

]−1 n∑
j=1

H(Yj, c)Kn(Xj, (Xi, γ, c), b).

For a given value of b, we compare the test statistic T (b) to a critical value to conclude

whether there is significant evidence that the inequalities in (4.1) are violated for some

v ∈ V . By applying the test procedure to each candidate value of b, the estimator

Θ̂ is then the set comprising those b values not rejected under this pointwise testing

rule.

Based on the CLR method, we estimate the critical value using simulations. Let B

be the number of simulation repetitions. For each repetition s ∈ {1, ..., B}, we draw

an n dimensional vector of mutually independently standard normally distributed

random variables which are also independent of the data. Let η(s) denote this vector.

For any compact set V ⊆ V , define

T ∗s (b;V) ≡ infv∈V

[(
nh2σ̂b(v)

)−1
n∑
i=1

ηi(s)ûi (b, c, γ)G(Xi, c, b)Kn(Xi, v, b)

]
. (4.6)

We approximate the distribution of infv∈V [(σ̂b(v))−1m̂b(v)] over V ⊆ V by that of

the simulated quantity T ∗s (b;V). Let q̂p(b,V) be the p level empirical quantile based

on the vector (T ∗s (b,V))s∈{1,...,B}. One could use q̂p(b,V) as the test critical value.
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However, following CLR, we can make sharper inference by incorporating the data

driven inequality selection mechanism in the critical value estimation. Let

V̂n(b) ≡ {v ∈ V : m̂b(v) ≤ −2q̂γn(b,V)σ̂b(v)} , (4.7)

where γn ≡ 0.1/ log n. Compared to q̂p(b,V), use of q̂α(b, V̂n(b)) as the critical

value results in a test procedure concentrating the inference on those points of v

that are more informative for detecting violation of the non-negativity hypothesis

on the function mb(v). In fact, the CLR test based on the set V̂n(b) is closely re-

lated to the power improvement methods such as the contact set idea (e.g., Linton,

Song and Whang (2010) and Lee, Song and Whang (2014)), the generalized moment

selection approach (e.g., Andrews and Soares (2010), Andrews and Shi (2013), and

Chetverikov (2011)), and the iterative step-down approach (e.g., Chetverikov (2013))

employed in the literature on testing moment inequalities.

Assume that 0 < α ≤ 1/2. Then we construct the (1 − α) confidence set Θ̂ by

setting

Θ̂ ≡
{
b ∈ Γ : T (b) ≥ q̂α(b, V̂n(b))

}
. (4.8)

We can establish regularity conditions under which (4.2) holds by utilizing the general

results of CLR. Since the main focus of this paper is identification, we omit the

technical details for brevity.

5 Simulation results

The main purpose of this simulation study is to compare finite-sample performance

of the approach of conditioning on indexing variables with that of conditioning on full

covariates. We use the binary response model set forth in Section 2 for the simulation

design. The data is generated according to the following setup:

Y = 1{X ′β ≥ ε}, (5.1)

where X = (X1, ..., Xd) is a d dimensional covariate vector with d ≥ 2, and

ε =
[
1 +

∑d

k=1
X2
k

]1/2

ξ
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where ξ is standard normally distributed and independent of X. Let X̃ = (X2, ..., Xd)

be a (d− 1) dimensional vector of mutually independently and uniformly distributed

random variables on the interval [−1, 1]. The covariate X1 is specified by

X1 = sgn(X2)U,

where U is a uniformly distributed random variable on the interval [0, 1] and is in-

dependent of (X̃, ξ). We set β1 = 1 and βk = 0 for k ∈ {2, ..., d}. The preference

parameter space is specified to be

Γ ≡ {b ∈ Rd : b1 = 1, (b2, ..., bd) ∈ [−1, 1]d−1}. (5.2)

Under this setup, the sign of the true index X ′β = X1 is determined by X2. By

inspecting the formulation (2.5), the identified set Θ is thus given by

Θ = {b ∈ Γ : b2 ≥ 0 and bk = 0 for k ∈ {3, ..., d}}. (5.3)

Recall that this simulation design also satisfies the general framework of Section

3 by taking G(X, c, b) = X ′b and H(Y, c) = Y − 0.5. Let Index and Full be short-

hand expressions for the index formulated and full covariate approaches, respectively.

We implement the Index approach using the inference procedure of Section 4. We

compute the term Kn(X, v, b) using

Kn(X, v, b) = K̃

(
x′b−X ′b
ŝ(X ′b)hn

)
K̃

(
x′γ −X ′γ
ŝ(X ′γ)hn

)
where v = (x, γ), K̃(·) is the univariate biweight kernel function defined by

K̃(u) ≡ 15

16

(
1− u2

)2
1 {|u| ≤ 1} ,

and ŝ(W ) denotes the estimated standard deviation for the random variable W . The

bandwidth sequence hn is specified by

hn = cIndexn
−1/5 (5.4)

where cIndex is a bandwidth scale. The rate considered in (5.4) corresponds to the
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undersmoothing specification under the assumption that the true conditional expec-

tation function is twice continuously differentiable.

The Full approach is based on inversion of the kernel-type CLR test for the

inequalities that mb,Full(x) ≥ 0 for all x ∈ ΓX , where

mb,Full(x) ≡ E (X ′b (Y − 0.5) |X = x) fX (x) (5.5)

and fX denotes the joint density of X. As in the Index approach, we consider the

kernel type estimator

m̂b,Full(x) ≡
(
nhdn

)−1
n∑
i=1

X ′ib (Yi − 0.5)Kn,Full(Xi, x), (5.6)

where

Kn,Full(Xi, x) ≡
∏d

k=1
K̃Full

(
xk −Xi,k

ŝ(Xi,k)hn,Full

)
, (5.7)

K̃Full(·) is the univariate pth order biweight kernel function (see Hansen (2005)), and

hn,Full is a bandwidth sequence specifying by

hn,Full = cFulln
−r (5.8)

where cFull and r denote the bandwidth scale and rate, respectively. The test statistic

for the Full approach is given by

TFull(b) ≡ infx∈ΓX

m̂b,Full(x)

σ̂b,Full(x)
, (5.9)

where

σ̂2
b,Full(x) ≡ n−2h−2d

n,Full

n∑
i=1

û2
i,Full (X

′
ib)

2
K2
n,Full(Xi, x),

ûi,Full ≡ Yi −

[
n∑
j=1

Kn,Full(Xj, Xi)

]−1 n∑
j=1

YjKn,Full(Xj, Xi).

We computed the simulated CLR test critical value that also embedded the inequality

selection mechanism. By comparing TFull(b) to the test critical value, we constructed

under the Full approach the confidence set that also satisfies (4.2).
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The nominal significance level α was set to be 0.05. Let Θ̂Index and Θ̂Full denote

the (1− α) level confidence sets constructed under the Index and Full approaches,

respectively. For s ∈ {Index, Full} and for a fixed value of b, we calculated P̂s(b),

which is the simulated finite-sample probability of the event b /∈ Θ̂s based on 1000

simulation repetitions. For each repetition, we generated n ∈ {250, 500, 1000} ob-

servations according to the data generating design described above. We used 4000

simulation draws to calculate q̂α(b, V̂n(b)) for the Index approach and to estimate

the CLR test critical value for the Full approach. We implemented for the Full

approach the minimization operation based on grid search over 1000 grid points of x

randomly drawn from the joint distribution of X. For the Index approach, the min-

imization was implemented by grid search over 1000 grid points of (x, γ) for which x

was also randomly drawn from the distribution of X, and γ was drawn from uniform

distribution on the space Γ and independently of the search direction in x.

We conducted simulations for d ∈ {3, 4, 5, 10}. For the Full approach, both the

bandwidth rate r and the order p of K̃Full depend on the covariate dimension. These

were specified to fulfill the regularity conditions for the CLR kernel type conditional

moment inequality tests (see discussions on Appendix F of CLR (pp. 7-9, Supplemen-

tary Material)). Note that for b ∈ Θ, P̂Index (b) (P̂Full (b)) is simulated null rejection

probability of the corresponding CLR test under the Index (Full) approach, whereas

for b /∈ Θ, it is the CLR test power. For simplicity, we computed P̂Index(b) and

P̂Full(b) for b values specified as b = (b1, b2, ..., bd) where b1 = 1, b2 ∈ {0, 0.5,−1},
bk = 0 for k ∈ {3, .., d}. For these candidate values of b, we experimented over var-

ious bandwidth scales to determine the value of cIndex (cFull) with which the Index

(Full) approach exhibits the best overall performance in terms of its corresponding

CLR test size and power. Table 1 presents the settings of r and p and the chosen

bandwidth scales cIndex and cFull in the simulation.
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Table 1: Settings of r, p, cIndex and cFull

d 3 4 5 10

r 11/70 1/9 21/220 1/21

p 2 4 4 6

sample size 250

cIndex 3.05 3.45 3.7 4.1

cFull 2.65 4.8 5.6 8.35

sample size 500

cIndex 2.55 2.95 3.05 3.75

cFull 2.35 4.3 4.9 8

sample size 1000

cIndex 2 2.5 2.75 3.5

cFull 2.15 3.95 4.45 7.7

Tables 2 and 3 present the simulation results that compare performance of the

Index and Full approaches.

Table 2: Simulated null rejection probabilities

d 3 4 5 10 3 4 5 10

b2 = 0 b2 = 0.5

sample size 250

P̂Index .034 .029 .034 .050 .051 .054 .052 .052

P̂Full .031 .043 .046 .050 .050 .053 .052 .055

sample size 500

P̂Index .030 .036 .039 .042 .051 .054 .052 .050

P̂Full .032 .034 .043 .044 .049 .048 .054 .053

sample size 1000

P̂Index .047 .045 .041 .048 .054 .053 .051 .054

P̂Full .029 .044 .041 .042 .046 .051 .047 .051
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Table 3: Simulated test power for b2 = −1 (ratio ≡P̂Index/P̂Full)
d P̂Index P̂Full ratio P̂Index P̂Full ratio P̂Index P̂Full ratio

n = 250 n = 500 n = 1000

3 .583 .601 .970 .771 .731 1.05 .927 .828 1.11

4 .541 .530 1.02 .733 .653 1.12 .868 .758 1.14

5 .500 .393 1.27 .699 .624 1.12 .806 .738 1.09

10 .409 .216 1.89 .474 .212 2.23 .520 .225 2.31

From Table 2, we can see that all P̂Index and P̂Full values in all the simulation

cases are either below or close to the nominal level 0.05 with the maximal value being

0.055 and occurring for the Full approach with sample size 250 under the setup of

d = 10 and b2 = 0.5. For both methods, there is slight over-rejection for the case of

b2 = 0.5. At the true data generating value (b2 = 0), both P̂Index and P̂Full are well

capped by 0.05 and the confidence sets Θ̂Index and Θ̂Full can hence cover the true

parameter value with probability at least 0.95 in all simulations.

For the power of the test, we compare the Index and Full approaches under the

same covariate configuration. Table 3 indicates that power of the Index approach

dominates that of the Full approach in almost all simulation configurations. More-

over, at larger sample size (n = 1000), power of the Index approach exceeds 0.8

in almost all cases whereas that of the Full approach does so only for the case of

d = 3. The power difference between these two approaches tends to increase as either

the sample size or the covariate dimension increases. For the case of d = 10, it is

noted that there is substantial power gain from using the Index approach. For this

covariate specification, the curse of dimensionality for the Full approach is quite ap-

parent because the corresponding P̂Full values vary only slightly across sample sizes.

In short, the simulation results suggest that the Index approach may alleviate the

problem associated with the curse of dimensionality and we could therefore make

sharper inference by using the Index approach for a model with a high dimensional

vector of covariates.

6 Conclusions

This paper studies inference of preference parameters in semiparametric discrete

choice models when these parameters are not point identified and the identified set
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is characterized by a class of conditional moment inequalities. Exploring the semi-

parametric modeling restrictions, we show that the identified set can be equivalently

formulated by moment inequalities conditional on only two continuous indexing vari-

ables. Such formulation holds regardless of the covariate dimension, thereby breaking

the curse of dimensionality for nonparametric inference of the underlying conditional

moment functions. We also extend this dimension reducing characterization result to

a variety of semiparametric models under which the sign of conditional expectation of

a certain transformation of the outcome is the same as that of the indexing variable.

We note that moment inequalities (3.4) for the general framework of Section 3 can

also be applied to monotone transformation models (e.g., see Abrevaya (1999, 2000),

Chen (2010) and Pakes and Porter (2014, Section 2)). Hence, our dimension reducing

approach would also be useful in that context. There is a growing number of inference

methods for conditional moment inequalities. The instrumental variable approach of

Andrews and Shi (2013) does not rely on nonparametric estimation of conditional ex-

pectation. Nevertheless, the instruments required to convert the conditional moment

inequalities to unconditional ones increase with the covariate dimension. In addition

to the Andrews-Shi and CLR approaches, other existing inference procedures include

Armstrong and Chan (2013), Armstrong (2014, 2015), Chetverikov (2011), Lee, Song,

and Whang (2013, 2014) and Menzel (2014) among others. It will be an interesting

further research topic to incorporate these alternative methods with the dimension

reducing characterization result for set inference of the class of semiparametric models

studied in Section 3 of this paper.

A Appendix

A.1 Proofs

Proof of Lemma 1. Lemma 1 can be proved by applying Theorem 1 and noting that

Assumptions 1 and 2 of Theorem 1 are satisfied under Condition 1 and the assumption

that X ′b is a continuous random variable for each b ∈ Γ.

Proof of Theorem 1. By Assumptions 1 and 2, the event that E (H(Y, c)|X) = 0 also

occurs with zero probability. It hence follows that Θ0 = Θ. Therefore, if b ∈ Θ, then
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with probability 1,

G(X, c, b) ≥ 0⇐⇒ E (H(Y, c)|X) ≥ 0. (A.1)

Note that

E(H(Y, c)|G(X, c, b), G(X, c, γ)) = E(E(H(Y, c)|X)|G(X, c, b), G(X, c, γ)). (A.2)

By (A.1), for any γ ∈ Γ, the right-hand side of (A.2) has the same sign as G(X, c, b)

does with probability 1. Hence, b ∈ Θ̃.

On the other hand, assume that b ∈ Θ̃. Since β ∈ Γ, we have that G(X, c, b)

and E(H(Y, c)|G(X, c, b), G(X, c, β)) have the same sign with probability 1. Using

(A.2) and Assumption 1, we see that E(H(Y, c)|G(X, c, b), G(X, c, β)), G(X, c, β) and

E (H(Y, c)|X) also have the same sign with probability 1. Therefore, we have that

b ∈ Θ.

A.2 Illustrating examples for non-equivalence of the sets Θ,

Θ and Θ

Recall that Γ denotes the space of preference parameter vectors b whose first element

is equal to 1.

Example 1: Θ can be a proper subset of Θ

Let X = (X1, X2) be a bivariate vector where X1 ∼ U(0, 1), X2 ∼ U(−1, 1) and X1

is stochastically independent of X2. Assume that β = (1, 1) and ε=
√

1 +X2
2ξ where

ξ is a random variable independent of X and has distribution function Fξ(t) defined

as

Fξ(t) ≡


G1(t) if t ∈ (−∞,−1]

τ + ct if t ∈ (−1, 1]

G2(t) if t ∈ (1,∞)

(A.3)

where c ∈ (0,min{τ, 1− τ}) is a fixed real constant, G1 and G2 are continuous dif-

ferentiable and strictly increasing functions defined on the domains that include the
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intervals (−∞,−1] and (1,∞), respectively, and satisfy that

G1(−1) = τ − c, lim
t−→−∞

G1(t) = 0, G2(1) = τ + c, and lim
t−→∞

G2(t) = 1. (A.4)

Consider the value b̃ ≡ (1, 0). Note that X ′β = X1 +X2 can take negative value with

positive probability but X ′ b̃ = X1 is almost surely positive. It hence follows that

b̃ /∈ Θ by the definition (2.5). Moreover for s ≥ 0,

P (Y = 1|X ′b̃ = s) (A.5)

= E
[
Fξ
(
(1 +X2

2 )−1/2 (s+X2)
)
|X1 = s

]
(A.6)

=

∫ 1

−1

Fξ
(
(1 + u2)−1/2 (s+ u)

)
du/2 (A.7)

≥
∫ 1

−1

Fξ
(
u(1 + u2)−1/2

)
du/2. (A.8)

Note that for each u ∈ (−1, 1), u(1 + u2)−1/2 also falls within the interval (−1, 1).

Therefore by (A.3), the term on the right hand side of (A.8) equals∫ 1

−1

[
τ + cu(1 + u2)−1/2

]
du/2 = τ. (A.9)

Hence, sgn[X ′b̃] = sgn[P (Y = 1|X ′b̃)− τ ] almost surely and we have that b̃ ∈ Θ.

Example 2: Θ can be a proper subset of Θ

Let X = (X1, X2, X3) be a trivariate vector where X1 ∼ U(−1, 1), X2 ∼ U(−1, 1)

and

X3 ≡

{
X̃3,1 if X1 +X2 ≥ 0

X̃3,2 if X1 +X2 < 0
(A.10)

where X̃3,1 ∼ U(1, 2), X̃3,2 ∼ U(−2,−1) and the random variables X1, X2, X̃3,1

and X̃3,2 are independent. Assume that β = (1, 1, 0) and ε=
√

1 +X2
2ξ where ξ is

a random variable independent of X and has the same distribution function Fξ as

defined by (A.3). Consider the value b̃ ≡ (1, 0, 1). By design, X ′β and X ′b̃ have the

same sign almost surely and hence b̃ ∈ Θ. Now consider the vector γ ≡ (1, 0, 0). Since

X ′γ = X1, by (A.5) - (A.8) and the arguments yielding the bound (A.9) in Example
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1, it also follows that

P (Y = 1|X ′γ = s) ≥ τ for s ≥ 0.

Note that the event {X ′b < 0 and X1 > 0} can occur with positive probability. There-

fore we have that b̃ /∈ Θ.
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