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Abstract

This paper examines a general class of inferential problems in semiparametric

and nonparametric models defined by conditional moment restrictions. We con-

struct tests for the hypothesis that at least one element of the identified set satisfies

a conjectured (Banach space) “equality” and/or (a Banach lattice) “inequality” con-

straint. Our procedure is applicable to identified and partially identified models, and

is shown to control the level, and under some conditions the size, asymptotically uni-

formly in an appropriate class of distributions. The critical values are obtained by

building a strong approximation to the statistic and then bootstrapping a (conser-

vatively) relaxed form of the statistic. Sufficient conditions are provided, including

strong approximations using Koltchinskii’s coupling.

Leading important special cases encompassed by the framework we study in-

clude: (i) Tests of shape restrictions for infinite dimensional parameters; (ii) Confi-

dence regions for functionals that impose shape restrictions on the underlying pa-

rameter; (iii) Inference for functionals in semiparametric and nonparametric models

defined by conditional moment (in)equalities; and (iv) Uniform inference in possibly

nonlinear and severely ill-posed problems.

Keywords: Shape restrictions, inference on functionals, conditional moment

(in)equality restrictions, instrumental variables, nonparametric and semiparametric

models, Banach space, Banach lattice, Koltchinskii coupling.
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1 Introduction

Nonparametric constraints, often called shape restrictions, have played a central role

in economics as both testable implications of classical theory and sufficient conditions

for obtaining informative counterfactual predictions (Topkis, 1998). A long tradition

in applied and theoretical econometrics has as a result studied shape restrictions, their

ability to aid in identification, estimation, and inference, and the possibility of testing for

their validity (Matzkin, 1994). The canonical example of this interplay between theory

and practice is undoubtedly consumer demand analysis, where theoretical predictions

such as Slutsky symmetry have been extensively tested for and exploited in estimation

(Hausman and Newey, 1995; Blundell et al., 2012). The empirical analysis of shape

restrictions, however, goes well beyond this important application with recent examples

including studies into the monotonicity of the state price density (Jackwerth, 2000; Aıt-

Sahalia and Duarte, 2003), the presence of ramp-up and start-up costs (Wolak, 2007;

Reguant, 2014), and the existence of complementarities in demand (Gentzkow, 2007)

and organizational design (Athey and Stern, 1998; Kretschmer et al., 2012).

Despite the importance of nonparametric constraints, their theoretical study has

focused on a limited set of models and restrictions – a limitation that has resulted

in practitioners often facing parametric modeling as their sole option. In this paper,

we address this gap in the literature by developing a framework for testing general

shape restrictions and exploiting them for inference in a widespread class of conditional

moment restriction models. Specifically, we study nonparametric constraints in settings

where the parameter of interest θ0 ∈ Θ satisfies J conditional moment restrictions

EP [ρ(Xi, θ0)|Zi,] = 0 for 1 ≤  ≤ J (1)

with ρ : Rdx × Θ → R possibly non-smooth functions, Xi ∈ Rdx , Zi, ∈ Rdz , and P

denoting the distribution of (Xi, {Zi,}J=1). As shown by Ai and Chen (2007, 2012), un-

der appropriate choices of the parameter space and moment restrictions, this model

encompasses parametric (Hansen, 1982), semiparametric (Ai and Chen, 2003), and

nonparametric (Newey and Powell, 2003) specifications, as well as panel data appli-

cations (Chamberlain, 1992) and the study of plug-in functionals. By incorporating

nuisance parameters into the definition of the parameter space, it is in fact also possi-

ble to view conditional moment (in)equality models as a special case of the specifica-

tion we study. For example, the restriction EP [ρ̃(Xi, θ̃)|Zi] ≤ 0 may be rewritten as

EP [ρ̃(Xi, θ̃) + λ(Zi)|Zi] = 0 for some unknown positive function λ, which fits (1) with

θ = (θ̃, λ) and λ subject to the constraint λ(Zi) ≥ 0; see Example 2.4 below.

While in multiple applications identification of θ0 ∈ Θ is straightforward to establish,

there also exist specifications of the model we examine for which identification can be

uncertain (Canay et al., 2013; Chen et al., 2014). In order for our framework to be
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robust to a possible lack of identification, we therefore define the identified set

Θ0(P ) ≡ {θ ∈ Θ : EP [ρ(Xi, θ)|Zi,] = 0 for 1 ≤  ≤ J} (2)

and employ it as the basis of our statistical analysis. Formally, for a set R of parameters

satisfying a conjectured restriction, we develop a test for the hypothesis

H0 : Θ0(P ) ∩R 6= ∅ H1 : Θ0(P ) ∩R = ∅ ; (3)

i.e. we device a test of whether at least one element of the identified set satisfies the

posited constraints. In an identified model, a test of (3) is thus equivalent to a test of

whether θ0 satisfies the hypothesized constraint. The set R, for example, may constitute

the set of functions satisfying a conjectured shape restriction, in which case a test of

(3) corresponds to a test of the validity of such shape restriction. Alternatively, the

set R may consist of the functions that satisfy an assumed shape restriction and for

which a functional of interest takes a prescribed value – in which case test of inversion

of (3) yields a confidence region for the value of the desired functional that imposes the

assumed shape restriction on the underlying parameter.

The wide class of hypotheses with which we are concerned necessitates the sets R to

be sufficiently general, yet be endowed with enough structure to ensure a fruitful asymp-

totic analysis. An important insight of this paper is that this simultaneous flexibility

and structure is possessed by sets defined by “equality” restrictions on Banach space

valued maps, and “inequality” restrictions on Abstract M (AM) space valued maps (an

AM space is a Banach lattice whose norm obeys a particular condition).1 We illustrate

the generality granted by these sets by showing they enable us to employ tests of (3)

to: (i) Conduct inference on the level of a demand function while imposing a Slutsky

constraint; (ii) Construct a confidence interval in a regression discontinuity design where

the conditional mean is known to be monotone in a neighborhood of, but not necessarily

at, the discontinuity point; (iii) Test for the presence of complementarities in demand;

and (iv) Conduct inference in semiparametric conditional moment (in)equality models.

Additionally, while we do not pursue further examples in detail for conciseness, we note

such sets R also allow for tests of homogeneity, supermodularity, and economies of scale

or scope, as well as for inference on functionals of the identified set.

As our test statistic, we employ the minimum of a suitable criterion function over

parameters satisfying the hypothesized restriction – an approach sometimes referred to

as a sieve generalized method of moments J-test. Under appropriate conditions, we

show that the distribution of the proposed statistic can be approximated by the law of

the projection of a Gaussian process onto the image of the local parameter space under

a linear map. In settings where the local parameter space is asymptotically linear and

1Due to their uncommon use in econometrics, we overview AM spaces in Appendix A.
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the model is identified, the derived approximation can reduce to a standard chi-squared

distribution as in Hansen (1982). However, in the presence of “binding” shape restric-

tions the local parameter space is often not asymptotically linear resulting in non-pivotal

and potentially unreliable pointwise (in P ) asymptotic approximations (Andrews, 2000,

2001). We address these challenges by projecting a bootstrapped version of the relevant

Gaussian process into the image of an appropriate sample analogue of the local param-

eter space under an estimated linear map. Specifically, we establish that the resulting

critical values provide asymptotic size control uniformly over a class of underlying dis-

tributions P . In addition, we characterize a set of alternatives for which the proposed

test possesses nontrivial local power. While aspects of our analysis are specific to the

conditional moment restriction model, the role of the local parameter space is solely

dictated by the set R. As such, we expect the insights of our arguments to be applicable

to the study of shape restrictions in alternative models as well.

The literature on nonparametric shape restrictions in econometrics has classically fo-

cused on testing whether conditional mean regressions satisfy the restrictions implied by

consumer demand theory; see Lewbel (1995), Haag et al. (2009), and references therein.

The related problem of studying monotone conditional mean regressions has also gar-

nered widespread attention – recent advances on this problem includes Chetverikov

(2012) and Chatterjee et al. (2013). Chernozhukov et al. (2009) propose generic meth-

ods, based on rearrangement and/or projection operators, that convert function esti-

mators and confidence bands into monotone estimators and confidence bands, provably

delivering finite-sample improvements; see Evdokimov (2010) for an application in the

context of structural heterogeneity models. Additional work concerning monotonicity

constraints includes Beare and Schmidt (2014) who test the monotonicity of the pric-

ing kernel, Chetverikov and Wilhelm (2014) who study estimation of a nonparametric

instrumental variable regression under monotonicity constraints, and Armstrong (2015)

who develops minimax rate optimal one sided tests in a Gaussian regression discon-

tinuity design. In related work, Freyberger and Horowitz (2012) examine the role of

monotonicity and concavity or convexity constraints in a nonparametric instrumental

variable regression with discrete instruments and endogenous variables. Our paper also

contributes to a literature studying semiparametric and nonparametric models under

partial identification (Manski, 2003). Examples of such work include Chen et al. (2011a),

Chernozhukov et al. (2013), Hong (2011), Santos (2012), and Tao (2014) for conditional

moment restriction models, and Chen et al. (2011b) for the maximum likelihood setting.

The remainder of the paper is organized as follows. In Section 2 we formally define

the sets of restrictions we study and discuss examples that fall within their scope. In

turn, in Section 3 we introduce our test statistic and basic notation that we employ

throughout the paper. Section 4 obtains a rate of convergence for set estimators in

conditional moment restriction models that we require for our subsequent analysis. Our
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main results are contained in Sections 5 and 6, which respectively characterize and

estimate the asymptotic distribution of our test statistic. Finally, Section 7 presents

a brief simulation study, while Section 8 concludes. All mathematical derivations are

included in a series of appendices; see in particular Appendix A for an overview of AM

spaces and an outline of how Appendices B through H are organized.

2 The Hypothesis

In this section, we formally introduce the set of null hypotheses we examine as well as

motivating examples that fall within their scope.

2.1 The Restriction Set

The defining elements determining the generality of the hypotheses allowed for in (3) are

the choice of parameter space Θ and the set of restrictions embodied by R. In imposing

restrictions on both Θ and R we aim to allow for as general a framework as possible while

simultaneously ensuring enough structure for a fruitful asymptotic analysis. To this end,

we require the parameter space Θ to be a subset of a Banach space B, and consider

sets R that are defined through “equality” and “inequality” restrictions. Specifically,

for known maps ΥF and ΥG, we impose that the set R be of the form

R ≡ {θ ∈ B : ΥF (θ) = 0 and ΥG(θ) ≤ 0} . (4)

In order to allow for hypotheses that potentially concern global properties of θ, such

as shape restrictions, the maps ΥF : B→ F and ΥG : B→ G are also assumed to take

values on general Banach spaces F and G respectively. While no further structure on

F is needed for testing “equality” restrictions, the analysis of “inequality” restrictions

necessitates that G be equipped with a partial ordering – i.e. that “≤” be well defined

in (4). We thus impose the following requirements on Θ, and the maps ΥF and ΥG:

Assumption 2.1. (i) Θ ⊆ B, where B is a Banach space with metric ‖ · ‖B.

Assumption 2.2. (i) ΥF : B→ F and ΥG : B→ G, where F is a Banach space with

metric ‖ · ‖F, and G is an AM space with order unit 1G and metric ‖ · ‖G; (ii) The

maps ΥF : B→ F and ΥG : B→ G are continuous under ‖ · ‖B.

Assumption 2.1 formalizes the requirement that the parameter space Θ be a subset

of a Banach space B. In turn, Assumption 2.2(i) similarly imposes that ΥF take values

in a Banach space F, while the map ΥG is required to take values in an AM space G –

since AM spaces are not often used in econometrics, we provide an overview in Appendix
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A. Heuristically, the essential implications of Assumption 2.2(i) for G are that: (i) G

is a vector space equipped with a partial order relationship “≤”; (ii) The partial order

“≤” and the vector space operations interact in the same manner they do on R;2 and

(iii) The order unit 1G ∈ G is an element such that for any θ ∈ G there exists a scalar

λ > 0 satisfying |θ| ≤ λ1G; see Remark 2.1 for an example. Finally, we note that in

Assumption 2.2(ii) the maps ΥF and ΥG are required to be continuous, which ensures

that the set R is closed in B. Since the choice of maps ΥF and ΥG is dictated by the

hypothesis of interest, verifying Assumption 2.2(ii) is often accomplished by restricting

B to have a sufficiently “strong” norm that ensures continuity.

Remark 2.1. In applications we will often work with the space of continuous functions

with bounded derivatives. Formally, for a set A ⊆ Rd, a function f : A → R, a vector

of positive integers α = (α1, . . . , αd), and |α| =
∑d

i=1 αi we denote

Dαf(a0) =
∂|α|

∂aα1
1 , . . . , ∂aαdd

f(a)
∣∣∣
a=a0

. (5)

For a nonnegative integer m, we may then define the space Cm(A) to be given by

Cm(A) ≡ {f : Dαf is continuous and bounded on A for all |α| ≤ m} , (6)

which we endow with the metric ‖f‖m,∞ ≡ max|α|≤m supa∈A |Dαf(a)|. The space C0(A)

with norm ‖f‖0,∞ – which we denote C(A) and ‖·‖∞ for simplicity – is then an AM space.

In particular, equipping C(A) with the ordering f1 ≤ f2 if and only if f1(a) ≤ f2(a) for

all a ∈ A implies the constant function 1(a) = 1 for all a ∈ A is an order unit.

2.2 Motivating Examples

In order to illustrate the relevance of the introduced framework, we next discuss a

number of applications based on well known models. For conciseness, we keep the

discussion brief and revisit these examples in more detail in Appendix F.

We draw our first example from a long-standing literature aiming to replace para-

metric assumptions with shape restrictions implied by economic theory (Matzkin, 1994).

Example 2.1. (Shape Restricted Demand). Blundell et al. (2012) examine a semi-

parametric model for gasoline demand, in which quantity demanded Qi given price Pi,

income Yi, and demographic characteristics Wi ∈ Rdw is assumed to satisfy

Qi = g0(Pi, Yi) +W ′iγ0 + Ui . (7)

2For example, if θ1 ≤ θ2, then θ1 + θ3 ≤ θ2 + θ3 for any θ3 ∈ G.
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The authors propose a kernel estimator for the function g0 : R2
+ → R under the as-

sumption E[Ui|Pi, Yi,Wi] = 0 and the hypothesis that g0 obeys the Slutsky restriction

∂

∂p
g0(p, y) + g0(p, y)

∂

∂y
g0(p, y) ≤ 0 . (8)

While in their application Blundell et al. (2012) find imposing (8) to be empirically

important, their asymptotic framework assumes (8) holds strictly and thus implies the

constrained an unconstrained estimators are asymptotically equivalent. In contrast, our

results will enable us to test, for example, for (p0, y0) ∈ R2
+ and c0 ∈ R the hypothesis

H0 : g0(p0, y0) = c0 H1 : g0(p0, y0) 6= c0 (9)

employing an asymptotic analysis that is able to capture the finite sample importance

of imposing the Slutsky restriction. To map this problem into our framework, we set

B = C1(R2
+) × Rdw , J = 1, Zi = (Pi, Yi,Wi), Xi = (Qi, Zi) and ρ(Xi, θ) = Qi −

g(Pi,Wi) −W ′iγ for any θ = (g, γ) ∈ B. Letting F = R and defining ΥF : B → F by

ΥF (θ) = g(p0, y0)− c0 for any θ ∈ B enables us to test (9), while the Slutsky restriction

can be imposed by setting G = C(R2
+) and defining ΥG : B→ G to be given by

ΥG(θ)(p, y) =
∂

∂p
g(p, y) + g(p, y)

∂

∂y
g(p, y) (10)

for any θ ∈ B. Alternatively, we may also conduct inference on deadweight loss as

considered in Blundell et al. (2012) building on Hausman and Newey (1995), or allow

for endogeneity and quantile restrictions on Ui as pursued by Blundell et al. (2013).

Our next example builds on Example 2.1 by illustrating how to exploit shape re-

strictions in a regression discontinuity (RD) setting; see also Armstrong (2015).3

Example 2.2. (Monotonic RD). We consider a sharp design in which treatment is

assigned whenever a forcing variable Ri ∈ R is above a threshold which we normalize

to zero. For an outcome variable Yi and a treatment indicator Di = 1{Ri ≥ 0}, Hahn

et al. (2001) showed the average treatment effect τ0 at zero is identified by

τ0 = lim
r↓0

E[Yi|Ri = r]− lim
r↑0

E[Yi|Ri = r] . (11)

In a number of applications it is additionally reasonable to assume E[Yi|Ri = r] is

monotonic in a neighborhood of, but not necessarily at, zero. Such restriction is natural,

for instance, in Lee et al. (2004) where Ri is the democratic vote share and Yi is a measure

of how liberal the elected official’s voting record is, or in Black et al. (2007) where Ri and

Yi are respectively measures of predicted and actual collected unemployment benefits.

3We thank Pat Kline for suggesting this example.
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In order to illustrate the applicability of our framework to this setting, we suppose we

wish to impose monotonicity of E[Yi|R = r] on r ∈ [−1, 0) and r ∈ [0, 1] while testing

H0 : τ0 = 0 H1 : τ0 6= 0 . (12)

To this end, we let B = C1([−1, 0]) × C1([0, 1]), Xi = (Yi, Ri, Di), Zi = (Ri, Di), and

for J = 1 set ρ(x, θ) = y − g−(r)(1− d)− g+(r)d which yields the restriction

E[Yi − g−(Ri)(1−Di)− g+(Ri)Di|Ri, Di] = 0 (13)

for any θ = (g−, g+) ∈ B. The functions g− and g+ are then respectively identified by

E[Yi|Ri = r] for r ∈ [−1, 0) and r ∈ [0, 1], and hence we may test (12) by setting F = R

and ΥF (θ) = g+(0) − g−(0) for any θ = (g−, g+) ∈ B.4 In turn, monotonicity can be

imposed by setting G = C([−1, 0])× C([0, 1]) and letting ΥG(θ) = (−g′−,−g′+) for any

θ = (g−, g+) ∈ B. A similar construction can also be applied in fuzzy RD designs or the

regression kink design studied in Card et al. (2012) and Calonico et al. (2014).

While Examples 2.1 and 2.2 concern imposing shape restriction to conduct inference

on functionals, in certain applications interest instead lies on the shape restriction itself.

The following example is based on a model originally employed by Gentzkow (2007) in

examining whether print and online newspapers are substitutes or complements.

Example 2.3. (Complementarities). Suppose an agent can buy at most one each

of two goods j ∈ {1, 2}, and let a = (a1, a2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} denote the

possible bundles to be purchased. We consider a random utility model

U(a, Zi, εi) =
2∑
j=1

(W ′iγ0,j + εij)1{aj = 1}+ δ0(Yi)1{a1 = 1, a2 = 1} (14)

where Zi = (Wi, Yi) are observed covariates, Yi ∈ Rdy can be a subvector of Wi ∈ Rdw ,

δ0 ∈ C(Rdy) is an unknown function, and εi = (εi,1, εi,2) follows a parametric distribution

G(·|α0) with α0 ∈ Rdα ; see Fox and Lazzati (2014) for identification results. In (14),

δ0 ∈ C(Rdy) determines whether the goods are complements or substitutes and we may

consider, for example, a test of the hypothesis that they are always substitutes

H0 : δ0(y) ≤ 0 for all y H1 : δ0(y) > 0 for some y . (15)

In this instance, B = R2dw+dα × C(Rdy), and for any θ = (γ1, γ2, α, δ) ∈ B we map

(15) into our framework by letting G = C(Rdy), ΥG(θ) = δ, and imposing no equality

4Here, with some abuse of notation, we identify g− ∈ C([−1, 0]) with the function E[Yi|Ri = r] on
r ∈ [−1, 0) by letting g−(0) = limr↑0 E[Yi|Ri = r] which exists by assumption.

8



restrictions. For observed choices Ai the conditional moment restrictions are then

P (Ai = (1, 0)|Zi)

=

∫
1{W ′iγ1 + ε1 ≥ 0, W ′iγ2 + δ(Yi) + ε2 ≤ 0, W ′iγ1 + ε1 ≥W ′iγ2 + ε2}dG(ε|α) (16)

and, exploiting δ(Yi) ≤ 0 under the null hypothesis, the two additional conditions

P (Ai = (0, 0)|Zi) =

∫
1{ε1 ≤ −W ′iγ1, ε2 ≤ −W ′iγ2}dG(ε|α) (17)

P (Ai = (1, 1)|Zi) =

∫
1{ε1 + δ(Yi) ≥ −W ′iγ1, ε2 + δ(Yi) ≥ −W ′iγ2}dG(ε|α) (18)

so that in this model J = 3. An analogous approach may also be employed to conduct

inference on interaction effects in discrete games as in De Paula and Tang (2012).

The introduced framework can also be employed to study semiparametric specifi-

cations in conditional moment (in)equality models – thus complementing a literature

that, with the notable exception of Chernozhukov et al. (2013), has been largely para-

metric (Andrews and Shi, 2013). Our final example illustrates such an application in

the context of a study of hospital referrals by Ho and Pakes (2014).

Example 2.4. (Testing Parameter Components in Moment (In)Equalities).

We consider the problem of estimating how an insurer assigns patients to hospital within

its networkH. Suppose each observation i consists of two individuals j ∈ {1, 2} of similar

characteristics for whom we know the hospital Hij ∈ H to which they were referred,

as well as the cost of treatment Pij(h) and the distance Dij(h) to any hospital h ∈ H.

Under certain assumptions, Ho and Pakes (2014) then derive the moment restriction

E[

2∑
j=1

{γ0(Pij(Hij)− Pij(Hij′)) + g0(Dij(Hij))− g0(Dij(Hij′))}|Zi] ≤ 0 (19)

where γ0 ∈ R denotes the insurer’s sensitivity to price, g0 : R+ → R+ is an unknown

monotonically increasing function reflecting a preference for referring patients to nearby

hospitals, Zi ∈ Rdz is an appropriate instrument, and j′ ≡ {1, 2} \ {j}.5 Employing our

proposed framework we may, for example, test for some c0 ∈ R the null hypothesis

H0 : γ0 = c0 H1 : γ0 6= c0 (20)

without imposing parametric restrictions on g0 but instead requiring it to be monotone.

5In other words, j′ = 2 when j = 1, and j′ = 1 when j = 2.
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To this end, let Xi = ({{Pij(h), Dij(h)}h∈H, Hij}2j=1, Zi), and define the function

ψ(Xi, γ, g) ≡
2∑
j=1

{γ(Pij(Hij)− Pij(Hij′)) + g(Dij(Hij))− g(Dij(Hij′))} (21)

for any (γ, g) ∈ R× C1(R+). The moment restriction in (19) can then be rewritten as

E[ψ(Xi, γ0, g0) + λ0(Zi)|Zi] = 0 (22)

for some unknown function λ0 satisfying λ0(Zi) ≥ 0. Thus, (19) may be viewed as a

conditional moment restriction model with parameter space B = R×C1(R+)×`∞(Rdz)

in which ρ(x, θ) = ψ(x, γ, g) + λ(z) for any θ = (γ, g, λ) ∈ B. The monotonicity

restriction on g and positivity requirement on λ can in turn be imposed by setting

G = `∞(R+) × `∞(Rdz) and ΥG(θ) = −(g′, λ), while the null hypothesis in (20) may

be tested by letting F = R and defining ΥF (θ) = γ − c0 for any θ = (γ, g, λ) ∈ B. An

analogous construction can similarly be applied to extend conditional moment inequality

models with parametric specifications to semiparametric or nonparametric ones;6 see

Ciliberto and Tamer (2009), Pakes (2010) and references therein.

3 Basic Setup

Having formally stated the hypotheses we consider, we next develop a test statistic and

introduce basic notation and assumptions that will be employed throughout the paper.

3.1 Test Statistic

We test the null hypothesis in (3) by employing a sieve-GMM statistic that may be

viewed as a generalization of the overidentification test of Sargan (1958) and Hansen

(1982). Specifically, for the instrument Zi, of the th moment restriction, we consider a

set of transformations {qk,n,}
kn,
k=1 and let q

kn,
n, (z) ≡ (q1,n,(z), . . . , qkn,,n,(z))

′. Setting

Zi ≡ (Z ′i,1, . . . , Z
′
i,J )′ to equal the vector of all instruments, kn ≡

∑J
=1 kn, the total

number of transformations, qknn (z) ≡ (q
kn,1
n,1 (z1)′, . . . , q

kn,J
n,J (zJ )′)′ the vector of all trans-

formations, and ρ(x, θ) ≡ (ρ1(x, θ), . . . , ρJ (x, θ))′ the vector of all generalized residuals,

we then construct for each θ ∈ Θ the kn × 1 vector of scaled sample moments

1√
n

n∑
i=1

ρ(Xi, θ) ∗ qknn (Zi) ≡
1√
n

n∑
i=1

(ρ1(Xi, θ)q
kn,1
n,1 (Zi,1)′, . . . , ρJ (Xi, θ)q

kn,J
n,J (Zi,J )′)′

(23)

6Alternatively, through test inversion we may employ the framework of this example to construct
confidence regions for functionals of a semi or non-parametric identified set (Romano and Shaikh, 2008).
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where for partitioned vectors a and b, a ∗ b denotes their Khatri-Rao product7 – i.e. the

vector in (23) consists of the scaled sample averages of the product of each generalized

residual ρ(Xi, θ) with the transformations of its respective instrument Zi,. Clearly, if

(23) is evaluated at a parameter θ in the identified set Θ0(P ), then its mean will be zero.

As noted by Newey (1985), however, for any fixed dimension kn the expectation of (23)

may still be zero even if θ /∈ Θ0(P ). For this reason, we conduct an asymptotic analysis

in which kn diverges to infinity, and note the choice of transformations {qk,n,}
kn,
k=1 is

allowed to depend on n to accommodate the use of splines or wavelets.

Intuitively, we test (3) by examining whether there is a parameter θ ∈ Θ satisfying

the hypothesized restrictions and such that (23) has mean zero. To this end, for any

r ≥ 2, vector a ≡ (a(1), . . . , a(d))′, and d× d positive definite matrix A we define

‖a‖A,r ≡ ‖Aa‖r ‖a‖rr ≡
d∑
i=1

|a(i)|r , (24)

with the usual modification ‖a‖∞ ≡ max1≤i≤d |a(i)|. For any possibly random kn × kn
positive definite matrix Σ̂n, we then construct a function Qn : Θ→ R+ by

Qn(θ) ≡ ‖ 1√
n

n∑
i=1

ρ(Xi, θ) ∗ qknn (Zi)‖Σ̂n,r . (25)

Heuristically, the criterionQn should diverge to infinity when evaluated at any θ /∈ Θ0(P )

and remain “stable” when evaluated at a θ ∈ Θ0(P ). We therefore employ the minimum

of Qn over R to examine whether there exists a θ that simultaneously makes Qn “stable”

(θ ∈ Θ0(P )) and satisfies the conjectured restriction (θ ∈ R). Formally, we employ

In(R) ≡ inf
θ∈Θn∩R

Qn(θ) , (26)

where Θn∩R is a sieve for Θ∩R – i.e. Θn∩R is a finite dimensional subset of Θ∩R that

grows dense in Θ∩R. Since the choice of Θn∩R depends on Θ∩R, we leave it unspecified

though note common choices include flexible finite dimensional specifications, such as

splines, polynomials, wavelets, and neural networks; see (Chen, 2007).

3.2 Notation and Assumptions

3.2.1 Notation

Before stating our next set of assumptions, we introduce basic notation that we employ

throughout the paper. For conciseness, we let Vi ≡ (X ′i, Z
′
i)
′ and succinctly refer to the

7For partitioned vectors a = (a′1, . . . , a
′
J )′ and b = (b′1, . . . , a

′
J )′, a ∗ b ≡ ((a1 ⊗ b1)′, . . . , (aJ ⊗ bJ )′)′.
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set of P ∈ P satisfying the null hypothesis in (3) by employing the notation

P0 ≡ {P ∈ P : Θ0(P ) ∩R 6= ∅} . (27)

We also view any d × d matrix A as a map from Rd to Rd, and note that when Rd is

equipped with the norm ‖ · ‖r it induces on A the operator norm ‖ · ‖o,r given by

‖A‖o,r ≡ sup
a∈Rd:‖a‖r=1

‖Aa‖r . (28)

For instance, ‖A‖o,1 corresponds to the largest maximum absolute value column sum of

A, and ‖A‖o,2 corresponds to the square root of the largest eigenvalue of A′A.

Our analysis relies heavily on empirical process theory, and we therefore borrow ex-

tensively from the literature’s notation (van der Vaart and Wellner, 1996). In particular,

for any function f of Vi we for brevity sometimes write its expectation as

Pf ≡ EP [f(Vi)] . (29)

In turn, we denote the empirical process evaluated at a function f by Gn,P f – i.e. set

Gn,P f ≡
1√
n

n∑
i=1

{f(Vi)− Pf} . (30)

We will often need to evaluate the empirical process at functions generated by the maps

θ 7→ ρ(·, θ) and the sieve Θn ∩R, and for convenience we therefore define the set

Fn ≡ {ρ(·, θ) : θ ∈ Θn ∩R and 1 ≤  ≤ J} . (31)

The “size” of Fn plays a crucial role, and we control it through the bracketing integral

J[ ](δ,Fn, ‖ · ‖L2
P

) ≡
∫ δ

0

√
1 + logN[ ](ε,Fn, ‖ · ‖L2

P
)dε , (32)

where N[ ](ε,Fn, ‖ · ‖L2
P

) is the smallest number of brackets of size ε (under ‖ · ‖L2
P

)

required to cover Fn.8 Finally, we let Wn,P denote the isonormal process on L2
P – i.e.

Wn,P is a Gaussian process satisfying for all f, g ∈ L2
P , E[Wn,P f ] = E[Wn,P g] = 0 and

E[Wn,P fWn,P g] = EP [(f(Vi)− EP [f(Vi)])(g(Vi)− EP [g(Vi)])] . (33)

It will prove useful to denote the vector subspace generated by the sieve Θn ∩R by

Bn ≡ span{Θn ∩R} , (34)

8An ε bracket under ‖ · ‖L2
P

is a set of the form {f ∈ Fn : L(v) ≤ f(v) ≤ U(v)} with ‖U −L‖L2
P
< ε.

Here, as usual, the LqP spaces are defined by LqP ≡ {f : ‖f‖Lq
P
<∞} where ‖f‖q

L
q
P
≡ EP [|f |q].
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where span{C} denotes the closure under ‖ · ‖B of the linear span of any set C ⊆ B.

Since Bn will further be assumed to be finite dimensional, all well defined norms on it

will be equivalent in the sense that they generate the same topology. Hence, if Bn is a

subspace of two different Banach spaces (A1, ‖·‖A1) and (A2, ‖·‖A2), then the modulus

of continuity of ‖ · ‖A1 with respect to ‖ · ‖A2 , which we denote by

Sn(A1,A2) ≡ sup
b∈Bn

‖b‖A1

‖b‖A2

, (35)

will be finite for any n though possibly diverging to infinity with the dimension of Bn.

For example, if Bn ⊆ L∞P , then Sn(L2
P , L

∞
P ) ≤ 1, while Sn(L∞P , L

2
P ) is the smallest

constant such that ‖b‖L∞P ≤ ‖b‖L2
P
× Sn(L∞P , L

2
P ) for all b ∈ Bn.

3.2.2 Assumptions

The following assumptions introduce a basic structure we employ throughout the paper.

Assumption 3.1. (i) {Vi}∞i=1 is an i.i.d. sequence with Vi ∼ P ∈ P.

Assumption 3.2. (i) For all 1 ≤  ≤ J , sup1≤k≤kn, supP∈P ‖qk,n,‖L∞P ≤ Bn with

Bn ≥ 1; (ii) The largest eigenvalue of EP [q
kn,
n, (Zi,)q

kn,
n, (Zi,)

′] is bounded uniformly in

1 ≤  ≤ J , n, and P ∈ P; (iii) The dimension of Bn is finite for any n.

Assumption 3.3. The classes Fn: (i) Are closed under ‖ · ‖L2
P

; (ii) Have envelope Fn

with supP∈PEP [F 2
n(Vi)] <∞; (iii) Satisfy supP∈P J[ ](‖Fn‖L2

P
,Fn, ‖ · ‖L2

P
) ≤ Jn.

Assumption 3.4. (i) For each P ∈ P there is a Σn(P ) > 0 with ‖Σ̂n − Σn(P )‖o,r =

op(1) uniformly in P ∈ P; (ii) The matrices Σn(P ) are invertible for all n and P ∈ P;

(iii) ‖Σn(P )‖o,r and ‖Σn(P )−1‖o,r are uniformly bounded in n and P ∈ P.

Assumption 3.1 imposes that the sample {Vi}ni=1 be i.i.d. with P belonging to a

set of distributions P over which our results will hold uniformly. In Assumption 3.2(i)

we require the functions {qk,n,}
kn,
k=1 to be bounded by a constant Bn possibly diverging

to infinity with the sample size. Hence, Assumption 3.2(i) accommodates both trans-

formations that are uniformly bounded in n, such as trigonometric series, and those

with diverging bound, such as b-splines, wavelets, and orthogonal polynomials (after or-

thonormalization). The bound on eigenvalues imposed in Assumption 3.2(ii) guarantees

that {qk,n,}
kn,
n=1 are Bessel sequences uniformly in n, while Assumption 3.2(iii) formalizes

that the sieve Θn ∩R be finite dimensional. In turn, Assumption 3.3 controls the “size”

of the class Fn, which is crucial in studying the induced empirical process. We note that

the entropy integral is allowed to diverge with the sample size and thus accommodates

non-compact parameter spaces Θ as in Chen and Pouzo (2012). Alternatively, if the

class F ≡
⋃∞
n=1Fn is restricted to be Donsker, then Assumptions 3.3(ii)-(iii) can hold
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with uniformly bounded Jn and ‖Fn‖L2
P

. Finally, Assumption 3.4 imposes requirements

on the weighting matrix Σ̂n – namely, that it converge to an invertible matrix Σn(P )

possibly depending on P . Assumption 3.4 can of course be automatically satisfied under

nonstochastic weights.

4 Rate of Convergence

As a preliminary step towards approximating the finite sample distribution of In(R), we

first aim to characterize the asymptotic behavior of the minimizers of Qn on Θn ∩ R.

Specifically, for any sequence τn ↓ 0 we study the probability limit of the set

Θ̂n ∩R ≡ {θ ∈ Θn ∩R :
1√
n
Qn(θ) ≤ inf

θ∈Θn∩R

1√
n
Qn(θ) + τn} , (36)

which constitutes the set of exact (τn = 0) or near (τn > 0) minimizers of Qn. We

study the general case with τn ↓ 0 because results for both exact and near minimizers

are needed in our analysis. In particular, the set of exact and near minimizers will be

employed to respectively characterize and estimate the distribution of In(R).

While it is natural to view Θ0(P )∩R as the candidate probability limit for Θ̂n ∩R,

it is in fact more fruitful to instead consider Θ̂n ∩R as consistent for the sets9

Θ0n(P ) ∩R ≡ arg min
θ∈Θn∩R

‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r . (37)

Heuristically, Θ0n(P ) ∩ R is the set of minimizers of a population version of Qn where

the number of moments kn has been fixed and the parameter space has been set to

Θn ∩ R (instead of Θ ∩ R). As we will show, a suitable rate of convergence towards

Θ0n(P ) ∩ R suffices for establishing size control, and can in fact be obtained under

weaker requirements than those needed for convergence towards Θ0(P ) ∩R.

Following the literature on set estimation in finite dimensional settings (Chernozhukov

et al., 2007; Beresteanu and Molinari, 2008; Kaido and Santos, 2014), we study set con-

sistency under the Hausdorff metric. In particular, for any sets A and B we define

−→
d H(A,B, ‖ · ‖) ≡ sup

a∈A
inf
b∈B
‖a− b‖ (38)

dH(A,B, ‖ · ‖) ≡ max{
−→
d H(A,B, ‖ · ‖),

−→
d H(B,A, ‖ · ‖)} , (39)

which respectively constitute the directed Hausdorff distance and the Hausdorff distance

under the metric ‖·‖. In contrast to finite dimensional problems, however, in the present

9Assumptions 3.3(i) and 3.3(iii) respectively imply Fn is closed and totally bounded under ‖ · ‖L2
P

and hence compact. It follows that the minimum in (37) is attained and Θ0n(P ) ∩R is well defined.
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setting we emphasize the metric under which the Hausdorff distance is computed due

to its importance in determining a rate of convergence; see also Santos (2011).

4.1 Consistency

We establish the consistency of Θ̂n ∩R under the following additional assumption:

Assumption 4.1. (i) supP∈P0
infθ∈Θn∩R ‖EP [ρ(Xi, θ)∗qknn (Zi)]‖r ≤ ζn for some ζn ↓ 0;

(ii) Let (Θ0n(P ) ∩R)ε ≡ {θ ∈ Θn ∩R :
−→
d H({θ},Θ0n(P ) ∩R, ‖ · ‖B) < ε} and set

Sn(ε) ≡ inf
P∈P0

inf
θ∈(Θn∩R)\(Θ0n(P )∩R)ε

‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r (40)

for any ε > 0. Then {ζn + k
1/r
n

√
log(kn)JnBn/

√
n} = o(Sn(ε)) for any ε > 0.

Assumption 4.1(i) requires that the sieve Θn ∩R be such that the infimum

inf
θ∈Θn∩R

‖EP [ρ(Xi, θ) ∗ qknn (Zi)‖r (41)

converges to zero uniformly over P ∈ P0. Heuristically, since for any P ∈ P0 the infimum

in (41) over the entire parameter space equals zero (Θ0(P )∩R 6= ∅), Assumption 4.1(i)

can be interpreted as demanding that the sieve Θn∩R provide a suitable approximation

to Θ ∩R. In turn, the parameter Sn(ε) introduced in Assumption 4.1(ii) measures how

“well separated” the infimum in (41) is (see (40)), while the quantity

k
1/r
n

√
log(kn)JnBn√

n
(42)

represents the rate at which the scaled criterion Qn/
√
n converges to its population

analogue; see Lemma B.2. Thus, Assumption 4.1(ii) imposes that the rate at which “well

separatedness” is lost (Sn(ε) ↓ 0) be slower than the rate at which Qn/
√
n converges to

its population counterpart – a condition originally imposed in estimation problems with

non compact parameter spaces by Chen and Pouzo (2012) who also discuss sufficient

conditions for it; see Remark 4.1.

Given the introduced assumption, Lemma 4.1 establishes the consistency of Θ̂n ∩R.

Lemma 4.1. Let Assumptions 3.1, 3.2(i), 3.3, 3.4, and 4.1 hold. (i) If the sequence

{τn} satisfies τn = o(Sn(ε)) for all ε > 0, then it follows that uniformly in P ∈ P0

−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖B) = op(1) . (43)

(ii) Moreover, if in addition {τn} is such that (
k

1/r
n

√
log(kn)JnBn√

n
+ ζn) = o(τn), then

lim inf
n→∞

inf
P∈P0

P (Θ0n(P ) ∩R ⊆ Θ̂n ∩R) = 1 . (44)
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The first claim of Lemma 4.1 shows that, provided τn ↓ 0 sufficiently fast, Θ̂n ∩R is

contained in arbitrary neighborhoods of Θ0n(P ) ∩R with probability approaching one.

This conclusion will be of use when characterizing the distribution of In(R). In turn, the

second claim of Lemma 4.1 establishes that, provided τn ↓ 0 slowly enough, Θ0n(P )∩R
is contained in Θ̂n∩R with probability approaching one. This second conclusion will be

of use when employing Θ̂n ∩R to construct an estimator of the distribution of In(R).

Remark 4.1. Under Assumption 3.2(ii), it is possible to show there is a C <∞ with

inf
θ∈(Θn∩R)\(Θ0n(P )∩R)ε

‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r

≤ C × inf
θ∈(Θn∩R)\(Θ0(P )∩R)ε

{
J∑
=1

{EP [(EP [ρ(Xi, θ)|Zi,])2]}
1
2 } ; (45)

see Lemma C.5. Therefore, if the problem is ill-posed and the sieve Θn ∩R grows dense

in Θ∩R, result (45) implies that Sn(ε) = o(1) for all ε > 0 as in Chen and Pouzo (2012).

In contrast, Newey and Powell (2003) address the ill-posed inverse problem by imposing

compactness of the parameter space. Analogously, in our setting it is possible to show

that if Θ ∩R is compact and {qk,n,}
kn,
k=1 are suitable dense, then

lim inf
n→∞

inf
θ∈(Θ∩R)\(Θ0n(P )∩R)ε

‖EP [ρ(Xi, θ) ∗ qknn (Zi)‖r > 0 (46)

for any P ∈ P0. Hence, under compactness of Θ∩R, it is possible for lim inf Sn(ε) > 0,

in which case Assumption 4.1(ii) follows from 4.1(i) and k
1/r
n

√
log(kn)BnJn = o(

√
n).

4.2 Convergence Rate

The consistency result in Lemma 4.1 enables us to derive a rate of convergence by

exploiting the local behavior of the population criterion function in a neighborhood of

Θ0n(P )∩R. We do not study a rate convergence under the original norm ‖·‖B, however,

but instead introduce a potentially weaker norm we denote by ‖ · ‖E.

Heuristically, the need to introduce ‖ · ‖E arises from the “strength” of ‖ · ‖B being

determined by the requirement that the maps ΥF : B→ F and ΥG : B→ G be contin-

uous under ‖ · ‖B; recall Assumption 2.2(ii). On the other hand, in approximating the

distribution of In(R) we must also rely on a metric under which the empirical process

is stochastically equicontinuous – a purpose for which ‖ · ‖B is often “too strong” with

its use leading to overly stringent assumptions. Thus, while ‖ · ‖B ensures continuity

of the maps ΥF and ΥG, we employ a weaker norm ‖ · ‖E to guarantee the stochastic

equicontinuity of the empirical process – here “E” stands for equicontinuity. The follow-

ing assumption formally introduces ‖ · ‖E and enables us to obtain a rate of convergence

under the induced Hausdorff distance.
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Assumption 4.2. (i) For a Banach Space E with norm ‖ · ‖E satisfying Bn ⊆ E for

all n, there is an ε > 0 and sequence {νn}∞n=1 with ν−1
n = O(1) such that

ν−1
n

−→
d H({θ},Θ0n(P ) ∩R, ‖ · ‖E) ≤ {‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r +O(ζn)}

for all P ∈ P0 and θ ∈ (Θ0n(P )∩R)ε ≡ {θ ∈ Θn∩R :
−→
d H({θ},Θ0n(P )∩R, ‖ ·‖B) < ε}.

Intuitively, Assumption 4.2 may be interpreted as a generalization of a classical lo-

cal identification condition. In particular, the parameter ν−1
n measures the strength of

identification, with large/small values of ν−1
n indicating how quickly/slowly the crite-

rion grows as θ moves away from the set of minimizers Θ0n(P ) ∩ R. The strength of

identification, however, may decrease with n for at least two reasons. First, in ill-posed

problems ν−1
n decreases with the dimension of the sieve, reflecting that local identifica-

tion is attained in finite dimensional subspaces but not on the entire parameter space.

Second, the strength of identification is affected by the choice of norm ‖ · ‖r employed

in the construction of Qn. While the norms ‖ · ‖r are equivalent on any fixed finite di-

mensional space, their modulus of continuity can decrease with the number of moments

which in turn affects ν−1
n ; see Remark 4.2.

The following Theorem exploits Assumption 4.2 to obtain a rate of convergence.

Theorem 4.1. Let Assumptions 3.1, 3.2(i), 3.3, 3.4, 4.1, and 4.2 hold, and let

Rn ≡ νn{
k

1/r
n

√
log(kn)JnBn√

n
+ ζn} . (47)

(i) If {τn} satisfies τn = o(Sn(ε)) for any ε > 0, then it follows that uniformly in P ∈ P0

−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) = Op(Rn + νnτn) . (48)

(ii) Moreover, if in addition (
k

1/r
n

√
log(kn)JnBn√

n
+ ζn) = o(τn), then uniformly in P ∈ P0

dH(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) = Op(Rn + νnτn) . (49)

Together, Lemma 4.1 and Theorem 4.1 establish the consistency (in ‖ · ‖B) and rate

of convergence (in ‖ · ‖E) of the set estimator Θ̂n ∩ R. While we exploit these results

in our forthcoming analysis, it is important to emphasize that in specific applications

alternative assumptions that are better suited for the particular structure of the model

may be preferable. In this regard, we note that Assumptions 4.1 and 4.2 are not needed

in our analysis beyond their role in delivering consistency and a rate of convergence

result through Lemma 4.1 and Theorem 4.1 respectively. In particular, if an alternative

rate of convergence Rn is derived under different assumptions, then such a result can

still be combined with our forthcoming analysis to establish the validity of the proposed
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inferential methods – i.e. our inference results remain valid if Assumptions 4.1 and 4.2

are instead replaced with a high level condition that Θ̂n ∩ R be consistent (in ‖ · ‖B)

with an appropriate rate of convergence Rn (in ‖ · ‖E).

Remark 4.2. In models in which Θ0n(P )∩R is a singleton, Assumption 4.2 is analogous

to a standard local identification condition (Chen et al., 2014). In particular, suppose

{bj}jnj=1 is a basis for Bn and for each 1 ≤ j ≤ jn and θ ∈ (Θ0n(P ) ∩R)ε define

A
(j)
P,n(θ) ≡ ∂

∂τ
EP [ρ(Xi, θ + τbj) ∗ qknn (Zi)]

∣∣∣
τ=0

(50)

and set AP,n(θ) ≡ [A
(1)
P,n(θ), . . . , A

(jn)
P,n (θ)]. Further let α : Bn → Rjn be such that

b =

jn∑
j=1

αj(b)× bj , (51)

for any b ∈ Bn and α(b) = (α1(b), . . . , αjn(b))′. If the smallest singular value of AP,n(θ)

is bounded from below by some ϑn > 0 uniformly in θ ∈ (Θ0n(P ) ∩ R)ε and P ∈ P0,

then it is straightforward to show Assumption 4.2 holds with νn = ϑ−1
n × k

1/2−1/r
n and

the norm ‖b‖E = ‖α(b)‖2 – a norm that is closely related to ‖ · ‖L2
P

when B ⊆ L2
P .

5 Strong Approximation

In this section, we exploit the rate of convergence derived in Theorem 4.1 to obtain a

strong approximation to the proposed test statistic In(R). We proceed in two steps.

First, we construct a preliminary local approximation involving the norm of a Gaus-

sian process with an unknown “drift”. Second, we refine the initial approximation by

linearizing the “drift” while accommodating possibly severely ill-posed problems.

5.1 Local Approximation

The first strong approximation to our test statistic relies on the following assumptions:

Assumption 5.1. (i) supf∈Fn ‖Gn,P fq
kn
n −Wn,P fq

kn
n ‖r = op(an) uniformly in P ∈ P,

where {an}∞n=1 is some known bounded sequence.

Assumption 5.2. (i) There exist κρ > 0 and Kρ <∞ such that for all n, P ∈ P, and

all θ1, θ2 ∈ Θn ∩R we have that EP [‖ρ(Xi, θ1)− ρ(Xi, θ2)‖22] ≤ K2
ρ‖θ1 − θ2‖

2κρ
E .

Assumption 5.3. (i) k
1/r
n

√
log(kn)Bn supP∈P J[ ](R

κρ
n ,Fn, ‖·‖L2

P
) = o(an); (ii)

√
nζn =

o(an); (iii) ‖Σ̂n − Σn(P )‖o,r = op(an{k1/r
n

√
log(kn)BnJn}−1) uniformly in P ∈ P.
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Assumption 5.1(i) requires that the empirical process Gn,P be approximated by an

isonormal Gaussian process Wn,P uniformly in P ∈ P. Intuitively, Assumption 5.1(i)

replaces the traditional requirement of convergence in distribution by a strong approxi-

mation, which is required to handle the asymptotically non-Donsker setting that arises

naturally in our case and other related problems; see Chernozhukov et al. (2013) for

further discussion. The sequence {an}∞n=1 in Assumption 5.1(i) denotes a bound on the

rate of convergence of the coupling to the empirical process, which will in turn character-

ize the rate of convergence of our strong approximation to In(R). We provide sufficient

conditions for verifying Assumption 5.1(i) based on Koltchinskii (1994)’s coupling in

Corollary G.1 in Appendix E. These results could be of independent interest. Alterna-

tively, Assumption 5.1(i) can be verified by employing methods based on Rio (1994)’s

coupling or Yurinskii (1977)’s couplings; see e.g., Chernozhukov et al. (2013). Assump-

tion 5.2(i) is a Hölder continuity condition on the map ρ(·, Xi) : Θn ∩ R → {L2
P }J

with respect to the norm ‖ · ‖E, and thus ensures that Wn,P fq
kn
n is equicontinuous with

respect to the index θ under ‖ · ‖E for fixed n. However, this process gradually looses

its equicontinuity property as n diverges infinity due to the addition of moments and

increasing complexity of the class Fn. Hence, Assumption 5.3(i) demands that the ‖·‖E-

rate of convergence (Rn) be sufficiently fast to overcome the loss of equicontinuity at a

rate no slower than an (as in Assumption 5.1(i)). Finally, Assumption 5.3(ii) ensures

the test statistic is asymptotically properly centered under the null hypothesis, while

Assumption 5.3(iii) controls the rate of convergence of the weighting matrix.

Together, the results of Section 4 and Assumptions 5.1, 5.2, and 5.3 enable us to

obtain a strong approximation to the test statistic In(R). To this end, we define

Vn(θ, `) ≡ { h√
n
∈ Bn : θ +

h√
n
∈ Θn ∩R and ‖ h√

n
‖E ≤ `} , (52)

which for any θ ∈ Θn∩R constitutes the collection of local deviations from θ that remain

in the constrained sieve Θn ∩ R. Thus the local parameter space Vn(θ, `) is indexed by

θ which runs over Θn ∩ R and parameterized by deviations h/
√
n from θ; this follows

previous uses in Chernozhukov et al. (2007) and Santos (2007). The normalization

by
√
n plays no particular role here, since ` can grow and merely visually emphasizes

localization. By Theorem 4.1, it then follows that in studying In(R) we need not consider

the infimum over the entire sieve (see (26)) but may instead examine the infimum over

local deviations to Θ0n(P ) ∩R – i.e. the infimum over parameters

(θ0,
h√
n

) ∈ (Θ0n(P ) ∩R, Vn(θ0, `n)) (53)

with the neighborhood Vn(θ0, `n) shrinking at an appropriate rate (Rn = o(`n)). In

turn, Assumptions 5.1, 5.2, and 5.3 control the relevant stochastic processes over the

localized space (53) and allow us to characterize the distribution of In(R).
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The following Lemma formalizes the preceding discussion.

Lemma 5.1. Let Assumptions 3.1, 3.2(i), 3.3, 3.4, 4.1, 4.2, 5.1, 5.2, and 5.3 hold. It

then follows that for any sequence {`n} satisfying Rn = o(`n) and k
1/r
n

√
log(kn)Bn ×

supP∈P J[ ](`
κρ
n ,Fn, ‖ · ‖L2

P
) = o(an), we have uniformly in P ∈ P0 that

In(R) = inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,`n)

‖Wn,Pρ(·, θ0)∗qknn +
√
nPρ(·, θ0+

h√
n

)∗qknn ‖Σn(P ),r+op(an)

Lemma 5.1 establishes our first strong approximation and further characterizes the

rate of convergence to be no slower than an (as in Assumption 5.1). Thus, for a con-

sistent coupling we only require that Assumptions 5.1 and 5.3 hold with {an}∞n=1 a

bounded sequence. In certain applications, however, successful estimation of critical

values will additionally require us to impose that an be logarithmic or double logarith-

mic; see Section 6.3. We further note that for the conclusion of Lemma 5.1 to hold,

the neighborhoods Vn(θ, `n) must shrink at a rate `n satisfying two conditions. First,

`n must decrease to zero slowly enough to ensure the infimum over the entire sieve is

indeed equivalent to the infimum over the localized space (Rn = o(`n)). Second, `n

must decrease to zero sufficiently fast to overcome the gradual loss of equicontinuity

of the isonormal process Wn,P – notice Wn,P is evaluated at ρ(·, θ0) ∗ qknn in place of

ρ(·, θ0 + h/
√
n) ∗ qknn . The existence of a sequence `n satisfying these requirements is

guaranteed by Assumption 5.3(i). However, as we next discuss, the approximation in

Lemma 5.1 must be further refined before it can be exploited for inference.

5.2 Drift Linearization

A challenge arising from Lemma 5.1, is the need for a tractable expression for the term

√
nEP [ρ(Xi, θ0 +

h√
n

) ∗ qknn (Zi)] , (54)

which we refer to as the local “drift” of the isonormal process. Typically, the drift is

approximated by a linear function of the local parameter h by requiring an appropriate

form of differentiability of the moment functions. In this section, we build on this

approach by requiring differentiability of the maps mP, : Θ ∩R→ L2
P defined by

mP,(θ)(Zi,) ≡ EP [ρ(Xi, θ)|Zi,] . (55)

In the same manner that a norm ‖·‖E was needed to ensure stochastic equicontinuity

of the empirical process, we now introduce a final norm ‖ · ‖L to deliver differentiability

of the maps mP, – here “L” stands for linearization. Thus, ‖ · ‖B is employed to ensure
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smoothness of the maps ΥF and ΥG, ‖ · ‖E guarantees the stochastic equicontinuity of

Gn,P , and ‖ · ‖L delivers the smoothness of the maps mP,. Formally, we impose:

Assumption 5.4. For a Banach space L with norm ‖ · ‖L and Bn ⊆ L for all n, there

are Km < ∞, Mm < ∞, ε > 0 such that for all 1 ≤  ≤ J , n ∈ N, P ∈ P0, and

θ1 ∈ (Θ0n(P ) ∩ R)ε, there is a linear ∇mP,(θ1) : B → L2
P satisfying for all h ∈ Bn:

(i) ‖mP,(θ1 + h) −mP,(θ1) − ∇mP,(θ1)[h]‖L2
P
≤ Km‖h‖L‖h‖E; (ii) ‖∇mP,(θ1)[h] −

∇mP,(θ0)[h]‖L2
P
≤ Km‖θ1 − θ0‖L‖h‖E; and (iii) ‖∇mP,(θ0)[h]‖L2

P
≤Mm‖h‖E.

Heuristically, Assumption 5.4(i) simply demands that the functions mP, : Θ ∩R→
L2
P be locally well approximated under ‖ · ‖L2

P
by linear maps ∇mP, : B→ L2

P . More-

over, the approximation error is required to be controlled by the product of the ‖ · ‖E
and ‖ · ‖L norms; see Remark 5.1 for a leading example. We emphasize, however, that

Assumption 5.4(i) does not require the generalized residuals ρ(Xi, ·) : Θ∩R→ R them-

selves to be differentiable, and thus accommodates models such as the nonparametric

quantile IV regression of Chernozhukov and Hansen (2005). In addition, we note that

whenever ρ(Xi, θ) is linear in θ, such as in the nonparametric IV regression of Newey

and Powell (2003), Assumption 5.4(i) is automatically satisfied with Km = 0. Finally,

Assumptions 5.4(ii) and 5.4(iii) respectively require the derivatives ∇mP,(θ) : B→ L2
P

to be Lipschitz continuous in θ with respect to ‖ · ‖L and norm bounded uniformly on

θ ∈ Θ0n(P ) ∩ R and P ∈ P0. The latter two assumptions are not required for the

purposes of refining the strong approximation of Lemma 5.1, but will be needed for the

study of our inferential procedure in Section 6.

Given Assumption 5.4, we next aim to approximate the local drift in Lemma 5.1

(see (54)) by a linear map Dn,P (θ0) : Bn → Rkn pointwise defined by

Dn,P (θ0)[h] ≡ EP [∇mP (θ0)[h](Zi) ∗ qknn (Zi)] . (56)

where ∇mP (θ0)[h](Zi) ≡ (∇mP,1(θ0)[h](Zi,1), . . . ,∇mP,J (θ0)[h](Zi,J ))′. Regrettably, it

is well understood that, particularly in severely ill-posed problems, the rate of conver-

gence may be too slow for Dn,P (θ0) to approximate the drift uniformly over the local

parameter space in nonlinear models (Chen and Pouzo, 2009; Chen and Reiss, 2011).

However, while such a complication can present important challenges when employing

the asymptotic distribution of estimators for inference, severely ill-posed problems can

still be accommodated in our setting. Specifically, instead of considering the entire lo-

cal parameter space, as in Lemma 5.1, we may restrict attention to an infimum over

the subset of the local parameter space for which an approximation of the drift by

Dn,P (θ0) is indeed warranted. The resulting bound for In(R) is potentially conservative

in nonlinear models when the rate of convergence Rn is not sufficiently fast, but remains

asymptotically equivalent to In(R) in the remaining settings.
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Figure 1: Local Drift Linearization
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Our next theorem characterizes the properties of the described strong approximation.

It is helpful to note here that the notation Sn(A1,A2) is defined in Section 3.2.1 as the

modulus of continuity (on Bn) between the norms on two spaces A1 and A2 (see (35)).

Theorem 5.1. Let Assumptions 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 5.1, 5.2, 5.3, and 5.4(i)

hold. (i) Then, for any sequence {`n} satisfying Km`
2
n × Sn(L,E) = o(ann

− 1
2 ) and

k
1/r
n

√
log(kn)Bn × supP∈P J[ ](`

κρ
n ,Fn, ‖ · ‖L2

P
) = o(an) it follows that

In,P (R) ≤ inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,`n)

‖Wn,Pρ(·, θ0) ∗ qknn + Dn,P (θ0)[h]‖Σn(P ),r + op(an) ,

uniformly in P ∈ P0. (ii) Moreover, if in addition KmR2
n×Sn(L,E) = o(ann

− 1
2 ), then

the sequence {`n} may be chosen so that uniformly in P ∈ P0

In,P (R) = inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,`n)

‖Wn,Pρ(·, θ0) ∗ qknn + Dn,P (θ0)[h]‖Σn(P ),r + op(an) .

The conclusion of Theorem 5.1 can be readily understood through Figure 1, which

illustrates the special case in which J = 1, kn = 2, Bn = R, and Vn(θ0,+∞) = R. In

this context, the Gaussian process Wn,Pρ(·, θ0)∗qknn is simply a bivariate normal random

variable in R2 that we denote by W for conciseness. In turn, the drift is a surface on R2

that is approximately linear (equal to Dn,P (θ0)[h]) in a neighborhood of zero. According

to Lemma 5.1, In(R) is then asymptotically equivalent to the distance between W and

the surface representing the drift. Intuitively, Theorem 5.1(i) then bounds In(R) by

the distance between W and the restriction of the drift surface to the region where it

is linear – a bound that may be equal to or strictly larger than In(R) as illustrated
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by the realizations W1 and W2 respectively. However, if the rate of convergence Rn
is sufficiently fast or ρ(Xi, θ) is linear in θ (Km = 0), then Theorem 5.1(ii) establishes

In(R) is in fact asymptotically equivalent to the derived bound – i.e. the realizations of

W behave in the manner of W1 and not that of W2.

Remark 5.1. In an important class of models studied by Newey and Powell (2003),

B ⊆ L2
P and the generalized residual function ρ(Xi, θ) has the structure

ρ(Xi, θ) = ρ̃(Xi, θ(Vi)) (57)

for a known map ρ̃ : Rdx ×R → R. Suppose ρ̃(Xi, ·) : R → R is differentiable for all

Xi with derivative denoted ∇θρ̃(Xi, ·) and satisfying for some Lm <∞

|∇θρ̃(Xi, u1)−∇θρ̃(Xi, u2)| ≤ Lm|u1 − u2| . (58)

It is then straightforward to verify that Assumptions 5.4(i)-(ii) hold with Km = Lm,

‖ · ‖E = ‖ · ‖L2
P

, and ‖ · ‖L = ‖ · ‖L∞P , while Assumption 5.4(iii) is satisfied provided

∇θρ̃(Xi, θ0(Vi)) is bounded uniformly in (Xi, Vi), θ0 ∈ Θ0n(P ) ∩R, and P ∈ P0.

6 Bootstrap Inference

The results of Section 5 establish a strong approximation to our test statistic and thus

provide us with a candidate distribution whose quantiles may be employed to conduct

valid inference. In this section, we develop an estimator for the approximating distribu-

tion derived in Section 5 and study its corresponding critical values.

6.1 Bootstrap Statistic

Theorem 5.1 indicates a valid inferential procedure can be constructed by comparing

the test statistic In(R) to the quantiles of the distribution of the random variable

Un,P (R) ≡ inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,`n)

‖Wn,Pρ(·, θ0) ∗ qknn + Dn,P (θ0)[h]‖Σn(P ),r . (59)

In particular, as a result of Theorem 5.1(i), we may expect that employing the quantiles

of Un,P (R) as critical values for In(R) can control asymptotic size even in severely ill-

posed nonlinear problems. Moreover, as a result of Theorem 5.1(ii), we may further

expect the asymptotic size of the resulting test to equal its significance level at least in

linear problems (Km = 0) or when the rate of convergence (Rn) is sufficiently fast.

In what follows, we construct an estimator of the distribution of Un,P (R) by replacing

the population parameters in (59) with suitable sample analogues. To this end, we note
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that by Theorem 4.1 and Assumption 3.4(i), the set Θ0n(P ) ∩ R and weighting matrix

Σn(P ) may be estimated by Θ̂n ∩ R and Σ̂n respectively. Thus, in mimicking (59), we

only additionally require sample analogues Ŵn for the isonormal process Wn,P , D̂n(θ)

for the derivative Dn,P (θ), and V̂n(θ, `n) for the local parameter space Vn(θ, `n). Given

such analogues we may then approximate the distribution of Un,P (R) by that of

Ûn(R) ≡ inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,`n)

‖Ŵnρ(·, θ) ∗ qknn + D̂n(θ)[h]‖Σ̂n,r . (60)

In the next two sections, we first propose standard estimators for the isonormal process

Wn,P and derivative Dn,P (θ), and subsequently address the more challenging task of

constructing an appropriate sample analogue for the local parameter space Vn(θ, `n).

6.1.1 The Basics

We approximate the law of the isonormal process Wn,P by relying on the multiplier

bootstrap (Ledoux and Talagrand, 1988). Specifically, for an i.i.d. sample {ωi}ni=1 with

ωi following a standard normal distribution and independent of {Vi}ni=1 we set

Ŵnf ≡
1√
n

n∑
i=1

ωi{f(Vi)−
1

n

n∑
j=1

f(Vj)} (61)

for any function f ∈ L2
P . Since {ωi}ni=1 are standard normal random variables drawn

independently of {Vi}ni=1, it follows that conditionally on {Vi}ni=1 the law of Ŵnf is also

Gaussian, has mean zero, and in addition satisfies for any f and g (compare to (33))

E[ŴnfŴng|{Vi}ni=1] =
1

n

n∑
i=1

(f(Vi)−
1

n

n∑
j=1

f(Vj))(g(Vi)−
1

n

n∑
j=1

g(Vj)) . (62)

Hence, Ŵn can be simply viewed as a Gaussian process whose covariance kernel equals

the sample analogue of the unknown covariance kernel of Wn,P .

In order to estimate the derivative Dn,P (θ) we for concreteness adopt a construction

that is applicable to nondifferentiable generalized residuals ρ(Xi, ·) : Θ ∩ R → RJ .

Specifically, we employ a local difference of the empirical process by setting

D̂n(θ)[h] ≡ 1√
n

n∑
i=1

(ρ(Xi, θ +
h√
n

)− ρ(Xi, θ)) ∗ qknn (Zi) (63)

for any θ ∈ Θn ∩ R and h ∈ Bn; see also Hong et al. (2010) for a related study on

numerical derivatives. We note, however, that while we adopt the estimator in (63) due

to its general applicability, alternative approaches may be preferable in models where

the generalized residual ρ(Xi, θ) is actually differentiable in θ; see Remark 6.1.
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Remark 6.1. In settings in which the generalized residual ρ(Xi, θ) is pathwise partially

differentiable in θ P -almost surely, we may instead define D̂n(θ)[h] to be

D̂n(θ)[h] ≡ 1

n

n∑
i=1

∇θρ(Xi, θ)[h] ∗ qknn (Zi) , (64)

where ∇θρ(x, θ)[h] ≡ ∂
∂τ ρ(x, θ + τh)|τ=0. It is worth noting that, when applicable,

employing (64) in place of (63) is preferable because the former is linear in h, and thus

the resulting bootstrap statistic Ûn(R) (as in (60)) is simpler to compute.

6.1.2 The Local Parameter Space

The remaining component we require to obtain a bootstrap approximation is a suitable

sample analogue for the local parameter space. We next develop such a sample analogue,

which may be of independent interest as it is more broadly applicable to hypothesis test-

ing problems concerning general equality and inequality restrictions in settings beyond

the conditional moment restriction model; see Appendix E for the relevant results.

6.1.2.1 Related Assumptions

The construction of an approximation to the local parameter space first requires us to

impose additional conditions on the sieve Θn ∩R and the restriction maps ΥF and ΥG.

Assumption 6.1. (i) For some Kb < ∞, ‖h‖E ≤ Kb‖h‖B for all n, h ∈ Bn; (ii) For

some ε > 0,
⋃
P∈P0

{θ ∈ Bn :
−→
d H({θ},Θ0n(P ) ∩R, ‖ · ‖B) < ε} ⊆ Θn for all n.

Assumption 6.2. There exist Kg <∞, Mg <∞, and ε > 0 such that for all n, P ∈ P0,

θ0 ∈ Θ0n(P ) ∩R, and θ1, θ2 ∈ {θ ∈ Bn :
−→
d H({θ},Θ0n(P ) ∩R, ‖ · ‖B) < ε}: (i) There is

a linear map ∇ΥG(θ1) : B → G satisfying ‖ΥG(θ1) − ΥG(θ2) −∇ΥG(θ1)[θ1 − θ2]‖G ≤
Kg‖θ1 − θ2‖2B; (ii) ‖∇ΥG(θ1)−∇ΥG(θ0)‖o ≤ Kg‖θ1 − θ0‖B; (iii) ‖∇ΥG(θ1)‖o ≤Mg.

Assumption 6.1(i) imposes that the norm ‖ · ‖B be weakly stronger than the norm

‖ · ‖E uniformly on the sieve Θn ∩ R.10 We note that even though the local parameter

space Vn(θ, `) is determined by the ‖ · ‖E norm (see (52)), Assumption 6.1(i) implies

restricting the norm ‖ · ‖B instead can deliver a subset of Vn(θ, `). In turn, Assumption

6.1(ii) demands that Θ0n(P )∩R be contained in the interior of Θn uniformly in P ∈ P.

We emphasize, however, that such a requirement does not rule out binding parameter

space restrictions. Instead, Assumption 6.1(ii) simply requires that all such restrictions

be explicitly stated through the set R; see Remarks 6.2 and 6.3. Finally, Assumption

10Since Bn is finite dimensional, there always exists a constant Kn such that ‖h‖E ≤ Kn‖h‖B for all
h ∈ Bn. Thus, the main content of Assumption of 6.1(i) is that Kb does not depend on n.
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6.2 imposes that ΥG : B→ G be Fréchet differentiable in a neighborhood of Θ0n(P )∩R
with locally Lipschitz continuous and norm bounded derivative ∇ΥG(θ) : B→ G.

In order to introduce analogous requirements for the map ΥF : B→ F we first define

Fn ≡ span{
⋃
θ∈Bn

ΥF (θ)} , (65)

where recall for any set C, span{C} denotes the closure of the linear span of C – i.e. Fn

denotes the closed linear span of the range of ΥF : Bn → F. In addition, for any linear

map Γ : B → F we denote its null space by N (Γ) ≡ {h ∈ B : Γ(h) = 0}. Given these

definitions, we next impose the following requirements on ΥF and its relation to ΥG:

Assumption 6.3. There exist Kf <∞, Mf <∞, and ε > 0 such that for all n, P ∈ P0,

θ0 ∈ Θ0n(P ) ∩R, and θ1, θ2 ∈ {θ ∈ Bn :
−→
d H({θ},Θ0n(P ) ∩R, ‖ · ‖B) < ε}: (i) There is

a linear map ∇ΥF (θ1) : B → F satisfying ‖ΥF (θ1) − ΥF (θ2) − ∇ΥF (θ1)[θ1 − θ2]‖F ≤
Kf‖θ1 − θ2‖2B; (ii) ‖∇ΥF (θ1) −∇ΥF (θ0)‖o ≤ Kf‖θ1 − θ0‖B; (iii) ‖∇ΥF (θ1)‖o ≤ Mf ;

(iv) ∇ΥF (θ1) : Bn → Fn admits a right inverse ∇ΥF (θ1)− with Kf‖∇ΥF (θ1)−‖o ≤Mf .

Assumption 6.4. Either (i) ΥF : B → F is linear, or (ii) There are constants ε > 0,

Kd < ∞ such that for every P ∈ P0, n, and θ0 ∈ Θ0n(P ) ∩ R there exists a h0 ∈
Bn ∩N (∇ΥF (θ0)) satisfying ΥG(θ0) +∇ΥG(θ0)[h0] ≤ −ε1G and ‖h0‖B ≤ Kd.

Assumptions 6.3 and 6.4 mark an important difference between hypotheses in which

ΥF is linear and those in which ΥF is nonlinear – in fact, in the former case Assumptions

6.3 and 6.4 are always satisfied. This distinction reflects that when ΥF is linear its impact

on the local parameter space is known and hence need not be estimated. In contrast,

when ΥF is nonlinear its role in determining the local parameter space depends on

the point of evaluation θ0 ∈ Θ0n(P ) ∩ R and is as a result unknown.11 In particular,

we note that while Assumptions 6.3(i)-(iii) impose smoothness conditions analogous

to those required of ΥG, Assumption 6.3(iv) additionally demands that the derivative

∇ΥF (θ) : Bn → Fn posses a norm bounded right inverse for all θ in a neighborhood of

Θ0n(P )∩R. Existence of a right inverse is equivalent to the surjectivity of the derivative

∇ΥF (θ) : Bn → Fn and hence amounts to the classical rank condition (Newey and

McFadden, 1994). In turn, the requirement that the right inverse’s operator norm be

uniformly bounded is imposed for simplicity.12 Finally, Assumption 6.4(ii) specifies the

relation between ΥF and ΥG when the former is nonlinear. Heuristically, Assumption

6.4(ii) requires the existence of a local perturbation to θ0 ∈ Θ0n(P )∩R that relaxes the

“active” inequality constraints without a first order effect on the equality restriction.

11For linear ΥF , the requirement ΥF (θ + h/
√
n) = 0 is equivalent to ΥF (h) = 0 for any θ ∈ R. In

contrast, if ΥF is nonlinear, then the set of h ∈ Bn for which ΥF (θ + h/
√
n) = 0 can depend on θ ∈ R.

12Recall for a linear map Γ : Bn → Fn, its right inverse is a map Γ− : Fn → Bn such that ΓΓ−(h) = h
for any h ∈ Bn. The right inverse Γ− need not be unique if Γ is not bijective, in which case Assumption
6.3(iv) is satisfied as long as it holds for some right inverse of ∇ΥF (θ) : Bn → Fn.
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Remark 6.2. Certain parameter space restrictions can be incorporated through the

map ΥG : B → G. Newey and Powell (2003), for example, address estimation in ill-

posed inverse problems by requiring the parameter space Θ to be compact. In our present

context, and assuming Xi ∈ R for notational simplicity, their smoothness requirements

correspond to setting B to be the Hilbert space with inner product

〈θ1, θ2〉B ≡
∑
j≤J

∫
{∇jxθ1(x)}{∇jxθ2(x)}(1 + x2)δdx (66)

for some integer J > 0 and δ > 1/2, and letting Θ = {θ ∈ B : ‖θ‖B ≤ B}. It is then

straightforward to incorporate this restriction through the map ΥG : B→ R by letting

G = R and defining ΥG(θ) = ‖θ‖2B−B2. Moreover, given these definitions, Assumption

6.2 is satisfied with ∇ΥG(θ)[h] = 2〈θ, h〉B, Kg = 2, and Mg = B.

Remark 6.3. The consistency result of Lemma 4.1 and Assumption 6.1(ii) together

imply that the minimum of Qn(θ) over Θn ∩ R is attained on the interior of Θn ∩ R
relative to Bn ∩ R. Therefore, if the restriction set R is convex and Qn(θ) is convex in

θ and well defined on Bn ∩R (rather than Θn ∩R), then it follows that

In(R) = inf
θ∈Bn∩R

‖ 1√
n

n∑
i=1

ρ(Xi, θ) ∗ qknn (Zi)‖Σ̂n,r + op(an) (67)

uniformly in P ∈ P0 – i.e. the constraint θ ∈ Θn can be omitted in computing In(R).

6.1.2.2 Construction and Intuition

Given the introduced assumptions, we next construct a sample analogue for the local

parameter space Vn(θ0, `n) of an element θ0 ∈ Θ0n(P ) ∩ R. To this end, we note that

by Assumption 6.1(ii) Vn(θ0, `n) is asymptotically determined solely by the equality

and inequality constraints. Thus, the construction of a suitable sample analogue for

Vn(θ0, `n) intuitively only requires estimating the impact on the local parameter space

that is induced by the maps ΥF and ΥG – a goal we accomplish by examining the impact

such constraints have on the local parameter space of a corresponding θ̂n ∈ Θ̂n ∩R.

In order to account for the role inequality constraints play in determining the local

parameter space, we conservatively estimate “binding” sets in analogy to what is done

in the partially identified literature.13 Specifically, for a sequence {rn}∞n=1 we define

Gn(θ) ≡ { h√
n
∈ Bn : ΥG(θ +

h√
n

) ≤ (ΥG(θ)−Kgrn‖
h√
n
‖B1G) ∨ (−rn1G)} , (68)

13See Chernozhukov et al. (2007), Galichon and Henry (2009), Linton et al. (2010), and Andrews and
Soares (2010).
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Figure 2: Approximating Impact of Inequality Constraints

θ0

Vn(θ0,+∞)

θ̂n

Gn(θ̂n)

where recall 1G is the order unit in the AM space G, g1 ∨ g2 represents the (lattice)

supremum of any two elements g1, g2 ∈ G, and Kg is as in Assumption 6.2. Figure 2

illustrates the construction in the case in which Xi ∈ R, B is the set of continuous func-

tions of Xi, and we aim to test whether θ0(x) ≤ 0 for all x ∈ R. In this setting, assuming

no equality constraints for simplicity, the local parameter space for θ0 corresponds to

the set of perturbations h/
√
n such that θ0 +h/

√
n remains negative – i.e. any function

h/
√
n ∈ Bn in the shaded region of the left panel of Figure 2.14 For an estimator θ̂n of

θ0, the set Gn(θ̂n) in turn consists of perturbations h/
√
n to θ̂n such that θ̂n + h/

√
n

is not “too close” to the zero function to accommodate the estimation uncertainty in

θ̂n – i.e. any function h/
√
n ∈ Bn in the shaded region of the right panel of Figure

2. Intuitively, as θ̂n converges to θ0 the set Gn(θ̂n) is thus asymptotically contained in,

i.e. smaller than, the local parameter space of θ0 which delivers size control. Unlike

Figure 2, however, in settings for which ΥG is nonlinear we must further account for the

curvature of ΥG which motivates the presence of the term Kgrn‖h/
√
n‖B1G in (68).

While employing Gn(θ) allows us to address the role inequality constraints play on

the local parameter space of a θ0 ∈ Θ0n(P ) ∩R, we account for equality constraints by

examining their impact on the local parameter space of a corresponding θ̂n ∈ Θ̂n ∩ R.

Specifically, for a researcher chosen `n ↓ 0 we define V̂n(θ, `n) (as utilized in (60)) by

V̂n(θ, `n) ≡ { h√
n
∈ Bn :

h√
n
∈ Gn(θ), ΥF (θ +

h√
n

) = 0 and ‖ h√
n
‖B ≤ `n} . (69)

Thus, in contrast to Vn(θ, `n) (as in (52)), the set V̂n(θ, `n): (i) Replaces the requirement

ΥG(θ + h/
√
n) ≤ 0 by h/

√
n ∈ Gn(θ), (ii) Retains the constraint ΥF (θ + h/

√
n) = 0,

14Mathematically, B = G, ΥG is the identity map, Kg = 0 since ΥG is linear, the order unit 1G is
the function with constant value 1, and θ1 ∨ θ2 is the pointwise (in x) maximum of the functions θ1, θ2.
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Figure 3: Approximating Impact of Equality Constraints

{θ : ΥF (θ) = 0}

θ0

θ̂2

θ̂1

Vn(θ0,+∞)

Vn(θ̂2,+∞)

Vn(θ̂1,+∞)

and (iii) Substitutes the ‖ · ‖E norm constraint by ‖h/
√
n‖B ≤ `n. Figure 3 illustrates

how (ii) and (iii) allow us to account for the impact of equality constraints in the special

case of no inequality constraints, B = R2, and F = R. In this instance, the constraint

ΥF (θ) = 0 corresponds to a curve on R2 (left panel), and similarly so does the local

parameter space Vn(θ,+∞) for any θ ∈ R2 (right panel). Since all curves Vn(θ,+∞) pass

through zero, we note that all local parameter spaces are “similar” in a neighborhood

of the origin. However, for nonlinear ΥF the size of the neighborhood of the origin in

which Vn(θ̂n,+∞) is “close” to Vn(θ0,+∞) crucially depends on both the distance of

θ̂n to θ0 and the curvature of ΥF (compare Vn(θ̂1,+∞) and Vn(θ̂2,+∞) in Figure 3).

Heuristically, the set V̂n(θ̂n, `n) thus estimates the role equality constraints play on the

local parameter space of θ0 by restricting attention to the expanding neighborhood of

the origin in which the local parameter space of θ̂n resembles that of θ0. In this regard,

it is crucial that the neighborhood be defined with respect to the norm under which ΥF

is smooth (‖ · ‖B) rather than the potentially weaker norms ‖ · ‖E or ‖ · ‖L.

Remark 6.4. In instances where the constraints ΥF : B → F and ΥG : B → G are

both linear, controlling the norm ‖ · ‖B is no longer necessary as the “curvature” of ΥF

and ΥG is known. As a result, it is possible to instead set V̂n(θ, `n) to equal

V̂n(θ, `n) ≡ { h√
n
∈ Bn :

h√
n
∈ Gn(θ), ΥF (θ +

h√
n

) = 0 and ‖ h√
n
‖E ≤ `n} ; (70)

i.e. to weaken the constraint ‖h/
√
n‖B ≤ `n in (69) to ‖h/

√
n‖E ≤ `n. Controlling

the norm ‖ · ‖E, however, may still be necessary in order to ensure that D̂n(θ)[h] is a

consistent estimator for Dn,P (θ)[h] uniformly in h/
√
n ∈ V̂n(θ, `n).
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6.2 Bootstrap Approximation

Having introduced the substitutes for the isonormal process Wn,P , the derivative Dn,P (θ),

and the local parameter space Vn(θ, `n), we next study the bootstrap statistic Ûn(R)

(as in (60)). To this end, we impose the following additional Assumptions:

Assumption 6.5. (i) supf∈Fn ‖Ŵnfq
kn
n −W?

n,P fq
kn
n ‖r = op(an) uniformly in P ∈ P

for W?
n,P an isonormal Gaussian process that is independent of {Vi}ni=1.

Assumption 6.6. (i) For any ε > 0, τn = o(Sn(ε)); (ii) The sequences `n, τn satisfy

k
1/r
n

√
log(kn)Bn×supP∈P J[ ](`

κρ
n ∨(νnτn)κρ ,Fn, ‖·‖L2

P
) = o(an), Km`n(`n+Rn+νnτn)×

Sn(L,E) = o(ann
− 1

2 ), and `n(`n + {Rn + νnτn} × Sn(B,E))1{Kf > 0} = o(ann
− 1

2 );

(iii) The sequence rn satisfies lim supn→∞ 1{Kg > 0}`n/rn < 1/2 and (Rn + νnτn) ×
Sn(B,E) = o(rn); (iv) Either Kf = Kg = 0 or (Rn + νnτn)× Sn(B,E) = o(1).

Assumption 6.5 demands that the multiplier bootstrap process Ŵn be coupled with

an isonormal process W?
n,P that is independent of the data {Vi}ni=1. Intuitively, this

condition requires that the multiplier bootstrap, which is automatically consistent for

Donsker classes, still be valid in the present non-Donsker setting. Moreover, in accord

with our requirements on the empirical process, Assumption 6.5 demands a coupling rate

faster than an (see Assumption 5.1). We provide sufficient conditions for Assumption

6.5 in Appendix H that may be of independent interest; see Theorem H.1. In turn,

Assumption 6.6 collects the necessary bandwidth rate requirements, which we discuss

in more detail in Section 6.2.2. Assumption 6.6(i) in particular demands that τn ↓ 0

sufficiently fast to guarantee the one sided Hausdorff convergence of Θ̂n∩R. We note this

condition is satisfied by setting τn = 0, which we recommend unless partial identification

is of particular concern. Similarly, Assumption 6.6(ii) requires `n ↓ 0 sufficiently fast

to ensure that D̂n(θ)[h] is uniformly consistent over θ ∈ Θ̂n ∩ R and h/
√
n ∈ V̂n(θ, `n),

and that both the intuitions behind Figures 1 and 3 are indeed valid. The latter two

requirements on `n are respectively automatically satisfied by linear models (Km = 0)

or linear restrictions (Kf = 0). Assumption 6.6(iii) specifies the requirements on rn,

which amount to rn not decreasing to zero faster than the ‖ · ‖B-rate of convergence.

Finally, Assumption 6.6(iv) guarantees the directed Hausdorff consistency of Θ̂n ∩ R
under ‖ · ‖B in nonlinear problems, thus allowing V̂n(θ̂n, `n) to properly account for the

impact of the curvatures of ΥF and ΥG on the local parameter space; recall Figure 3.

Given the stated assumptions, the following theorem establishes an unconditional

coupling of Ûn(R) that provides the basis for our subsequent inference results.

Theorem 6.1. Let Assumptions 2.1(i), 2.2(i), 3.1, 3.2, 3.3, 3.4, 4.1, 5.1, 5.2, 5.3(i),

5.3(iii), 5.4, 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6 hold. Then, uniformly in P ∈ P0

Ûn(R) ≥ inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) .
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Theorem 6.1 shows that with unconditional probability tending to one uniformly on

P ∈ P0 our bootstrap statistic is bounded from below by a random variable that is

independent of the data. The significance of this result lies in that the lower bound

is equal in distribution to the upper bound for In(R) derived in Theorem 5.1(i), and

moreover that the rate of both couplings are controlled by an. Thus, Theorems 5.1(i)

and 6.1 provide the basis for establishing that comparing In(R) to the quantiles of Ûn(R)

conditional on the data provides asymptotic size control – a claim we formalize in Section

6.3. Before establishing such a result, however, we first examine whether the conclusion

of Theorem 6.1 can be strengthened to hold with equality rather than inequality – i.e.

whether an analogue to Theorem 5.1(ii) is available. Unfortunately, as is well understood

from the moment inequalities literature, such a uniform coupling is not possible when

inequality constraints are present. As we next show, however, Theorem 6.1 can be

strengthened to hold with equality under conditions similar to those of Theorem 5.1(ii)

in the important case of hypotheses concerning only equality restrictions.

6.2.1 Special Case: No Inequality Constraints

In this section we focus on the special yet important case in which the hypothesis of

interest concerns solely equality restrictions. Such a setting encompasses, for example,

the construction of confidence regions for functionals of the parameter θ0 without im-

posing shape restrictions; see e.g. Horowitz (2007), Gagliardini and Scaillet (2012), and

Chen and Pouzo (2015) among others. Formally, we temporarily assume R equals

R = {θ ∈ B : ΥF (θ) = 0} . (71)

Under this extra structure the formulation of the test and bootstrap statistics remain

largely unchanged, with the exception that the set V̂n(θ, `n) simplifies to

V̂n(θ, `n) = { h√
n
∈ Bn : ΥF (θ +

h√
n

) = 0 and ‖ h√
n
‖B ≤ `n} (72)

(compare to (69)). Since these specifications are a special case of our general frame-

work, Theorem 6.1 continues to apply.15 In fact, as the following Theorem shows, the

conclusion of Theorem 6.1 can be strengthened under the additional structure afforded

by (71) and conditions analogous to those imposed in Theorem 5.1(ii).

Theorem 6.2. Let Assumptions 2.1(i), 2.2(i), 3.1, 3.2, 3.3, 3.4, 4.1, 5.1, 5.2, 5.3, 5.4,

6.1, 6.3, 6.5, 6.6(i)-(ii) hold, the set R satisfy (71), and (Rn+νnτn)×Sn(B,E) = o(`n).

15To see (71) and (72) are a special case of (4) and (69) respectively, let G = R, ΥG(θ) = −1 for all
θ ∈ B, and then note {θ ∈ B : ΥG(θ) ≤ 0} = B and Gn(θ) = Bn for all θ and rn.
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(i) If τn satisfies (k
1/r
n

√
log(kn)JnBn/

√
n+ ζn) = o(τn), then uniformly in P ∈ P0

Ûn(R) = inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) .

(ii) If Θ0n(P )∩R = {θ0n(P )} and Σn(P ) = {VarP {ρ(Xi, θ0n(P ))qknn (Zi)}}−
1
2 for every

P ∈ P0 and in addition r = 2, then for cn ≡ dim{Bn ∩N (∇ΥF (θ0n(P )))} we have

Ûn(R) = {X 2
kn−cn}

1
2 + op(an) ,

uniformly in P ∈ P0, where X 2
d is a d-degrees of freedom chi-squared random variable.

Besides assuming a lack of inequality constraints, Theorem 6.2 demands that the

rate of convergence Rn satisfy RnSn(B,E) = o(`n). In view of Assumption 6.6(ii) the

latter requirement can be understood as imposing that either ΥF and ρ(Xi, ·) are linear

in θ (Kf = Km = 0), or the rate of convergence Rn is sufficiently fast – conditions that

may rule out severely ill-posed nonlinear problems as also demanded in Theorem 5.1(ii).

Given these requirements, and provided τn ↓ 0 slowly enough to ensure the Hausdorff

convergence of Θ̂n∩R, Theorem 6.2(i) strengthens the conclusion of Theorem 6.1 to hold

with equality rather than inequality. Moreover, the random variable to which Ûn(R)

is coupled by Theorem 6.2(i) shares the same distribution as the random variable to

which In(R) is coupled by Theorem 5.1(ii). Thus, Theorems 5.1(ii) and 6.2(i) together

provide us with the basis for establishing that the asymptotic size of the proposed test

can equal its significance level. In turn, Theorem 6.2(ii) shows that whenever Θ0n(P )∩R
is a singleton, r and Σn(P ) may be chosen so that the coupled random variable has a

pivotal distribution – a result that enables the use of analytical critical values.

Remark 6.5. Under suitable conditions Theorem 6.2(ii) can be generalized to show

Ûn(R) = inf
θ∈Θ0n(P )∩R

inf
v∈Vn,P (θ)

‖W?
n,Pρ(·, θ) ∗ qknn − v‖Σn(P ),r + op(an) , (73)

uniformly in P ∈ P0 for Vn,P (θ) a vector subspace of Rkn possibly depending on P

and θ ∈ Θ0n(P ) ∩ R. Theorem 6.2(ii) can then be seen to follow from (73) by setting

Θ0n(P ) ∩ R = {θ0n(P )} and r = 2. However, in general the characterization in (73) is

not pivotal and thus does not offer an advantage over Theorem 6.2(i). In this regard,

we note that setting r = 2 is important to ensure pivotality as projections onto linear

subspaces may not admit linear selectors otherwise (Deutsch, 1982).

6.2.2 Discussion: Bandwidths

In constructing our bootstrap approximation we have introduced three bandwidth pa-

rameters: τn, rn, and `n. While these bandwidths are necessary for a successful boot-
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strap approximation in the most general setting, there are fortunately a number of

applications in which not all three bandwidths are required. With the aim of provid-

ing guidance on their selection, we therefore next revisit the role of τn, rn, and `n and

discuss instances in which these bandwidths may be ignored in computation.

The bandwidth τn was first introduced in Section 4 in the construction of the set

estimator Θ̂n∩R. Its principal requirement is that it converge to zero sufficiently fast in

order to guarantee the directed Hausdorff consistency of Θ̂n∩R. Since directed Hausdorff

consistency is equivalent to Hausdorff consistency when Θ0n(P ) ∩ R is a singleton, τn

should therefore always be set to zero in models that are known to be identified; e.g. in

Examples 2.1, 2.2, and 2.3. In settings where Θ0n(P ) ∩ R is not a singleton, however,

τn must also decrease to zero sufficiently slowly if we additionally desire Θ̂n ∩ R to be

Hausdorff consistent for Θ0n(P )∩R. The latter stronger form of consistency can lead to

a more powerful test when Θ0n(P )∩R is not a singleton, as illustrated by a comparison

of Theorems 6.1 and 6.2(i). Nonetheless, even in partially identified settings it may be

preferable to set τn to zero to simplify implementation – this is the approach implicitly

pursued by Bugni et al. (2014), for example, in a related problem.

Allowing for inequality restrictions lead us to introduce the bandwidth rn in the

construction of the sample analogue to the local parameter space. Specifically, the

role of rn is to account for the impact of inequality constraints on the local parameter

space and is thus unnecessary in settings where only equality restrictions are present

– e.g. in Section 6.2.1. In this regard, the bandwidth rn may be viewed as analogous

to the inequality selection approach pursued in the moment inequalities literature. In

particular, its principal requirement is that it decrease to zero sufficiently slowly with

overly “aggressive” choices of rn potentially causing size distortions. As in the moment

inequalities literature, however, we may always set rn = +∞ which corresponds to the

“least favorable” local parameter space of an element θ ∈ Θn ∩ R satisfying ΥG(θ) = 0

– i.e. all inequalities bind.

The final bandwidth `n, which to the best of our knowledge does not have a precedent

in the literature, plays three distinct roles. First, it ensures that the estimated derivative

D̂n(θ)[h] is consistent for Dn,P (θ)[h] uniformly in h/
√
n ∈ V̂n(θ, `n). Second, `n restricts

the local parameter space to the regions where a linear approximation to the drift of

the Gaussian process is indeed warranted – recall Theorem 5.1 and Figure 1. Third, it

accounts for the potential nonlinearity of ΥF and ΥG by limiting the estimated local

parameter space to areas where it asymptotically resembles the true local parameter

space – recall Figures 2 and 3. As a result, the requirements on `n weaken in applications

where the challenges it is meant to address are not present – for instance, when the

generalized residual ρ(Xi, ·) and/or the constraints ΥF and ΥG are linear, as can be

seen by evaluating Assumption 6.6(ii)-(iii) when Km, Kf , or Kg are zero.

In certain applications, it is moreover possible to show the bandwidth `n is unneces-
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sary by arguing that the constraint ‖h/
√
n‖B ≤ `n (as in (69)) is asymptotically slack.

The following Lemma, for example, provides sufficient conditions for this occurrence.

Lemma 6.1. Suppose for some ε > 0 it follows that ‖h‖E ≤ νn‖Dn,P (θ)[h]‖r for all

θ ∈ (Θ0n(P ) ∩R)ε, P ∈ P0, and h ∈
√
n{Bn ∩R− θ}. If in addition

sup
θ∈(Θ0n(P )∩R)ε

sup
h∈
√
n{Bn∩R−θ}:‖ h√

n
‖B≥`n

‖D̂n(θ)[h]− Dn,P (θ)[h]‖r
‖h‖E

= op(ν
−1
n ) (74)

uniformly in P ∈ P0, Assumptions 3.1, 3.2(i), 3.3, 3.4, 4.1, 6.5, 6.6(i) hold, and

Sn(B,E)Rn = o(`n), then it follows that uniformly in P ∈ P0

Ûn(R) = inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,+∞)

‖Ŵnρ(·, θ) ∗ qknn + D̂n(θ)[h]‖Σ̂n,r + op(an) . (75)

Heuristically, Lemma 6.1 establishes the constraint ‖h/
√
n‖B ≤ `n is asymptotically

not binding provided `n ↓ 0 sufficiently slowly (Sn(B,E)Rn = o(`n)).16 In order for `n

to simultaneous satisfy such a requirement and Assumption 6.6(ii)-(iii), however, it must

be that either the rate of convergence Rn is adequately fast, or that both the generalized

residual and the equality constraint are linear. Thus, while it may be possible to set

`n to be infinite in applications such as Examples 2.1-2.4, the bandwidth `n can remain

necessary in severely ill-posed nonlinear problems; see Appendix F.

6.3 Critical Values

The conclusions of Theorem 5.1 and Theorems 6.1 and 6.2 respectively provide us with

an approximation and an estimator for the distribution of our test statistic. In this

section, we conclude our main results by formally establishing the properties of a test

that rejects the null hypothesis whenever In(R) is larger than the appropriate quantile

of our bootstrap approximation. To this end, we therefore define

cn,1−α(P ) ≡ inf{u : P (In(R) ≤ u) ≥ 1− α} (76)

ĉn,1−α ≡ inf{u : P (Ûn(R) ≤ u |{Vi}ni=1) ≥ 1− α} ; (77)

i.e. cn,1−α denotes the 1− α quantile of In(R), while ĉn,1−α denotes the corresponding

quantile of the bootstrap statistic conditional on the sample.

We additionally impose the following two final Assumptions:

Assumption 6.7. There exists a δ > 0 such that for all ε > 0 and all α̃ ∈ [α−δ, α+δ] it

follows that supP∈P0
P (cn,1−α̃(P )− ε ≤ In(R) ≤ cn,1−α̃(P )+ ε) ≤ %n(ε∧1)+o(1), where

16Following Remark 6.4, if the constraints ΥF and ΥG are linear, then it suffices that Rn = o(`n).
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the concentration parameter %n is smaller than the coupling rate parameter, namely

%n ≤ a−1
n .

Assumption 6.8. (i) There exists a γz > 0 and maps πn,P, : Θn ∩ R → Rkn, such

that supP∈P supθ∈Θn∩R{EP [(EP [ρ(Xi, θ)|Zi,]− q
kn,
n, (Zi,)

′πn,P,(θ))
2]}

1
2 = O(k−γzn ) for

all 1 ≤  ≤ J ; (ii) The eigenvalues of EP [q
kn,
n, (Zi,)q

kn,
n, (Zi,)

′] are bounded away from

zero uniformly in 1 ≤  ≤ J , n ∈ N, and P ∈ P.

It is well known that uniform consistent estimation of an approximating distribution

is not sufficient for establishing asymptotic size control; see, e.g. Romano and Shaikh

(2012). Intuitively, in order to get good size control, when critical values are estimated

with noise, the approximate distribution must be suitably continuous at the quantile

of interest uniformly in P ∈ P0. Assumption 6.7 imposes precisely this requirement,

allowing the modulus of continuity, captured here by the concentration parameter %n, to

deteriorate with the sample size provided that %n ≤ a−1
n – that is the loss of continuity

must occurs at a rate slower than the coupling rate o(an) of Theorems 5.1, 6.1, and

6.2. We refer the reader to Chernozhukov et al. (2013, 2014) for further discussion

and motivation of conditions of this type, called anti-concentration conditions there.17

Note that in some typical cases, the rate of concentration is %n = 1 with r = 2 and

%n ∼
√

log kn with r = ∞, which means that the condition on the coupling rate o(an)

arising from imposing Assumption 6.7 are mild in these cases and are expected to be mild

in others. In turn, Assumption 6.8 imposes sufficient conditions for studying the power

of the proposed test. In particular, Assumption 6.8(i) demands that the transformations

{qk,n,}
kn,
k=1 be able to approximate conditional moments given Zi, and thus be capable

of detecting violations of the null hypothesis. Finally, Assumption 6.8(ii) enables us to

characterize the set of local distributions against which the test is consistent.

Theorem 6.3 exploits our previous results and the introduced assumptions to char-

acterize the asymptotic size and power properties of our test.

Theorem 6.3. Let the conditions imposed in Theorem 5.1(i) and Theorem 6.1 hold.

(i) If in addition Assumption 6.7 is satisfied, then we can conclude that

lim sup
n→∞

sup
P∈P0

P (In(R) > ĉn,1−α) ≤ α .

(ii) If Assumption 6.7 and the conditions of Theorem 6.2(i) hold and Rn = o(`n), then

lim sup
n→∞

sup
P∈P0

|P (In(R) > ĉn,1−α)− α| = 0 .

(iii) Let P1,n(M) ≡ {P ∈ P : infθ∈Θ∩R{
∑J

=1 ‖EP [ρ(Xi, θ)|Zi,]‖L2
P
} ≥ Mγn} for

17Alternatively, Assumption 6.7 can be dispensed by adding a fixed constant η > 0 to the critical
value, i.e. using ĉn,1−α + η as the critical value; this approach is not satisfactory, since η is arbitrary
and there is no adequate theory for setting this.
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γn ≡
√
kn log(kn)BnJn/

√
n+ k−γzn . If in addition Assumption 6.8 holds, then

lim inf
M↑∞

lim inf
n→∞

inf
P∈P1,n(M)

P (In(R) > ĉn,1−α) = 1 .

The first claim of Theorem 6.3 exploits Theorems 5.1(i) and 6.1 to show that the pro-

posed test delivers asymptotic size control. In turn, Theorem 6.3(ii) leverages Theorems

5.1(ii) and 6.2(ii) to conclude that the asymptotic size of the proposed test can equal

its significance level when no inequality constraints are present and either the model is

linear or the rate of convergence Rn is sufficiently fast. Under the latter structure it is

also possible to obtain the same conclusion employing analytical critical by exploiting

Theorem 6.2(ii); see Remark 6.6. Finally, Theorem 6.3(iii) characterizes local sequences

Pn ∈ P \P0 for which our test has nontrivial local power.

Remark 6.6. When Θ0n(P )∩R is a singleton {θ0n(P )} for all P ∈ P0, Theorem 6.2(ii)

provides conditions under which the bootstrap statistic is in fact coupled to the square

root of a chi-squared random variable. For χ2
1−α(d) the 1− α quantile of a chi-squared

random variable with d degrees of freedom it is then possible to show that

lim sup
n→∞

sup
P∈P0

|P (I2
n(R) > χ2

1−α(kn − cn))− α| = 0 (78)

where recall cn ≡ dim{Bn ∩ N (∇ΥF (θ0n(P )))}. As in Theorem 6.3(ii), however, we

emphasize such a conclusion does not apply to nonlinear problems in which the rate of

convergence is not sufficiently fast, or to hypotheses involving inequality restrictions.

Remark 6.7. In the conditional moment inequalities literature, certain test statistics

have been shown to converge in probability to zero when all inequalities are “slack”

(Linton et al., 2010). It is worth noting that an analogous problem, which could po-

tentially conflict with Assumption 6.7, is not automatically present in our setting. In

particular, we observe that since Vn(θ0, `n) ⊆ Bn, Lemma 5.1 implies

In(R) ≥ inf
θ∈Θ0n(P )∩R

inf
h∈Bn

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σn(P ),r + op(an)

(79)

and that under regularity conditions the right hand side of (79) is non-degenerate when

dim{Bn} < kn; see also our simulations of a test of monotonicity in Section 7.

7 Simulation Evidence

We examine the finite sample performance of the proposed test through a simulation

study based on the nonparametric instrumental variable model

Yi = θ0(Xi) + εi , (80)
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where θ0 is an unknown function and EP [εi|Zi] = 0 for an observable instrument Zi. In

order to illustrate the different applications of our framework, we study both a test of

a shape restriction and a test on a functional of θ0 that imposes a shape restriction to

sharpen inference. Specifically, we examine the performance of a test of whether θ0 is

monotone, and of a test that imposes monotonicity to conduct inference on the value

of θ0 at a point. These applications are closely related to Examples 2.1 and 2.2 and we

refer the reader to their discussion in Appendix F for implementation details.

7.1 Design

We consider a design in which random variables (X∗i , Z
∗
i , εi) ∈ R3 follow the distribution X∗i

Z∗i
εi

 ∼ N

 0

0

0

 ,

 1 0.5 0.3

0.5 1 0

0.3 0 1


 , (81)

and (Xi, Zi) ∈ R2 are generated according to Xi = Φ(X∗i ) and Zi = Φ(Z∗i ) for Φ the

c.d.f. of a standard normal random variable. The dependent variable Yi is in turn

created according to (80) with the structural function θ0 following the specification

θ0(x) = σ{1− 2Φ(
x− 0.5

σ
)} (82)

for different choices of σ. For all positive values of σ, the function θ0 is monotonically

decreasing and satisfies θ0(0.5) = 0. Moreover, we also note θ0(x) ≈ 0 for values of σ

close to zero and θ0(x) ≈ φ(0)(1− 2x) for values of σ close to one and φ the derivative

of Φ.18 Thus, by varying σ in (82) we can examine the performance of our tests under

different “strengths” of monotonicity. All the reported results are based on five thousand

replications of samples {(Yi, Xi, Zi)}ni=1 consisting of five hundred observations each.

As a sieve we employ b-Splines {pj,n}jnj=1 of order three with continuous derivatives

and either one or no knots, which results in a dimension jn equal to four or three

respectively. Since b-Splines of order three have piecewise linear derivatives, monotonic-

ity constraints are simple to implement as we only require to check the value of the

derivative at jn − 1 points. The instrument transformations {qk,n}knk=1 are also chosen

to be b-Splines of order three with continuous derivatives and either three, five, or ten

knots placed at the population quantiles. These parameter choices correspond to a total

number of moments kn equal to six, eight, or thirteen. The test statistic In(R) is then

implemented with r = 2, and Σ̂n equal to the optimal GMM weighting matrix computed

with a two stage least squares estimator constrained to satisfy the null hypothesis as

18Formally, θ0(x) converges to the 0 and φ(0)(1− 2x) as σ approaches 0 and ∞ respectively. We find
numerically, however, that θ0(x) is very close to φ(0)(1− 2x) for all x ∈ [0, 1] for σ as small as one.
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a first stage. Under these specifications, calculating In(R) simply requires solving two

quadratic programming problems with linear constraints.

Obtaining critical values further requires us to compute the quantiles of Ûn(R) con-

ditional on the data, which we simulate employing two hundred bootstrap samples in

each replication. For the bandwidth choices, we set τn to zero which, despite being po-

tentially conservative under partial identification, is both sufficient for size control and

computationally simpler to implement. In turn, we explore data driven choices for the

parameters rn and `n. Specifically, setting pjnn (x) ≡ (p1,n(x), . . . , pj,n(x))′ and letting

Zr ∼ N(0, (∆̂nΣ̂n∆̂′n)−1) with ∆̂n = 1
n

∑
i p
jn
n (Xi)q

kn
n (Zi)

′, we select rn by solving

qr = P (‖pjn′n Zr‖1,∞ ≤ rn) (83)

for different choices of qr ∈ {0.05, 0.95}. Heuristically, rn is thus the qthr quantile of

an estimate of the asymptotic distribution of the ‖ · ‖1,∞ norm of the unconstrained

minimizer of Qn under fixed values for jn and kn. We therefore interpret qr = 0.05 as

an “aggressive” choice for rn and qr = 0.95 as a “conservative” one. Finally, for Zl a

kn × jn random matrix drawn from an estimate of the asymptotic distribution of ∆̂n

under fixed jn and kn asymptotics, we select `n by solving19

q` = P ( sup
β∈Rjn :‖β‖∞≤`n

‖Z`β‖Σ̂n,2 ≤ 1) (84)

for different values of q` ∈ {0.05, 0.95}; see Remark 7.1 for the rationale behinds this

choice. In concordance to the choice of rn, here q` = 0.05 also corresponds to the

“aggressive” choice of `n and q` = 0.95 to the “conservative” one.

Remark 7.1. In the hypothesis testing problems of this section, the norm constraint

‖pjn′n β/
√
n‖B ≤ `n in the definition of V̂n(θ, `n) can be replaced by ‖β/

√
n‖2 ≤ `n; see

Remark 6.4 and the discussion of Example 2.2 in Appendix F. The latter constraint,

however, is in turn implied by ‖β/
√
n‖∞ ≤ `n/

√
jn, which is computationally simpler to

implement as it is equivalent to 2jn linear constraints on β. Moreover, when ΥF and ΥG

are linear, the sole role of `n is to ensure D̂n(θ)[h] is uniformly consistent for Dn,P (θ)[h]

– recall Section 6.2.2. In the present context, such convergence is implied by

sup
β∈Rjn :‖ β√

n
‖∞≤`n

‖ 1

n

n∑
i=1

qknn (Zi)p
jn
n (Zi)

′β − EP [qknn (Zi)p
jn
n (Zi)

′β]‖Σ̂n,2 = op(an) , (85)

which motivates using (84) to study the sensitivity of our tests to the choice of `n.
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Table 1: Monotonicity Test - Empirical Size

σ = 1
kn = 6 kn = 8 kn = 13

jn q` qr 10% 5% 1% 10% 5% 1% 10% 5% 1%

3 5% 5% 0.084 0.044 0.010 0.087 0.042 0.009 0.095 0.046 0.009
3 5% 95% 0.060 0.030 0.006 0.068 0.033 0.007 0.079 0.037 0.008
3 95% 5% 0.083 0.043 0.010 0.086 0.042 0.009 0.095 0.046 0.009
3 95% 95% 0.060 0.030 0.006 0.068 0.033 0.007 0.079 0.037 0.008
4 5% 5% 0.048 0.023 0.004 0.055 0.028 0.005 0.070 0.032 0.006
4 5% 95% 0.047 0.023 0.004 0.055 0.027 0.005 0.069 0.031 0.006
4 95% 5% 0.047 0.023 0.004 0.055 0.027 0.005 0.070 0.032 0.006
4 95% 95% 0.047 0.023 0.004 0.055 0.027 0.005 0.069 0.031 0.006

σ = 0.1
kn = 6 kn = 8 kn = 13

jn q` qr 10% 5% 1% 10% 5% 1% 10% 5% 1%

3 5% 5% 0.081 0.041 0.010 0.087 0.041 0.009 0.095 0.043 0.010
3 5% 95% 0.075 0.036 0.008 0.081 0.038 0.009 0.090 0.042 0.010
3 95% 5% 0.081 0.041 0.010 0.087 0.041 0.009 0.095 0.043 0.010
3 95% 95% 0.075 0.036 0.008 0.081 0.038 0.009 0.090 0.042 0.010
4 5% 5% 0.068 0.034 0.007 0.076 0.037 0.009 0.086 0.040 0.009
4 5% 95% 0.068 0.034 0.007 0.076 0.037 0.009 0.086 0.039 0.009
4 95% 5% 0.067 0.033 0.007 0.076 0.037 0.009 0.086 0.040 0.009
4 95% 95% 0.067 0.033 0.007 0.075 0.037 0.009 0.086 0.039 0.009

σ = 0.01
kn = 6 kn = 8 kn = 13

jn q` qr 10% 5% 1% 10% 5% 1% 10% 5% 1%

3 5% 5% 0.102 0.050 0.012 0.102 0.052 0.012 0.109 0.053 0.011
3 5% 95% 0.100 0.049 0.012 0.100 0.050 0.012 0.107 0.052 0.011
3 95% 5% 0.102 0.050 0.012 0.102 0.052 0.012 0.109 0.053 0.011
3 95% 95% 0.100 0.049 0.012 0.100 0.050 0.012 0.107 0.052 0.011
4 5% 5% 0.099 0.049 0.011 0.100 0.049 0.013 0.103 0.052 0.011
4 5% 95% 0.099 0.049 0.011 0.100 0.049 0.013 0.103 0.052 0.011
4 95% 5% 0.099 0.048 0.011 0.100 0.049 0.013 0.103 0.052 0.011
4 95% 95% 0.098 0.048 0.011 0.100 0.049 0.013 0.103 0.052 0.011

7.2 Results

We begin by first examining the performance of our inferential framework when applied

to test whether the structural function θ0 is monotonically decreasing. Table 1 reports

the empirical size control of the resulting test under the different parameter choices.

The test delivers good size control across specifications, though as expected can be

undersized when the θ0 is “strongly” monotonic (σ = 1). The empirical rejection rates

are insensitive to the value of q`, which suggests the asymptotics of Lemma 6.1 are

applicable and the bandwidth `n is not needed to ensure size control. In contrast, the

empirical rejection rates are more responsive to the value of qr, though the “aggressive”

choice of qr = 0.05 is still able to deliver adequate size control even in the least favorable

19The `n solving (84) is simply the reciprocal of the qth` quantile of supβ∈Rjn :‖β‖∞≤1 ‖Z`β‖Σ̂n,2
, which

we approximate using a sample of two hundred draws of Z`.

39



Figure 4: Monotonicity Test - Empirical Power
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configuration (σ = 0.01). Finally, we note increasing the dimension of the sieve (jn) can

lead the test to be undersized, while increasing the number of moments (kn) brings the

empirical size of the test closer to its nominal level.

In order to study the power of the test that θ0 is monotonically decreasing, we

consider deviations from the constant zero function (σ = 0). Specifically, we examine

the rejection probabilities of the test when the data is generated according to

Yi = δXi + εi (86)

for different positive values of δ. Figure 4 depicts the power function of a 5% nominal

level test implemented with jn = 3, ql = qr = 0.05, and different number of moments

kn. For the violation of decreasing monotonicity considered in (86), the test with fewer

moments appears to be more powerful indicating the first few moments are the ones

detecting the deviation from monotonicity. More generally, however, we expect the

power ranking for the choices of kn to depend on the alternative under consideration.

Table 2: Level Test - Empirical Size

kn = 6 kn = 8 kn = 13
σ jn 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 3 0.106 0.051 0.010 0.105 0.054 0.012 0.107 0.056 0.012
1 4 0.072 0.034 0.006 0.074 0.036 0.008 0.078 0.038 0.008

0.1 3 0.106 0.052 0.010 0.106 0.055 0.013 0.107 0.055 0.011
0.1 4 0.073 0.034 0.006 0.075 0.035 0.008 0.076 0.038 0.008
0.01 3 0.106 0.052 0.010 0.105 0.054 0.012 0.107 0.056 0.011
0.01 4 0.073 0.034 0.006 0.074 0.036 0.008 0.077 0.038 0.008
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Table 3: Level Test Imposing Monotonicity - Empirical Size

σ = 1
kn = 6 kn = 8 kn = 13

jn q` qr 10% 5% 1% 10% 5% 1% 10% 5% 1%

3 5% 5% 0.077 0.037 0.008 0.082 0.041 0.007 0.092 0.043 0.008
3 5% 95% 0.053 0.026 0.005 0.061 0.030 0.005 0.075 0.033 0.008
3 95% 5% 0.077 0.037 0.008 0.082 0.041 0.007 0.092 0.043 0.008
3 95% 95% 0.053 0.026 0.005 0.061 0.030 0.005 0.075 0.033 0.008
4 5% 5% 0.055 0.026 0.006 0.063 0.029 0.006 0.073 0.033 0.008
4 5% 95% 0.055 0.026 0.006 0.063 0.029 0.006 0.073 0.033 0.008
4 95% 5% 0.055 0.026 0.006 0.063 0.029 0.006 0.073 0.033 0.008
4 95% 95% 0.055 0.026 0.006 0.063 0.029 0.006 0.073 0.033 0.008

σ = 0.1
kn = 6 kn = 8 kn = 13

jn q` qr 10% 5% 1% 10% 5% 1% 10% 5% 1%

3 5% 5% 0.078 0.038 0.008 0.084 0.042 0.009 0.090 0.044 0.009
3 5% 95% 0.072 0.035 0.007 0.079 0.037 0.008 0.085 0.040 0.009
3 95% 5% 0.078 0.038 0.008 0.084 0.042 0.008 0.090 0.044 0.009
3 95% 95% 0.072 0.034 0.007 0.079 0.037 0.008 0.085 0.040 0.009
4 5% 5% 0.068 0.034 0.008 0.075 0.037 0.008 0.084 0.039 0.009
4 5% 95% 0.068 0.034 0.008 0.075 0.037 0.008 0.084 0.039 0.009
4 95% 5% 0.067 0.033 0.008 0.075 0.037 0.008 0.084 0.039 0.009
4 95% 95% 0.067 0.033 0.008 0.075 0.037 0.008 0.084 0.039 0.009

σ = 0.01
kn = 6 kn = 8 kn = 13

jn q` qr 10% 5% 1% 10% 5% 1% 10% 5% 1%

3 5% 5% 0.102 0.053 0.012 0.106 0.054 0.013 0.109 0.054 0.011
3 5% 95% 0.100 0.051 0.011 0.104 0.053 0.012 0.107 0.053 0.011
3 95% 5% 0.102 0.053 0.012 0.106 0.054 0.013 0.109 0.054 0.011
3 95% 95% 0.100 0.051 0.011 0.104 0.053 0.012 0.107 0.053 0.011
4 5% 5% 0.101 0.051 0.011 0.103 0.049 0.012 0.106 0.052 0.011
4 5% 95% 0.101 0.051 0.011 0.103 0.049 0.012 0.106 0.052 0.011
4 95% 5% 0.101 0.051 0.011 0.102 0.049 0.012 0.106 0.052 0.011
4 95% 95% 0.101 0.051 0.011 0.102 0.049 0.012 0.106 0.052 0.011

Next, we apply our inferential framework to conduct inference on the value of the

structural function θ0 at the point x = 0.5 – recall that for all values of σ in (82),

θ0(0.5) = 0. First, we examine the size control of a test that does not impose mono-

tonicity, so that the set R consists of all functions θ satisfying θ(0.5) = 0. For such a

hypothesis, rn is unnecessary and we therefore examine the quality of the chi-squared

approximation of Theorem 6.2(ii) and Remark 6.6. The empirical size of the corre-

sponding test are summarized in Table 2, which shows adequate size control and an

insensitivity to the “degree” of monotonicity (σ) of the structural function.

In addition, we also examine the size of a test that conducts inference on the level

of θ0 at the point x = 0.5 while imposing the monotonicity of θ0 – i.e. the set R

consists of monotonically decreasing functions satisfying θ(0.5) = 0. Table 3 reports the
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Figure 5: Level Test - Empirical Power
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empirical size of the corresponding test under different parameter values. The results are

qualitatively similar to those corresponding to the test of monotonicity summarized in

Table 1. Namely, (i) All parameter choices yield adequate size control; (ii) The test can

be undersized in the strongly monotonic specifications (σ = 1); (iii) Empirical rejection

rates are insensitive to the bandwidth `n; and (iv) Both the “conservative” (qr = 0.95)

and “aggressive” (qr = 0.05) choices for rn yield good size control.

Finally, we compare the power of the test that imposes monotonicity with the power

of the test that does not. To this end, we consider data generated according to

Yi = σ{1− 2Φ(
x− 0.5

σ
)}+ δ + εi , (87)
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so that the structural function is still monotonically decreasing but satisfies θ0(0.5) = δ

instead of the tested null hypothesis θ0(0.5) = 0. We implement the tests with jn = 3,

and q` = qr = 0.05 since such specification yields empirical size closest to the nominal

level of the test (rather than being undersized). The corresponding power curves are

depicted for different values of instruments (kn) and degree of monotonicity (σ) in Fig-

ure 5. The power gains of imposing monotonicity are substantial, even when the true

structural function is “strongly” monotonic (σ = 1). This evidence is consistent with

our earlier claims of our framework being able to capture the strong finite-sample gains

from imposing monotonicity. At the nearly constant specification (σ = 0.01), the power

of the test that imposes monotonicity improves while the power of the test that does

not remains constant. As a result, the power differences between both tests are further

accentuated at σ = 0.01.

8 Conclusion

In this paper, we have developed an inferential framework for testing “equality” and

“inequality” constraints in models defined by conditional moment restrictions. Notably,

the obtained results are sufficiently general to enable us to test for shape restrictions or to

impose them when conducting inference. While our results focus on conditional moment

restriction models, the insights developed for accounting for nonlinear local parameter

spaces are more generally applicable to other settings. As such, we believe our theoretical

analysis will be useful in the study of nonparametric constraints in complementary

contexts such as likelihood based models.
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Appendix A - Notation and AM Spaces

For ease of reference, in this Appendix we collect the notation employed throughout

the paper, briefly review AM spaces and their basic properties, and provide a description

of the organization of the remaining Appendices. We begin with Table 4 below, which

contains the norms and mathematical notation used. In turn, Table 5 presents the

sequences utilized in the text as well as the location of their introduction.

Table 4: List of norms, spaces, and notation.

a . b a ≤Mb for some constant M that is universal in the proof.
‖ · ‖LqP For a measure P and function f , ‖f‖q

LqP
≡
∫
|f |qdP .

‖ · ‖r For a vector a = (a(1), . . . , a(k))′, ‖a‖rr =
∑k

i=1 |a(i)|r.
‖ · ‖o,r For a k × k matrix A, ‖A‖o,r ≡ sup‖a‖r=1 ‖Aa‖r.
‖ · ‖G For a set G and a map f : G → R, the norm ‖f‖G ≡ supg∈G |f(g)|.

~dH(·, ·, ‖ · ‖) For sets A,B, ~dH(A,B, ‖ · ‖) ≡ supa∈A infb∈B ‖a− b‖.
dH(·, ·, ‖ · ‖) For sets A,B, dH(A,B, ‖ · ‖) ≡ max{~dH(A,B, ‖ · ‖), ~dH(B,A, ‖ · ‖)}.
N[ ](ε,G, ‖ · ‖) The ε bracketing numbers for a class G under ‖ · ‖.
J[ ](δ,G, ‖ · ‖) The entropy integral J[ ](δ,G, ‖ · ‖) ≡

∫ δ
0 {1 + logN[ ](ε,G, ‖ · ‖)}1/2dε.

Sn(A,B) The modulus of continuity of norms on normed spaces A and B.

Table 5: List of sequences.

an A bound on the rate of convergence of the coupling results.
Bn A bound on the sup norm of {qk,n,}. Introduced in Assumption 3.2(i).
Sn(ε) How “well separated” the minimum is. Introduced in Assumption 4.1(ii).
Jn A bound on the entropy of Fn. Introduced in Assumption 3.3(iii).
kn The number of moments employed.

Rn Convergence rate of Θ̂n ∩R with τn = o(n−
1
2 ). Introduced in Theorem 4.1.

τn A sequence defining Θ̂n ∩R. Introduced in equation (36).
νn Controls the strength of identification. Introduced in Assumption 4.2.
ζn A bound on the population minimum. Introduced in Assumption 4.1(i).

Since AM spaces are not often employed in econometrics, we next provide a brief

introduction that highlights the properties we need for our analysis. The definitions

and results presented here can be found in Chapters 8 and 9 of Aliprantis and Border

(2006), and we refer the reader to said reference for a more detailed exposition. Before

proceeding, we first recall the definitions of a partially ordered set and a lattice:

Definition A.1. A partially ordered set (G,≥) is a set G with a partial order relation-

ship ≥ defined on it – i.e. ≥ is a transitive (x ≥ y and y ≥ z implies x ≥ z), reflexive

(x ≥ x), and antisymmetric (x ≥ y implies the negation of y ≥ x) relation.
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Definition A.2. A lattice is a partially ordered set (G,≥) such that any pair x, y ∈ G

has a least upper bound (denoted x ∨ y) and a greatest lower bound (denoted x ∧ y).

Whenever G is both a vector space and a lattice, it is possible to define objects that

depend on both the vector space and lattice operations. In particular, for x ∈ G the

positive part x+, the negative part x−, and the absolute value |x| are defined by

x+ ≡ x ∨ 0 x− ≡ (−x) ∨ 0 |x| ≡ x ∨ (−x) . (A.1)

In addition, it is natural to demand that the order relation ≥ interact with the algebraic

operations of the vector space in a manner analogous to that of R – i.e. to expect

x ≥ y implies x+ z ≥ y + z for each z ∈ G (A.2)

x ≥ y implies αx ≥ αy for each 0 ≤ α ∈ R . (A.3)

A complete normed vector space that shares these familiar properties of R under a given

order relation ≥ is referred to as a Banach lattice. Formally, we define:

Definition A.3. A Banach space G with norm ‖ · ‖G is a Banach lattice if (i) G is a

lattice under ≥, (ii) ‖x‖G ≤ ‖y‖G when |x| ≤ |y|, (iii) (A.2) and (A.3) hold.

An AM space, is then simply a Banach lattice in which the norm ‖ · ‖G is such

that the maximum of the norms of two positive elements is equal to the norm of the

maximums of the two elements – e.g. L∞P under pointwise ordering. The norm having

such property is called the M-norm.

Definition A.4. A Banach lattice G is called an AM space if for any elements 0 ≤
x, y ∈ G it follows that ‖x ∨ y‖G = max{‖x‖G, ‖y‖G}.

In certain Banach lattices there may exist an element 1G > 0 called an order unit

such that for any x ∈ G there exists a 0 < λ ∈ R for which |x| ≤ λ1G – for example, in

Rd the vector (1, . . . , 1)′ is an order unit. The order unit 1G can be used to define

‖x‖∞ ≡ {inf λ > 0 : |x| ≤ λ1G} , (A.4)

which is easy to see constitutes a norm on the original Banach lattice G. In principle,

the norm ‖ · ‖∞ need not be related to the original norm ‖ · ‖G with which G was

endowed. Fortunately, however, if G is an AM space, then the original norm ‖ · ‖G
and the norm ‖ · ‖∞ are equivalent in the sense that they generate the same topology

(Aliprantis and Border, 2006, page 358). Hence, without loss of generality we refer to

G as an AM space with unit 1G if these conditions are satisfied: (i) G is an AM space,

(ii) 1G is an order unit in G, and (iii) The norm of G equals ‖ · ‖∞ (as in (A.4)).
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We conclude Appendix A by outlining the organization of the remaining Appendices.

Appendix B: Contains the proofs of the results in Section 4 concerning consistency of

the set estimator (Lemma 4.1) and its rates of convergence (Theorem 4.1).

Appendix C: Develops the proofs for the results in Section 5, including the preliminary

local approximation (Lemma 5.1) and the final drift linearization (Theorem 5.1).

Appendix D: Contains the proofs for all results in Section 6, including the lower bound

for the bootstrap statistic (Theorem 6.1), conditions under which the lower bound cou-

pling is “sharp” (Theorem 6.2), and the analysis of the test that compares the proposed

test statistic to the quantiles of the bootstrap distribution (Theorem 6.3).

Appendix E: Develops the auxiliary results concerning the approximation of the local

parameter space. These results depend on the characterization of R only, and thus may

be of independent interest as they are broadly applicable to hypotheses testing problems

similarly concerned with examining equality and inequality restrictions.

Appendix F: Provides additional details concerning the implementation of our test

and the implications of our Assumptions in the context of the motivating examples

introduced in Section 2.2.

Appendix G: Derives primitive conditions for verifying the coupling requirements of

Assumption 5.1. The results employ the Hungarian construction in Koltchinskii (1994)

and may be of independent interest.

Appendix H: Provides primitive conditions for the validity of the Gaussian multiplier

bootstrap as imposed in Assumption 6.5. These results more generally provide suffi-

cient conditions for the Gaussian multiplier bootstrap to be consistent for the law of

the empirical process over expanding classes Fn, and may be of independent interest.

The arguments in this Appendix can also be employed to obtain alternative sufficient

conditions for Assumption 5.1 that complement those in Appendix G.

Appendix B - Proofs for Section 4

Proof of Lemma 4.1: First fix ε > 0 and notice that by definition of Θ̂n ∩R we have

P (
−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖B) > ε)

≤ P ( inf
θ∈(Θn∩R)\(Θ0n(P )∩R)ε

1√
n
Qn(θ) ≤ inf

θ∈Θn∩R

1√
n
Qn(θ) + τn) (B.1)

for all n and all P ∈ P0. Moreover, setting Q̄n,P (θ) ≡ ‖
√
nEP [ρ(Xi, θ) ∗ qknn (Zi)]‖Σ̂n,r,
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it then follows from Lemmas B.2 and B.3, and Markov’s inequality that

inf
θ∈(Θn∩R)\(Θ0n(P )∩R)ε

1√
n
Q̄n,P (θ)

≤ inf
θ∈(Θn∩R)\(Θ0n(P )∩R)ε

1√
n
Qn(θ) +Op(

k
1/r
n

√
log(kn)JnBn√

n
) (B.2)

uniformly in P ∈ P0. In addition, by similar arguments we obtain uniformly in P ∈ P0

inf
θ∈Θn∩R

1√
n
Qn(θ) ≤ inf

θ∈Θn∩R

1√
n
Q̄n,P (θ) +Op(

k
1/r
n

√
log(kn)JnBn√

n
)

≤ ‖Σ̂n‖o,r × ζn +Op(
k

1/r
n

√
log(kn)JnBn√

n
) = Op(ζn +

k
1/r
n

√
log(kn)JnBn√

n
) , (B.3)

where the second inequality results from Assumption 4.1(i) and the equality follows from

Lemma B.3. For conciseness set ηn ≡ (ζn + τn + k
1/r
n

√
log(kn)JnBn/

√
n). Then note

that combining results (B.1), (B.2), and (B.3) we can conclude that

lim sup
n→∞

sup
P∈P0

P (
−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖B) > ε)

≤ lim sup
M↑∞

lim sup
n→∞

sup
P∈P0

P ( inf
θ∈(Θn∩R)\(Θ0n(P )∩R)ε

1√
n
Q̄n,P (θ) ≤Mηn) . (B.4)

Next note that for any a ∈ Rkn we have ‖a‖r = ‖Σ̂−1
n Σ̂na‖r ≤ ‖Σ̂−1

n ‖o,r‖a‖Σ̂n,r (provided

Σ̂−1
n exists). Thus, by Assumption 4.1(ii) and Lemma B.3 we obtain for any M <∞

lim sup
n→∞

sup
P∈P0

P ( inf
θ∈(Θn∩R)\(Θ0n(P )∩R)ε

1√
n
Q̄n,P (θ) ≤Mηn)

≤ lim sup
n→∞

sup
P∈P0

P (Sn(ε) ≤ ‖Σ̂−1
n ‖o,rMηn) = 0 (B.5)

which together with (B.4) establishes the first claim of the Lemma.

In order to establish (44), we employ the definition of Θ̂n∩R to obtain for all P ∈ P0

P (Θ0n(P ) ∩R ⊆ Θ̂n ∩R) ≥ P ( sup
θ∈Θ0n(P )∩R

1√
n
Qn(θ) ≤ τn) . (B.6)

Therefore, setting δn ≡ k
1/r
n

√
log(kn)JnBn/

√
n, exploiting Lemmas B.2 and B.3, and

the definition of Θ0n(P ) ∩R we then obtain uniformly in P ∈ P0 that

sup
θ∈Θ0n(P )∩R

1√
n
Qn(θ) ≤ sup

θ∈Θ0n(P )∩R

1√
n
Q̄n,P (θ) +Op(δn)

≤ ‖Σ̂n‖o,r × inf
θ∈Θn∩R

‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r +Op(δn) = Op(ζn + δn) . (B.7)
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Hence, (44) follows from results (B.6), (B.7) and τn/(δn + ζn)→∞.

Proof of Theorem 4.1: To begin, we first define the event An ≡ An1 ∩An2 where

An1 ≡ {Θ̂n ∩R ⊆ (Θ0n(P ) ∩R)ε}

An2 ≡ {Σ̂−1
n exists and max{‖Σ̂−1

n ‖o,r, ‖Σ̂n‖o,r} < B} , (B.8)

where recall (Θ0n(P )∩R)ε ≡ {θ ∈ Θn∩R :
−→
d H({θ},Θ0n(P )∩R, ‖·‖B) < ε}. Moreover,

note that for any ε > 0 and B sufficiently large, Lemmas 4.1 and B.3 imply

lim sup
n→∞

sup
P∈P0

P (Acn) = 0 . (B.9)

Hence, for η−1
n ≡ νn{k

1/r
n

√
log(kn)JnBn/

√
n+ τn + ζn} we obtain for any M that

lim sup
n→∞

sup
P∈P0

P (ηn
−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) > 2M )

= lim sup
n→∞

sup
P∈P0

P (ηn
−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) > 2M ; An) (B.10)

by result (B.9). Next, for each P ∈ P0, partition (Θ0n(P ) ∩R)ε \ (Θ0n(P ) ∩R) into

Sn,j(P ) ≡ {θ ∈ (Θ0n(P ) ∩R)ε : 2j−1 < ηn
−→
d H({θ},Θ0n(P ) ∩R, ‖ · ‖E) ≤ 2j} . (B.11)

Since Θ̂n ∩R ⊆ (Θ0n(P ) ∩R)ε with probability tending to one uniformly in P ∈ P0 by

(B.9), it follows from the definition of Θ̂n ∩R and result (B.10) that

lim sup
n→∞

sup
P∈P0

P (ηn
−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) > 2M )

≤ lim sup
n→∞

sup
P∈P0

∞∑
j≥M

P ( inf
θ∈Sn,j(P )

1√
n
Qn(θ) ≤ inf

θ∈Θn∩R

1√
n
Qn(θ) + τn; An) . (B.12)

In addition, letting Q̄n,P (θ) ≡ ‖
√
nEP [ρ(Xi, θ) ∗ qknn (Zi)‖Σ̂n,r, we obtain from (B.8),

Lemma B.2, and the definition of ζn in Assumption 4.1(i) that under the event An

inf
θ∈Θn∩R

1√
n
Qn(θ) ≤ inf

θ∈Θn∩R

1√
n
Q̄n,P (θ) + ‖Σ̂n‖o,r ×Zn,P ≤ B{Zn,P + ζn} . (B.13)

Therefore, exploiting result (B.12) and that (B.13) holds under An we can conclude

lim sup
n→∞

sup
P∈P0

P (ηn
−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) > 2M )

≤ lim sup
n→∞

sup
P∈P0

∞∑
j≥M

P ( inf
θ∈Sn,j(P )

1√
n
Qn(θ) ≤ B{Zn,P + ζn}+ τn; An) . (B.14)

Further note that for any a ∈ Rkn , ‖a‖r = ‖Σ̂−1
n Σ̂na‖r ≤ ‖Σ̂−1

n ‖r‖a‖Σ̂n,r ≤ B‖a‖Σ̂n,r
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under the event An. Therefore, Lemma B.2 implies that under the event An

inf
θ∈Sn,j(P )

1√
n
Qn(θ) ≥ inf

θ∈Sn,j(P )

1√
n
Q̄n,P (θ)− ‖Σ̂n‖o,r ×Zn,P

≥ B−1 × inf
θ∈Sn,j(P )

‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r −B ×Zn,P . (B.15)

Moreover, since ζn ≤ (ηnνn)−1, definition (B.11) implies that for j sufficiently large

ν−1
n × inf

θ∈Sn,j(P )

−→
d H({θ},Θ0n(P )∩R, ‖ · ‖E)−O(ζn) ≥ 2(j−1)

ηnνn
−O(ζn) ≥ 2(j−2)

ηnνn
. (B.16)

Thus, Sn,j(P ) ⊆ (Θ0n(P ) ∩R)ε, Assumption 4.2, and (B.16) imply for j large that

inf
θ∈Sn,j(P )

‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r ≥
2(j−2)

ηnνn
. (B.17)

Hence, we can conclude from results (B.14), (B.15), and (B.17) that we must have

lim sup
M↑∞

lim sup
n→∞

sup
P∈P0

P (ηn
−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) > 2M )

≤ lim sup
M↑∞

lim sup
n→∞

sup
P∈P0

∞∑
j≥M

P (
1

B
(
2(j−2)

ηnνn
) ≤ 2BZn,P +Bζn + τn)

≤ lim sup
M↑∞

lim sup
n→∞

sup
P∈P0

∞∑
j≥M

P (
1

4B
(
2(j−2)

ηnνn
) ≤ 2BZn,P ) , (B.18)

where in the final inequality we exploited that the definition of ηn implies (ηnνn)−1 ≥ τn
and (ηnνn)−1 ≥ ζn. Therefore, Zn,P ∈ R+, Lemma B.2, and Markov’s inequality yield

lim sup
M↑∞

lim sup
n→∞

sup
P∈P0

∑
j≥M

P (
1

8B2
(
2(j−2)

ηnνn
) ≤ Zn,P )

. lim sup
M↑∞

lim sup
n→∞

∑
j≥M

2−j ×
ηnνnk

1/r
n

√
log(kn)JnBn√
n

= 0 , (B.19)

where in the final result we used ηnνn ≤
√
n/k

1/r
n

√
log(kn)JnBn, and that

∑∞
j=1 2−j <

∞. Hence, the first claim of the Theorem follows from (B.18) and (B.19).

To establish the second claim, define the event An3 ≡ {Θ0n(P )∩R ⊆ Θ̂n∩R}. Since
−→
d H(Θ0n(P ) ∩R, Θ̂n ∩R, ‖ · ‖E) = 0 whenever An3 occurs, we obtain from Lemma 4.1

lim sup
M↑∞

lim sup
n→∞

sup
P∈P0

P (ηndH(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) > 2M )

= lim sup
M↑∞

lim sup
n→∞

sup
P∈P0

P (ηn
−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) > 2M ) = 0 (B.20)
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due to result (48). Therefore, the second claim of the Theorem follows from (B.20).

Lemma B.1. Let Assumption 3.2(i) hold, and define the class of functions

Gn ≡ {f(x)qk,n,(z) : f ∈ Fn, 1 ≤  ≤ J , and 1 ≤ k ≤ kn,} . (B.21)

Then, it follows that N[ ](ε,Gn, ‖ · ‖L2
P

) ≤ kn ×N[ ](ε/Bn,Fn, ‖ · ‖L2
P

) for all P ∈ P.

Proof: Note that by Assumption 3.2(i) we have supP∈P ‖qk,n,‖L∞P ≤ Bn for all 1 ≤
 ≤ J and 1 ≤ k ≤ kn,, and define q+

k,n,(z) ≡ qk,n,(z)1{qk,n,(z) ≥ 0} and q−k,n,(z) ≡
qk,n,(z)1{qk,n,(z) ≤ 0}. If {[fi,l,P , fi,u,P ]}i is a collection of brackets for Fn with∫

(fi,u,P − fi,l,P )2dP ≤ ε2 (B.22)

for all i, then it follows that the following collection of brackets covers the class Gn

{[q+
k,n,fi,l,P + q−k,n,fi,u,P , q

−
k,n,fi,l,P + q+

k,n,fi,u,P ]}i,k, . (B.23)

Moreover, since |qk,n,| = q+
k,n, − q

−
k,n, by construction, we also obtain from (B.22) that

∫
(q+
k,n,fi,u,P + q−k,n,fi,l,P − q

+
k,n,fi,l,P − q

−
k,n,fi,u,P )2dP

=

∫
(fi,u,P − fi,l,P )2|qk,n,|2dP ≤ ε2B2

n . (B.24)

Since there are kn ×N[ ](ε,Fn, ‖ · ‖L2
P

) brackets in (B.23), we can conclude from (B.24)

N[ ](ε,Gn, ‖ · ‖L2
P

) ≤ kn ×N[ ](
ε

Bn
,Fn, ‖ · ‖L2

P
) , (B.25)

for all P ∈ P, which establishes the claim of the Lemma.

Lemma B.2. Let Q̄n,P (θ) ≡ ‖
√
nEP [ρ(Xi, θ) ∗ qknn (Zi)]‖Σ̂n,r, and Assumptions 3.1,

3.2(i), 3.3(ii)-(iii) hold. Then, for each P ∈ P there are random Zn,P ∈ R+ with

1√
n
|Qn(θ)− Q̄n,P (θ)| ≤ ‖Σ̂n‖o,r ×Zn,P , (B.26)

for all θ ∈ Θn ∩R and in addition supP∈PEP [Zn,P ] = O(k
1/r
n

√
log(kn)JnBn/

√
n).

Proof: Let Gn ≡ {f(x)qk,n,(z) : f ∈ Fn, 1 ≤  ≤ J and 1 ≤ k ≤ kn,}. Note that

by Assumption 3.2(i), supP∈P ‖qk,n,‖L∞P ≤ Bn for all 1 ≤  ≤ J and 1 ≤ k ≤ kn,.

Hence, letting Fn be the envelope for Fn, as in Assumption 3.3(ii), it follows that

Gn(v) ≡ BnFn(v) is an envelope for Gn satisfying supP∈PEP [G2
n(Vi)] <∞. Thus,

sup
P∈P

EP [ sup
g∈Gn

|Gn,P g|] . sup
P∈P

J[ ](‖Gn‖L2
P
,Gn, ‖ · ‖L2

P
) . (B.27)
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by Theorem 2.14.2 in van der Vaart and Wellner (1996). Moreover, also notice that

Lemma B.1, the change of variables u = ε/Bn and Bn ≥ 1 imply

sup
P∈P

J[ ](‖Gn‖L2
P
,Gn, ‖ · ‖L2

P
) ≤ sup

P∈P

∫ ‖Gn‖L2
P

0

√
1 + log(knN[ ](ε/Bn,Fn, ‖ · ‖L2

P
))dε

≤ (1 +
√

log(kn))Bn × sup
P∈P

J[ ](‖Fn‖L2
P
,Fn, ‖ · ‖L2

P
) = O(

√
log(kn)BnJn) , (B.28)

where the final equality follows from Assumption 3.3(iii). Next define Zn,P ∈ R+ by

Zn,P ≡
k

1/r
n√
n
× sup
g∈Gn

|Gn,P g| (B.29)

and note (B.27) and (B.28) imply supP∈PEP [Zn,P ] = O(k
1/r
n

√
log(kn)BnJn/

√
n) as

desired. Since we also have that ‖Gn,Pρ(·, θ) ∗ qknn ‖r ≤ k
1/r
n × supg∈Gn |Gn,P g| for all

θ ∈ Θn ∩R by definition of Gn, we can in turn conclude by direct calculation

1√
n
|Qn(θ)− Q̄n,P (θ)| ≤ ‖Σ̂n‖o,r√

n
× ‖Gn,Pρ(·, θ) ∗ qknn ‖r ≤ ‖Σ̂n‖o,r ×Zn,P , (B.30)

which establishes the claim of the Lemma.

Lemma B.3. If Assumption 3.4 holds, then there exists a constant B <∞ such that

lim inf
n→∞

inf
P∈P

P (Σ̂−1
n exists and max{‖Σ̂n‖o,r, ‖Σ̂−1

n ‖o,r} < B) = 1 . (B.31)

Proof: First note that by Assumption 3.4(iii) there exists a B <∞ such that

sup
n≥1

sup
P∈P

max{‖Σn(P )‖o,r, ‖Σn(P )−1‖o,r} <
B

2
. (B.32)

Next, let In denote the kn × kn identity matrix and for each P ∈ P rewrite Σ̂n as

Σ̂n = Σn(P ){In − Σn(P )−1(Σn(P )− Σ̂n)} . (B.33)

By Theorem 2.9 in Kress (1999), the matrix {In−Σn(P )−1(Σn(P )−Σ̂n)} is invertible and

the operator norm of its inverse is bounded by two when Σn(P )−1(Σn(P )− Σ̂n)} < 1/2.

Since by Assumption 3.4(ii) and the equality in (B.33) it follows that Σ̂n is invertible if

and only if {In − Σn(P )−1(Σn(P )− Σ̂n)} is invertible, we obtain that

P (Σ̂−1
n exists and ‖{In − Σn(P )−1(Σn(P )− Σ̂n)}−1‖o,r < 2)

≥ P (‖Σn(P )−1(Σ̂n − Σn(P ))‖o,r <
1

2
) ≥ P (‖Σ̂n − Σn(P )‖o,r <

1

B
) , (B.34)

where we exploited ‖Σn(P )−1(Σ̂n − Σn(P ))‖o,r ≤ ‖Σn(P )−1‖o,r‖Σ̂n − Σn(P )‖o,r and
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(B.32). Hence, since ‖Σn(P )‖o,r < B/2 for all P ∈ P and n, (B.33) and (B.34) yield

P (Σ̂−1
n exists and ‖Σ̂−1

n ‖o,r < B) ≥ P (‖Σ̂n − Σn(P )‖o,r <
1

B
) . (B.35)

Finally, since ‖Σ̂n‖o,r ≤ B/2 + ‖Σ̂n − Σn(P )‖o,r by (B.32), result (B.35) implies that

lim inf
n→∞

inf
P∈P

P (Σ̂−1
n exists and max{‖Σ̂n‖o,r, ‖Σ̂−1

n ‖o,r} < B)

≥ lim inf
n→∞

inf
P∈P

P (‖Σ̂n − Σn(P )‖o,r < min{B
2
,

1

B
}) = 1 , (B.36)

where the equality, and hence the Lemma, follows from Assumption 3.4(i).

Lemma B.4. If a ∈ Rd, then ‖a‖r̃ ≤ d( 1
r̃
− 1
r

)+‖a‖r for any r̃, r ∈ [2,∞].

Proof: The case r ≤ r̃ trivially follows from ‖a‖r̃ ≤ ‖a‖r for all a ∈ Rd. For the case

r > r̃, let a = (a(1), . . . , a(d))′ and note that by Hölder’s inequality we can obtain that

‖a‖r̃r̃ =
d∑
i=1

|a(i)|r̃ =
d∑
i=1

{|a(i)|r̃ × 1}

≤ {
d∑
i=1

(|a(i)|r̃)
r
r̃ }

r̃
r {

d∑
i=1

1
r
r−r̃ }1−

r̃
r = {

d∑
i=1

|a(i)|r}
r̃
r d1− r̃

r . (B.37)

Thus, the claim of the Lemma for r > r̃ follows from taking the 1/r̃ power in (B.37).

Appendix C - Proofs for Section 5

Proof of Lemma 5.1: First note that the existence of the required sequence {`n} is

guaranteed by Assumption 5.3(i). Next, for ηn = o(an) let θ̂n ∈ Θn ∩R satisfy

Qn(θ̂n) ≤ inf
θ∈Θn∩R

Qn(θ) + ηn . (C.1)

Applying Theorem 4.1 with τn ≡ ηn/
√
n and noting τn = o(k

1/r
n /
√
n), then yields that

−→
d H({θ̂n},Θ0n(P ) ∩R, ‖ · ‖E) = Op(Rn) (C.2)

uniformly in P ∈ P0. Hence, defining for each P ∈ P0 the shrinking neighborhood

(Θ0n(P ) ∩R)`n ≡ {θ ∈ Θn ∩R :
−→
d H(θ,Θ0n(P ) ∩R, ‖ · ‖E) ≤ `n}, we obtain

In(R) = inf
θ∈(Θ0n(P )∩R)`n

Qn(θ) + op(an) (C.3)
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uniformly in P ∈ P0 due to Rn = o(`n), ηn = o(an), and results (C.1) and (C.2).

Defining

Q0
n,P (θ) ≡ ‖Wn,Pρ(·, θ) ∗ qknn +

√
nPρ(·, θ) ∗ qknn ‖Σ̂n,r (C.4)

we also obtain from Assumption 5.1 and Lemmas B.3 and C.1 that uniformly in P ∈ P0

| inf
θ∈(Θ0n(P )∩R)`n

Qn(θ)− inf
θ∈(Θ0n(P )∩R)`n

Q0
n,P (θ)|

≤ J ‖Σ̂n‖o,r × sup
f∈Fn

‖Gn,P fq
kn
n −Wn,P fq

kn
n ‖r = op(an) . (C.5)

Similarly, exploiting Lemmas B.3 and C.1 together with Lemma C.2 and `n satisfying

k
1/r
n

√
log(kn)Bn × supP∈P J[ ](`

κρ
n ,Fn, ‖ · ‖L2

P
) = o(an) by hypothesis yields

inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,`n)

‖Wn,Pρ(·, θ0 +
h√
n

) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σ̂n,r

= inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,`n)

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σ̂n,r + op(an)

(C.6)

uniformly in P ∈ P0. Thus, the Lemma follows from results (C.3), (C.5), and (C.6)

together with Lemma C.3.

Proof of Theorem 5.1: First we note that Assumption 4.1(i) implies

sup
P∈P0

sup
θ0∈Θ0n(P )∩R

‖
√
nPρ(·, θ0) ∗ qknn ‖r ≤

√
nζn . (C.7)

Therefore, Lemma B.4, result (C.7), and the law of iterated expectations yield that for

all P ∈ P0, θ0 ∈ Θ0n(P ) ∩R, and h/
√
n ∈ Vn(θ0, `n) we must have

‖
√
nPρ(·, θ0 +

h√
n

) ∗ qknn − Dn,P (θ0)[h]‖r

≤ ‖
√
n{Pρ(·, θ0 +

h√
n

) ∗ qknn − Pρ(·, θ0) ∗ qknn } − Dn,P (θ0)[h]‖2 +
√
nζn . (C.8)

Moreover, Lemma C.5 and the maps mP, : Bn → L2
P satisfying Assumption 5.4(i) imply

J∑
=1

kn,∑
k=1

〈
√
n{mP,(θ0 +

h√
n

)−mP,(θ0)} − ∇mP,(θ0)[h], qk,n,〉2L2
P

≤
J∑
=1

C0‖
√
n{mP,(θ0 +

h√
n

)−mP,(θ0)−∇mP,(θ0)[
h√
n

]}‖2L2
P

≤
J∑
=1

C0K
2
m × n× ‖

h√
n
‖2L × ‖

h√
n
‖2E (C.9)
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for some constant C0 < ∞ and all P ∈ P0, θ0 ∈ Θ0n(P ) ∩ R, and h/
√
n ∈ Vn(θ0, `n).

Therefore, by results (C.8) and (C.9), and the definition of Sn(L,E) in (35) we get

sup
P∈P0

sup
θ0∈Θ0n(P )∩R

sup
h√
n
∈Vn(θ0,`n)

‖
√
nPρ(·, θ0 +

h√
n

) ∗ qknn − Dn,P (θ0)[h]‖r

≤
√
JC0Km ×

√
n× `2n × Sn(L,E) +

√
nζn = o(an) (C.10)

due to Km`
2
n × Sn(L,E) = o(ann

− 1
2 ) by hypothesis and

√
nζn = o(an) by Assumption

5.3(ii). Next, note that since k
1/r
n

√
log(kn)Bn × supP∈P J[ ](`

κρ
n ,Fn, ‖ · ‖L2

P
) = o(an),

Assumption 5.3(i) implies there is a sequence ˜̀
n satisfying the conditions of Lemma 5.1

and `n = o(˜̀
n). Therefore, applying Lemma 5.1 we obtain that

In(R) = inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,˜̀n)

‖Wn,Pρ(·, θ0)∗qknn +
√
nPρ(·, θ0+

h√
n

)∗qknn ‖Σn(P ),r+op(an)

(C.11)

Moreover, since `n = o(˜̀
n) implies Vn(θ, ˜̀

n) ⊆ Vn(θ, `n) for all θ ∈ Θn ∩R, we have

inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,˜̀n)

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σn(P ),r

≤ inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,`n)

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σn(P ),r

= inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,`n)

‖Wn,Pρ(·, θ0) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) (C.12)

uniformly in P ∈ P0, with the final equality following from (C.10), Assumption 3.4(iii)

and Lemma C.1. Thus, the first claim of the Theorem follows from (C.11) and (C.12),

while the second follows by noting that if KmR2
n × Sn(L,E) = o(ann

− 1
2 ), then we may

set `n to simultaneously satisfy the conditions of Lemma 5.1 and Km`
2
n × Sn(L,E) =

o(ann
− 1

2 ), which obviates the need to introduce ˜̀
n in (C.11) and (C.12).

Lemma C.1. If Λ is a set, A : Λ→ Rk, B : Λ→ Rk, and W is a k × k matrix, then

| inf
λ∈Λ
‖WA(λ)‖r − inf

λ∈Λ
‖WB(λ)‖r| ≤ ‖W‖o,r × sup

λ∈Λ
‖A(λ)−B(λ)‖r .

Proof: Fix η > 0, and let λa ∈ Λ satisfy ‖WA(λa)‖r ≤ infλ∈Λ ‖WA(λ)‖r + η. Then,

inf
λ∈Λ
‖WB(λ)‖r − inf

λ∈Λ
‖WA(λ)‖r ≤ ‖WB(λa)‖r − ‖WA(λa)‖r + η

≤ ‖W{B(λa)−A(λa)}‖r + η ≤ ‖W‖o,r × sup
λ∈Λ
‖A(λ)−B(λ)‖r + η (C.13)

where the second result follows from the triangle inequality, and the final result from

54



‖Wv‖r ≤ ‖W‖o,r‖v‖r for any v ∈ Rk. In turn, by identical manipulations we also have

inf
λ∈Λ
‖WA(λ)‖r − inf

λ∈Λ
‖WB(λ)‖r ≤ ‖W‖o,r × sup

λ∈Λ
‖A(λ)−B(λ)‖r + η . (C.14)

Thus, since η was arbitrary, the Lemma follows from results (C.13) and (C.14).

Lemma C.2. Let Assumptions 3.2(i), 3.4, and 5.2(i) hold. If δn ↓ 0 is such that

k
1/r
n

√
log(kn)Bn × supP∈P J[ ](δ

κρ
n ,Fn, ‖ · ‖L2

P
) = o(an), then uniformly in P ∈ P:

sup
θ0∈Θ0n(P )∩R

sup
h√
n
∈Vn(θ0,δn)

‖Wn,Pρ(·, θ0 +
h√
n

) ∗ qknn −Wn,Pρ(·, θ0) ∗ qknn ‖Σ̂n,r = op(an) .

Proof: Since ‖qk,n,‖L∞P ≤ Bn for all 1 ≤  ≤ J and 1 ≤ k ≤ kn, by Assumption 3.2(i),

Assumption 5.2(i) yields for any P ∈ P, θ ∈ Θn ∩R, and h/
√
n ∈ Vn(θ, δn) that

EP [‖ρ(Xi, θ +
h√
n

)− ρ(Xi, θ)‖22q2
k,n,(Zi)] ≤ K2

ρB
2
n‖

h√
n
‖2κρE ≤ K2

ρB
2
nδ

2κρ
n . (C.15)

Next, define the class of functions Gn ≡ {f(x)qk,n,(z) for some f ∈ Fn, 1 ≤  ≤
J and 1 ≤ k ≤ kn,}, and note that (C.15) implies that for all 1 ≤  ≤ J and P ∈ P

sup
θ0∈Θ0n(P )∩R

sup
h√
n
∈Vn(θ0,δn)

max
1≤k≤kn,

|Wn,Pρ(·, θ0 +
h√
n

)qk,n, −Wn,Pρ(·, θ0)qk,n,|

≤ sup
g1,g2∈Gn:‖g1−g2‖L2

P
≤KρBnδ

κρ
n

|Wn,P g1 −Wn,P g2| . (C.16)

Hence, since ‖Σ̂na‖r ≤ ‖Σ̂n‖o,r‖a‖r ≤ ‖Σ̂n‖o,rk1/r
n ‖a‖∞ for any a ∈ Rkn , (C.16) yields

sup
θ0∈Θ0n(P )∩R

sup
h√
n
∈Vn(θ0,δn)

‖Wn,Pρ(·, θ0 +
h√
n

) ∗ qknn −Wn,Pρ(·, θ0) ∗ qknn ‖Σ̂n,r

≤ ‖Σ̂n‖o,rk1/r
n × sup

g1,g2∈Gn:‖g1−g2‖L2
P
≤KρBnδ

κρ
n

|Wn,P g1 −Wn,P g2| . (C.17)

Moreover, Corollary 2.2.8 in van der Vaart and Wellner (1996) implies that

sup
P∈P

EP [ sup
g1,g2∈Gn:‖g1−g2‖L2

P
≤KρBnδ

κρ
n

|Wn,P g1 −Wn,P g2|]

≤ sup
P∈P

C0

∫ KρBnδ
κρ
n

0

√
logN[ ](ε/2,Gn, ‖ · ‖L2

P
)dε (C.18)
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for some C0 <∞. In turn, Lemma B.1 and the change of variables u = ε/2Bn yields

sup
P∈P

∫ KρBnδ
κρ
n

0

√
logN[ ](ε/2,Gn, ‖ · ‖L2

P
)dε

≤ sup
P∈P

√
log(kn)

∫ KρBnδ
κρ
n

0

√
1 + logN[ ](ε/2Bn,Fn, ‖ · ‖L2

P
)dε

≤ sup
P∈P

2
√

log(kn)Bn

∫ Kρδ
κρ
n /2

0

√
1 + logN[ ](u,Fn, ‖ · ‖L2

P
)du . (C.19)

However, since N[ ](ε,Fn, ‖ · ‖L2
P

) is a decreasing function of ε, we can also conclude

sup
P∈P

∫ Kρδ
κρ
n /2

0

√
1 + logN[ ](u,Fn, ‖ · ‖L2

P
)du

≤ max{Kρ

2
, 1} × sup

P∈P
J[ ](δ

κρ
n ,Fn, ‖ · ‖L2

P
) (C.20)

by definition of J[ ](δ,Fn, ‖ · ‖L2
P

). Therefore, the Lemma follows from (C.17), ‖Σ̂n‖o,r =

Op(1) by Lemma B.3, and Markov’s inequality combined with results (C.18), (C.19),

(C.20), and k
1/r
n

√
log(kn)Bn × supP∈P J[ ](δ

κρ
n ,Fn, ‖ · ‖L2

P
) = o(an) by hypothesis.

Lemma C.3. Let Assumptions 3.2(i), 3.3(ii), 3.4, 4.1(i), and 5.3(ii)-(iii) hold. For

any sequence δn ↓ 0 it then follows that uniformly in P ∈ P0 we have

inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,δn)

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σn(P ),r

= inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,δn)

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σ̂n,r + op(an)

Proof: First note that by Assumptions 3.4(ii) there exists a constant C0 < ∞ such

that max{‖Σn(P )‖o,r, ‖Σn(P )−1‖o,r} ≤ C0 for all n and P ∈ P. Thus, we obtain

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σ̂n,r

≤ {C0‖Σ̂n − Σn(P )‖o,r + 1}‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σn(P ),r

(C.21)

by the triangle inequality. Moreover, since 0 ∈ Vn(θ0, δn) for all θ0, we also have that

inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,δn)

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σn(P ),r

≤ C0 × inf
θ0∈Θ0n(P )∩R

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0) ∗ qknn ‖r . (C.22)
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Hence, Lemma C.4, Markov’s inequality, and Assumptions 4.1(i) and 5.3(ii) establish

inf
θ0∈Θ0n(P )∩R

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0) ∗ qknn ‖r

≤ sup
θ∈Θn∩R

‖Wn,Pρ(·, θ) ∗ qknn ‖r + o(1) = Op(k
1/r
n

√
log(kn)BnJn) (C.23)

uniformly in P ∈ P0. Therefore, (C.21), (C.22), (C.23), and Assumption 5.3(iii) imply

inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,δn)

‖Wn,Pρ(·, θ0) ∗ qknn +
√
nPρ(·, θ0 +

h√
n

) ∗ qknn ‖Σ̂n,r

≤ inf
θ0∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ0,δn)

‖Wn,Pρ(·, θ0)∗qknn +
√
nPρ(·, θ0+

h√
n

)∗qknn ‖Σn(P ),r+op(an)

(C.24)

uniformly in P ∈ P0. The reverse inequality to (C.24) follows by identical arguments

but relying on Lemma B.3 implying ‖Σ̂n‖o,r = Op(1) and ‖Σ̂−1
n ‖o,r = Op(1) uniformly

in P ∈ P rather than on max{‖Σn(P )‖o,r, ‖Σn(P )−1‖o,r} ≤ C0.

Lemma C.4. If Assumptions 3.2(i) and 3.3(ii)-(iii) hold, then for some K0 > 0,

sup
P∈P

EP [ sup
θ∈Θn∩R

‖Wn,Pρ(·, θ) ∗ qknn ‖r] ≤ K0k
1/r
n

√
log(kn)BnJn .

Proof: Define the class Gn ≡ {f(x)qk,n,(z) : f ∈ Fn, 1 ≤  ≤ J , and 1 ≤ k ≤ kn,},
and note ‖a‖r ≤ d1/r‖a‖∞ for any a ∈ Rd implies that for any P ∈ P we have

EP [ sup
θ∈Θn∩R

‖Wn,Pρ(·, θ) ∗ qknn ‖r] ≤ k1/r
n EP [ sup

g∈Gn
|Wn,P g|]

≤ k1/r
n {EP [|Wn,P g0|] + C1

∫ ∞
0

√
logN[ ](ε/2,Gn, ‖ · ‖L2

P
)dε} , (C.25)

where the final inequality holds for any g0 ∈ Gn and some C1 <∞ by Corollary 2.2.8 in

van der Vaart and Wellner (1996). Next, let Gn(v) ≡ BnFn(v) for Fn as in Assumption

3.3(ii) and note Assumption 3.2(i) implies Gn is an envelope for Gn. Thus [−Gn, Gn] is

a bracket of size 2‖Gn‖L2
P

covering Gn, and hence the change of variables u = ε/2 yields

∫ ∞
0

√
logN[ ](ε/2,Gn, ‖ · ‖L2

P
)dε

= 2

∫ 2‖Gn‖L2
P

0

√
1 + logN[ ](u,Gn, ‖ · ‖L2

P
)du ≤ C2

√
log(kn)BnJn , (C.26)

where the final inequality holds for some C2 <∞ by result (B.28) and N[ ](u,Gn, ‖ ·‖L2
P

)
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being decreasing in u. Furthermore, since EP [|Wn,P g0|] ≤ ‖g0‖L2
P
≤ ‖Gn‖L2

P
we have

EP [|Wn,P g0|] ≤ ‖Gn‖L2
P
≤
∫ ‖Gn‖L2

P

0

√
1 + logN[ ](u,Gn, ‖ · ‖L2

P
)du . (C.27)

Thus, the claim of the Lemma follows from (C.25), (C.26), and (C.27).

Lemma C.5. Let Assumption 3.2(ii) hold. It then follows that there exists a constant

C <∞ such that for all P ∈ P, n ≥ 1, 1 ≤  ≤ J , and functions f ∈ L2
P we have

kn,∑
k=1

〈f, qk,n,〉2L2
P
≤ CEP [(EP [f(Vi)|Zi,])2] . (C.28)

Proof: Let L2
P (Zi,) denote the subspace of L2

P consisting of functions depending on

Zi, only, and set `2(N) ≡ {{ck}∞k=1 : ck ∈ R and ‖{ck}‖`2(N) <∞}, where ‖{ck}‖2`2(N) ≡∑
k c

2
k. For any sequence {ck} ∈ `2(N), then define the map JP,n, : `2(N)→ L2

P (Zi,) by

JP,n,{ck}(z) =

kn,∑
k=1

ckqk,n,(z) . (C.29)

Clearly, the maps JP,n, : `2(N) → L2
P (Zi,) are linear, and moreover we note that by

Assumption 3.2(ii) there exists a constant C < ∞ such that the largest eigenvalue of

EP [q
kn,
n, (Zi,)q

kn,
n, (Zi,)

′] is bounded by C for all n ≥ 1 and P ∈ P. Therefore, we obtain

sup
P∈P

sup
n≥1
‖JP,n,‖2o = sup

P∈P
sup
n≥1

sup
{ck}:

∑
k c

2
k=1

‖JP,n,{ck}‖2L2
P (Zi,)

= sup
P∈P

sup
n≥1

sup
{ck}:

∑
k c

2
k=1

EP [(

kn,∑
k=1

ckqk,n,(Zi,))
2] ≤ sup

{ck}:
∑
k c

2
k=1

C

∞∑
k=1

c2
k = C (C.30)

which implies JP,n, is continuous. Next, define J∗P,n, : L2
P (Zi,)→ `2(N) to be given by

J∗P,n,g = {ak(g)}∞k=1 ak(g) ≡

{
〈g, qk,n,〉L2

P (Zi,)
if k ≤ kn,

0 if k > kn,
, (C.31)

and note J∗P,n, is the adjoint of JP,n,. Therefore, since ‖JP,n,‖o = ‖J∗P,n,‖o by Theorem

6.5.1 in Luenberger (1969), we obtain for any P ∈ P, n ≥ 1, and g ∈ L2
P (Zi,)

kn,∑
k=1

〈g, qk,n,〉2L2
P (Zi,)

= ‖J∗P,n,g‖2`2(N) ≤ ‖J
∗
P,n,‖2o‖g‖2L2

P (Zi,)
= ‖JP,n,‖2o‖g‖2L2

P (Zi,)
.

(C.32)

Therefore, since EP [f(Vi)qk,n,(Zi,)] = EP [EP [f(Vi)|Zi,]qk,n,(Zi,)] for any f ∈ L2
P ,

setting g(Zi,) = EP [f(Vi)|Zi,] in (C.32) and exploiting (C.30) yields the Lemma.
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Appendix D - Proofs for Section 6

Proof of Theorem 6.1: First note that Lemma D.1 implies that uniformly in P ∈ P0

Ûn(R) = inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) . (D.1)

Thus, we may select θ̂n ∈ Θ̂n ∩R and ĥn/
√
n ∈ V̂n(θ̂n, `n) so that uniformly in P ∈ P0

Ûn(R) = ‖W?
n,Pρ(·, θ̂n) ∗ qknn + Dn,P (θ̂n)[ĥn]‖Σn(P ),r + op(an) . (D.2)

To proceed, note that by Assumptions 5.3(i) and 6.6(ii)-(iv) we may select a δn so that

δnSn(B,E) = o(rn), 1{Kf ∨Kg > 0}δnSn(B,E) = o(1), Rn + νnτn = o(δn), and

`nδn × Sn(B,E)1{Kf > 0} = o(ann
− 1

2 ) (D.3)

Kmδn`n × Sn(L,E) = o(ann
− 1

2 ) (D.4)

k1/r
n

√
log(kn)Bn × sup

P∈P
J[ ](δ

κρ
n ,Fn, ‖ · ‖L2

P
) = o(an) . (D.5)

Next, notice that Theorem 4.1 implies that there exist θ0n ∈ Θ0n(P ) ∩R such that

‖θ̂n − θ0n‖E = Op(Rn + νnτn) (D.6)

uniformly in P ∈ P0. Further note that since ‖qk,n,‖L∞P ≤ Bn for all 1 ≤ k ≤ kn, by

Assumption 3.2(i), we obtain from Assumption 5.2(i), result (D.6) andRn+νnτn = o(δn)

that with probability tending to one uniformly in P ∈ P0 we have

EP [‖ρ(Xi, θ̂n)− ρ(Xi, θ0n)‖22q2
k,n,(Zi,)] ≤ B2

nK
2
ρδ

2κρ
n . (D.7)

Hence, letting Gn ≡ {f(x)qk,n,(z) : f ∈ Fn, 1 ≤  ≤ J , and 1 ≤ k ≤ kn,}, we obtain

from ‖Σn(P )‖o,r being uniformly bounded by Assumption 3.4(iii), results (C.18)-(C.20),

Markov’s inequality, and δn satisfying (D.5) that uniformly in P ∈ P

‖W?
n,Pρ(·, θ̂n) ∗ qknn −W?

n,Pρ(·, θ0n) ∗ qknn ‖Σn(P ),r

≤ ‖Σn(P )‖o,rJ k1/r
n sup

g1,g2∈Gn:‖g1−g2‖L2
P
≤BnKρδ

κρ
n

|W?
n,P g1 −W?

n,P g2| = op(an) . (D.8)

Similarly, since θ̂n ∈ (Θ0n(P )∩R)ε with probability tending to one uniformly in P ∈ P0

by Lemma 4.1, we can exploit Lemma D.3 to obtain for some C <∞ that

‖Dn,P (θ0n)[ĥn]−Dn,P (θ̂n)[ĥn]‖Σn(P ),r ≤ ‖Σn(P )‖o,r ×CKm‖θ̂n− θ0n‖L‖ĥ‖E + op(an)

≤ ‖Σn(P )‖o,r × CKmKbSn(L,E)δn`n
√
n+ op(an) = op(an) (D.9)
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where the second inequality follows from ‖ĥn/
√
n‖B ≤ `n due to ĥn/

√
n ∈ V̂n(θ̂n, `n),

‖ĥn‖E ≤ Kb‖ĥn‖B by Assumption 6.1(i), and Rn + νnτn = o(δn). In turn, the final

result in (D.9) is implied by (D.4) and ‖Σn(P )‖o,r being uniformly bounded due to

Assumption 3.4(iii). Next, we note that (D.6) and Rn + νnτn = o(δn) imply

‖θ̂n − θ0n‖B = op(δn × Sn(B,E)) (D.10)

uniformly in P ∈ P0. Thus, since δnSn(B,E)1{Kf ∨ Kg > 0} = o(1), δnSn(B,E) =

o(rn), and lim supn→∞ `n/rn1{Kg > 0} < 1/2 by Assumption 6.6(iii), we obtain

rn ≥ (MgδnSn(B,E) +Kgδ
2
nS2

n(B,E)) ∨ 2(`n + δnSn(B,E))1{Kg > 0} (D.11)

for n sufficiently large. Hence, applying Theorem E.1 and exploiting Assumption 6.1(ii),

and ‖h‖E ≤ Kb‖h‖B for all h ∈ Bn and P ∈ P by Assumption 6.1(i), we obtain that

there is an M <∞ for which with probability tending to one uniformly in P ∈ P0

inf
h0√
n
∈Vn(θ0n,2Kb`n)

‖ ĥn√
n
− h0√

n
‖B ≤M`n(`n + δnSn(B,E))1{Kf > 0} . (D.12)

In particular, it follows from Assumption 6.6(ii) and (D.3) that we may find a h0n/
√
n ∈

Vn(θ0n, 2Kb`n) such that ‖h0n − ĥn‖B = op(an) uniformly in P ∈ P0, and hence As-

sumption 3.4(iii), Lemma D.3, and ‖h‖E ≤ Kb‖h‖B by Assumption 6.1(i) yield

‖Dn,P (θ0n)[ĥn]− Dn,P (θ0n)[h0n]‖Σn(P ),r ≤ ‖Σn(P )‖o,r × CMm‖ĥ− h0n‖E = op(an)

(D.13)

uniformly in P ∈ P0. Therefore, combining results (D.2), (D.8), (D.9), and (D.13)

together with θ0n ∈ Θ0n(P ) ∩R and h0n/
√
n ∈ Vn(θ0n, 2Kb`n) imply

Ûn(R) = ‖W?
n,Pρ(·, θ0n) ∗ qknn + Dn,P (θ0n)[h0n]‖Σn(P ),r + op(an)

≥ inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) (D.14)

uniformly in P ∈ P0, thus establishing the claim of the Theorem.

Proof of Theorem 6.2: First set G ≡ R, ΥG(θ) = −1 for all θ ∈ B, and note that

R = {θ ∈ B : ΥF (θ) = 0} = {θ ∈ B : ΥF (θ) = 0 and ΥG(θ) ≤ 0} . (D.15)

Moreover, also note Assumption 6.2 is automatically satisfied with Kg = Mg = 0 and

∇ΥG(θ)[h] = 0 for all θ, h ∈ B, while Assumption 6.4 holds with h0 = 0 and ε = −1.
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Similarly, since Kg = 0, definition (68) implies Gn(θ) = Bn for all θ ∈ B, and hence

{ h√
n
∈ Bn :

h√
n
∈ Gn(θ), ΥF (θ +

h√
n

) = 0 and ‖ h√
n
‖B ≤ `n}

= { h√
n
∈ Bn : ΥF (θ +

h√
n

) = 0 and ‖ h√
n
‖B ≤ `n} . (D.16)

Furthermore, since (D.16) holds for any rn, we may set rn so Assumption 6.6(iii) holds.

Thus, it follows that we may apply Theorem 6.1 to obtain uniformly in P ∈ P0

Ûn(R) ≥ inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) .

(D.17)

Next, note that since (k
1/r
n

√
log(kn)JnBn/

√
n+ ζn) = o(τn) by hypothesis, we have

lim inf
n→∞

inf
P∈P0

P (Θ0n(P ) ∩R ⊆ Θ̂n ∩R) = 1 (D.18)

by Lemma 4.1(ii). For notational simplicity define η−1
n ≡ Sn(B,E), and then note that

‖h‖B ≤ `n for any h ∈ Bn satisfying ‖h‖E ≤ ηn`n. Thus, we obtain by definitions of

Vn(θ, `) and V̂n(θ, `) that for any P ∈ P and θ ∈ Θn ∩R we have

Vn(θ, ηn`n) = { h√
n
∈ Bn : θ +

h√
n
∈ Θn ∩R and ‖ h√

n
‖E ≤ ηn`n}

⊆ { h√
n
∈ Bn : ΥF (θ +

h√
n

) = 0 and ‖ h√
n
‖B ≤ `n} = V̂n(θ, `n) . (D.19)

Therefore, Lemma D.1 and results (D.18) and (D.19) imply that uniformly in P ∈ P0

Ûn(R) ≤ inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,ηn`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) .

(D.20)

Furthermore, we also note that the definition of Sn(B,E) and Assumption 6.1(i) yield

‖h‖B ≤ Sn(B,E)× ‖h‖E ≤ Sn(B,E)×Kb‖h‖B , (D.21)

for any h ∈ Bn, which implies Sn(B,E) ≥ 1/Kb, and thus ηn = O(1). Hence, since

RnSn(B,E) = o(`n), we have Rn = o(`nηn ∧ `n). Similarly, Assumption 6.6(ii) implies

k
1/r
n

√
log(kn)Bn supP∈P J[ ](`

κρ
n ∨ (`nηn)κρ ,Fn, ‖ · ‖L2

P
) = o(an) and Km(`2n ∨ `2nη2

n) ×
Sn(L,E) = o(ann

− 1
2 ). Thus, applying Lemma D.4 with `n = `n and ˜̀

n = `nηn yields

inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,ηn`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r

= inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) (D.22)
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uniformly in P ∈ P0. Hence, results (D.17), (D.20), and (D.22) allow us to conclude

Ûn(R) = inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an)

(D.23)

uniformly in P ∈ P0, which establishes the first claim of the Theorem.

In order to establish the second claim of the Theorem, we first define the set

Nn(θ, `) ≡ { h√
n
∈ Bn : ∇ΥF (θ)[h] = 0 and ‖ h√

n
‖B ≤ `} . (D.24)

Next, note that since Θ0n(P ) ∩R = {θ0n(P )}, Theorem 4.1 yields uniformly in P ∈ P0

dH(Θ̂n ∩R, θ0n(P ), ‖ · ‖E) =
−→
d H(Θ̂n ∩R, θ0n(P ), ‖ · ‖E) = Op(Rn + νnτn) . (D.25)

Furthermore, since (Rn+νnτn)×Sn(B,E) = o(`n), Assumptions 5.3(i) and 6.6(ii) imply

there is a δn ↓ 0 satisfying (D.3)-(D.5), Rn + νnτn = o(δn), and

δn × Sn(B,E) = o(`n) . (D.26)

Moreover, identical arguments to those employed in (D.8), (D.9), and (D.10) yield

sup
θ∈Θ̂n∩R

‖W?
n,Pρ(·, θ) ∗ qknn −W?

n,Pρ(·, θ0n(P )) ∗ qknn ‖Σn(P ),r = op(an) (D.27)

sup
θ∈Θ̂n∩R

sup
h√
n
∈V̂n(θ,`n)

‖Dn,P (θ)[h]− Dn,P (θ0n(P ))[h]‖Σn(P ),r = op(an) (D.28)

sup
θ∈Θ̂n∩R

‖θ − θ0n(P )‖B × {Sn(B,E)}−1 = op(δn) (D.29)

uniformly in P ∈ P0. Therefore, we can conclude from Lemma D.1 and results (D.27)

and (D.28) that we may select a θ̂n ∈ Θ̂n ∩R so that uniformly in P ∈ P0

Ûn(R) = inf
h√
n
∈V̂n(θ̂n,`n)

‖W?
n,Pρ(·, θ̂n) ∗ qknn + Dn,P (θ̂n)[h]‖Σn(P ),r + op(an)

= inf
h√
n
∈V̂n(θ̂n,`n)

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r + op(an) . (D.30)

We next proceed by establishing upper and lower bounds for the right hand side of

(D.30). To this end, note that by (D.30), we may select a ĥln/
√
n ∈ V̂n(θ̂n, `n) so that

Ûn(R) = ‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[ĥln]‖Σn(P ),r + op(an) (D.31)

uniformly in P ∈ P0. Also observe that the final equality in (D.19), result (D.29), and

Lemma E.1 (see (E.29)) imply that there exist M <∞ and h̃ln/
√
n in Nn(θ0n(P ), 2`n)
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such that with probability tending to one uniformly in P ∈ P0 we have

‖ ĥln√
n
− h̃ln√

n
‖B ≤M × `n(`n + δn × Sn(B,E))1{Kf > 0} . (D.32)

Thus, we obtain from (D.32), ‖ĥln−h̃ln‖E ≤ Kb‖ĥln−h̃ln‖B, ‖Σn(P )‖o,r being uniformly

bounded by Assumption 3.4(iii), and Lemma D.3 that uniformly in P ∈ P0

‖Dn,P (θ0n(P ))[ĥln]− Dn,P (θ0n(P ))[h̃ln]‖Σn(P ),r ≤ ‖Σn(P )‖o,r × CMm‖ĥln − h̃ln‖E
. `n(`n + δn × Sn(B,E))

√
n1{Kf > 0}+ op(an) = op(an) , (D.33)

where the final equality follows by (D.26) and `2n
√
n1{Kf > 0} = o(an) by Assumption

6.6(ii). Hence, (D.31), (D.33), and h̃ln/
√
n ∈ Nn(θ0n(P ), 2`n) yield uniformly in P ∈ P0

Ûn(R) = ‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h̃ln]‖Σn(P ),r + op(an)

≥ inf
h√
n
∈Nn(θ0n(P ),2`n)

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r + op(an) .

(D.34)

To establish an upper bound for (D.30), let ĥun/
√
n ∈ Nn(θ0n(P ), `n/2) satisfy

inf
h√
n
∈Nn(θ0n(P ), `n

2
)
‖W?

n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r

= ‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[ĥun]‖Σn(P ),r + op(an) (D.35)

uniformly in P ∈ P0. Next note that by Lemma E.1 (see (E.30)), the final equality in

(D.19), and (D.29) we may pick a h̃un/
√
n ∈ V̂n(θ̂n, `n) such that for some M <∞

‖ ĥun√
n
− h̃un√

n
‖B ≤M × `n(`n + δn × Sn(B,E))1{Kf > 0} (D.36)

with probability tending to one uniformly in P ∈ P0. Therefore, exploiting Lemma

D.3, ‖Σn(P )‖o,r being uniformly bounded by Assumption 3.4(iii), result (D.36), and

‖ĥun − h̃un‖E ≤ Kb‖ĥun − h̃un‖B implies that uniformly in P ∈ P0

‖Dn,P (θ0n(P ))[ĥun]− Dn,P (θ0n(P ))[h̃un]‖Σn(P ),r ≤ ‖Σn(P )‖o,r × CMm‖ĥun − h̃un‖E
. `n(`n + δn × Sn(B,E))

√
n1{Kf > 0}+ op(an) = op(an) , (D.37)

where in the final equality we exploited `2n1{Kf > 0} = o(ann
−1/2) by Assumption

63



6.6(ii) and δn satisfying (D.26). Hence, we conclude uniformly in P ∈ P0 that

Ûn(R) ≤ ‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h̃un]‖Σn(P ),r + op(an)

= inf
h√
n
∈Nn(θ0n(P ), `n

2
)
‖W?

n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r + op(an) ,

(D.38)

where the inequality follows from (D.30) and h̃un/
√
n ∈ V̂n(θ̂n, `n), while the equality is

implied by results (D.35) and (D.37).

Finally, we obtain from results (D.34) and (D.38) together with Lemma D.5(i) that

Ûn(R) = inf
h∈Bn∩N (∇ΥF (θ0n(P )))

‖W?
n,Pρ(·, θ0n(P ))∗ qknn +Dn,P (θ0n(P ))[h]‖Σn(P ),r +op(an)

(D.39)

uniformly in P ∈ P0. Setting Vn,P ≡ {v = Σn(P )Dn,P (θ0n(P ))[h] for some h ∈ Bn ∩
N (∇ΥF (θ0n(P )))}, then note that Vn,P is a vector subspace of Rkn by linearity of

Dn,P (θ0n(P )) and its dimension for n sufficiently large is equal to cn ≡ dim{Bn ∩
N (∇ΥF (θ0n(P )))} by Lemma D.5(ii) and Σn(P ) being full rank by Assumption 3.4(iii).

Letting Zn ∈ Rkn denote a standard normal random variable, we then obtain from

r = 2, Σn(P ) = {VarP {ρ(Xi, θ0n(P ))qknn (Zi)}}−
1
2 , and (D.39) that uniformly in P ∈ P0

Ûn(R) = inf
v∈Vn,P

‖Zn − v‖2 + op(an) = {X 2
kn−cn}

1
2 + op(an) , (D.40)

where the final equality follows by observing that the projection of Zn onto Vn,P can be

written as ΠPZn for some kn × kn idempotent matrix ΠP of rank cn.

Proof of Lemma 6.1: First, let θ̂n ∈ Θ̂n ∩R and ĥn ∈ V̂n(θ̂n,+∞) be such that

inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,+∞)

‖Ŵnρ(·, θ) ∗ qknn + D̂n(θ)[h]‖Σ̂n,r

= ‖Ŵnρ(·, θ̂n) ∗ qknn + D̂n(θ̂n)[ĥn]‖Σ̂n,r + o(an) . (D.41)

Then note that in order to establish the claim of the Lemma it suffices to show that

lim sup
n→∞

sup
P∈P0

P (‖ ĥn√
n
‖B ≥ `n) = 0 . (D.42)

To this end, observe that since 0 ∈ V̂n(θ,+∞) for all θ ∈ Θn ∩ R, we obtain from the
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triangle inequality, ‖Σ̂n‖o,r = Op(1) by Lemma B.3 and Assumption 6.5 that

‖D̂n(θ̂n)[ĥn]‖Σ̂n,r ≤ ‖Ŵnρ(·, θ̂n) ∗ qknn + D̂n(θ̂n)[ĥn]‖Σ̂n,r + ‖Ŵnρ(·, θ̂n) ∗ qknn ‖Σ̂n,r
≤ 2‖Σ̂n‖o,r‖Ŵnρ(·, θ̂n) ∗ qknn ‖r + o(an) ≤ 2‖Σ̂n‖o,r‖W?

n,Pρ(·, θ̂n) ∗ qknn ‖r + op(an)

(D.43)

uniformly in P ∈ P. Hence, since Θ̂n∩R ⊆ Θn∩R almost surely, we obtain from result

(D.43), ‖Σ̂n‖o,r = Op(1), and Lemma C.4 together with Markov’s inequality

‖D̂n(θ̂n)[ĥn]‖Σ̂n,r
≤ 2‖Σ̂n‖o,r × sup

θ∈Θn∩R
‖W?

n,Pρ(·, θ) ∗ qknn ‖r + op(an) = Op(k
1/r
n

√
log(kn)BnJn) (D.44)

uniformly in P ∈ P. Moreover, note that since Θ̂n∩R ⊆ (Θ0n(P )∩R)ε with probability

tending to one uniformly in P0 by Lemma 4.1, and ĥn/
√
n ∈ V̂n(θ̂n,+∞) implies ĥn ∈√

n{Bn ∩R− θ̂n} we obtain from the first hypothesis of the Lemma that

lim sup
n→∞

sup
P∈P0

P (`n ≤ ‖
ĥn√
n
‖B)

= lim sup
n→∞

sup
P∈P0

P (`n ≤ ‖
ĥn√
n
‖B and ‖ĥn‖E ≤ νn‖Dn,P (θ̂n)[ĥn]‖r)

≤ lim sup
n→∞

sup
P∈P0

P (`n ≤ ‖
ĥn√
n
‖B and ‖ĥn‖E ≤ 2νn‖D̂n(θ̂n)[ĥn]‖r) , (D.45)

where the inequality follows from (74). Hence, results (D.44) and (D.45), the definitions

of Sn(B,E) and Rn, and Sn(B,E)Rn = o(`n) by hypothesis yield

lim sup
n→∞

sup
P∈P0

P (`n ≤ ‖
ĥn√
n
‖B)

≤ lim sup
n→∞

sup
P∈P0

P (`n ≤ 2
νn√
n
Sn(B,E)‖D̂n(θ̂n)[ĥn]‖r) = 0 , (D.46)

which establishes (D.42) and hence the claim of the Lemma.

Proof of Theorem 6.3: We establish the first claim by appealing to the first claim of

Lemma D.6. To this end, we note condition (D.97) holds by Assumption 6.7 and define

U?n,P (R) ≡ inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r , (D.47)

which is independent of {Vi}ni=1 by Assumption 6.5. Moreover, Theorem 6.1 yields

Ûn(R) ≥ U?n,P (R) + op(an) (D.48)
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uniformly in P ∈ P0, while Assumption 6.6(ii) implies Km(2Kb`n)2 × Sn(L,E) =

o(ann
− 1

2 ) and k
1/r
n

√
log(kn)Bn × supP∈P J[ ]((2Kb`n)κρ ,Fn, ‖ · ‖L2

P
) = o(an), and hence

In(R) ≤ inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖Wn,Pρ(·, θ)∗qknn +Dn,P (θ)[h]‖Σn(P ),r+op(an) (D.49)

uniformly in P ∈ P0 by Theorem 5.1(i). Since the right hand side of (D.49) shares the

same distribution as U?n,P (R), the first claim of the Theorem holds by Lemma D.6(i).

For the second claim of the Theorem we first note that Theorem 6.2(i) yields that

Ûn(R) = U?n,P (R) + op(an) (D.50)

uniformly in P ∈ P0. Furthermore, as already argued 2Kb`n satisfies the conditions of

Theorem 5.1(i) by Assumption 6.6(ii) while Rn = o(`n) in addition implies that

In(R) = inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,2Kb`n)

‖Wn,Pρ(·, θ)∗qknn +Dn,P (θ)[h]‖Σn(P ),r+op(an) (D.51)

uniformly in P ∈ P0 (see (C.12) and subsequent discussion). Hence, since the right

hand side of (D.51) shares the same distribution as U?n,P (R) and condition (D.97) of

Lemma D.6 holds by Assumption 6.7, the second claim of the Theorem follows from

results (D.50) and (D.51), and Lemma D.6(ii).

In order to establish the final claim of the Theorem, we next note that since Θ̂n∩R ⊆
Θn ∩ R and 0 ∈ V̂n(θ, `n) for all θ ∈ Θn ∩ R it follows from Assumption 6.5 and

‖Σ̂n‖o,r = Op(1) uniformly in P ∈ P by Lemma B.3 that we must have

lim sup
n→∞

sup
P∈P

P (Ûn(R) > Mk1/r
n

√
log(kn)BnJn)

≤ lim sup
n→∞

sup
P∈P

P ( sup
θ∈Θn∩R

‖Ŵn,Pρ(·, θ) ∗ qknn ‖Σ̂n,r > Mk1/r
n

√
log(kn)BnJn)

= lim sup
n→∞

sup
P∈P

P ( sup
θ∈Θn∩R

‖W?
n,Pρ(·, θ) ∗ qknn ‖Σ̂n,r > Mk1/r

n

√
log(kn)BnJn) . (D.52)

Therefore, (D.52), Markov’s inequality, and Lemmas B.3 and C.4 allow us to conclude

lim sup
M↑∞

lim sup
n→∞

sup
P∈P

P (Ûn(R) > Mk1/r
n

√
log(kn)BnJn) = 0 . (D.53)

We thus obtain from the definition of ĉn,1−α, result (D.53), and Markov’s inequality

lim sup
M↑∞

lim sup
n→∞

sup
P∈P

P (ĉn,1−α > Mk1/r
n

√
log(kn)BnJn)

= lim sup
M↑∞

lim sup
n→∞

sup
P∈P

P (P (Ûn(R) > Mkn
√

log(kn)BnJn|{Vi}ni=1) > α) = 0 . (D.54)

Next observe that ‖a‖r ≤ ‖Σ̂−1
n ‖o,r‖a‖Σ̂n,r for any a ∈ Rkn , and hence by Lemma B.2 we
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obtain for some Zn,P ∈ R+ satisfying supP∈PEP [Zn,P ] = O(k
1/r
n

√
log(kn)JnBn/

√
n)

In(R) ≥
√
n‖Σ̂−1

n ‖−1
o,r × inf

θ∈Θn∩R
‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r −

√
n‖Σ̂n‖o,rZn,P . (D.55)

Moreover, assuming without loss of generality that πn,P,(θ)
′q
kn,
n, is the ‖·‖L2

P
projection

of EP [ρ(Xi, θ)|Zi,] onto the span of q
kn,
n, (Zi,), we obtain by Lemma B.4 that

inf
θ∈Θn∩R

‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r

≥ J −
1
2k

1
r
− 1

2
n inf

θ∈Θn∩R
{
J∑
=1

‖EP [q
kn,
n, (Zi,)q

kn,
n, (Zi,)

′]πn,P,(θ)‖2} . (D.56)

Thus, since the eigenvalues of EP [q
kn,
n, (Zi,)q

kn,
n, (Zi,)

′] are uniformly bounded away from

zero by Assumption 6.8(ii), we can conclude from result (D.56) that

inf
θ∈Θn∩R

‖EP [ρ(Xi, θ) ∗ qknn (Zi)]‖r & k
1
r
− 1

2
n inf

θ∈Θn∩R
{
J∑
=1

‖qkn,′n, πn,P,(θ)‖L2
P
}

≥ k
1
r
− 1

2
n inf

θ∈Θ∩R
{
J∑
=1

‖EP [ρ(Xi, θ)|Zi,]‖L2
P
} − k

1
r
− 1

2
n K0k

−γz
n (D.57)

where the second inequality must hold for some K0 < ∞ by Assumption 6.8(i) and

Θn ∩ R ⊆ Θ ∩ R. Hence, results (D.55) and (D.57) imply that for M > K0 and some

ε0 > 0 it follows that for any P ∈ P1,n(M) we must have

In(R) ≥ ‖Σ̂−1
n ‖−1

o,rε0Mk1/r
n

√
log(kn)JnBn −

√
n‖Σ̂n‖o,rZn,P . (D.58)

Thus, since (D.58) holds for all P ∈ P1,n(M) with M > K0, P1,n(M) ⊆ P implies that

inf
P∈P1,n(M)

P (In(R) > ĉn,1−α)

≥ inf
P∈P1,n(M)

P (ε0M‖Σ̂−1
n ‖−1

o,rk
1/r
n

√
log(kn)JnBn > ĉn,1−α +

√
n‖Σ̂n‖o,rZn,P )

≥ inf
P∈P

P (ε0M‖Σ̂−1
n ‖−1

o,rk
1/r
n

√
log(kn)JnBn > ĉn,1−α +

√
n‖Σ̂n‖o,rZn,P ) . (D.59)

In particular, since: (i) max{‖Σ̂n‖o,r, ‖Σ̂−1
n ‖o,r} = Op(1) uniformly in P ∈ P by Lemma

B.3, (ii) Zn,P = Op(k
1/r
n

√
log(kn)JnBn/

√
n) uniformly in P ∈ P by Markov’s inequality

and supP∈PEP [Zn,P ] = O(k
1/r
n

√
log(kn)BnJn/

√
n) by Lemma B.2, and (iii) ĉn,1−α =

Op(k
1/r
n

√
log(kn)JnBn) uniformly in P ∈ P by result (D.53), it follows from (D.59) that

lim inf
M↑∞

lim inf
n→∞

inf
P∈P1,n(M)

P (In(R) > ĉn,1−α) = 1 , (D.60)

which establishes the final claim of the Theorem.
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Lemma D.1. Let Assumptions 3.1, 3.2(i)-(ii), 3.3, 3.4, 4.1, 5.1, 5.2(i), 5.3(iii), 5.4(i),

6.1, 6.5, and 6.6(i)-(ii) hold. It then follows that uniformly in P ∈ P0 we have

Ûn(R) = inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) . (D.61)

Proof: For an arbitrary ε > 0, observe that Lemma 4.1 and Assumption 6.6(i) imply

lim inf
n→∞

inf
P∈P0

P (Θ̂n ∩R ⊆ (Θ0n(P ) ∩R)
ε
2 ) = 1 . (D.62)

Furthermore, for any θ ∈ Θ̂n∩R and h/
√
n ∈ V̂n(θ, `n) note that ΥG(θ+h/

√
n) ≤ 0 and

ΥF (θ + h/
√
n) = 0 by definition of V̂n(θ, `n). Thus, θ + h/

√
n ∈ R for any θ ∈ Θ̂n ∩ R

and h/
√
n ∈ V̂n(θ, `n), and hence result (D.62) and Assumption 6.1(ii) yield

lim inf
n→∞

inf
P∈P0

P (θ +
h√
n
∈ Θn ∩R for all θ ∈ Θ̂n ∩R and

h√
n
∈ V̂n(θ, `n))

= lim inf
n→∞

inf
P∈P0

P (θ +
h√
n
∈ Θn for all θ ∈ Θ̂n ∩R and

h√
n
∈ V̂n(θ, `n)) = 1 (D.63)

due to ‖h/
√
n‖B ≤ `n ↓ 0 for any h/

√
n ∈ V̂n(θ, `n). Therefore, results (D.62) and (D.63)

together with Assumption 6.6(ii) and Lemma D.2 yield that uniformly in P ∈ P0

sup
θ∈Θ̂n∩R

sup
h√
n
∈V̂n(θ,`n)

‖D̂n(θ)[h]− Dn,P (θ)[h]‖r = op(an) . (D.64)

Moreover, since Θ̂n ∩R ⊆ Θn ∩R almost surely, we also have from Assumption 6.5 that

sup
θ∈Θ̂n∩R

‖Ŵnρ(·, θ) ∗ qknn −W?
n,Pρ(·, θ) ∗ qknn ‖r

≤ J × sup
f∈Fn

‖Ŵnfq
kn
n −W?

n,P fq
kn
n ‖r = op(an) (D.65)

uniformly in P ∈ P. Therefore, since ‖Σ̂n‖o,r = Op(1) uniformly in P ∈ P by Lemma

B.3, we obtain from results (D.64) and (D.65) and Lemma C.1 that uniformly in P ∈ P0

Ûn(R) = inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σ̂n,r + op(an) . (D.66)

Next, note that by Assumption 3.4(iii) there exists a constant C0 < ∞ such that

‖Σn(P )−1‖o,r ≤ C0 for all n and P ∈ P. Thus, we obtain that

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σ̂n,r

≤ {C0‖Σ̂n − Σn(P )‖o,r + 1}‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r (D.67)
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for any θ ∈ Θn ∩ R, h ∈ Bn, and P ∈ P. In particular, since 0 ∈ V̂n(θ, `n) for any

θ ∈ Θn ∩R, Assumptions 3.4(iii), 5.3(iii), Markov’s inequality, and Lemma C.4 yield

‖Σ̂n − Σn(P )‖o,r × inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σ̂n,r

≤ ‖Σ̂n − Σn(P )‖o,r × sup
θ∈Θn∩R

‖W?
n,Pρ(·, θ) ∗ qknn ‖Σn(P ),r = op(an) (D.68)

uniformly in P ∈ P. It then follows from (D.67) and (D.68) that uniformly in P ∈ P

inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σ̂n,r

≤ inf
θ∈Θ̂n∩R

inf
h√
n
∈V̂n(θ,`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) . (D.69)

The reverse inequality to (D.69) can be obtained by identical arguments and exploiting

max{‖Σ̂n‖o,r, ‖Σ̂−1
n ‖o,r} = Op(1) uniformly in P ∈ P by Lemma B.3. The claim of the

Lemma then follows from (D.66) and (D.69) (and its reverse inequality).

Lemma D.2. Let Assumptions 3.2(i)-(ii), 5.1, 5.2(i), 5.4(i), 6.1(i) hold, and define

Dn(θ) ≡ { h√
n
∈ Bn : θ +

h√
n
∈ Θn ∩R and ‖ h√

n
‖B ≤ `n} . (D.70)

If `n ↓ 0 satisfies k
1/r
n

√
log(kn)Bn × supP∈P J[ ](`

κρ
n ,Fn, ‖ · ‖L2

P
) = o(an) and Km`

2
n ×

Sn(L,E) = o(ann
− 1

2 ), then there is an ε > 0 such that uniformly in P ∈ P

sup
θ∈(Θ0n(P )∩R)ε

sup
h√
n
∈Dn(θ)

‖D̂n(θ)[h]− Dn,P (θ)[h]‖r = op(an) . (D.71)

Proof: By definition of the set Dn(θ), we have θ+h/
√
n ∈ Θn∩R for any θ ∈ Θn∩R,

h/
√
n ∈ Dn(θ). Therefore, since ‖h/

√
n‖B ≤ `n for all h/

√
n ∈ Dn(θ) we obtain that

sup
θ∈Θn∩R

sup
h√
n
∈Dn(θ)

‖D̂n(θ)[h]−
√
n{Pρ(·, θ +

h√
n

) ∗ qknn − Pρ(·, θ) ∗ qknn }‖r

≤ sup
θ1,θ2∈Θn∩R:‖θ1−θ2‖B≤`n

‖Gn,Pρ(·, θ1) ∗ qknn −Gn,Pρ(·, θ2) ∗ qknn ‖r . (D.72)

Further note that Assumptions 3.2(i), 5.2(i), and 6.1(i) additionally imply that

sup
P∈P

sup
θ1,θ2∈Θn∩R:‖θ1−θ2‖B≤`n

EP [‖ρ(Xi, θ1)− ρ(Xi, θ2)‖22q2
k,n,(Zi,)] ≤ B2

nK
2
ρK

2κρ
b `

2κρ
n .

(D.73)

Next, let Gn ≡ {f(x)qk,n,(z) : f ∈ Fn, 1 ≤  ≤ J and 1 ≤ k ≤ kn,}, and then observe
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that Assumption 5.1, result (D.73) and ‖v‖r ≤ k1/r
n ‖v‖∞ for any v ∈ Rkn yield

sup
θ1,θ2∈Θn∩R:‖θ1−θ2‖B≤`n

‖Gn,Pρ(·, θ1) ∗ qknn −Gn,Pρ(·, θ2) ∗ qknn ‖r

≤ 2J k1/r
n × sup

g1,g2∈Gn:‖g1−g2‖L2
P
≤BnKρK

κρ
b `

κρ
n

|Wn,P g1 −Wn,P g2|+ op(an) (D.74)

uniformly in P ∈ P. Therefore, from results (C.18)-(C.20), Markov’s inequality, and

k
1/r
n

√
log(kn)Bn × supP∈P J[ ](`

κρ
n ,Fn, ‖ · ‖L2

P
) = o(an) by hypothesis, we conclude

sup
θ∈Θn∩R

sup
h√
n
∈Dn(θ)

‖D̂n(θ)[h]−
√
n{Pρ(·, θ+

h√
n

)∗qknn −Pρ(·, θ)∗qknn }‖r = op(an) (D.75)

uniformly in P ∈ P. Moreover, setting ε > 0 sufficiently small for Assumption 5.4(i) to

hold, we then conclude from Lemmas B.4 and C.5, and Assumption 5.4(i) that

sup
θ∈(Θ0n(P )∩R)ε

sup
h√
n
∈Dn(θ)

‖
√
n{Pρ(·, θ +

h√
n

) ∗ qknn − Pρ(·, θ) ∗ qknn } − Dn,P (θ)[h]‖r

≤ sup
θ∈(Θ0n(P )∩R)ε

sup
h√
n
∈Dn(θ)

{
√
CJKm ×

√
n× ‖ h√

n
‖E × ‖

h√
n
‖L} (D.76)

for some C < ∞. Therefore, since ‖h‖E ≤ Kb‖h‖B for all h ∈ Bn and P ∈ P by

Assumption 6.1(i), we conclude from Km`
2
n × Sn(L,E) = o(ann

− 1
2 ) that

sup
θ∈(Θ0n(P )∩R)ε

sup
h√
n
∈Dn(θ)

‖
√
n{Pρ(·, θ+

h√
n

) ∗ qknn −Pρ(·, θ) ∗ qknn }−Dn,P (θ)[h]‖r = o(an)

(D.77)

uniformly in P ∈ P. Hence, the Lemma follows from results (D.75) and (D.77).

Lemma D.3. Let Assumptions 3.2(ii) and 5.4 hold. Then there is an ε > 0 and C <∞
such that for all n, P ∈ P, θ0 ∈ Θ0n(P ) ∩R, θ1 ∈ (Θ0n(P ) ∩R)ε, and h0, h1 ∈ Bn

‖Dn,P (θ0)[h0]− Dn,P (θ1)[h1]‖r ≤ C{Mm‖h0 − h1‖E +Km‖θ0 − θ1‖L‖h1‖E} .

Proof: We first note that by Lemmas B.4 and C.5 there is a constant C0 <∞ with

‖Dn,P (θ0)[h0]−Dn,P (θ1)[h1]‖r ≤ {
J∑
=1

C0‖∇mP,(θ0)[h0]−∇mP,(θ1)[h1]‖2L2
P
}

1
2 . (D.78)

Moreover, since (h0 − h1) ∈ Bn, we can also conclude from Assumption 5.4(iii) that

‖∇mP,(θ0)[h0 − h1]‖L2
P
≤Mm × ‖h0 − h1‖E . (D.79)
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Similarly, letting ε > 0 be such that Assumption 5.4(ii) holds, we further obtain

‖∇mP,(θ0)[h1]−∇mP,(θ1)[h1]‖L2
P
≤ Km‖θ1 − θ0‖L‖h1‖E (D.80)

due θ1 ∈ (Θ0n(P ) ∩R)ε. Thus, the Lemma follows from (D.78)-(D.80).

Lemma D.4. Let Assumptions 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 5.1, 5.2, 5.3, 5.4(i), 6.5

hold. If `n, ˜̀
n satisfy k

1/r
n

√
log(kn)Bn supP∈P J[ ](`
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n ∨ ˜̀κρ

n ,Fn, ‖ · ‖L2
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) = o(an), Rn =

o(`n ∧ ˜̀
n), and Km(`2n ∨ ˜̀2

n)Sn(L,E) = o(ann
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2 ), then uniformly in P ∈ P0

inf
θ∈Θ0n(P )∩R
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h√
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∈Vn(θ,`n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r
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θ∈Θ0n(P )∩R
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h√
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∈Vn(θ,˜̀n)

‖W?
n,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) . (D.81)

Proof: For notational simplicity, for any f : Θn ∩R→ Rkn , and ` ∈ R+ define

Tn,P (f, `) ≡ inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,`)

‖f(θ) + Dn,P (θ)[h]‖Σn(P ),r . (D.82)

Next, note that since Wn,P and W?
n,P have the same law for every P , it follows that

P (|Tn,P (W?
n,Pρ ∗ qknn , `n)− Tn,P (W?

n,Pρ ∗ qknn , ˜̀
n)| > ε)

= P (|Tn,P (Wn,Pρ ∗ qknn , `n)− Tn,P (Wn,Pρ ∗ qknn , ˜̀
n)| > ε) (D.83)

for any ε > 0. However, by Lemma 5.1 we also have uniformly in P ∈ P0 that

In(R) = inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,`n)

‖Wn,Pρ(·, θ)∗qknn +
√
nPρ(·, θ+ h√

n
)∗qknn ‖Σn(P ),r+op(an)

= inf
θ∈Θ0n(P )∩R

inf
h√
n
∈Vn(θ,`n)

‖Wn,Pρ(·, θ) ∗ qknn + Dn,P (θ)[h]‖Σn(P ),r + op(an) , (D.84)

where the second equality follows from (C.10), Km`
2
n×Sn(L,E) = o(ann

− 1
2 ) by hypoth-

esis, and Lemma C.1. Hence, since the same arguments in (D.84) apply if we employ ˜̀
n

in place of `n, it follows from (D.82) and (D.84) that uniformly in P ∈ P0

Tn,P (Wn,Pρ ∗ qknn , `n) = In(R) + op(1) = Tn,P (Wn,Pρ ∗ qknn , ˜̀
n) + op(an) . (D.85)

Thus, the claim of the Lemma follows from (D.83) and (D.85).

Lemma D.5. Let Assumptions 2.1, 2.2(i), 3.2, 3.3(ii)-(iii), 3.4(ii)-(iii), 4.2, 5.4(i)-

(ii), 6.1, and 6.3 hold, Θ0n(P ) ∩R = {θ0n(P )}, R satisfy (71), and define the set

Nn(θ, `) ≡ { h√
n
∈ Bn : ∇ΥF (θ)[

h√
n

] = 0 and ‖ h√
n
‖B ≤ `} .
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Further assume that `n ↓ 0 satisfies Km`
2
nSn(L,E) = o(1), `2n1{Kf > 0} = o(n−

1
2 ), and

RnSn(B,E) = o(`n). (i) It then follows that uniformly in P ∈ P0 we have

inf
h√
n
∈Nn(θ0n(P ),`n)

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r

= inf
h∈Bn∩N (∇ΥF (θ0n(P )))

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r + op(an) .

(ii) For n large, Dn,P (θ0n(P )) : Bn∩N (∇ΥF (θ0n(P )))→ Rkn is injective for all P ∈ P0.

Proof: To begin, select ĥn,P /
√
n ∈ Nn(θ0n(P ), `n) so that uniformly in P ∈ P0

inf
h√
n
∈Nn(θ0n(P ),`n)

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r

= ‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[ĥn,P ]‖Σn(P ),r + op(1) . (D.86)

Further note that for Ln(θ0n(P ), 2`n) as defined in (E.27), Lemma E.1 (see (E.30))

implies that there exists a h̃n,P /
√
n ∈ Ln(θ0n(P ), 2`n) for which for n sufficiently large

‖
ĥn,P√
n
−
h̃n,P√
n
‖B ≤M × `2n1{Kf > 0} (D.87)

for some M < ∞. Moreover, since ΥF (θ0n(P ) + h̃n,P /
√
n) = 0 and R satisfies (71), it

follows that θ0n(P ) + h̃n,P /
√
n ∈ Bn ∩ R. Thus, we obtain from Assumption 6.1 and

‖h̃n,P /
√
n‖B ≤ 2`n that for n sufficiently large we have for all P ∈ P0 that

h̃n,P√
n
∈ Vn(θ0n(P ), 2Kb`n) . (D.88)

In particular, we obtain θ0n(P ) + h̃n,P /
√
n ∈ (Θ0n(P )∩R)ε for n sufficiently large, and

thus from Assumption 4.2 and Θ0n(P ) ∩R = {θ0n(P )} we can conclude that

‖
h̃n,P√
n
‖E ≤ νn{‖EP [ρ(Xi, θ0n(P ) +

h̃n,P√
n

) ∗ qknn (Zi)]‖r +O(ζn)}

. νn{‖Dn,P (θ0n(P ))[
h̃n,P√
n

]‖r +Km
`2n√
n
× Sn(L,E) +O(ζn)} , (D.89)

where the second equality in (D.89) holds by result (C.10). Moreover, also note that

‖Dn,P (θ0n(P ))[
h̃n,P√
n

]− Dn,P (θ0n(P ))[
ĥn,P√
n

]‖r . `2n1{Kf > 0} (D.90)

by Lemma D.3, Assumption 6.1(i), and result (D.87). Thus, combining results (D.87),
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(D.89), and (D.90) together with ν−1
n = O(1) by Assumption 4.2 we obtain that

‖
ĥn,P√
n
‖E . νn{‖Dn,P (θ0n(P ))[

ĥn,P√
n

]‖r + `2n(
Km√
n
Sn(L,E) + 1{Kf > 0}) + ζn} (D.91)

for all P ∈ P0 for n sufficiently large. Also note that ĥn,P satisfying (D.86) and

0 ∈ Nn(θ0n(P ), `n) imply together with ‖Σn(P )‖o,r being bounded uniformly in P by

Assumption 3.4(ii), Lemma C.4, and Markov’s inequality that uniformly in P ∈ P0

‖Dn,P (θ0n(P ))[ĥn,P ]‖Σn(P ),r

≤ 2‖Wn,Pρ(·, θ0n(P )) ∗ qknn ‖Σn(P ),r + op(1) = Op(k
1/r
n

√
log(kn)BnJn) . (D.92)

Hence, employing the definition of Rn (see (47)) and that νn/
√
n ≤ Rn, we can conclude

from Assumption 3.4(iii) and results (D.91) and (D.92) that uniformly in P ∈ P0

‖
ĥn,P√
n
‖E = Op(Rn{1 +Km`

2
nSn(L,E) +

√
n`2n1{Kf > 0}}) = Op(Rn) , (D.93)

where the second equality follows from Km`
2
nSn(L,E) = o(1) and `2n1{Kf > 0} =

o(n−
1
2 ) by hypothesis. Therefore, since RnSn(B,E) = o(`n) we obtain ‖ĥn,P /

√
n‖B =

op(`n) and hence with probability tending to one uniformly in P ∈ P0

inf
h√
n
∈Nn(θ0n(P ),`n)

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r

= inf
h√
n
∈Nn(θ0n(P ),`n/2)

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r . (D.94)

However, since Dn,P (θ0n(P )) : Bn → Rkn is linear, the function being minimized in

(D.94) is convex. As a result, it follows that whenever (D.94) holds, we must also have

inf
h√
n
∈Nn(θ0n(P ),`n)

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r

= inf
h√
n
∈Nn(θ0n(P ),+∞)

‖W?
n,Pρ(·, θ0n(P )) ∗ qknn + Dn,P (θ0n(P ))[h]‖Σn(P ),r , (D.95)

and hence the first claim of the Lemma follows from the definition of Nn(θ, `n).

We establish the second claim of the Lemma by contradiction. Suppose there exists a

subsequence {nj}∞j=1 of {n}∞n=1 and sequence {Pj}∞j=1 ⊆ P0 such that Dnj ,Pj (θ0nj (Pj)) :

Bnj ∩ N (∇ΥF (θ0nj (Pj))) → Rknj is not injective, and then note the linearity of the

map Dnj ,Pj (θ0nj (Pj)) implies there exists a hcnj ∈ Bnj ∩ N (∇ΥF (θ0nj (Pj))) such that

‖hcnj/
√
nj‖B = 1 and Dnj ,Pj (θ0nj (Pj))[h

c
nj ] = 0. Then observe that `njh

c
nj/
√
nj ∈

Nnj (θ0nj (Pj), `nj ), and that as a result (D.91) also holds with `njh
c
nj/
√
nj in place of
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ĥn,P /
√
n. Therefore, since Dnj ,Pj (θ0nj (Pj))[h

c
nj ] = 0 we can conclude that

`nj‖
hcnj√
nj
‖E . νnj{`2nj (

Km√
nj
Snj (L,E) + 1{Kf > 0}) + ζnj} = O(Rnj ) (D.96)

where the final equality follows by exploiting the definition of Rn and the fact that

Km`
2
nSn(L,E) = o(1) and `2n1{Kf > 0} = o(n−

1
2 ). However, result (D.96) and

‖hcn/
√
n‖E ≤ Kb‖hcn/

√
n‖B = 1 by Assumption 6.1(i) imply `nj = O(Rnj ), which

contradicts RnSn(B,E) = o(`n) due to {Sn(B,E)}−1 ≥ 1/Kb by (D.21), and hence the

second claim of the Lemma follows.

Lemma D.6. Suppose there exists a δ > 0 such that for all ε > 0 and α̃ ∈ [α− δ, α+ δ]

sup
P∈P0

P (cn,1−α̃(P )− ε ≤ In(R) ≤ cn,1−α̃(P ) + ε) ≤ a−1
n (ε ∧ 1) + o(1) . (D.97)

(i) If In(R) ≤ Un,P (R) + op(an) and Ûn(R) ≥ U?n,P (R) + op(an) uniformly in P ∈ P0

for some U?n,P (R) independent to {Vi}ni=1 and equal in distribution to Un,P (R), then

lim sup
n→∞

sup
P∈P0

P (In(R) > ĉn,1−α) ≤ α . (D.98)

(ii) If In(R) = Un,P (R) + op(a
−1
n ) and Ûn(R) = U?n,P (R) + op(a

−1
n ) uniformly in P ∈ P0

for some U?n,P (R) independent to {Vi}ni=1 and equal in distribution to Un,P (R), then

lim sup
n→∞

sup
P∈P0

|P (In(R) > ĉn,1−α)− α| = 0 . (D.99)

Proof: For the first claim, note that by hypothesis there exists a positive sequence bn

such that bn = o(an) and in addition we have uniformly in P ∈ P0 that

In(R) ≤ Un,P (R) + op(bn) Ûn(R) ≥ U?n,P (R) + op(bn) . (D.100)

Next, observe that by Markov’s inequality and result (D.100) we can conclude that

lim sup
n→∞

sup
P∈P0

P (P (U?n,P (R) > Ûn(R) + bn|{Vi}ni=1) > ε)

≤ lim sup
n→∞

sup
P∈P0

1

ε
P (U?n,P (R) > Ûn(R) + bn) = 0 . (D.101)

Thus, it follows from (D.101) that there exists some sequence ηn ↓ 0 such that the event

Ωn(P ) ≡ {{Vi}ni=1|P (U?n,P (R) > Ûn(R) + bn|{Vi}ni=1) ≤ ηn} (D.102)

74



satisfies P (Ωn(P )c) = o(1) uniformly in P ∈ P0. Hence, for any t ∈ R we obtain that

P (Ûn(R) ≤ t|{Vi}ni=1)1{{Vi}ni=1 ∈ Ωn(P )}

≤ P (Ûn(R) ≤ t and U?n,P (R) ≤ Ûn(R) + bn|{Vi}ni=1) + ηn

≤ P (U?n,P (R) ≤ t+ bn) + ηn , (D.103)

where the final inequality exploited that U?n,P (R) is independent of {Vi}ni=1. Next, define

qn,1−α(P ) ≡ inf{u : P (Un,P (R) ≤ u) ≥ 1− α} (D.104)

and note that by evaluating (D.103) at t = ĉn,1−α we obtain that Ωn(P ) implies ĉn,1−α+

bn ≥ qn,1−α−ηn(P ). Therefore, P (Ωn(P )c) = o(1) uniformly in P ∈ P0 yields

lim inf
n→∞

inf
P∈P0

P (qn,1−α−ηn(P ) ≤ ĉn,1−α(P ) + bn) ≥ lim inf
n→∞

inf
P∈P0

P ({Vi}ni=1 ∈ Ωn(P )) = 1 .

(D.105)

Furthermore, arguing as in (D.103) it follows that for some sequence η̃n = o(1) we have

cn,1−α−η̃n(P ) ≤ qn,1−α−ηn(P ) + bn . (D.106)

Thus, exploiting (D.105), (D.106), condition (D.97), and bn = o(an), we conclude that

lim sup
n→∞

sup
P∈P0

P (In(R) > ĉn,1−α) ≤ lim sup
n→∞

sup
P∈P0

P (In(R) > qn,1−α−ηn(P )− bn)

≤ lim sup
n→∞

sup
P∈P0

P (In(R) > cn,1−α−η̃n(P )− 2bn) = 1− α . (D.107)

The proof of the second claim follows arguments similar to those already employed

and hence we keep the exposition more concise. Moreover, we further note that since

the first part of the Lemma implies (D.97) holds, it suffices to show that

lim inf
n→∞

inf
P∈P0

P (In(R) > ĉn,1−α) ≥ α . (D.108)

First, note that we may now set the sequence bn so that bn = o(an) and in addition

In(R) = Un,P (R) + op(bn) Ûn(R) = U?n,P (R) + op(bn) (D.109)

uniformly in P ∈ P0. Moreover, arguing as in (D.101) implies that P (|Ûn(R) −
U?n,P (R)| > bn|{Vi}ni=1) = op(ηn) uniformly in P ∈ P0 for some ηn ↓ 0, and therefore

lim inf
n→∞

inf
P∈P0

P (ĉn,1−α ≤ qn,1−α+ηn(P ) + bn) = 1 (D.110)

by Lemma 11 in Chernozhukov et al. (2013). Furthermore, by analogous arguments and

75



again relying on Lemma 11 in Chernozhukov et al. (2013) we can also conclude that

qn,1−α+ηn(P ) ≤ cn,1−α+η̃n(P ) + bn (D.111)

for some η̃n = o(1). Therefore, combining results (D.110) and (D.111) we obtain

lim inf
n→∞

inf
P∈P0

P (In(R) > ĉn,1−α) ≥ lim inf
n→∞

inf
P∈P0

P (In(R) > qn,1−α+ηn(P ) + bn)

≥ lim inf
n→∞

inf
P∈P0

P (In(R) > cn,1−α+η̃n(P ) + 2bn) = 1− α , (D.112)

where the final equality follows from condition (D.97).

Appendix E - Local Parameter Space

In this Appendix, we develop analytical results analyzing the approximation rate of

the local parameter spaces. The main result of this Appendix is Theorem E.1, which

plays an instrumental role in the proof of the results of Section 6.

Theorem E.1. Let Assumptions 2.1(i), 2.2(i), 6.2, 6.3, and 6.4 hold, {`n, δn, rn}∞n=1

satisfy `n ↓ 0, δn1{Kf > 0} ↓ 0, rn ≥ (Mgδn +Kgδ
2
n)∨ 2(`n + δn)1{Kg > 0}, and define

Gn(θ) ≡ { h√
n
∈ Bn : ΥG(θ +

h√
n

) ≤ (ΥG(θ)−Kgrn‖
h√
n
‖B1G) ∨ (−rn1G)} (E.1)

An(θ) ≡ { h√
n
∈ Bn :

h√
n
∈ Gn(θ), ΥF (θ +

h√
n

) = 0 and ‖ h√
n
‖B ≤ `n} (E.2)

Tn(θ) ≡ { h√
n
∈ Bn : ΥF (θ +

h√
n

) = 0, ΥG(θ +
h√
n

) ≤ 0 and ‖ h√
n
‖B ≤ 2`n} (E.3)

Then it follows that there exists a M <∞, ε > 0, and n0 <∞ such that for all n > n0,

P ∈ P, θ0 ∈ Θ0n(P ) ∩R, and θ1 ∈ (Θ0n(P ) ∩R)ε satisfying ‖θ0 − θ1‖B ≤ δn we have

sup
h1√
n
∈An(θ1)

inf
h0√
n
∈Tn(θ0)

‖ h1√
n
− h0√

n
‖B ≤M × `n(`n + δn)1{Kf > 0} . (E.4)

Proof: Throughout, let ε̃ be such that Assumptions 6.2 and 6.3 hold, set ε = ε̃/2, and

for any δ > 0 let Nn,P (δ) ≡ {θ ∈ Bn :
−→
d H({θ},Θ0n(P ) ∩ R, ‖ · ‖B) < ε}. For ease of

exposition, we next break up the proof intro four distinct steps.

Step 1: (Decompose h/
√
n). For any P ∈ P, θ0 ∈ Θ0n(P ) ∩R, and h ∈ Bn set

h⊥θ0 ≡ ∇ΥF (θ0)−∇ΥF (θ0)[h] hNθ0 ≡ h− h⊥θ0 , (E.5)

where recall ∇ΥF (θ0)− : Fn → Bn denotes the right inverse of ∇ΥF (θ0) : Bn → Fn.
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Further note that hNθ0 ∈ N (∇ΥF (θ0)) since ∇ΥF (θ0)∇ΥF (θ0)− = I implies that

∇ΥF (θ0)[hNθ0 ] = ∇ΥF (θ0)[h]−∇ΥF (θ0)∇ΥF (θ0)−∇ΥF (θ0)[h] = 0 , (E.6)

by definition of h⊥θ0 in (E.5). Next, observe that if θ1 ∈ (Θ0n(P )∩R)ε and h/
√
n ∈ Bn

satisfies ‖h/
√
n‖B ≤ `n and ΥF (θ1 + h/

√
n) = 0, then θ1 + h/

√
n ∈ Nn,P (ε̃) for n

sufficiently large, and hence by Assumption 6.3(i) and ΥF (θ1) = 0 due to θ1 ∈ Θn ∩R

‖∇ΥF (θ1)[
h√
n

]‖F = ‖ΥF (θ1 +
h√
n

)−ΥF (θ1)−∇ΥF (θ1)[
h√
n

]‖F ≤ Kf‖
h√
n
‖2B . (E.7)

Therefore, Assumption 6.3(ii), result (E.7), ‖θ0 − θ1‖B ≤ δn, and ‖h/
√
n‖B ≤ `n imply

‖∇ΥF (θ0)[
h√
n

]‖F

≤ ‖∇ΥF (θ0)−∇ΥF (θ1)‖o‖
h√
n
‖B +Kf‖

h√
n
‖2B ≤ Kf `n(δn + `n) . (E.8)

Moreover, since ∇ΥF (θ0) : Fn → Bn satisfies Assumption 6.3(iv), we also have that

Kf‖h⊥θ0‖B = Kf‖∇ΥF (θ0)−∇Υ(θ0)[h]‖B
≤ Kf‖∇ΥF (θ0)−‖o‖∇ΥF (θ0)[h]‖F ≤Mf‖∇ΥF (θ0)[h]‖F . (E.9)

Further note that if Kf = 0, then (E.5) and (E.8) imply that h⊥θ0 = 0. Thus, combining

results (E.8) and (E.9) to handle the case Kf > 0 we conclude that for any P ∈ P,

θ0 ∈ Θ0n(P ) ∩ R, θ1 ∈ (Θ0n(P ) ∩ R)ε satisfying ‖θ0 − θ1‖B ≤ δn and any h/
√
n ∈ Bn

such that ΥF (θ1 + h/
√
n) = 0 and ‖h/

√
n‖B ≤ `n we have the norm bound

‖h
⊥θ0
√
n
‖B ≤Mf `n(δn + `n)1{Kf > 0} . (E.10)

Step 2: (Inequality Constraints). In what follows, it is convenient to define the set

Sn(θ0, θ1) ≡ { h√
n
∈ Bn : ΥG(θ0 +

h√
n

) ≤ 0, ΥF (θ1 +
h√
n

) = 0, and ‖ h√
n
‖B ≤ `n} .

(E.11)

Then note rn ≥ (Mgδn +Kgδ
2
n) ∨ 2(`n + δn)1{Kg > 0} and Lemma E.2 imply that

An(θ1) ⊆ Sn(θ0, θ1) (E.12)

for n sufficiently large, all P ∈ P, θ0 ∈ Θ0n(P ) ∩ R, and θ1 ∈ (Θ0n(P ) ∩ R)ε satisfying

‖θ0−θ1‖B ≤ δn. The proof will proceed by verifying (E.4) holds with Sn(θ0, θ1) in place

of An(θ1). In particular, if ΥF : B → F is linear, then ΥF (θ0) = ΥF (θ1) and (E.12)

implies An(θ1) ⊆ Sn(θ0, θ1) ⊆ Tn(θ0), which establishes (E.4) for the case Kf = 0.
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For the rest of the proof we therefore assume Kf > 0. We further note that Lemma

E.3 implies that for any ηn ↓ 0, there is a sufficiently large n and constant 1 ≤ C < ∞
(independent of ηn) such that for all P ∈ P and θ0 ∈ Θ0n(P ) ∩ R there exists a

hθ0,n/
√
n ∈ Bn ∩ N (∇ΥF (θ0)) such that for any h̃/

√
n ∈ Bn for which there exists a

h/
√
n ∈ Sn(θ0, θ1) satisfying ‖(h̃− h)/

√
n‖B ≤ ηn the following inequalities hold

ΥG(θ0 +
hθ0,n√
n

+
h̃√
n

) ≤ 0 ‖
hθ0,n√
n
‖B ≤ Cηn . (E.13)

Step 3: (Equality Constraints). The results in this step allow us to address the chal-

lenge that h/
√
n ∈ Sn(θ0, θ1) satisfies ΥF (θ1 + h/

√
n) = 0 but not necessarily ΥF (θ0 +

h/
√
n) = 0. To this end, let R(∇ΥF (θ0)−∇ΥF (θ0)) denote the range of the operator

∇ΥF (θ0)−∇ΥF (θ0) : Bn → Bn and define the vector subspaces

B
Nθ0
n ≡ Bn ∩N (∇ΥF (θ0)) B

⊥θ0
n ≡ R(∇ΥF (θ0)−∇ΥF (θ0)) , (E.14)

which note are closed due to Bn being finite dimensional by Assumption 3.2(iii). More-

over, since hNθ0 ∈ B
Nθ0
n by (E.6), the definitions in (E.5) and (E.14) imply that

Bn = B
Nθ0
n + B

⊥θ0
n . Furthermore, since ∇ΥF (θ0)∇ΥF (θ0)− = I, we also have

∇ΥF (θ0)−∇ΥF (θ0)[h] = h (E.15)

for any h ∈ B
⊥θ0
n , and thus that B

Nθ0
n ∩B

⊥θ0
n = {0}. Since Bn = B

Nθ0
n + B

⊥θ0
n , it then

follows that Bn = B
Nθ0
n ⊕B

⊥θ0
n – i.e. the decomposition in (E.5) is unique. Moreover, we

observe that B
Nθ0
n ∩B

⊥θ0
n = {0} further implies the restricted map ∇ΥF (θ0) : B

⊥θ0
n →

Fn is in fact bijective, and by (E.15) its inverse is ∇ΥF (θ0)− : Fn → B
⊥θ0
n .

We next note Assumption 6.3(i) implies that for all n and P ∈ P, ΥF is Fréchet

differentiable at all θ ∈ Bn such that ‖θ−θ0‖B ≤ ε̃ for some θ0 ∈ Θ0n(P )∩R. Therefore,

applying Lemma E.5 with A1 = B
Nθ0
n , A2 = B

⊥θ0
n and K0 ≡ Kf ∨ Mf ∨ Mf/Kf

yields that for any P ∈ P, θ0 ∈ Θ0n(P ) ∩ R and hNθ0 ∈ B
Nθ0
n satisfying ‖hNθ0‖B ≤

{ε̃/2 ∧ (2K0)−2 ∧ 1}2, there exists a h?(hNθ0 ) ∈ B
⊥θ0
n such that

ΥF (θ0 + hNθ0 + h?(hNθ0 )) = 0 ‖h?(hNθ0 )‖B ≤ 2K2
0‖hNθ0‖2B . (E.16)

In addition, note that for any P ∈ P, θ0 ∈ Θ0n(P ) ∩ R, θ1 ∈ (Θ0n(P ) ∩ R)ε and any

h/
√
n ∈ Bn such that ΥF (θ1 + h/

√
n) = 0 and ‖h/

√
n‖B ≤ `n, result (E.10), the

decomposition in (E.5), and δn ↓ 0 (since Kf > 0), `n ↓ 0 imply that for n large

‖h
Nθ0
√
n
‖B ≤ ‖

h√
n
‖B + ‖h

⊥θ0
√
n
‖B ≤ 2`n . (E.17)

Thus, for hθ0,n ∈ B
Nθ0
n as in (E.13), C ≥ 1, and results (E.16) and (E.17) imply that
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for n sufficiently large we must have for all P ∈ P, θ0 ∈ Θ0n(P ) ∩R, θ1 ∈ Θn ∩R with

‖θ0 − θ1‖B ≤ δn and h/
√
n ∈ Bn satisfying ΥF (θ1 + h/

√
n) = 0 that

ΥF (θ0 +
hθ0,n√
n

+
hNθ0√
n

+ h?(
hθ0,n√
n

+
hNθ0√
n

)) = 0 (E.18)

‖h?(
hθ0,n√
n

+
hNθ0√
n

)‖B − 16K2
0C

2(`2n + η2
n) ≤ 0 . (E.19)

Step 4: (Build Approximation). In order to exploit Steps 2 and 3, we now set ηn to

ηn = 32(Mf + C2K2
0 )`n(`n + δn) . (E.20)

In addition, for any P ∈ P, θ0 ∈ Θ0n(P ) ∩ R, θ1 ∈ Θn ∩ R satisfying ‖θ0 − θ1‖B ≤ δn,

and any h/
√
n ∈ Sn(θ0, θ1), we let hNθ0 be as in (E.5) and define

ĥ√
n
≡
hθ0,n√
n

+
hNθ0√
n

+ h?(
hθ0,n√
n

+
hNθ0√
n

) . (E.21)

From Steps 2 and 3 it then follows that for n sufficiently large (independent of P ∈ P,

θ0 ∈ Θ0n(P ) ∩R, θ1 ∈ Θn ∩R with ‖θ0 − θ1‖B ≤ δn or h/
√
n ∈ Sn(θ0, θ1)) we have

ΥF (θ0 +
ĥ√
n

) = 0 . (E.22)

Moreover, from results (E.19) and (E.20) we also obtain that for n sufficiently large

‖h?(
hθ0,n√
n

+
hNθ0√
n

)‖B ≤ 16C2K2
0 (`2n + η2

n) ≤ ηn
2

+ 16C2K2
0η

2
n ≤

3

4
ηn . (E.23)

Thus, h = hNθ0 +h⊥θ0 , (E.10), (E.20), (E.21) and (E.23) imply ‖(ĥ−h−hθ0,n)/
√
n‖B ≤

ηn for n sufficiently large, and exploiting (E.13) with h̃ = (ĥ− hθ0,n)/
√
n) yields

ΥG(θ0 +
ĥ√
n

) ≤ 0 . (E.24)

Furthermore, since ‖hθ0,n/
√
n‖B ≤ Cηn by (E.13), results (E.10), (E.19), and ‖h/

√
n‖B ≤

`n for any h/
√
n ∈ Sn(θ0, θ1) imply by (E.20) and `n ↓ 0, δn ↓ 0 that

‖ ĥ√
n
‖B ≤ ‖

hθ0,n√
n
‖B + ‖h?(

hθ0,n√
n

+
hNθ0√
n

)‖B + ‖h
⊥θ0
√
n
‖B + ‖ h√

n
‖B

≤ Cηn + 16C2K2
0 (`2n + η2

n) +Mf `n(δn + `n) + `n ≤ 2`n (E.25)

for n sufficiently large. Therefore, we conclude from (E.22), (E.24), and (E.25) that
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ĥ/
√
n ∈ Tn(θ0). Similarly, (E.10), (E.13), (E.19), and (E.20) yield for some M <∞

‖ ĥ√
n
− h√

n
‖B ≤ ‖

hθ0,n√
n
‖B + ‖h?(

hθ0,n√
n

+
hNθ0√
n

)‖B + ‖h
⊥θ0
√
n
‖B

≤ Cηn + 16C2K2
0 (`2n + η2

n) +Mf `n(`n + δn) ≤M`n(`n + δn) , (E.26)

which establishes the (E.4) for the case Kf > 0.

Lemma E.1. Let Assumptions 2.1(i), 2.2(i), 6.3 hold, {`n, δn}∞n=1 be given and define

Ln(θ, `) ≡ { h√
n
∈ Bn : ΥF (θ +

h√
n

) = 0 and ‖ h√
n
‖B ≤ `} (E.27)

Nn(θ, `) ≡ { h√
n
∈ Bn : ∇ΥF (θ)[

h√
n

] = 0 and ‖ h√
n
‖B ≤ `} . (E.28)

If `n ↓ 0, δn1{Kf > 0} ↓ 0, then there are M <∞, n0 <∞, and ε > 0 such that for all

n > n0, P ∈ P, θ0 ∈ Θ0n(P )∩R and θ1 ∈ (Θ0n(P )∩R)ε with ‖θ1− θ0‖B ≤ δn, we have

sup
h√
n
∈Ln(θ1,`n)

inf
h̃√
n
∈Nn(θ0,2`n)

‖ h√
n
− h̃√

n
‖B ≤M × `n(`n + δn)1{Kf > 0} (E.29)

sup
h√
n
∈Nn(θ0,`n)

inf
h̃√
n
∈Ln(θ1,2`n)

‖ h√
n
− h̃√

n
‖B ≤M × `n(`n + δn)1{Kf > 0} . (E.30)

Proof: The proof exploits manipulations similar to those employed in Theorem E.1.

First, let ε̃ be such that Assumption 6.3 holds, set ε = ε̃/2 and note that for any

θ1 ∈ (Θ0n(P )∩R)ε and ‖h/
√
n‖B ≤ `n we have

−→
d H({θ1 +h/

√
n},Θ0n(P )∩R, ‖·‖B) < ε̃

for n sufficiently large. In particular, if Kf = 0, then Assumptions 6.3(i)-(ii) yield

ΥF (θ1 +
h√
n

) = ∇ΥF (θ1)[
h√
n

] = ∇ΥF (θ0)[
h√
n

] = ΥF (θ0 +
h√
n

) . (E.31)

Thus, Ln(θ1, `) = Ln(θ0, `) = Nn(θ1, `) = Nn(θ0, `) and hence both (E.29) and (E.30)

automatically hold. In what follows, we therefore assume Kf > 0.

Next, for each h ∈ Bn, P ∈ P, and θ ∈ (Θ0n(P )∩R)ε we decompose h according to

h⊥θ ≡ ∇ΥF (θ)−∇ΥF (θ)[h] hNθ ≡ h− h⊥θ , (E.32)

where recall ∇ΥF (θ)− : Fn → Bn denotes the right inverse of ∇ΥF (θ) : Bn → Fn.

Next, note that result (E.10) implies that for n sufficiently large, we have for any P ∈ P,

θ0 ∈ Θ0n(P )∩R, θ1 ∈ (Θ0n(P )∩R)ε satisfying ‖θ0 − θ1‖B ≤ δn and h/
√
n ∈ Ln(θ1, `n)

‖h
⊥θ0
√
n
‖B ≤Mf `n(`n + δn)1{Kf > 0} . (E.33)
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Furthermore, note that for any h/
√
n ∈ Ln(θ1, `n) and n sufficiently large hNθ0/

√
n

satisfies ∇ΥF (θ0)[hNθ0 ] = 0 by (E.6) and ‖hNθ0/
√
n‖B ≤ 2`n by (E.17), and thus

hNθ0/
√
n ∈ Nn(θ0, 2`n). In particular, it follows that for any P ∈ P, θ0 ∈ Θ0n(P ) ∩ R,

and θ1 ∈ (Θ0n(P ) ∩R)ε with ‖θ0 − θ1‖B ≤ δn we must have that

sup
h√
n
∈Ln(θ1,`n)

inf
h̃√
n
∈Nn(θ0,2`n)

‖ h√
n
− h̃√

n
‖B ≤ sup

h√
n
∈Ln(θ1,`n)

‖ h√
n
− hNθ0√

n
‖B

= sup
h√
n
∈Ln(θ1,`n)

‖h
⊥θ0
√
n
‖B ≤Mf `n(`n + δn)1{Kf > 0} , (E.34)

where the first inequality follows from hNθ0/
√
n ∈ Nn(θ0, 2`n), the equality from (E.32),

and the second inequality is implied by (E.33). Thus, (E.29) follows.

In order to establish (E.30) when Kf > 0 note that for any h/
√
n ∈ Nn(θ0, `n),

∇ΥF (θ0)[h/
√
n] = 0, ‖θ0 − θ1‖B ≤ δn and Assumption 6.3(ii) imply that

‖∇ΥF (θ1)[
h√
n

]‖F = ‖∇ΥF (θ1)[
h√
n

]−∇ΥF (θ0)[
h√
n

]‖F ≤ Kfδn`n . (E.35)

Therefore, from definition (E.32), Assumption 6.3(iv) and result (E.35) we can conclude

‖h
⊥θ1
√
n
‖B = ‖∇ΥF (θ1)−∇ΥF (θ1)[

h√
n

]‖B ≤Mfδn`n . (E.36)

Moreover, identical arguments to those employed in establishing (E.16) (with θ1 in place

of θ0) imply that for sufficiently large n it follows that for all P ∈ P, θ0 ∈ Θ0n(P ) ∩R,

and h/
√
n ∈ Nn(θ0, `n) there is a h?(hNθ1/

√
n) such that for some K0 <∞

ΥF (θ1 +
hNθ1√
n

+ h?(
hNθ1√
n

)) = 0 ‖h?(h
Nθ1
√
n

)‖B ≤ 2K2
0‖
hNθ1√
n
‖2B . (E.37)

Since `n, δn ↓ 0, it follows that Mfδn`n + 2K2
0 (`n + Mfδn`n)2 ≤ `n for n sufficiently

large. Therefore, ‖hNθ1/
√
n‖B ≤ `n + ‖h⊥θ1/

√
n‖B, (E.36) and (E.37) imply that for n

sufficiently large, we have for all P ∈ P, θ0 ∈ Θ0n(P ) ∩R and h/
√
n ∈ Nn(θ0, `n) that

hNθ1√
n

+ h?(
hNθ1√
n

) ∈ Ln(θ1, 2`n) . (E.38)

Hence, for n sufficiently large we can conclude from result (E.38) that for all P ∈ P,
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θ0 ∈ Θ0n(P ) ∩R, and θ1 ∈ Θn ∩R with ‖θ0 − θ1‖B ≤ δn we have that

sup
h√
n
∈Nn(θ0,`n)

inf
h̃√
n
∈Ln(θ1,2`n)

‖ h√
n
− h̃√

n
‖B ≤ sup

h√
n
∈Nn(θ0,`n)

‖ h√
n
− {h

Nθ1
√
n

+ h?(
hNθ1√
n

)}‖B

≤ sup
h√
n
∈Nn(θ0,`n)

{‖h
⊥θ1
√
n
‖B + ‖h?(h

Nθ1
√
n

)‖B} ≤Mf `nδn + 2K2
0 (`n +Mfδn`n)2 (E.39)

where the final inequality holds by (E.36), (E.37) and ‖hNθ1/
√
n‖B ≤ `n + Mfδn`n.

Thus, (E.30) follows from (E.39), which establishes the claim of the Lemma.

Lemma E.2. Let Assumptions 2.1(i), 2.2(i), and 6.2 hold, and `n ↓ 0 be given. Then,

there exist n0 < ∞ and ε > 0 such that for all n > n0, P ∈ P, θ0 ∈ Θ0n(P ) ∩ R, and

θ1 ∈ Bn satisfying
−→
d H({θ1},Θ0n(P ) ∩R, ‖ · ‖B) < ε it follows that

{ h√
n
∈ Bn : ΥG(θ1 +

h√
n

) ≤ (ΥG(θ1)−Kgr‖
h√
n
‖B1G)∨ (−r1G), and ‖ h√

n
‖B ≤ `n}

⊆ { h√
n
∈ Bn : ΥG(θ0 +

h√
n

) ≤ 0 and ‖ h√
n
‖B ≤ `n} . (E.40)

for any r ≥ {Mg‖θ0 − θ1‖B +Kg‖θ0 − θ1‖2B} ∨ 2{`n + ‖θ0 − θ1‖B}1{Kg > 0}.

Proof: Let ε̃ > 0 be such that Assumption 6.2 holds, set ε = ε̃/2, and for notational

simplicity let Nn,P (δ) ≡ {θ ∈ Bn :
−→
d H({θ},Θ0n(P ) ∩ R, ‖ · ‖B) < δ} for any δ > 0.

Then note that for any θ1 ∈ Nn,P (ε) and ‖h/
√
n‖B ≤ `n we have θ1 + h/

√
n ∈ Nn,P (ε̃)

for n sufficiently large. Therefore, by Assumption 6.2(ii) we obtain that

‖ΥG(θ1 +
h√
n

)−ΥG(θ1)−∇ΥG(θ1)[
h√
n

]‖G ≤ Kg‖
h√
n
‖2B . (E.41)

Similarly, Assumption 6.2(ii) implies that if θ0 ∈ Θ0n(P ) ∩R and θ1 ∈ Nn,P (ε), then

‖∇ΥG(θ0)[
h√
n

]−∇ΥG(θ1)[
h√
n

]‖G

≤ ‖∇ΥG(θ0)−∇ΥG(θ1)‖o‖
h√
n
‖B ≤ Kg‖θ0 − θ1‖B‖

h√
n
‖B (E.42)

for any h/
√
n ∈ Bn. Hence, since ΥG(θ0) ≤ 0 due to θ0 ∈ Θn ∩R we can conclude that

ΥG(θ0 +
h√
n

) + {ΥG(θ1)−ΥG(θ1 +
h√
n

)}

≤ {ΥG(θ0 +
h√
n

)−ΥG(θ0)}+ {ΥG(θ1)−ΥG(θ1 +
h√
n

)}

≤ Kg‖
h√
n
‖B{2‖

h√
n
‖B + ‖θ0 − θ1‖B}1G , (E.43)

by (E.41), (E.42), and Lemma E.4. Also note for any θ0 ∈ Θ0n(P )∩R, θ1 ∈ Nn,P (ε) and
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h/
√
n ∈ Bn with ‖h/

√
n‖B ≤ `n we have θ0 +h/

√
n ∈ Nn,P (ε̃) and θ1 +h/

√
n ∈ Nn,P (ε̃)

for n sufficiently large. Therefore, Assumptions 6.2(i), 6.2(iii), and Lemma E.4 yield

ΥG(θ0 +
h√
n

)−ΥG(θ1 +
h√
n

) ≤ ∇ΥG(θ0 +
h√
n

)[θ0 − θ1] +Kg‖θ0 − θ1‖2B1G

≤ {Mg‖θ0 − θ1‖B +Kg‖θ0 − θ1‖2B}1G . (E.44)

Hence, (E.43) and (E.44) yield for r ≥ {Mg‖θ0 − θ1‖B +Kg‖θ0 − θ1‖2B} ∨ 2{`n + ‖θ0 −
θ1‖B}1{Kg > 0}, θ0 ∈ Θ0n(P ) ∩R, θ1 ∈ Nn,P (ε), ‖h/

√
n‖B ≤ `n, and n large

ΥG(θ0 +
h√
n

) ≤ ΥG(θ1 +
h√
n

) + (Kgr‖
h√
n
‖B −ΥG(θ1))1G ∧ r1G

= ΥG(θ1 +
h√
n

)− (ΥG(θ1)−Kgr‖
h√
n
‖B)1G ∨ (−r1G) (E.45)

where the equality follows from (−a) ∨ (−b) = −(a ∧ b) by Theorem 8.6 in Aliprantis

and Border (2006). Thus, since a1 ≤ a2 and b1 ≤ b2 implies a1 ∧ b1 ≤ a2 ∧ b2 in G by

Corollary 8.7 in Aliprantis and Border (2006), (E.45) implies that for n sufficiently large

and any θ0 ∈ Θ0n(P ) ∩R, θ1 ∈ Nn,P (ε) and h/
√
n ∈ Bn satisfying ‖h/

√
n‖B ≤ `n and

ΥG(θ1 +
h√
n

) ≤ (ΥG(θ1)−Kgr‖
h√
n
‖B1G) ∨ (−r1G) (E.46)

we must have ΥG(θ0 + h/
√
n) ≤ 0, which verifies (E.40) indeed holds.

Lemma E.3. If Assumptions 2.1(i), 2.2(i), 6.2, 6.4(ii) hold, and ηn ↓ 0, `n ↓ 0, then

there is a n0 (depending on ηn, `n) and a C < ∞ (independent of ηn, `n) such that for

all n > n0, P ∈ P, and θ0 ∈ Θ0n(P ) ∩R there is hθ0,n/
√
n ∈ Bn ∩N (∇ΥF (θ0)) with

ΥG(θ0 +
hθ0,n√
n

+
h̃√
n

) ≤ 0 ‖
hθ0,n√
n
‖B ≤ Cηn (E.47)

for all h̃/
√
n ∈ Bn for which there is a h/

√
n ∈ Bn satisfying ‖h̃/

√
n− h/

√
n‖B ≤ ηn,

‖h/
√
n‖B ≤ `n and the inequality ΥG(θ0 + h/

√
n) ≤ 0.

Proof: By Assumption 6.4(ii) there are ε > 0 and Kd <∞ such that for every P ∈ P,

n, and θ0 ∈ Θ0n(P ) ∩R there exists a h̄θ0,n ∈ Bn ∩N (∇ΥF (θ0)) satisfying

ΥG(θ0) +∇ΥG(θ0)[h̄θ0,n] ≤ −ε1G (E.48)

and ‖h̄θ0,n‖B ≤ Kd. Moreover, for any h/
√
n ∈ Bn such that ‖h/

√
n‖B ≤ `n, Assump-
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tion 6.2(i), Lemma E.4 and Kg`
2
n ≤Mg`n for n sufficiently large yield

ΥG(θ0 +
h√
n

) ≤ ΥG(θ0) +∇ΥG(θ0)[
h√
n

] +Kg‖
h√
n
‖2B1G

≤ ΥG(θ0) + {‖∇ΥG(θ0)‖o`n +Kg`
2
n}1G ≤ ΥG(θ0) + 2Mg`n1G . (E.49)

Hence, (E.48) and (E.49) imply for any h/
√
n ∈ Bn with ‖h/

√
n‖B ≤ `n we must have

ΥG(θ0 +
h√
n

) +∇ΥG(θ0)[h̄θ0,n] ≤ {2Mg`n − ε}1G . (E.50)

Next, we let C0 > 8Mg/ε and aim to show (E.47) holds with C = C0Kd by setting

hθ0,n√
n
≡ C0ηnh̄θ0,n . (E.51)

To this end, we first note that if θ0 ∈ Θ0n(P ) ∩ R, h/
√
n ∈ Bn satisfies ‖h/

√
n‖B ≤ `n

and ΥG(θ0 + h/
√
n) ≤ 0, and h̃/

√
n ∈ Bn is such that ‖h/

√
n − h̃/

√
n‖B ≤ ηn, then

definition (E.51) implies that ‖θ0+(hθ0,n+h̃)/
√
n−θ0‖B = o(1). Therefore, Assumption

6.2(i), Lemma E.4, and ‖(h̃− h)/
√
n‖B ≤ ηn together allow us to conclude

ΥG(θ0 +
hθ0,n√
n

+
h̃√
n

)

≤ ΥG(θ0 +
h√
n

) +∇ΥG(θ0 +
h√
n

)[
hθ0,n√
n

+
(h̃− h)√

n
] + 2Kg(‖

hθ0,n√
n
‖2B + η2

n)1G

≤ ΥG(θ0 +
h√
n

) +∇ΥG(θ0 +
h√
n

)[
hθ0,n√
n

] + {2Kg‖
hθ0,n√
n
‖2B + 2Mgηn}1G , (E.52)

where the final result follows from Assumption 6.2(iii) and 2Kgη
2
n ≤ Mgηn for n suffi-

ciently large. Similarly, Assumption 6.2(ii) and Lemma E.4 yield

∇ΥG(θ0 +
h√
n

)[
hθ0,n√
n

] ≤ ∇ΥG(θ0)[
hθ0,n√
n

] + ‖∇ΥG(θ0 +
h√
n

)−∇ΥG(θ0)‖o‖
hθ0,n√
n
‖B1G

≤ ∇ΥG(θ0)[
hθ0,n√
n

] +Kg`n‖
hθ0,n√
n
‖B1G . (E.53)

Hence, combining results (E.52) and (E.53), ‖hθ0,n/
√
n‖B ≤ C0Kdηn due to ‖h̄θ0,n‖B ≤

Kd, and ηn ↓ 0, `n ↓ 0, we obtain that for n sufficiently large we have

ΥG(θ0 +
hθ0,n√
n

+
h̃√
n

) ≤ ΥG(θ0 +
h√
n

) +∇ΥG(θ0)[
hθ0,n√
n

] + 4Mgηn1G . (E.54)

In addition, since C0ηn ↓ 0, we have C0ηn ≤ 1 eventually, and hence ΥG(θ0 +h/
√
n) ≤ 0,
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2Mg`n ≤ ε/2 for n sufficiently large due to `n ↓ 0 and result (E.50) imply that

ΥG(θ0 +
h√
n

) + C0ηn∇ΥG(θ0)[h̄θ0,n]

≤ C0ηn{ΥG(θ0 +
h√
n

) +∇ΥG(θ0)[h̄θ0,n]} ≤ C0ηn{2Mg`n − ε}1G ≤ −
C0ηnε

2
1G .

(E.55)

Thus, we can conclude from results (E.51),(E.54) and (E.55), and C0 > 8Mg/ε that

ΥG(θ0 +
hθ0,n√
n

+
h̃√
n

) ≤ {4Mg −
C0ε

2
}ηn1G ≤ 0 , (E.56)

for n sufficiently large, which establishes the claim of the Lemma.

Lemma E.4. If A is an AM space with norm ‖ · ‖A and unit 1A, and a1, a2 ∈ A, then

it follows that a1 ≤ a2 + C1A for any a1, a2 ∈ A satisfying ‖a1 − a2‖A ≤ C.

Proof: Since A is an AM space with unit 1A we have that ‖a1 − a2‖A ≤ C implies

|a1 − a2| ≤ C1A, and hence the claim follows trivially from a1 − a2 ≤ |a1 − a2|.

Lemma E.5. Let A and C be Banach spaces with norms ‖·‖A and ‖·‖C, A = A1⊕A2

and F : A→ C. Suppose F (a0) = 0 and that there are ε0 > 0 and K0 <∞ such that:

(i) F : A→ C is Fréchet differentiable at all a ∈ Bε0(a0) ≡ {a ∈ A : ‖a−a0‖A ≤ ε0}.
(ii) ‖F (a+ h)− F (a)−∇F (a)[h]‖C ≤ K0‖h‖2A for all a, a+ h ∈ Bε0(a0).

(iii) ‖∇F (a1)−∇F (a2)‖o ≤ K0‖a1 − a2‖A for all a1, a2 ∈ Bε0(a0).

(iv) ∇F (a0) : A→ C has ‖∇F (a0)‖o ≤ K0.

(v) ∇F (a0) : A2 → C is bijective and ‖∇F (a0)−1‖o ≤ K0.

Then, for all h1 ∈ A1 with ‖h1‖A ≤ { ε02 ∧ (4K2
0 )−1 ∧ 1}2 there is a unique h?2(h1) ∈ A2

with F (a0 + h1 + h?2(h1)) = 0. In addition, h?2(h1) satisfies ‖h?(h1)‖A ≤ 4K2
0‖h1‖A for

arbitrary A1, and ‖h?(h1)‖A ≤ 2K2
0‖h1‖2A when A1 = N (∇F (a0)).

Proof: We closely follow the arguments in the proof of Theorems 4.B in Zeidler (1985).

First, we define g : A1 ×A2 → C pointwise for any h1 ∈ A1 and h2 ∈ A2 by

g(h1, h2) ≡ ∇F (a0)[h2]− F (a0 + h1 + h2) . (E.57)

Since ∇F (a0) : A2 → C is bijective by hypothesis, F (a0 + h1 + h2) = 0 if and only if

h2 = ∇F (a0)−1[g(h1, h2)] . (E.58)

Letting Th1 : A2 → A2 be given by Th1(h2) = ∇F (a0)−1[g(h1, h2)], we see from (E.58)

that the desired h?2(h1) must be a fixed point of Th1 . Next, define the set

M0 ≡ {h2 ∈ A2 : ‖h2‖A ≤ δ0} (E.59)
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for δ0 ≡ ε0
2 ∧ (4K2

0 )−1 ∧ 1, and consider an arbitrary h1 ∈ A1 with ‖h1‖A ≤ δ2
0 . Notice

that then a0+h1+h2 ∈ Bε0(a0) for any h2 ∈M0 and hence g is differentiable with respect

to h2 with derivative ∇2g(h1, h2) ≡ ∇F (a0)−∇F (a0 + h1 + h2). Thus, if h2, h̃2 ∈M0,

then Proposition 7.3.2 in Luenberger (1969) implies that

‖g(h1, h2)− g(h1, h̃2)‖C ≤ sup
0<τ<1

‖∇2g(h1, h2 + τ(h̃2 − h2))‖o‖h2 − h̃2‖A

= sup
0<τ<1

‖∇F (a0)−∇F (a0 + h1 + h2 + τ(h̃2 − h2))‖o‖h2 − h̃2‖A

≤ 1

2K0
‖h2 − h̃2‖A , (E.60)

where the final inequality follows by Condition (iii) and δ2
0 ≤ δ0 ≤ (4K2

0 )−1. Moreover,

‖∇F (a0)[h2]−∇F (a0 + h1)[h2]‖C

≤ ‖∇F (a0)−∇F (a0 + h1)‖o‖h2‖A ≤ K0‖h1‖A‖h2‖A ≤
‖h2‖A
4K0

(E.61)

by Condition (iv) and ‖h1‖A ≤ δ0 ≤ (4K2
0 )−1. Similarly, for any h2 ∈M0 we have

‖F (a0 + h1 + h2)− F (a0 + h1)−∇F (a0 + h1)[h2]‖C ≤ K0‖h2‖2A ≤
‖h2‖A
4K0

(E.62)

due to a0 + h1 ∈ Bε0(a0) and Condition (ii). In turn, since F (a0) = 0 by hypothesis,

Condition (iii), ‖h1‖A ≤ δ2
0 and δ0 ≤ (4K2

0 )−1 yield that

‖F (a0+h1)‖C = ‖F (a0+h1)−F (a0)‖C ≤ K0‖h1‖2A+‖∇F (a0)‖o‖h1‖A ≤
δ0

2K0
. (E.63)

Hence, by (E.57) and (E.61)-(E.63) we obtain for any h2 ∈M0 and h1 with ‖h1‖A ≤ δ2
0

‖g(h1, h2)‖C ≤
‖h2‖A
2K0

+
δ0

2K0
≤ δ0

K0
. (E.64)

Thus, since ‖∇F (a0)−1‖o ≤ K0 by Condition (v), result (E.64) implies Th1 : M0 →
M0, and (E.60) yields ‖Th1(h2) − Th1(h̃2)‖A ≤ 2−1‖h2 − h̃2‖A for any h2, h̃2 ∈ M0.

By Theorem 1.1.1.A in Zeidler (1985) we then conclude Th1 has a unique fixed point

h?2(h1) ∈M0, and the first claim of the Lemma follows from (E.57) and (E.58).

Next, we note that since h?2(h1) is a fixed point of Th1 , we can conclude that

‖h?2(h1)‖A = ‖Th1(h?2(h1))‖A ≤ ‖Th1(h?2(h1))− Th1(0)‖A + ‖Th1(0)‖A . (E.65)

Thus, since (E.60) and ‖∇F (a0)−1‖o ≤ K0 imply that ‖Th1(h?2(h1)) − Th1(0)‖A ≤
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2−1‖h?2(h1)‖A, it follows from result (E.65) and Th1(0) ≡ −∇F (a0)−1F (a0 + h1) that

1

2
‖h?2(h1)‖A ≤ ‖Th1(0)‖A ≤ K0‖F (a0 + h1)‖C

≤ K0{K0‖h1‖2A + ‖∇F (a0)‖o‖h1‖A} ≤ 2K2
0‖h1‖A , (E.66)

where in the second inequality we exploited ‖∇F (a0)−1‖o ≤ K0, in the third inequality

we used (E.63) and in the final inequality we exploited ‖h1‖A ≤ 1. While the estimate

in (E.66) applies for generic A1, we note that if in addition A1 = N (∇F (a0)), then

1

2
‖h?2(h1)‖A ≤ ‖Th1(0)‖A ≤ K0‖F (a0 + h1)‖C ≤ K2

0‖h1‖2A , (E.67)

due to F (a0) = 0 and ∇F (a0)[h1] = 0, and thus the final claim of the Lemma follows.

Appendix F - Motivating Examples Details

In this Appendix, we revisit Examples 2.2, 2.1, 2.3, and 2.4 in order to illustrate our

results. We focus in particular in deriving explicit expressions for the test and bootstrap

statistics In(R) and Ûn(R), clarifying the role of the norms ‖ · ‖E, ‖ · ‖L, and ‖ · ‖B, as

well as computing the rate requirements imposed by our Assumptions.

Discussion of Example 2.1

Since in this example we require g0 to be continuously differentiable to evaluate the

Slutsky restriction, it is natural to set the Banach space B to equal B = C1(R2
+)×Rdw .

Further recall that in this instance Zi = (Pi, Yi,Wi), Xi = (Qi, Zi), and

ρ(Xi, θ) = Qi − g(Pi, Yi)−W ′iγ (F.1)

for any (g, γ) = θ ∈ B. For simplicity, we assume the support of (Pi, Yi) under P is

bounded uniformly in P ∈ P and for some C0 <∞ set the parameter space Θ to be

Θ ≡ {(g, θ) ∈ B : ‖g‖2,∞ ≤ C0 and ‖γ‖2 ≤ C0} , (F.2)

which is compact under the norm ‖θ‖B = ‖g‖1,∞ ∨ ‖γ‖2 – for calculations with non-

compact Θ see Examples 2.3 and 2.4 below. In order to approximate the function g0 we

utilize linear sieves {pj,n}jnj=1 and let pjnn (Pi, Yi) ≡ (p1,n(Pi, Yi), . . . , pjn,n(Pi, Yi))
′. For

T : Rdw → Rdw a bounded transformation we then set qknn (Zi) = (T (Wi)
′, pjnn (Pi, Yi)

′)′
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as our instruments so that kn = jn + dw. Therefore, In(R) is here equivalent to

In(R) = inf
(β,γ)
‖ 1√

n

n∑
i=1

{Qi − pjnn (Pi, Yi)
′β −W ′iγ}qknn (Zi)‖Σ̂n,r

s.t. (i) ‖γ‖2 ∨ ‖pjn′n β‖2,∞ ≤ C0, (ii) pjnn (p0, y0)′β = c0,

(iii)
∂

∂p
pjnn (p, y)′β + pjnn (p, y)′β

∂

∂y
pjnn (p, y)′β ≤ 0 , (F.3)

where constraint (i) imposes that (pjn′n β, γ) ∈ Θ, restriction (ii) corresponds to ΥF (θ) =

0, and (iii) enforces the Slutsky constraint ΥG(θ) ≤ 0.

Whenever {pj,n}jnj=1 are chosen to be a tensor product of b-Splines or local polyno-

mials it follows that sup(p,y) ‖p
jn
n (p, y)‖2 .

√
jn and hence Assumption 3.2(i) holds with

Bn �
√
jn since T (Wi) was assumed bounded (Belloni et al., 2015). Moreover, we note

Assumption 3.3(ii) holds if supP∈PEP [‖Wi‖22 + Q2
i ] < ∞, while Assumption 3.3(iii) is

satisfied with Jn = O(1) by Theorem 2.7.1 in van der Vaart and Wellner (1996). By

Remark 4.2, it also follows that if the eigenvalues of the matrix

EP [qknn (Zi)(W
′
i , p

jn
n (Pi, Yi)

′)] (F.4)

are bounded from above and away from zero uniformly in P ∈ P, then Assumption

4.2(ii) is satisfied with νn � j
1/2−1/r
n and ‖θ‖E = supP∈P ‖g‖L2

P
+ ‖γ‖2. Since we

expect (g0, γ0) to be identified, we set τn = 0 and thus under the no-bias condition of

Assumption 5.3(ii) Theorem 4.1 yields a rate of convergence under ‖ · ‖E equal to

Rn =
jn
√

log(jn)√
n

. (F.5)

We refer to Corollary G.1 for verifying Assumption 5.1 and also note that Assumption

5.2 is satisfied with κρ = 1 and K2
ρ = 2(1 + supP∈PEP [‖Wi‖22]) by (F.1) and definition

of ‖ · ‖E. In turn, we note that since Fn is an Euclidean class, we also have

sup
P∈P

J[ ](Rn,Fn, ‖ · ‖L2
P

) .
√
jnRn log(n) (F.6)

and thus Bn .
√
jn and result (F.5) imply that Assumption 5.3(i) holds provided that

j
2+1/r
n log2(n) = o(an

√
n). Since equation (F.1) implies that in this model

mP (θ)(Zi) ≡ EP [Qi|Zi]− g(Pi, Yi)−W ′iγ , (F.7)

we also observe that Assumption 5.4 holds with ∇mP (θ)[h](Zi) = −g(Pi, Yi)−W ′iγ for

any (g, γ) = h ∈ B, Km = 0, and Mm = 1 + supP∈PEP [‖Wi‖2].
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With regards to the bootstrap statistic, we let (β̂, γ̂) be a minimizer of (F.3) and

Ŵnρ(·, θ̂) ∗ qknn =
1√
n

n∑
i=1

ωi{(Qi − pjnn (Pi, Yi)
′β̂ −W ′i γ̂)qknn (Zi)

− 1

n

n∑
j=1

(Qj − pjnn (Pj , Yj)
′β̂ −W ′j γ̂)qknn (Zj)} , (F.8)

where recall {ωi}ni=1 is an i.i.d. sample of standard normal random variables that are

independent of the data {Qi, Pi, Yi,Wi}ni=1. Since in this model the moment conditions

are linear in θ, in this case the numerical derivative in (63) simply reduces to

D̂n(θ̂)[h] = − 1

n

n∑
i=1

(pjnn (Yi, Pi)
′β +W ′iγ)qknn (Zi) (F.9)

for any h = (pjn′n β, γ) ∈ Bn. We also note that result (F.7) similarly implies that

Dn,P (θ0)[h] = −EP [(pjnn (Yi, Pi)
′β +W ′iγ)qknn (Zi)] (F.10)

for h = (pjn′n β, γ) ∈ Bn. Moreover, since the requirement that the eigenvalues of (F.4)

be bounded away from zero and infinity implies that similarly the eigenvalues of

EP [pjnn (Yi, Pi)p
jn
n (Yi, Pi)

′] (F.11)

are bounded away from zero and infinity uniformly in P ∈ P, it follows that ‖h‖E �
‖γ‖2 + ‖β‖2 for any (pjn′n β, γ) ∈ Bn. We therefore obtain from (F.9) and (F.10) that

sup
‖h‖E≤1

‖D̂n(θ̂)[h]− Dn,P (θ0)[h]‖r

. ‖ 1

n

n∑
i=1

qknn (Zi)(W
′
i , p

jn
n (Pi, Yi)

′)− EP [qknn (Zi)(W
′
i , p

jn
n (Pi, Yi)

′)]‖o,2 . (F.12)

Thus, since sup(p,y) ‖p
jn
n (p, y)‖2 .

√
jn we conclude by standard arguments and Theorem

6.1 in Tropp (2012) (Bernstein’s inequality for matrices) that uniformly in P ∈ P

sup
‖h‖E≤1

‖D̂n(θ̂)[h]− Dn,P (θ0)[h]‖r = Op(
jn
√

log(jn)√
n

) . (F.13)

We next note that given the definitions of ‖ · ‖E and ‖ · ‖B, Assumption 6.1(i) is

trivially satisfied with Kb = 2. Furthermore, since in this example G = C(R2
+), we

obtain by defining for any (g1, θ1) ∈ B the map ∇Υ(θ1) : B→ G according to

∇ΥG(θ1)[h](p, y) =
∂

∂p
g(p, y) + g1(p, y)

∂

∂y
g(p, y) + g(p, y)

∂

∂y
g1(p, y) (F.14)
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for any (g, γ) = h ∈ B, that Assumptions 6.2(i)-(ii) hold with Kg = 2. Similarly, ex-

ploiting (F.14) and the definition of Θ in (F.2) it also follows that Assumption 6.2(iii)

is satisfied with Mg = 1 + 2C0. In turn, we observe that since ΥF : B → F is lin-

ear (with F = R), Assumption 6.4 is automatically satisfied, while Assumption 6.3

holds with Kf = 0 and Mf = 1. Sufficient conditions for Assumption 6.5 are given

by Theorem H.1, and we note the preceding discussion implies Assumption 6.6(ii)

imposes j
1+1/r
n log2(n)`n = o(an) while Assumptions 6.6(iii)-(iv) respectively demand

j5
n log(jn) = o(nr2

n) and j5
n log(jn) = o(n) because Sn(B,E) . j

3/2
n (Newey, 1997).

These rate requirements are compatible with setting `n to satisfy RnSn(B,E) = o(`n),

and hence result (F.13), νn � j
1/2−1/r
n , and the eigenvalues of (F.4) being bounded

away from zero imply that the conditions of Lemma 6.1 are satisfied. Therefore, the

bandwidth `n is unnecessary – i.e. we may set `n = +∞ – and hence Ûn(R) becomes

Ûn(R) = inf
(π,β)
‖Ŵnρ(·, θ̂) ∗ qknn + D̂n(θ̂)[(π, pjn′n β)]‖Σ̂n,r s.t. (i) pjnn (p0, y0)′β = 0,

(ii) ΥG(θ̂ +
pjn′n β√
n

) ≤ (ΥG(θ̂)− 2rn‖
pjn′n β√
n
‖1,∞) ∨ (−rn1G) , (F.15)

where constraints (i) and (ii) correspond to ΥF (θ̂ + h/
√
n) = 0 and h/

√
n ∈ Gn(θ̂)

in definition (69). It is worth noting that if constraints (i) and (ii) in (F.15) are re-

placed by more demanding restrictions, then the test would continue to control size.

For computational simplicity, it may hence be preferable to replace constraint (ii) with

ΥG(θ̂ +
pjn′n β√
n

) ≤ (ΥG(θ̂)− 2
rnj

3/2
n√
n
‖β‖2) ∨ (−rn1G) (F.16)

where we have exploited that ‖pjn′n β‖1,∞ . j
1/3
n ‖β‖2 by supP∈P ‖p

jn′
n β‖L2

P
� ‖β‖2 and

Sn(B,E) . j
3/2
n . Finally, we observe that in a model with endogeneity the arguments

would remain similar, except the rate of convergence Rn would be slower leading to

different requirements on rn; see Chen and Christensen (2013) for the optimal Rn.

Discussion of Example 2.2

In the monotonic regression discontinuity example the Banach space B was set to

equal B = C1([−1, 0])× C1([0, 1]) while (g−, g+) = θ0 ∈ B satisfied the restriction

E[Yi − g−(Ri)(1−Di)− g+(Ri)Di|Ri, Di] = 0 . (F.17)

For the parameter space Θ we may for instance set Θ to be a C0-ball in B, so that

Θ ≡ {(g1, g2) ∈ B : ‖g1‖1,∞ ∨ ‖g2‖1,∞ ≤ C0} (F.18)

for C0 sufficiently large to ensure (g−, g+) ∈ Θ. In turn, we employ linear sieves
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{p−,j,n}jnj=1 and {p+,j,n}jnj=1 for C1([−1, 0]) and C1([0, 1]) respectively and set the vec-

tor of instruments qknn (Ri, Di) ≡ ((1 − Di)p
jn
−,n(Ri)

′, Dip
jn
−,n(Ri)

′) where kn = 2jn,

pjn−,n = (p−,1,n, . . . , p−,jn,n)′, and pjn+,n = (p+,1,n, . . . , p+,jn,n)′. Thus, In(R) becomes

In(R) = inf
(β1,β2)

‖ 1√
n

n∑
i=1

{Yi − (1−Di)p
jn
−,n(Ri)

′β1 −Dip
jn
+,n(Ri)

′β2}qknn (Ri, Di)‖Σ̂n,r

s.t. (i) pjn−,n(0)′β1 − pjn+,n(0)′β2 = 0, (ii) ∇pjn′−,nβ1 ≥ 0, (iii) ∇pjn′+,nβ2 ≥ 0 (F.19)

where constraint (i) corresponds to ΥF (θ) = 0, constraints (ii) and (iii) impose ΥG(θ) ≤
0, and the restriction (pjn′−,nβ1, p

jn′
+,nβ2) ∈ Θ can be ignored by Remark 6.3.

For concreteness, suppose {p−,j,n}jnj=1 and {p+,j,n}jnj=1 are orthonormalized b-splines,

in which case the constant Bn of Assumption 3.2(i) satisfies Bn .
√
jn. Moreover, we

note that Theorem 2.7.1 in van der Vaart and Wellner (1996) implies the sequence Jn

of Assumption 3.3(iii) satisfies Jn = O(1). In turn, provided that the eigenvalues of

EP [qknn (Ri, Di)q
kn
n (Ri, Di)

′] (F.20)

are bounded from above and away from zero uniformly in P ∈ P, Remark 4.2 implies

Assumption 4.2 holds with νn � j
1/2−1/r
n when using for any (g1, g2) = θ ∈ B the

norm ‖θ‖E ≡ supP∈P ‖g1‖L2
P

+ supP∈P ‖g2‖L2
P

. We further note that since (g−, g+) is

identified we may set τn = 0 and hence, under the no bias condition of Assumption

5.3(ii), we obtain from Theorem 4.1 a rate of convergence under ‖ · ‖E equal to

Rn =
jn
√

log(jn)√
n

. (F.21)

We conjecture the above rate is suboptimal in that it does not exploit the linearity of the

moment condition in θ, and employing the arguments in Belloni et al. (2015) it should

be possible to derive the refined rate Rn =
√
jn log(jn)/

√
n at least for the case r = 2.

Sufficient conditions for Assumption 5.1 are provided by Corollary G.1, while we

observe Assumption 5.2 holds with κρ = 1 by linearity of the moment condition and

definition of ‖ · ‖E. Furthermore, since Fn is an Euclidean class, we further obtain

sup
P∈P

J[ ](Rn,Fn, ‖ · ‖L2
P

) .
√
jnRn log(n) , (F.22)

and hence under the bound Bn .
√
jn and Rn . jn

√
log(jn)/

√
n by (F.21), Assumption

5.3(i) reduces to j
2+1/r
n log2(n) = o(an

√
n). In turn, we note that

mP (θ)(Zi) = EP [Yi − g1(Ri)(1−Di)− g2(Ri)Di|Ri, Di] (F.23)

is linear for any (g1, g2) ∈ B, and hence Assumptions 5.4(i)-(ii) hold with Km = 0,
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while Assumption 5.4(iii) is satisfied with Mm = 1. Similarly, if we metrize the product

topology on B = C1([−1, 0])×C1([0, 1]) by ‖θ‖B = ‖g1‖1,∞ ∨‖g2‖1,∞ for any (g1, g2) =

θ ∈ B, then Assumption 6.1(i) holds with Kb = 2, Assumptions 6.2 and 6.3 are satisfied

with Kg = Kf = 0 and Mg = 1 and Mf = 2, and Assumption 6.4 holds by linearity of

ΥF . Therefore, for any (g1, g2) = θ ∈ B the set Gn(θ) becomes

Gn(θ) ≡
{

(
pjn′−,nβ1√

n
,
pjn′+,nβ2√

n
) :
∇g1(a) +

∇pjn−,n(a)′β1√
n

≥ ∇g1(a) ∧ rn ∀a ∈ [−1, 0]

∇g2(a) +
∇pjn+,n(a)′β2√

n
≥ ∇g2(a) ∧ rn ∀a ∈ [0, 1]

}
(F.24)

where we exploited 1G = (1C([−1,0]),1C([0,1])) for 1C([−1,0]) and 1C([0,1]) respectively the

constant functions equal to one on [−1, 0] and [0, 1].

With regards to other elements needed to construct the bootstrap statistic, we next

let (β̂1, β̂2) be a minimizer of (F.19) and for θ̂ = (pjn′−,nβ̂1, p
jn′
+,nβ̂2) note that

Ŵnρ(·, θ̂) ∗ qknn =
1√
n

n∑
i=1

ωi

{
(Yi − (1−Di)p

jn
−,n(Ri)

′β̂1 −Dip
jn
+,n(Ri)

′β̂2)qknn (Ri, Di)

− 1

n

n∑
j=1

(Yj − (1−Dj)p
jn
−,n(Rj)

′β̂1 −Djp
jn
+,n(Rj)

′β̂2)qknn (Rj , Dj)
}
. (F.25)

Since the moment condition is linear in θ, there is no need to employ a numerical

derivative to estimate Dn,P (θ0) and hence following Remark 6.1 we just set

D̂n(θ̂)[h] = − 1

n

n∑
i=1

{(1−Di)p
jn
−,n(Ri)

′β1 +Dip
jn
+,n(Ri)

′β2}qknn (Ri, Di) (F.26)

for any h = (pjn′−,nβ1, p
jn′
+,nβ2). Analogously, in this instance Dn,P (θ0) : Bn → Rkn equals

Dn,P (θ0)[h] = −EP [{(1−Di)p
jn
−,n(Ri)

′β1 +Dip
jn
+,n(Ri)

′β2}qknn (Ri, Di)] (F.27)

for any h = (pjn′−,nβ1, p
jn′
+,nβ2). Provided the eigenvalues of (F.20) are bounded from

above and away from zero, and recalling νn � j
1/2−1/r
n , it is then straightforward to

show ‖h‖E ≤ νn‖Dn,P (θ)[h]‖r for any h ∈ Bn. Moreover, by direct calculation

sup
‖h‖E≤1

‖D̂n(θ̂)[h]− Dn,P (θ0)[h]‖r

. ‖ 1

n

n∑
i=1

qknn (Ri, Di)q
kn
n (Ri, Di)

′ − EP [qknn (Ri, Di)q
kn
n (Ri, Di)

′]‖o,2 (F.28)

and hence from Theorem 6.1 in Tropp (2012) we can conclude that uniformly in P ∈ P0

sup
‖h‖E≤1

‖D̂n(θ̂)[h]− Dn,P (θ0)[h]‖r = Op(
jn
√

log(jn)√
n

) . (F.29)
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In particular, (74) holds provided j
3/2−1/r
n

√
log(jn) = o(

√
n), and by Lemma 6.1 and

Remark 6.4 it follows that the bandwidth `n can be ignored if it is possible to set

`n ↓ 0 such that Rn = o(`n). The additional requirements on `n are dictated by

Assumption 6.6, which here become j
1/r
n

√
log(jn)

√
jn supP∈P J[ ](`n,Fn, ‖·‖L2

P
) = o(an).

Since we have shown j
1/r
n

√
log(jn)

√
jn supP∈P J[ ](Rn,Fn, ‖ · ‖L2

P
) = o(an), we conclude

Rn = o(`n) is feasible, and hence in this example we may employ

V̂n(θ,+∞) ≡
{

(
pjn′−,nβ1√

n
,
pjn′+,nβ2√

n
) ∈ Gn(θ) : pjn−,n(0)′β1 − pjn+,n(0)′β2 = 0

}
. (F.30)

Thus, combining (F.24), (F.25), (F.26), and (F.30), the bootstrap statistic becomes

Ûn(R) = inf
(β1,β2)

‖Ŵnρ(·, θ̂) ∗ qknn + D̂n(θ̂)[(pjn′−,nβ1, p
jn′
+,nβ2)]‖Σ̂n,r

s.t. (i) (
pjn′−,nβ1√

n
,
pjn′+,nβ2√

n
) ∈ Gn(θ̂), (ii) pjn−,n(0)′β1 − pjn−,n(0)′β2 = 0 . (F.31)

Finally, we note that Theorem H.1 provides sufficient conditions for Assumption 6.5,

while using the bound Sn(B,E) . j
3/2
n from Newey (1997) and (F.21) implies Assump-

tion 6.6(iii) is satisfied provided j5
n log(n) = o(nr2

n).

Discussion of Example 2.3

Recall that in this application the parameter θ consists of a finite dimensional com-

ponent (γ1, γ2, α) ∈ R2dγ+dα and a nonparametric function δ ∈ C(Rdy). For notational

simplicity, we let (γ1, γ2, α) = π ∈ Rdπ with dπ = 2dγ + dα, and define the function

M1(Zi, θ)

≡
∫

1{W ′iγ1 + ε1 ≥ 0, W ′iγ2 + δ(Yi) + ε2 ≤ 0, W ′iγ1 + ε1 ≥W ′iγ2 + ε2}dG(ε|α) ,

which constitutes the part of (16) that depends on θ. Similarly, we further define

M2(Zi, θ) ≡
∫

1{ε1 ≤ −W ′iγ1, ε2 ≤ −W ′iγ2}dG(ε|α) (F.32)

M3(Zi, θ) ≡
∫

1{ε1 + δ(Yi) ≥ −W ′iγ1, ε2 + δ(Yi) ≥ −W ′iγ2}dG(ε|α) , (F.33)

which correspond to the moment conditions in (17) and (18). For Ai the observed bundle

purchased by agent i let Xi = (Ai, Zi), and then note that the generalized residuals are

ρ1(Xi, θ) ≡ 1{Ai = (1, 0)} −M1(Zi, θ)

ρ2(Xi, θ) ≡ 1{Ai = (0, 0)} −M2(Zi, θ)

ρ3(Xi, θ) ≡ 1{Ai = (1, 1)} −M3(Zi, θ) . (F.34)
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so that ρ(Xi, θ) = (ρ1(Xi, θ), ρ2(Xi, θ), ρ3(Xi, θ))
′ for a total of J = 3 restrictions.

In this instance, B = Rdπ × C(Rdy) and for illustrative purposes we select a non-

compact parameter space by setting Θ = B. For {pj,n}jnj=1 a sequence of linear sieves in

C(Rdy) and pjnn (y) = (p1,n(y), . . . , pjn,n(y))′ we then let Θn be given by

Θn ≡ {(π, δ) ∈ Rdπ × C(Rdy) : ‖π‖2 ≤ C0 and δ = pjn′n β for some ‖β‖2 ≤ Cn} (F.35)

for some constant C0 < ∞ and sequence {Cn}∞n=1 satisfying Cn ↑ ∞. In turn, for

1 ≤  ≤ J we let {qk,n,}
kn,
k=1 denote a sequence of transformations of Zi = (Wi, Yi), and

recall qknn (z) = (q
kn,1
n,1 (z)′, q

kn,2
n,2 (z)′, q

kn,3
n,3 (z)′)′ where q

kn,
n, (z) = (q1,n,(z), . . . , qkn,,n,(z))

′

and kn = kn,1 +kn,2 +kn,3. We note, however, that since the conditioning variable is the

same for all three moment conditions, in this instance we may in fact let q
kn,1
n,1 = q

kn,2
n,2 =

q
kn,3
n,3 – i.e. employ the same transformation of Zi for all three moment conditions. Thus,

given the above specifications, the test statistic In(R) is equivalent to

In(R) = inf
(π,β)
‖ 1√

n

n∑
i=1

ρ(Xi, (π, p
jn′
n β)) ∗ qknn ‖Σ̂n,r

s.t. (i) pjn′n β ≤ 0, (ii) ‖π‖2 ≤ C0, (iii) ‖β‖2 ≤ Cn , (F.36)

where constraint (i) corresponds to ΥG(θ) ≤ 0, while constraints (ii) and (iii) impose

that (π, pjn′n β) = θ ∈ Θn. The latter two restrictions are standard sieve compactness

conditions imposed in (even parametric) nonconvex estimation problems.

Next, let M(Zi, θ) = (M1(Zi, θ),M2(Zi, θ),M3(Zi, θ))
′ which we will assume to be

differentiable, with ∇πM(Zi, θ) denoting the derivative with respect to π, and

∇δM(Zi, θ) ≡
∂

∂τ
M(Zi, θ + τeδ)

∣∣∣
τ=0

(F.37)

for eδ ∈ B equal to (0,1C(Rdy )) and 1C(Rdy ) the constant function that equals one

everywhere. For ‖ · ‖F the Frobenius norm of a matrix, we further define

Fπ(z) ≡ sup
θ∈Θ
‖∇πM(z, θ)‖F Fδ(z) ≡ sup

θ∈Θ
‖∇δM(z, θ)‖2 , (F.38)

and then observe that by the mean value theorem and the Cauchy-Schwarz inequality

|M(Zi, (π1, p
jn′
n β1))−M(Zi, (π2, p

jn′
n β2))|

≤ Fπ(Zi)‖π1 − π2‖2 + Fδ(Zi)‖pjnn (Yi)
′(β1 − β2)‖2

≤ {Fπ(Zi) + ‖pjnn (Yi)‖2Fδ(Zi)}{‖π1 − π2‖2 + ‖β1 − β2‖2} (F.39)

for any 1 ≤  ≤ J . Defining Fθ,n(z) ≡ {Fπ(Zi) + ‖pjnn (Yi)‖2Fδ(Zi)} and assuming that
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supP∈PEP [Fπ(Zi)
2] <∞, Fδ(z) is bounded uniformly in z, and that the matrix

EP [pjnn (Yi)p
jn
n (Yi)

′] (F.40)

has eigenvalues bounded away from zero and infinity uniformly in n and P ∈ P, it then

follows that supP∈P ‖Fθ,n‖L2
P
.
√
jn. Therefore, by result (F.39) and Theorem 2.7.11

in van der Vaart and Wellner (1996) we can conclude that

sup
P∈P

N[ ](ε,Fn, ‖ · ‖L2
P

) .
(Cn√jn

ε

)jn
. (F.41)

Hence, since
∫ a

0 log(M/u)du = a log(M/a) + a and Cn
√
jn ↑ ∞, result (F.41) yields

sup
P∈P

J[ ](η,Fn, ‖ · ‖L2
P

) .
∫ η

0
{1 + jn log(

Cn
√
jn

ε
)}1/2dε

.
√
jn

∫ η

0
log(

Cn
√
jn

ε
)dε =

√
jn × {η log(

Cn
√
jn

η
) + η} . (F.42)

In particular, since F (Xi) = 1 is an envelope for Fn, we obtain by setting η = 1 in

(F.42) that Assumption 3.3(iii) holds with Jn �
√
jn log(Cnjn).

We next study the rate of convergence under the assumption that the model is

identified and hence set τn = 0 – sufficient conditions for identification are provided

by Fox and Lazzati (2014). For any (π, δ) = θ ∈ B, we then define the norm ‖θ‖E =

‖π‖2 + supP∈P ‖δ‖L2
P

and note that since the eigenvalues of EP [pjnn (Yi)p
jn
n (Yi)

′] were

assumed to be bounded away from zero and infinity, Remark 4.2 implies that Assumption

4.2 holds with νn � k1/2−1/r
n provided that the smallest singular value of the matrix

EP

[( qknn (Zi) ∗ ∇πM(Zi, θ)

qknn (Zi) ∗ ∇δM(Zi, θ)p
jn
n (Yi)

′

)]
(F.43)

is bounded away from zero uniformly in θ ∈ (Θ0n(P ) ∩R)ε, n, and P ∈ P0. Therefore,

assuming ‖qk,n,‖L∞P is uniformly bounded in k, n, , and P ∈ P for simplicity, we obtain

that under Assumption 5.3(ii) the rate Rn delivered by Theorem 4.1 becomes

Rn =

√
knjn log(kn)× log(Cnjn)√

n
, (F.44)

where we exploited νn � k1/2−1/r
n and that as previously argued Jn �

√
jn log(Cnjn).

Corollary G.1 provides sufficient conditions for verifying Assumption 5.1, while the

definition ofM(Zi, θ), equation (F.38), the mean value theorem, and the Cauchy Schwarz
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inequality imply for any θ1 = (π1, p
jn′
n β1) ∈ Θn and θ2 = (π2, p

jn′
n β2) ∈ Θn that

EP [‖ρ(Xi, θ1)− ρ(Xi, θ2)‖22] = EP [‖M(Zi, θ1)−M(Zi, θ2)‖22]

≤ 6EP [Fπ(Zi)
2‖π1 − π2‖22 + Fδ(Zi)

2(pjnn (Yi)
′(β1 − β2))2] . ‖θ1 − θ2‖2E , (F.45)

where in the final inequality we exploited that supP∈PEP [Fπ(Zi)
2] < ∞ and Fδ(z) is

uniformly bounded by hypothesis. Hence, we conclude from (F.45) that Assumption 5.2

holds with κρ = 1, and combining (F.42) and (F.44) we obtain that

jnk
1/r+1/2
n log(kn) log2(Cnjnn)√

n
= o(an) (F.46)

implies Assumption 5.3(i) holds. Unlike in Examples 2.1 and 2.2, however, ρ(Xi, θ)

is nonlinear in θ and hence Assumption 5.4 is harder to verify. To this end, recall

mP,(θ) ≡ EP [ρ(Xi, θ)|Zi], and for any (π, δ) = h ∈ B define

∇mP,(θ)[h] = ∇πM(Zi, θ)π +∇δM(Zi, θ)δ(Yi) , (F.47)

which we note satisfies Assumption 5.4(iii) with Mm = supP∈P ‖Fπ‖L2
P

+ ‖Fδ‖∞. Next,

we suppose that for any θ1, θ2 ∈ (Θ0n(P ) ∩R)ε with θ1 = (π1, δ1) and θ2 = (π2, δ2)

‖∇πM(Zi, θ1)−∇πM(Zi, θ2)‖F ≤ Gπ(Zi)‖π1 − π2‖2 +Gδ‖δ1 − δ2‖∞
‖∇δM(Zi, θ1)−∇δM(Zi, θ2)‖2 ≤ Gδ{‖π1 − π2‖2 + ‖δ1 − δ2‖∞} (F.48)

for some functions Gπ satisfying supP∈PEP [Gπ(Zi)
2] <∞ and a constant Gδ <∞ – a

sufficient conditions is that M(Zi, θ) be twice continuously differentiable with respect to

θ and that such derivatives be uniformly bounded. Exploiting results (F.47) and (F.48),

we then obtain by the mean value theorem that for any (π, δ) = h ∈ B

‖mP,(θ + h)−mP,(θ)−∇mP,(θ)[h]‖L2
P

≤ {‖π‖2 + sup
P∈P
‖δ‖L2

P
} × {(Gδ + sup

P∈P
‖Gπ‖L2

P
)‖π‖2 +Gδ × ‖δ‖∞} . (F.49)

Therefore, setting Km = Gδ+supP∈P ‖Gπ‖L2
P

we conclude that Assumption 5.4(i) holds

with the norm ‖θ‖L = ‖π‖2 + ‖δ‖∞ for any (π, δ) = θ ∈ B. Identical arguments as in

(F.49) further verify Assumption 5.4(ii) for the same choice of Km and ‖ · ‖L. Because

‖·‖L in fact metrizes the product topology in B, in this example we actually have B = L

and ‖ · ‖B = ‖ · ‖L. Moreover, since the smallest eigenvalue of EP [pjnn (Yi)p
jn
n (Yi)

′] was

assumed to be bounded away from zero uniformly in P ∈ P, we also obtain that

Sn(B,E) = Sn(L,E) . sup
β∈Rjn

‖pjn′n β‖∞
‖β‖2

.
√
jn , (F.50)
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where the final inequality applies when {pj,n}jnj=1 are Fourier, Spline, or Wavelet series

since then supy ‖p
jn
n (y)‖2 .

√
jn (Belloni et al., 2015; Chen and Christensen, 2013). If

{pj,n}jnj=1 are polynomial series instead, then (F.49) holds with jn in place of
√
jn.

Now turning to the construction of the bootstrap statistic, we let (π̂, β̂) be a mini-

mizer of (F.36), and setting θ̂ = (π̂, pjn′n β̂) we then define

Ŵnρ(·, θ̂) ∗ qknn =
1√
n

n∑
i=1

ωi{ρ(Xi, θ̂) ∗ qknn (Zi)−
1

n

n∑
j=1

ρ(Xj , θ̂) ∗ qknn (Zj)} (F.51)

for ρ(Xi, θ) as defined in (F.34). Since ρ(Xi, θ) is differentiable in θ we do not employ

a numerical derivative, but instead follow Remark 6.1 and set for any (π, δ) = h ∈ Bn

D̂n(θ̂)[h] ≡ 1

n

n∑
i=1

{∇πM(Zi, θ̂)π +∇δM(Zi, θ̂)δ(Yi)} ∗ qknn (Zi) . (F.52)

Next, we note that Assumption 6.1(i) holds with Kb = 1, while linearity of ΥG implies

Assumptions 6.2(i)-(ii) hold with Kg = 0, while Assumption 6.2(iii) is satisfied with

Mg = 1 by direct calculation. In turn, since no equality restrictions are present in this

problem, Assumptions 6.3 and 6.4 are not needed – formally they are automatically

satisfied by setting F = R and letting ΥF (θ) = 0 for all θ ∈ B. Thus, here we have

Gn(θ̂) =
{

(
π√
n
,
pjn′n β√
n

) ∈ Bn :
pjnn (y)′β√

n
≤ max{0,−pjnn (y)′β̂ − rn} for all y

}
. (F.53)

Hence, since Kg = Kf = 0, according to Remark 6.4 we may set V̂n(θ̂, `n) to equal

V̂n(θ̂, `n) = { h√
n
∈ Bn :

h√
n
∈ Gn(θ̂n) and ‖ h√

n
‖E ≤ `n} . (F.54)

Finally, we observe that Theorem H.1 provides sufficient conditions for Assumption 6.5,

while Assumption 6.6(i) is automatically satisfied since τn = 0. Moreover, exploiting

results (F.42), (F.44), and (F.50), it follows that Assumption 6.6(ii) reduces to

`n × {(jnn)1/4 ∨
√
jnkn log(kn) log(

Cnjn
`n

)} = o(an) (F.55)

and Assumption 6.6(iii)-(iv) are satisfied whenever jn
√
kn log(kn) log(Cnjn) = o(

√
nrn).

Furthermore, since the eigenvalues of (F.40) have been assumed to be bounded away

from zero and infinity, it follows that ‖h‖E � ‖π‖2 ∨ ‖β‖2 uniformly in (π, pjn′n β) = h ∈
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Bn and n. Therefore, from results (F.53) and (F.54), the bootstrap statistic equals

Ûn(R) = inf
(π,β)
‖Ŵnρ(·, θ̂) ∗ qknn + D̂n(θ̂)[(π, pjn′n β)]‖Σ̂n,r

s.t. (i)
pjnn (y)′β√

n
≤ max{0,−pjnn (y)′β̂ − rn} ∀y, (ii) ‖π‖2 ∨ ‖β‖2 ≤

√
n`n . (F.56)

Alternatively, under slightly stronger requirements, it is possible to appeal to Lemma

6.1 to conclude that the bandwidth `n is unnecessary – i.e. the second constraint in

(F.56) can be ignored. To this end, we note that for any (π, pjn′n β) = h ∈ Bn, we have

Dn,P (θ)[h] = EP [{∇πM(Zi, θ)π +∇δM(Zi, θ)p
jn
n (Yi)

′β} ∗ qknn (Zi)] . (F.57)

Since νn � k
1
2
− 1
r

n , ‖a‖2 ≤ k
1
2
− 1
r

n ‖a‖r for any a ∈ Rkn , and we assumed the smallest

singular value of (F.43) and the largest eigenvalue of (F.40) are respectively bounded

away from zero and infinity uniformly in θ ∈ (Θ0n(P ) ∩R)ε, n, and P ∈ P0, we obtain

‖h‖E ≤ νn‖Dn,P (θ)[h]‖r (F.58)

for any θ ∈ (Θ0n(P ) ∩ R)ε, P ∈ P0, and h ∈ Bn. In order to verify (74), we define the

class Gδ,n ≡ {g : g(z) = ∇δM(z, θ)qk,n,(z)p
jn
n (y)′β for some θ ∈ Θn, ‖β‖2 ≤ 1, 1 ≤

j ≤ jn, 1 ≤ k ≤ kn, and 1 ≤  ≤ J }. Since supy ‖p
jn
n (y)‖2 .

√
jn, as exploited in

(F.50), and ‖qk,n,‖L∞P was assumed to be uniformly bounded, it follows from (F.38)

that Fδ
√
jnK0 is an envelope for Gδ,n for K0 sufficiently large. Therefore, it follows that

EP [ sup
g∈Gδ,n

|Gng|] . J[ ](‖
√
jnFδK0‖L2

P
,Gn,δ, ‖ · ‖L2

P
) (F.59)

by Theorem 2.14.2 in van der Vaart and Wellner (1996). Furthermore, exploiting once

again that supy ‖p
jn
n (y)‖2 .

√
jn and condition (F.48) we can conclude

|∇δM(Zi, θ1)qk,n,(Zi)p
jn
n (Yi)

′β̃1 −∇δM(Zi, θ2)qk,n,(Zi)p
jn
n (Yi)

′β̃2|

. ‖Fδ‖∞‖pjn′n (β̃1 − β̃2)‖∞ + {‖π1 − π2‖2 + ‖pjn′n (β1 − β2)‖∞}‖pjn′n β̃2‖∞

.
√
jn‖β̃1 − β̃2‖2 + jn{‖π1 − π2‖2 + ‖β1 − β2‖2} . (F.60)

for any θ1 = (π1, p
jn′
n β1) and θ2 = (π2, p

jn′
n β2). Thus, result (F.60), Theorem 2.7.11

in van der Vaart and Wellner (1996), and arguing as in (F.41) and (F.42) implies

supP∈P J[ ](‖
√
jnFδ‖L2

P
,Gδ,n, ‖ · ‖L2

P
) = O(jn log(Cnjn)). Similarly, if we define Gπ,n ≡

{g : g(z) = pj,n(y)qk,n,(z)∇πM(z, θ)π for some 1 ≤ j ≤ jn, 1 ≤ k ≤ kn, 1 ≤  ≤
J , θ ∈ Θn and ‖π‖2 ≤ 1}, then by analogous arguments we can conclude

sup
P∈P

EP [ sup
g∈Gπ,n

|Gng|] = O(jn log(Cnjn)) . (F.61)
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Thus, employing the above results together with Markov’s inequality finally implies that

sup
θ∈Θn

sup
h∈Bn:‖h‖E=1

‖D̂n(θ)[h]− Dn,P (θ)[h]‖r

.

√
kn√
n
× { sup

g∈Gπ,n
|Gng|+ sup

g∈Gδ,n
|Gng|} = Op(

√
knjn log(Cnjn)√

n
) . (F.62)

Exploiting (F.58) and (F.62), it then follows that the conditions of Lemma 6.1 are

satisfied and constraint (ii) in (F.56) can be ignored if `n can be chosen to simultaneously

satisfy Assumption 6.6 and `n = o(Rn). These requirements are met provided that

knj
3/2
n log(kn) log2(Cnjn)√

n
= o(an) , (F.63)

which represents a strengthening of (F.46) – note strengthening (F.46) to (F.63) poten-

tially makes Assumption 5.3(ii) less tenable. Hence, under (F.63) we may set

Ûn(R) = inf
(π,β)
‖Ŵnρ(·, θ̂) ∗ qknn + D̂n(θ̂)[(π, pjn′n β)]‖Σ̂n,r

s.t.
pjnn (y)′β√

n
≤ max{0,−pjnn (y)′β̂ − rn} for all y , (F.64)

i.e. the second constraint in (F.56) may be ignored when computing the bootstrap

critical values.

Discussion of Example 2.4

An observation i in this example was assumed to consist of an instrument Zi ∈ Rdz

and a pair of individuals j ∈ {1, 2} for whom we observe the hospital Hij in the network

H that they were referred to, as well as for all hospitals h ∈ H the cost of treatment

Pij(h) and distance to hospital Dij(h). Ho and Pakes (2014) then derive

E[

2∑
j=1

{γ0(Pij(Hij)− Pij′(Hij′)) + g0(Dij(Hij))− g0(Dij(Hij′))}|Zi] ≤ 0 (F.65)

where γ0 ∈ R, g0 : R+ → R+ is an unknown monotonic function, and j′ ≡ {1, 2} \ {j}.
For notational simplicity, we let Xi = ({{Pij(h), Dij(h)}h∈H, Hij}2j=1, Zi) and define

ψ(Xi, γ, g) ≡
2∑
j=1

{γ(Pij(Hij)− Pij(Hij′)) + g(Dij(Hij))− g(Dij(Hij′))} . (F.66)

In addition, we assume that the supports of Dij(Hij) and Dij(Hij′) are contained in a

bounded set uniformly in P ∈ P and j ∈ {1, 2}, which we normalize to [0, 1]. Finally,
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recall that in this example γ0 is the parameter of interest, and that we aim to test

H0 : γ0 = c0 H1 : γ0 6= c0 (F.67)

employing the moment restriction (F.65) while imposing monotonicity of g0 : R+ → R+.

In order to map this problem into our framework, we follow the discussion of Example

2.4 in the main text – see equations (21)-(22) – and rewrite restriction (F.65) as

E[ψ(Xi, γ0, g0)|Zi] + λ0(Zi) = 0 , (F.68)

for a function λ0 satisfying λ0(Zi) ≥ 0. We further define the Hilbert space L2
U by

L2
U ≡ {f : [0, 1]→ R : ‖f‖L2

U
<∞ for ‖f‖2L2

U
≡
∫ 1

0
f2(u)du} (F.69)

and note C1([0, 1]) ⊂ L2
U . The parameter in this example is thus θ0 = (γ0, g0, λ0) which

we view as an element of B = R× C1([0, 1])× `∞(Rdz), and set as the residual

ρ(Xi, θ) = ψ(Xi, γ, g) + λ(Zi) (F.70)

for any θ = (γ, g, λ). The hypothesis in (F.67) can then be tested by letting F = R

and ΥF (θ) = γ − c0 for any θ ∈ B, and imposing the monotonicity constraint on g and

positivity restriction on λ by setting G = `∞([0, 1]) × `∞(Rdz) and ΥG(θ) = −(g′, λ)

for any θ ∈ B. Finally, as in Example 2.3 we utilize a noncompact parameter space and

let Θ = B, which together with the preceding discussion verifies the general structure

of our framework imposed in Assumptions 2.1 and 2.2.

To build the test statistic In(R), we let {Ak,n}knk=1 denote a triangular array of

partitions of Rdz , and set qknn (z) ≡ (1{z ∈ A1,n}, . . . , 1{z ∈ Akn,n})′. For ease of

computation, it is convenient to also employ {1{z ∈ Ak,n}}knk=1 as a sieve for `∞(Rdz)

and thus for a sequence Cn ↑ ∞ we approximate `∞(Rdz) by the set

Λn ≡ {λ ∈ `∞(Rdz) : λ = qkn′n π for some ‖π‖2 ≤ Cn} . (F.71)

In turn, for {pj,n}jnj=1 a triangular array of orthonormal functions in L2
U such as b-splines

or wavelets, and pjnn (u) = (p1,n(u), . . . , pjn,n(u))′ we let the sieve for B be given by

Θn ≡ {(γ, g, λ) ∈ B : g = pjn′n β, ‖β‖2 ≤ Cn, λ ∈ Λn} . (F.72)
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Given the stated parameter choices, the test statistic In(R) is then equivalent to

In(R) = inf
(γ,β,π)

‖ 1√
n

n∑
i=1

ρ(Xi, (γ, p
jn′
n β, qkn′n π)) ∗ qknn (Zi)‖Σ̂n,r

s.t. (i) ‖β‖2 ≤ Cn, (ii) γ = c0, (iii) ∇pjn′n β ≥ 0, (iv) π ≥ 0 , (F.73)

where restriction (i) imposes that θ ∈ Θn and the requirement ‖π‖2 ≤ Cn can be

ignored as argued in Remark 6.3, and restrictions (ii) and (iii)-(iv) respectively enforce

the equality (ΥF (θ) = 0) and inequality (ΥG(θ) ≤ 0) constraints. While we introduce

(F.73) due to its link to our general formulation in (26), it is actually more convenient

to work with a profiled version of In(R). Specifically, the choice of sieve Λn enables us

to easily profile the optimal π ∈ Rkn in (F.73) for any given choice of (γ, β) leading to

In(R) = inf
(γ,β)
‖{ 1√

n

n∑
i=1

ψ(Xi, γ, p
jn′
n β) ∗ qknn (Zi)} ∨ 0‖Σ̂n,r

s.t. (i) ‖β‖2 ≤ Cn, (ii) γ = c0, (iii) ∇pjn′n β ≥ 0 . (F.74)

The ability to profile out the nuisance parameter λ grants this problem an additional

structure that enables us to weaken some of our assumptions. In particular, the rate

of convergence of the minimizers of In(R) in (F.74) is better studied through direct

arguments rather than a reliance on Theorem 4.1. To this end, let

Γ0n(P ) ∩R ≡ {(γ, g) : (γ, g, λ) ∈ Θ0n(P ) ∩R for some λ ∈ `∞(Rdz)}

Γn ∩R ≡ {(γ, g) : (γ, g, λ) ∈ Θn ∩R for some λ ∈ `∞(Rdz)} (F.75)

denote the profiled set Θ0n(P ) ∩R and profiled sieve Θn ∩R. For each (γ, g) ∈ Γn ∩R
we then denote the corresponding population and sample profiled λ by

λ
(γ,g)
n,P (z) ≡ −

kn∑
k=1

1{z ∈ Ak,n}{EP [ψ(Xi, γ, g)|Zi ∈ Ak,n] ∧ 0} (F.76)

λ̂(γ,g)
n (z) ≡ −

kn∑
k=1

1{z ∈ Ak,n}{
∑n

i=1 1{Zi ∈ Ak,n}ψ(Xi, γ, g)∑n
i=1 1{Zi ∈ Ak,n}

∧ 0} , (F.77)

and observe that Θ0n(P )∩R = {(γ, g, λ(γ,g)
n,P ) : (γ, g) ∈ Γ0n(P )∩R}. Therefore, defining

Pn(γ, g) ≡ ‖{ 1√
n

n∑
i=1

ψ(Xi, γ, g) ∗ qknn (Zi)} ∨ 0‖Σ̂n,r , (F.78)
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we can then construct a set estimator for the profiled identified set Γ0n(P )∩R by setting

Γ̂n ∩R ≡ {(γ, g) ∈ Γn ∩R : Pn(γ, g) ≤ inf
θ∈Θn∩R

Qn(θ) + τn} (F.79)

for some τn ↓ 0. Next, we note that the collection of transformations {qk,n}knk=1 is

orthogonal in L2
P , yet not orthonormal. In order to normalize them, we suppose that

1

kn
� inf

P∈P
inf

1≤k≤kn
P (Zi ∈ Ak,n) � sup

P∈P
sup

1≤k≤kn
P (Zi ∈ Ak,n) (F.80)

which implies ‖qk,n‖L2
P
� k

−1/2
n uniformly in P ∈ P, 1 ≤ k ≤ kn, and n. Following the

discussion of Examples 2.1, 2.2, and 2.3 we further impose the condition

−→
d H((γ, g),Γ0n(P ) ∩R, ‖ · ‖2 + ‖ · ‖L2

U
)

. k
1− 1

r
n {‖EP [ψ(Xi, γ, g) ∗ qknn (Zi)] ∨ 0‖r +O(ζn)} . (F.81)

Defining Gn ≡ {ψ(x, γ, g)qk,n(z) : (γ, g) ∈ Γn ∩R, 1 ≤ k ≤ kn}, next suppose that

‖g‖2L2
U
� EP [g2(Dij(Hij))] � EP [g2(Dij(Hij′))] (F.82)

uniformly in g ∈ L2
U , j ∈ {1, 2}, and P ∈ P. If in addition EP [P 2

ij(Hij) + P 2
ij(Hij′)]

is bounded uniformly in P ∈ P and j ∈ {1, 2}, then Gn has an envelope Gn satisfying

supP∈P ‖Gn‖L2
P
. Cn. Arguing as in (F.42) it is then possible to show

sup
P∈P

J[ ](Cn,Gn, ‖ · ‖L2
P

) . Cn
√
jn log(kn) , (F.83)

and hence letting P̄n,P (γ, g) ≡ ‖
√
nEP [ψ(Xi, γ, g) ∗ qknn (Zi)] ∨ 0‖Σ̂n,r for any (γ, g) ∈

R× L2
U we obtain by Theorem 2.14.2 in van der Vaart and Wellner (1996) that

sup
(γ,g)∈Γn∩R

|Pn(γ, g)− P̄n,P (γ, g)| = Op(k
1/r
n Cn

√
jn log(kn)) (F.84)

uniformly in P ∈ P since ‖Σ̂n‖o,r = Op(1) uniformly in P ∈ P by Lemma B.3. Under

(F.81) and (F.84) the proof of Theorem 4.1 applies without changes, and therefore under

the no-bias condition of Assumption 5.3(ii) we obtain uniformly in P ∈ P

−→
d H(Γ̂n ∩R,Γ0n(P ) ∩R, ‖ · ‖2 + ‖ · ‖L2

U
) = Op(

knCn
√
jn log(kn)√
n

+ k
1− 1

r
n τn) . (F.85)

Moreover, it also follows from (F.82) that for any (γ1, g1), (γ2, g2) ∈ Γn ∩R we have

sup
P∈P
‖λ(γ1,g1)

n,P − λ(γ2,g2)
n,P ‖L2

P
. ‖g1 − g2‖L2

U
. (F.86)
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In addition, by standard arguments – see e.g. Lemmas 2.2.9 and 2.2.10 in van der Vaart

and Wellner (1996) – it also follows from (F.80) that uniformly in P ∈ P we have

max
1≤k≤kn

| 1
n

n∑
i=1

1{Zi ∈ Ak,n}
P (Zi ∈ Ak,n)

− 1| = Op(

√
kn log(kn)√

n
) , (F.87)

while under (F.83) Theorem 2.14.2 in van der Vaart and Wellner (1996) implies that

sup
f∈Gn

| 1
n

n∑
i=1

f(Xi)− EP [f(Xi)]| = Op(
Cn
√
jn log(kn)√
n

) . (F.88)

Thus, combining (F.80), (F.87), (F.88) with the definitions in (F.76) and (F.77) yields

sup
(γ,g)∈Γn∩R

sup
P∈P
‖λ̂(γ,g)

n − λ(γ,g)
n,P ‖L2

P
= Op(

knCn
√

(kn ∨ jn) log(kn)√
n

) . (F.89)

Hence, setting ‖θ‖E = ‖γ‖2 + ‖g‖L2
U

+ supP∈P ‖λ‖L2
P

for any (γ, g, λ) = θ ∈ B, and

Θ̂n ∩R = {(γ, g, λ̂(γ,g)
n ) : (γ, g) ∈ Γ̂n ∩R} , (F.90)

we finally obtain from Θ0n(P )∩R = {(γ, g, λ(γ,g)
n,P ) : (γ, g) ∈ Γ0n(P )∩R}, results (F.85),

(F.86), and (F.89) that uniformly in P ∈ P we have that

−→
d H(Θ̂n ∩R,Θ0n(P ) ∩R, ‖ · ‖E) = Op(

knCn
√

(kn ∨ jn) log(kn)√
n

+ k
1− 1

r
n τn) . (F.91)

For the rest of the following discussion, we thus let νn = k
1− 1

r
n and set Rn to equal

Rn =
knCn

√
(kn ∨ jn) log(kn)√

n
; (F.92)

compare to result (48) in the main text.

With regards to Section 5, we refer to Corollary G.1 for sufficient conditions for

Assumption 5.1, while Assumption 5.2 is satisfied with κρ = 1 and some Kρ <∞ since

‖θ‖E = ‖γ‖2 + ‖g‖L2
U

+ supP∈P ‖λ‖L2
P

for any (γ, g, λ) = θ ∈ B and we assumed (F.82)

holds. Moreover, from (F.72) and arguing as in (F.42) we calculate

sup
P∈P

J[ ](η,Fn, ‖ · ‖L2
P

) .
√
jn ∨ kn(η log(

Cn
η

) + η) , (F.93)

which together with (F.92) implies that a sufficient conditions for Assumption 5.3(i) is

k
1+ 1

r
n (jn ∨ kn)Cn log2(n)√

n
= o(an) . (F.94)
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In turn, we note the definitions of ψ(Xi, γ, g) and ρ(Xi, θ) in (F.66) and (F.70) imply

∇mP (θ)[h] = EP [ψ(Xi, γ, g)|Zi] + λ(Zi) , (F.95)

and hence Assumption 5.4(i)-(ii) holds with Km = 0, while Assumption 5.4(iii) is sat-

isfied for some Mm < ∞ since we assumed that EP [P 2
ij(Hij) + P 2

ij(Hij′)] is bounded

uniformly in P ∈ P and imposed condition (F.82).

Turning to the construction of the bootstrap statistic, we first recall that any θ ∈
Θ̂n ∩R is of the form θ = (γ, g, λ̂

(γ,g)
n ) for some (γ, g) ∈ Γ̂n ∩R – see (F.90). Therefore,

Ŵnρ(·, θ) ∗ qknn =
1√
n

n∑
i=1

ωi

{
(ψ(Xi, γ, g) + λ̂(γ,g)

n (Zi)) ∗ qknn (Zi)

− (
1

n

n∑
j=1

ψ(Xj , γ, g) ∗ qknn (Zj)) ∨ 0
}

(F.96)

for any (γ, g, λ) = θ ∈ Θ̂n ∩ R. Next, also note that for any θ ∈ B and h = (γ, g, λ),

definitions (F.66) and (F.70) imply that the estimator D̂n(θ)[h] (as in (63)) is equal to

D̂n(θ)[h] =
1

n

n∑
i=1

{ψ(Xi, γ, g) + λ(Zi)} ∗ qknn (Zi) . (F.97)

We further observe that if we metrize the topology on B = R × C1([0, 1]) × `∞(Rdz)

by ‖θ‖B = ‖γ‖2 ∨ ‖g‖1,∞ ∨ ‖λ‖∞ for any θ = (γ, g, λ) ∈ B, then Assumption 6.1(i)

holds with Kb = 3. In turn, we also note that since ΥG : B → `∞([0, 1]) × `∞(Rdz)

is linear and continuous, Assumptions 6.2(i)-(iii) are satisfied with Kg = 0, some finite

Mg, and ∇ΥG(θ)[h] = −(g′, λ) for any θ ∈ B and h = (γ, g, λ). Similarly, since ΥF :

B→ R is affine and ∇ΥF (θ)[h] = γ for any θ ∈ B and h = (γ, g, λ), Assumption 6.4 is

automatically satisfied, while Assumption 6.3 holds with Kf = 0 and Mf = 1.

Writing each θ̂ ∈ Θ̂n ∩R in the form θ̂ = (γ̂, ĝ, qkn′n π̂), we then finally obtain that

Ûn(R) = inf
θ̂∈Θ̂n∩R

inf
(γ,β,π)

‖Ŵnρ(·, θ̂) ∗ qknn + D̂n(θ̂)[(γ, pjn′n β, qkn′n π)]‖Σ̂n,r

s.t. (i) γ = 0, (ii)
π√
n
≥ 0 ∧ (rn − π̂)

(iii)
∇pjn′n β√

n
≥ 0 ∧ (rn − ĝ′), (iv) ‖p

jn′
n β√
n
‖1,∞ ∨ ‖

π√
n
‖∞ ≤ `n (F.98)

where constraint (i) corresponds to ΥF (θ̂ + h/
√
n) = 0, the restrictions in (ii) and (iii)

impose h/
√
n ∈ Gn(θ̂), and the constraint in (iv) demand ‖h/

√
n‖B ≤ `n – compare to

the definition of V̂n(θ, `n) in (69). As in Section 7, constraint (iii) reduces to a finite

number of linear constraints when employing orthonormalized b-Splines of Order 3 as
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the basis {pj,n}jnj=1. Moreover, under such a choice of sieve we further have

‖pjn′n β‖1,∞ . j3/2
n ‖β‖2 , (F.99)

(see Newey (1997)) and thus exploiting ‖β‖2 ≤ j
1/2
n ‖β‖∞ it may be preferable for easy

of computation to replace the constraint ‖pjn′n β‖1,∞ ≤
√
n`n in (F.98) by the more

conservative but linear constraints ‖β‖∞ ≤
√
n`n/j

2
n.

We refer to Theorem H.1 for sufficient conditions for Assumption 6.5 to hold, and

focus on the rate requirements imposed by Assumption 6.6. To this end, we first observe

sup
π∈Rkn

‖qkn′n π‖∞
supP∈P ‖qkn′n π‖L2

P

. sup
π∈Rkn

‖qkn′n π‖∞
‖π‖2/

√
kn

=
√
kn (F.100)

where in the second inequality we exploited (F.80) implies that supP∈P ‖qkn′n π‖L2
P
�

‖π‖2/
√
kn, and the final inequality follows from ‖qkn′n π‖∞ = ‖π‖∞ due to {Ak,n}knk=1

being a partition of Rdz . Hence, results (F.99) and (F.100) together imply that

Sn(B,E) . j3/2
n ∨ k1/2

n . (F.101)

We think it advisable to set τn = 0 which automatically satisfies Assumption 6.6 and is

simpler to implement, though we note that in contrast to Examples 2.1, 2.2, and 2.3 such

a choice may lead to a loss of power. We further note that the rate of convergence derived

in (F.92) and the bound in (F.101) imply Assumption 6.6(iii) is satisfied provided

knCn
√

(kn ∨ jn) log(kn)(j
3/2
n ∨ k1/2

n )√
n

= o(rn) . (F.102)

Finally, we note (F.93) implies the conditions imposed on `n by Assumption 6.6 become

`n(k1/r
n

√
(jn ∨ kn) log(kn) log(Cn) = o(an) . (F.103)

In parallel to Examples 2.1, 2.2, and 2.3 it may be possible to establish under additional

conditions that the bandwidth `n is not necessary – i.e. that constraint (iv) may be

dropped in (F.100). Unfortunately, such a conclusion cannot be reached by applying

Lemma 6.1 due to a failure of the condition ‖h‖E ≤ νn‖Dn,P (θ0)[h]‖r for all θ0 ∈
(Θ0n(P ) ∩R)ε and h ∈

√
n{Bn ∩R− θ}, which is required by Lemma 6.1.

Appendix G - Uniform Coupling Results

In this Appendix we develop uniform coupling results for empirical processes that

help verify Assumption 5.1 in specific applications. The results are based on the Hungar-

ian construction of Massart (1989) and Koltchinskii (1994), and are stated in a notation
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that abstracts from the rest of the paper due to the potential independent interest of

the results. Thus, in this Appendix we consider V ∈ Rdv as a generic random variable

distributed according to P ∈ P and denote its support under P by Ω(P ) ⊂ Rdv .

The rates obtained through a Hungarian construction crucially depend on the abil-

ity of the functions inducing the empirical process to be approximated by a suitable

Haar basis. Here, we follow Koltchinskii (1994) and control the relevant approximation

errors through primitive conditions stated in terms of the integral modulus of continu-

ity. Specifically, for λ the Lebesgue measure and a function f : Rdv → R, the integral

modulus of continuity of f is the function $(f, ·, P ) : R+ → R+ given by

$(f, h, P ) ≡ sup
‖s‖≤h

(

∫
Ω(P )

(f(v + s)− f(v))21{v + s ∈ Ω(P )}dλ(v))
1
2 . (G.1)

Intuitively, the integral modulus of continuity quantifies the “smoothness” of a function

f by examining the difference between f and its own translation. For Lipschitz function

f , it is straightforward to show for instance that $(f, h, P ) . h. In contrast indicator

functions such as f(v) = 1{v ≤ t} typically satisfy $(f, h, P ) . h1/2.

The uniform coupling result will established under the following Assumptions:

Assumption G.1. (i) For all P ∈ P, P � λ and Ω(P ) is compact; (ii) The densities

dP/dλ satisfy supP∈P supv∈Ω(P )
dP
dλ (v) <∞ and infP∈P infv∈Ω(P )

dP
dλ (v) > 0.

Assumption G.2. (i) For each P ∈ P there is a continuously differentiable bijection

TP : [0, 1]dv → Ω(P ); (ii) The Jacobian JTP : [0, 1]dv → R and derivative T ′P : [0, 1]dv →
Ω(P ) satisfy infP∈P infv∈[0,1]dv |JTP (v)| > 0 and supP∈P supv∈[0,1]dv ‖JTP (v)‖o,2 <∞.

Assumption G.3. The classes of functions Fn satisfy: (i) supP∈P supf∈Fn $(f, h, P ) ≤
ϕn(h) for some ϕn : R+ → R+ satisfying ϕn(Ch) ≤ Cκϕn(h) for all n, C > 0, and

some κ > 0; and (ii) supP∈P supf∈Fn ‖f‖L∞P ≤ Kn for some Kn > 0.

In Assumption G.1 we impose that V ∼ P be continuously distributed for all P ∈ P,

with uniformly (in P ) bounded supports and densities bounded from above and away

from zero. Assumption G.2 requires that the support of V under each P be “smooth”

in the sense that it may be seen as a differentiable transformation of the unit square.

Together, Assumptions G.1 and G.2 enable us to construct partitions of Ω(P ) such that

the diameter of each set in the partition is controlled uniformly in P ; see Lemma G.1.

As a result, the approximation error by the Haar bases implied by each partition can be

controlled uniformly by the integral modulus of continuity; see Lemma G.2. Together

with Assumption G.3, which imposes conditions on the integral modulus of continuity of

Fn uniformly in P , we can obtain a uniform coupling result through Koltchinskii (1994).

We note that the homogeneity condition on ϕn in Assumption G.3(i) is not necessary,

but imposed to simplify the expression for the bound.
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The following theorem provides us with the foundation for verifying Assumption 5.1.

Theorem G.1. Let Assumptions G.1-G.3 hold, {Vi}∞i=1 be i.i.d. with Vi ∼ P ∈ P and

for any δn ↓ 0 let Nn ≡ supP∈PN[ ](δn,Fn, ‖ ·‖L2
P

), Jn ≡ supP∈P J[ ](δn,Fn, ‖ ·‖L2
P

), and

Sn ≡ (

dlog2 ne∑
i=0

2iϕ2
n(2−

i
dv ))

1
2 . (G.2)

If Nn ↑ ∞, then there exist processes {Wn,P }∞n=1 such that uniformly in P ∈ P we have

‖Gn,P −Wn,P ‖Fn

= Op(
Kn log(nNn)√

n
+
Kn

√
log(nNn) log(n)Sn√

n
+ Jn(1 +

JnKn

δ2
n

√
n

)) . (G.3)

Theorem G.1 is a mild modification of the results in Koltchinskii (1994). Intuitively,

the proof of Theorem G.1 relies on a coupling of the empirical process on a sequence

of grids of cardinality Nn, and relying on equicontinuity of both the empirical and

isonormal processes to obtain a coupling on Fn. The conclusion of Theorem G.1 applies

to any choice of grid accuracy δn. In order to obtain the best rate that Theorem G.1 can

deliver, however, the sequence δn must be chosen to balance the terms in (G.3) and thus

depends on the metric entropy of the class Fn. The following Corollary illustrates the use

of Theorem G.1 by establishing a coupling result for Euclidean classes. We emphasize,

however, that different metric entropy assumptions on Fn lead to alternative optimal

choices of δn in Theorem G.1 and thus also to differing coupling rates.

Corollary G.1. Let Assumption 3.1, 3.2(i), G.1, G.2 hold, and supf∈Fn ‖f‖L∞P be

bounded uniformly in n and P ∈ P. If supP∈P supf∈Fn maxk,$(fqk,n,, h, P ) ≤ Anh
γ

for some γf ∈ (0, 1], supP∈PN[ ](ε,Fn, ‖ · ‖L2
P

) ≤ (D/ε)jn for some jn ↑ ∞ and D <∞,

and log(kn) = O(jn), then it follows that uniformly in P ∈ P we have

‖Gn,P fq
kn
n −Wn,P fq

kn
n ‖r = Op(k

1/r
n Bn log(Bnknn){An

√
jn

nγ/dv
+
jn log(Bnn)√

n
}) .

Below, we include the proofs of Theorem G.1, Corollary G.1, and auxiliary results.

Proof of Theorem G.1: Let {∆i(P )} be a sequence of partitions of Ω(P ) as in Lemma

G.1, and BP,i the σ-algebra generated by ∆i(P ). By Lemma G.2 and Assumption G.3,

sup
P∈P

sup
f∈Fn

(

dlog2 ne∑
i=0

2iEP [(f(V )− EP [f(V )|BP,i])2])
1
2

≤ C1(

dlog2 ne∑
i=0

2iϕ2
n(2−

i
dv ))

1
2 ≡ C1Sn (G.4)
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for some constant C1 > 0, and for Sn as defined in (G.2). Next, let FP,n,δn ⊆ Fn denote

a finite δn-net of Fn with respect to ‖ · ‖L2
P

. Since N(ε,Fn, ‖ · ‖L2
P

) ≤ N[ ](ε,Fn, ‖ · ‖L2
P

),

it follows from the definition of Nn that we may choose FP,n,δn so that

sup
P∈P

card(FP,n,δn) ≤ sup
P∈P

N[ ](δn,Fn, ‖ · ‖L2
P

) ≡ Nn . (G.5)

By Theorem 3.5 in Koltchinskii (1994), (G.4) and (G.5), it follows that for each n ≥ 1

there exists an isonormal process Wn,P , such that for all η1 > 0, η2 > 0

sup
P∈P

P (

√
n

Kn
‖Gn,P −Wn,P ‖FP,n,δn ≥ η1 +

√
η1
√
η2(C1Sn + 1))

. Nne
−C2η1 + ne−C2η2 , (G.6)

for some C2 > 0. Since Nn ↑ ∞, (G.6) implies for any ε > 0 there are C3 > 0, C4 > 0

sufficiently large, such that setting η1 ≡ C3 log(Nn) and η2 ≡ C3 log(n) yields

sup
P∈P

P (‖Gn,P −Wn,P ‖FP,n,δn ≥ C4Kn ×
log(nNn) +

√
log(Nn) log(n)Sn√
n

) < ε . (G.7)

Next, note that by definition of FP,n,δn , there exists a Γn,P : Fn → FP,n,δn such that

supP∈P supf∈Fn ‖f −Γn,P f‖L2
P
≤ δn. Let D(ε,Fn, ‖ · ‖L2

P
) denote the ε-packing number

for Fn under ‖ · ‖L2
P

, and note D(ε,Fn, ‖ · ‖L2
P

) ≤ N[ ](ε,Fn, ‖ · ‖L2
P

). Therefore, by

Corollary 2.2.8 in van der Vaart and Wellner (1996) we can conclude that

sup
P∈P

EP [‖Wn,P −Wn,P ◦ Γn,P ‖Fn ]

. sup
P∈P

∫ δn

0

√
logD(ε,Fn, ‖ · ‖L2

P
)dε ≤ sup

P∈P
J[ ](δn,Fn, ‖ · ‖L2

P
) ≡ Jn . (G.8)

Similarly, employing Lemma 3.4.2 in van der Vaart and Wellner (1996) yields that

sup
P∈P

EP [‖Gn,P −Gn,P ◦ Γn,P ‖Fn ]

. sup
P∈P

J[ ](δn,Fn, ‖ · ‖L2
P

)(1 + sup
P∈P

J[ ](δn,Fn, ‖ · ‖L2
P

)Kn

δ2
n

√
n

) ≡ Jn(1 +
JnKn

δ2
n

√
n

) (G.9)

Therefore, combining results (G.7), (G.8), and (G.9) together with the decomposition

‖Gn,P −Wn,P ‖Fn
≤ ‖Gn,P −Wn,P ‖FP,n,δn + ‖Gn,P −Gn,P ◦ Γn,P ‖Fn + ‖Wn,P −Wn,P ◦ Γn,P ‖Fn ,

(G.10)

establishes the claim of the Theorem by Markov’s inequality.
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Proof of Corollary G.1: Define the class Gn ≡ {fqk,n, : for some f ∈ Fn, 1 ≤
 ≤ J and 1 ≤ k ≤ kn,}, and note that Lemma B.1 implies that for any δn ↓ 0

sup
P∈P

N[ ](δn,Gn, ‖ · ‖L2
P

) ≤ kn × sup
P∈P

N[ ](δn/Bn,Fn, ‖ · ‖L2
P

) ≤ kn × (
DBn
δn

)jn . (G.11)

Similarly, exploiting (G.11), δn ↓ 0 and
∫ a

0 log(M/u)du = a log(M/a) + a we conclude

sup
P∈P

J[ ](δn,Gn, ‖ · ‖L2
P

) ≤
∫ δn

0
{log(kn) + jn log(

DBn
ε

)}1/2dε

. (
√

log(kn) +
√
jn)

∫ δn

0
log(

DBn
ε

)dε . (
√

log(kn) +
√
jn)× δn log(

Bn
δn

) . (G.12)

In turn, note that for Sn as defined in (G.2), we obtain from ϕn(h) = Anh
γ that

{
dlog2 ne∑
i=0

2i × A2
n

22iγ/dv
}1/2 . An × n

1
2
− γ
dv . (G.13)

Finally, we also note that supf∈Gn ‖f‖L∞P . Bn due to Assumption 3.2(i) and f ∈ Fn
being uniformly bounded by hypothesis. Therefore, setting δn =

√
jn/
√
n in (G.11) and

(G.12), and exploiting ‖a‖r ≤ d1/r‖a‖∞ for any a ∈ Rd we obtain that

sup
f∈Fn

‖Gn,P fq
kn
n −Wn,P fq

kn
n ‖r

≤ k1/r
n ‖Gn,P −Wn,P ‖Gn = Op(k

1/r
n Bn log(Bnknn){An

√
jn

nγ/dv
+
jn log(Bnn)√

n
}) (G.14)

uniformly in P ∈ P by Theorem G.1.

Lemma G.1. Let BP denote the completion of the Borel σ−algebra on Ω(P ) with respect

to P . If Assumptions G.1(i)-(ii) and G.2(i)-(ii) hold, then for each P ∈ P there exists

a sequence {∆i(P )} of partitions of the probability space (Ω(P ),BP , P ) such that:

(i) ∆i(P ) = {∆i,k(P ) : k = 0, . . . , 2i − 1}, ∆i,k(P ) ∈ BP and ∆0,0(P ) = Ω(P ).

(ii) ∆i,k(P ) = ∆i+1,2k(P ) ∪∆i+1,2k+1(P ) and ∆i+1,2k(P ) ∩∆i+1,2k+1(P ) = ∅ for any

integers k = 0, . . . 2i − 1 and i ≥ 0.

(iii) P (∆i+1,2k(P )) = P (∆i+1,2k+1(P )) = 2−i−1 for k = 0, . . . 2i − 1, i ≥ 0.

(iv) supP∈P max0≤k≤2i−1 supv,v′∈∆i,k(P ) ‖v − v′‖2 = O(2−
i
dv ).

(v) BP equals the completion with respect to P of the σ-algebra generated by
⋃
i≥0 ∆i(P ).

Proof: Let A denote the Borel σ-algebra on [0, 1]dv , and for any A ∈ A define

QP (A) ≡ P (TP (A)) , (G.15)

where TP (A) ∈ BP due to T−1
P being measurable. Moreover, QP ([0, 1]dv) = 1 due to TP

being surjective, and QP is σ-additive due to TP being injective. Hence, we conclude
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QP defined by (G.15) is a probability measure on ([0, 1]dv ,A). In addition, for λ the

Lebesgue measure, we obtain from Theorem 3.7.1 in Bogachev (2007) that

QP (A) = P (TP (A)) =

∫
TP (A)

dP

dλ
(v)dλ(v) =

∫
A

dP

dλ
(TP (a))|JTP (a)|dλ(a) , (G.16)

where |JTP (a)| denotes the Jacobian of TP at any point a ∈ [0, 1]dv . Hence, QP has

density with respect to Lebesgue measure given by gP (a) ≡ dP
dλ (TP (a))|JTP (a)| for any

a ∈ [0, 1]dv . Next, let a = (a1, . . . , adv)
′ ∈ [0, 1]dv and define for any t ∈ [0, 1]

Gl,P (t|A) ≡ QP (a ∈ A : al ≤ t)
QP (A)

, (G.17)

for any set A ∈ A and 1 ≤ l ≤ dv. Further let m(i) ≡ i− b i−1
dv
c × dv – i.e. m(i) equals i

modulo dv – and setting ∆̃0,0(P ) = [0, 1]dv inductively define the partitions (of [0, 1]dv)

∆̃i+1,2k(P ) ≡ {a ∈ ∆̃i,k(P ) : Gm(i+1),P (am(i+1)|∆̃i,k(P )) ≤ 1

2
}

∆̃i+1,2k+1(P ) ≡ ∆̃i,k(P ) \ ∆̃i+1,2k(P ) (G.18)

for 0 ≤ k ≤ 2i − 1. For cl(∆̃i,k(P )) the closure of ∆̃i,k(P ), we then note that by

construction each ∆̃i,k(P ) is a hyper-rectangle in [0, 1]dv – i.e. it is of the general form

cl(∆̃i,k(P )) =

dv∏
j=1

[li,k,j(P ), ui,k,j(P )] . (G.19)

Moreover, since gP is positive everywhere on [0, 1]dv by Assumptions G.1(ii) and G.2(ii),

it follows that for any i ≥ 0, 0 ≤ k ≤ 2i − 1 and 1 ≤ j ≤ dv, we have

li+1,2k,j(P ) = li,k,j(P )

ui+1,2k,j(P ) =

{
ui,k,j(P ) if j 6= m(i+ 1)

solves Gm(i+1),P (ui+1,2k,j(P )|∆̃i,k(P )) = 1
2 if j = m(i+ 1)

(G.20)

Similarly, since ∆̃i+1,2k+1(P ) = ∆̃i,k(P ) \ ∆̃i+1,2k(P ), it additionally follows that

ui+1,2k+1,j(P ) = ui,k,j(P ) li+1,2k+1,j(P ) =

{
li,k,j(P ) if j 6= m(i+ 1)

ui+1,2k,j(P ) if j = m(i+ 1)
(G.21)

Since QP (cl(∆̃i+1,2k(P ))) = QP (∆̃i+1,2k(P )) by QP � λ, (G.17) and (G.20) yield

QP (∆̃i+1,2k(P )) = QP (a ∈ ∆̃i,k(P ) : am(i+1) ≤ ui+1,2k,m(i+1)(P ))

= Gm(i+1),P (ui+1,2k,m(i+1)(P )|∆̃i,k(P ))QP (∆̃i,k(P ))

=
1

2
QP (∆̃i,k(P )) . (G.22)
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Therefore, since ∆̃i,k(P ) = ∆̃i+1,2k(P )∪∆̃i+1,2k+1(P ), it follows thatQP (∆̃i+1,2k+1(P )) =
1
2QP (∆̃i,k(P )) for 0 ≤ k ≤ 2i − 1 as well. In particular, QP (∆̃0,0(P )) = 1 implies that

QP (∆̃i,k(P )) =
1

2i
(G.23)

for any integers i ≥ 1 and 0 ≤ k ≤ 2i − 1. Moreover, we note that result (G.16) and

Assumptions G.1(ii) and G.2(ii) together imply that the densities gP of QP satisfy

0 < inf
P∈P

inf
a∈[0,1]dv

gP (a) < sup
P∈P

sup
a∈[0,1]dv

gP (a) <∞ , (G.24)

and therefore QP (A) � λ(A) uniformly in A ∈ A and P ∈ P. Hence, since by (G.20)

ui+1,2k,j(P ) = ui,k,j(P ) and li+1,2k,j(P ) = li,k,j(P ) for all j 6= m(i+ 1), we obtain

(ui+1,2k,m(i+1)(P )− li+1,2k,m(i+1)(P ))

(ui,k,m(i+1)(P )− li,k,m(i+1)(P ))
=

∏dv
j=1(ui+1,2k,j(P )− li+1,2k,j(P ))∏dv

j=1(ui,k,j(P )− li,k,j(P ))

=
λ(∆̃i+1,2k(P ))

λ(∆̃i,k(P ))
�
QP (∆̃i+1,2k(P ))

QP (∆̃i,k(P ))
=

1

2
(G.25)

uniformly in P ∈ P, i ≥ 0, and 0 ≤ k ≤ 2i − 1 by results (G.23) and (G.24). Moreover,

by identical arguments but using (G.21) instead of (G.20) we conclude

(ui+1,2k+1,m(i+1)(P )− li+1,2k+1,m(i+1)(P ))

(ui,k,m(i+1)(P )− li,k,m(i+1)(P ))
� 1

2
(G.26)

also uniformly in P ∈ P, i ≥ 0 and 0 ≤ k ≤ 2i − 1. Thus, since (ui+1,2k,j(P ) −
li+1,2k,j(P )) = (ui+1,2k+1,j(P )−li+1,2k+1,j(P )) = (ui,k,j(P )−li,k,j(P )) for all j 6= m(i+1),

and u0,0,j(P ) − l0,0,j(P ) = 1 for all 1 ≤ j ≤ dv we obtain from m(i) = i − b i−1
dv
c × dv,

results (G.25) and (G.26), and proceeding inductively that

(ui,k,j(P )− li,k,j(P )) � 2−
i
dv , (G.27)

uniformly in P ∈ P, i ≥ 0, 0 ≤ k ≤ 2i − 1, and 1 ≤ j ≤ dv. Thus, result (G.27) yields

sup
P∈P

max
0≤k≤2i−1

sup
a,a′∈∆̃i,k(P )

‖a− a′‖2

≤ sup
P∈P

max
0≤k≤2i−1

max
1≤j≤dv

√
dv × (ui,j,k(P )− li,j,k(P )) = O(2−

i
dv ) . (G.28)

We next obtain the desired sequence of partitions {∆i(P )} of (Ω(P ),BP , P ) by con-

structing them from the partition {∆̃i,k(P )} of [0, 1]dv . To this end, set

∆i,k(P ) ≡ TP (∆̃i,k(P )) (G.29)
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for all i ≥ 0 and 0 ≤ k ≤ 2i − 1. Note that {∆i(P )} satisfies conditions (i) and (ii)

due to T−1
P being a measurable map, TP being bijective, and result (G.18). In addition,

{∆i(P )} satisfies condition (iii) since by definition (G.15) and result (G.23):

P (∆i,k(P )) = P (TP (∆̃i,k(P ))) = QP (∆̃i,k(P )) = 2−i , (G.30)

for all 0 ≤ k ≤ 2i−1. Moreover, by Assumption G.2(ii), supP∈P supa∈[0,1]dv ‖T ′P (a)‖o,2 <
∞, and hence by the mean value theorem we can conclude that

sup
P∈P

max
0≤k≤2i−1

sup
v,v′∈∆i,k(P )

‖v − v′‖2 = sup
P∈P

max
0≤k≤2i−1

sup
a,a′∈∆̃i,k(P )

‖TP (a)− TP (a′)‖2

. sup
P∈P

max
0≤k≤2i−1

sup
a,a′∈∆̃i,k(P )

‖a− a′‖2 = O(2−
i
dv ) , (G.31)

by result (G.28), which verifies that {∆i(P )} satisfies condition (iv). Also note that to

verify {∆i(P )} satisfies condition (v) it suffices to show that
⋃
i≥0 ∆i(P ) generates the

Borel σ-algebra on Ω(P ). To this end, we first aim to show that

A = σ(
⋃
i≥0

∆̃i(P )) , (G.32)

where for a collection of sets C, σ(C) denotes the σ-algebra generated by C. For any

closed set A ∈ A, then define Di(P ) to be given by

Di(P ) ≡
⋃

k:∆̃i,k(P )∩A 6=∅

∆̃i,k(P ) . (G.33)

Notice that since {∆̃i(P )} is a partition of [0, 1]dv , A ⊆ Di(P ) for all i ≥ 0 and hence

A ⊆
⋂
i≥0Di(P ). Moreover, if a0 ∈ Ac, then Ac being open and (G.28) imply a0 /∈ Di(P )

for i sufficiently large. Hence, Ac ∩ (
⋂
i≥0Di(P )) = ∅ and therefore A =

⋂
i≥0Di(P ). It

follows that if A is closed, then A ∈ σ(
⋃
i≥0 ∆̃i(P )), which implies A ⊆ σ(

⋃
i≥0 ∆̃i(P )).

On the other hand, since ∆̃i,k(P ) is Borel for all i ≥ 0 and 0 ≤ k ≤ 2i − 1, we also have

σ(
⋃
i≥0 ∆̃i(P )) ⊆ A, and hence (G.33) follows. To conclude, we then note that

σ(
⋃
i≥0

∆i(P )) = σ(
⋃
i≥0

TP (∆̃i(P ))) = TP (σ(
⋃
i≥0

∆̃i(P ))) = TP (A) , (G.34)

by Corollary 1.2.9 in Bogachev (2007). However, TP and T−1
P being continuous implies

TP (A) equals the Borel σ-algebra in Ω(P ), and therefore (G.34) implies {∆i(P )} satisfies

condition (v) establishing the Lemma.

Lemma G.2. Let {∆i(P )} be as in Lemma G.1, and BP,i denote the σ-algebra generated

by ∆i(P ). If Assumptions G.1(i)-(ii) and G.2(i)-(ii) hold, then there are constants

112



K0 > 0, K1 > 0 such that for all P ∈ P and any f satisfying f ∈ L2
P for all P ∈ P:

EP [(f(V )− EP [f(V )|BP,i])2] ≤ K0 ×$2(f,K1 × 2−
i
dv , P ) .

Proof: Since ∆i(P ) is a partition of Ω(P ) and P (∆i,k(P )) = 2−i for all i ≥ 0 and

0 ≤ k ≤ 2i − 1, we may express EP [f(V )|BP,i] as an element of L2
P by

EP [f(V )|BP,i] = 2i
2i−1∑
k=0

1{v ∈ ∆i,k(P )}
∫

∆i,k(P )
f(v)dP (v) . (G.35)

Hence, result (G.35), P (∆i,k(P )) = 2−i for all i ≥ 0 and 0 ≤ k ≤ 2i − 1 together

with ∆i(P ) being a partition of Ω(P ), and applying Holder’s inequality to the term

(f(v)− f(ṽ))1{v ∈ Ω(P )} × 1{ṽ ∈ ∆i,k(P )} we obtain that

EP [(f(V )− EP [f(V )|BP,i])2]

=
2i−1∑
k=0

∫
∆i,k(P )

(f(v)− 2i
∫

∆i,k(P )
f(ṽ)dP (ṽ))2dP (v)

=
2i−1∑
k=0

22i

∫
∆i,k(P )

(

∫
∆i,k(P )

(f(v)− f(ṽ))1{v ∈ Ω(P )}dP (ṽ))2dP (v)

≤
2i−1∑
k=0

22iP (∆i,k(P ))

∫
∆i,k(P )

∫
∆i,k(P )

(f(v)− f(ṽ))21{v ∈ Ω(P )}dP (ṽ)dP (v)

=
2i−1∑
k=0

2i
∫

∆i,k(P )

∫
∆i,k(P )

(f(v)− f(ṽ))21{v ∈ Ω(P )}dP (ṽ)dP (v) . (G.36)

Let Di ≡ supP∈P max0≤k≤2i−1 diam{∆i,k(P )}, where diam{∆i,k(P )} is the diameter

of ∆i,k(P ). Further note that by Lemma G.1(iv), Di = O(2−
i
dv ) and hence we have

λ({s ∈ Rdv : ‖s‖ ≤ Di}) ≤ M12−i for some M1 > 0 and λ the Lebesgue measure.

Noting that supP∈P supv∈Ω(P )
dP
dλ (v) <∞ by Assumption G.1(ii), and doing the change

of variables s = v − ṽ we then obtain that for some constant M0 > 0

EP [(f(V )− EP [f(V )|BP,i])2]

≤M0

2i−1∑
k=0

2i
∫

∆i,k(P )

∫
∆i,k(P )

(f(v)− f(ṽ))21{v ∈ Ω(P )}dλ(ṽ)dλ(v)

≤M0M1 sup
‖s‖≤Di

2i−1∑
k=0

∫
∆i,k(P )

(f(ṽ + s)− f(ṽ))21{ṽ + s ∈ Ω(P )}dλ(ṽ) . (G.37)

Next observe that $(f, h, P ) is decreasing in h. Hence, since {∆i,k(P ) : k = 0 . . . 2i− 1}
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is a partition of Ω(P ), and Di ≤ K12−
i
dv for some K1 > 0 by Lemma G.1(iv), we obtain

EP [(f(V )− EP [f(V )|BP,i])2] ≤M0M1 ×$2(f,K1 × 2−
i
dv , P ) (G.38)

by (G.37). Setting K0 ≡M0 ×M1 in (G.38) establishes the claim of the Lemma.

Appendix H - Multiplier Bootstrap Results

In this Appendix, we develop results that enable us to provide sufficient conditions

for verifying that Assumption 6.5 is satisfied. The results in this Appendix may be of

independent interest, as they extend the validity of the multiplier bootstrap to suitable

non-Donsker classes. In particular, applying Theorem H.1 below to the case qk,n(z) = 1

and kn = 1 for all n yields the consistency of the multiplier bootstrap for the law of the

standard empirical process indexed by a expanding classes Fn of functions.

Our analysis requires the classes Fn be sufficiently “smooth” in that they satisfy:

Assumption H.1. For each P ∈ P and n there exists a {pj,n,P }∞j=1 ⊂ L2
P such that: (i)

{pj,n,P }∞j=1 is orthonormal in L2
P and ‖pj,n,P ‖L∞P is uniformly bounded in j, n ∈ N and

P ∈ P; (ii) For any jn ↑ ∞ and, pjnn,P (v) ≡ (p1,n,P (v), . . . , pjn,n,P (v))′ the eigenvalues

of EP [(qknn (Zi)⊗ pjnn,P (Vi))(q
kn
n (Zi)⊗ pjnn,P (Vi))

′] are bounded uniformly in n and P ∈ P;

(iii) For some Mn ↑ ∞ and γρ > 3/2 we have for all P ∈ P the inclusion

Fn ⊆ {f =
∞∑
j=1

pj,n,P (v)βj : {βj}∞j=1 satisfies |βj | ≤
Mn

jγρ
} . (H.1)

Assumption H.1(i) demands the existence of orthonormal and bounded functions

{pj,n,P }∞j=1 in L2
P that provide suitable approximations to the class Fn in the sense

imposed in Assumption H.1(iii). Crucially, we emphasize that the array {pj,n,P }∞j=1 need

not be known as it is merely employed in the theoretical construction of the bootstrap

coupling, and not in the computation of the multiplier bootstrap process Ŵn. In certain

applications, however, such as when ρ is linear in θ and linear sieves are employed as

Θn, the functions {pj,n,P }∞j=1 may be set to equal a rotation of the sieve.20 It is also

worth pointing out that, as in Appendix G, the concept of “smoothness” employed does

not necessitate that ρ be differentiable in its arguments. Finally, Assumption H.1(ii)

constrains the eigenvalues of EP [(qknn (Zi)⊗pjnn,P (Vi))(q
kn
n (Zi)⊗pjnn,P (Vi))

′] to be bounded

from above. This requirement may be dispensed with, allowing the largest eigenvalues to

diverge with n, at the cost of slowing the rate of convergence of the Gaussian multiplier

bootstrap Ŵn to the corresponding isonormal process W?
n,P .

20Concretely, if Θn = {f = p̃jn′n γ : for some γ ∈ Rjn} and X = (Y,W ′)′ with Y ∈ R and ρ(X, θ) ≡
Y − θ(W ), then a candidate choice for pjn+1

n (v) are the orthonormalized functions (y, pjnn (w)′)′.
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As we next show, Assumption H.1 provides a sufficient condition for verifying As-

sumption 6.5. In the following, recall Fn is the envelope of Fn (as in Assumption 3.3(ii)).

Theorem H.1. Let Assumptions 3.1, 3.2(i), 3.3(ii), H.1 hold, and {ωi}ni=1 be i.i.d. with

ωi ∼ N(0, 1) independent of {Vi}ni=1. Then, for any jn ↑ ∞ with jnkn log(jnkn)Bn =

o(n) there is an isonormal W?
n,P independent of {Vi}ni=1 satisfying uniformly in P ∈ P

sup
f∈Fn

‖Ŵnfq
kn
n −W?

n,P fq
kn
n ‖r

= Op(
supP∈P ‖Fn‖L2

P
B

1
2
n k

1
4

+ 1
r

n (jn log(kn))
3
4 (log(jn))

1
4

n
1
4

+
k

1/r
n BnMn

√
log(kn)

j
γρ−3/2
n

) .

The rate of convergence derived in Theorem H.1 depends on the selected sequence

jn ↑ ∞, which should be chosen optimally to deliver the best possible implied rate.

Heuristically, the proof of Theorem H.1 proceeds in two steps. First, we construct a

multivariate normal random variable W?
n,P (qknn ⊗ p

jn
n,P ) ∈ Rjnkn that is coupled with

Ŵn(qknn ⊗ pjnn,P ) ∈ Rjnkn , and then exploit the linearity of Ŵn to obtain a suitable

coupling on the subspace Sn,P ≡ span{qknn ⊗ pjnn,P }. Second, we employ Assumption

H.1(iii) to show that a successful coupling on Sn,P leads to the desired construction since

Fn is well approximated by {pj,n,P }∞j=1. We note that the rate obtained in Theorem H.1

may be improved upon whenever the smallest eigenvalues of the matrices

EP [(qknn (Zi)⊗ pjnn,P (Vi))(q
kn
n (Zi)⊗ pjnn,P (Vi))

′] (H.2)

are bounded away from zero uniformly in n and P ∈ P; see Remark 8.1. Additionally,

while we do not pursue it here for conciseness, it is also worth noting that the outlined

heuristics can also be employed to verify Assumption 5.1 by coupling Gn,P (qknn ⊗ p
jn
n,P )

to Wn,P (qknn ⊗ p
jn
n,P ) through standard results (Yurinskii, 1977).

Remark 8.1. Under the additional requirement that the eigenvalues of (H.2) be bounded

away from zero uniformly in n and P ∈ P, Theorem H.1 can be modified to establish

sup
f∈Fn

‖Ŵnfq
kn
n −W?

n,P fq
kn
n ‖r

= Op(
supP∈P ‖Fn‖L2

P
Bnk

1
2

+ 1
r

n jn log(kn)
√

log(jn)
√
n

+
k

1/r
n BnMn

√
log(kn)

j
γρ−3/2
n

) . (H.3)

Given the assumed orthonormality of the array {pj,n,P }∞j=1, the rate obtained in (H.3)

is thus more appropriate when considering the multiplier bootstrap for the standard

empirical process – i.e. qk,n(z) = 1 and kn = 1 for all n – since the smallest eigenvalue

of the matrices in (H.2) then equals one.

Below, we include the proof of Theorem H.1 and the necessary auxiliary results.
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Proof of Theorem H.1: We proceed by exploiting Lemma H.1 to couple Ŵn on a

finite dimensional subspace, and showing that such a result suffices for controlling both

Ŵn and W?
n,P on Fn. To this end, let Sn,P ≡ span{qknn ⊗p

jn
n,P } and note that Lemma H.1

and jn ↑ ∞ satisfying jnkn log(jnkn)Bn = o(n) by hypothesis imply that there exists a

linear isonormal process W(1)
n,P on Sn,P such that uniformly in P ∈ P we have

sup
‖β‖2≤supP∈P ‖Fn‖L2

P

‖Ŵn(β′pjnn,P )qknn −W(1)
n,P (β′pjnn,P )qknn ‖r

= Op(
supP∈P ‖Fn‖L2

P
B

1
2
n k

1
4

+ 1
r

n (jn log(kn))
3
4 (log(jn))

1
4

n
1
4

) . (H.4)

For any closed linear subspace A of L2
P , let Proj{f |A} denote the ‖ · ‖L2

P
projection

of f onto A and set A⊥ ≡ {f ∈ L2
P : f = g − Proj{g|A} for some g ∈ L2

P } – i.e. A⊥

denotes the orthocomplement of A in L2
P . Assuming the underlying probability space is

suitably enlarged to carry a linear isonormal process W(2)
n,P on S⊥n,P independent of W(1)

n,P

and {Vi}ni=1, we then define the isonormal process W?
n,P on L2

P pointwise by

W?
n,P f ≡W(1)

n,P (Proj{f |Sn,P }) + W(2)
n,P (Proj{f |S⊥n,P }) . (H.5)

Next, set Pn,P ≡ span{pjnn,P } and note that since Proj{f |Pn,P } = β(f)′pjnn,P for some

β(f) ∈ Rjn , the orthonormality of {pj,n,P }jnj=1 imposed in Assumption H.1(i) implies

‖β(f)‖2 ≤ ‖f‖L2
P
≤ ‖Fn‖L2

P
by Assumption 3.3(ii). Since (Proj{f |Pn,P })qk,n, ∈ Sn,P

for any f ∈ Fn, 1 ≤  ≤ J and 1 ≤ k ≤ kn,, (H.4) and (H.5) imply uniformly in P ∈ P

sup
f∈Fn

‖Ŵn(Proj{f |Pn,P })qknn −W?
n,P (Proj{f |Pn,P })qknn ‖r

≤ sup
‖β‖2≤supP∈P ‖Fn‖L2

P

‖Ŵn(β′pjnn,P )qknn −W(1)
n,P (β′pjnn,P )qknn ‖r

= Op(
supP∈P ‖Fn‖L2

P
B

1
2
n k

1
4

+ 1
r

n (jn log(kn))
3
4 (log(jn))

1
4

n
1
4

) . (H.6)

Next, define the set of sequences Bn ≡ {{βj}∞j=jn : |βj | ≤Mn/j
γρ}, and note that

sup
f∈Fn

‖W?
n,P (Proj{f |P⊥n,P })qknn ‖r

≤ k1/r
n sup
{βj}∈Bn

max
1≤≤J

max
1≤k≤kn,

|W?
n,P (qk,n,

∞∑
j=jn

βjpj,n,P )| (H.7)
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by Assumption H.1(iii). Moreover, also note that for any {βj}, {β̃j} ∈ Bn, we have that

{EP [q2
k,n,(Zi,)(

∞∑
j=jn

(βj − β̃j)pj,n,P (Vi))
2]}1/2 . Bn

∞∑
j=jn

|βj − β̃j | (H.8)

by Assumptions 3.2(i) and H.1(i). Hence, since W?
n,P is sub-Gaussian with respect to

‖ · ‖L2
P

, defining Gn ≡ {f ∈ L2
P : f = qk,n,

∑
j≥jn βjpj,n,P for some 1 ≤  ≤ J and 1 ≤

k ≤ kn,, {βj} ∈ Bn} we obtain from Corollary 2.2.8 in van der Vaart and Wellner (1996)

EP [ sup
g∈Gn

|W?
n,P g|] .

∫ ∞
0

√
logN(ε,Gn, ‖ · ‖L2

P
)dε

.
∫ BnMnj

−(γρ−1)
n

0

√
log(knN(ε/Bn,Bn, ‖ · ‖`1))dε , (H.9)

where the final inequality holds for ‖β‖`1 ≡
∑∞

j=jn
|βj | by (H.8) and noting that since

{pj,n,P } are uniformly bounded by Assumption H.1(i), Gn has envelope Gn satisfying

‖Gn‖L2
P

. BnMn
∑

j≥jn j
−γρ . BnMnj

−(γρ−1)
n . Furthermore, note that Lemma H.2,

the change of variables u = εj
γρ−1
n /BnMn, and γρ > 3/2 additionally yield

∫ BnMnj
−(γρ−1)
n

0

√
log(knN(ε/Bn,Bn, ‖ · ‖`1))dε

≤ BnMn

j
γρ−1
n

∫ 1

0
{log(kn) + (

2j
γρ−1
n

u(γρ − 1)
)

1
γρ−1 log(

4

ujn
+ 1)}

1
2du .

BnMn

√
log(kn)

j
γρ−3/2
n

(H.10)

Therefore, we conclude by results (H.7), (H.9), (H.10), and Markov’s inequality that

sup
f∈Fn

‖W?
n,P (Proj{f |P⊥n,P })qknn ‖r = Op(

k
1/r
n BnMn

√
log(kn)

j
γρ−3/2
n

) . (H.11)

In order to obtain an analogous result to (H.11) for Ŵn, we similarly note that

sup
f∈Fn

‖Ŵn(Proj{f |P⊥n,P })qknn ‖r

≤ k1/r
n sup
{βj}∈Bn

max
1≤≤J

max
1≤k≤kn,

|Ŵn(qk,n,

∞∑
j=jn

βjpj,n,P )| . (H.12)

Moreover, since {ωi}ni=1 is independent of {Vi}ni=1, we also obtain from Assumption 3.2(i)
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and {pj,n,P }j≥jn being uniformly bounded in j, n and P ∈ P by Assumption H.1(i) that

E[{Ŵn(qk,n,
∑
j≥jn

βjpj,n,P )− Ŵn(qk,n,
∑
j≥jn

βjpj,n,P )}2|{Vi}ni=1]

≤ 1

n

n∑
i=1

{qk,n,(Zi, )
∑
j≥jn

(βj − β̃j)pj,n,P (Vi)}2 . B2
n{
∑
j≥jn

|βj − β̃j |}2 . (H.13)

Hence, since Ŵn is Gaussian conditional on {Vi}ni=1, applying Corollary 2.2.8 in van der

Vaart and Wellner (1996) and arguing as in (H.9) and (H.10) implies

E[ sup
{βj}∈Bn

max
1≤≤J

max
1≤k≤kn,

|Ŵn(qk,n,

∞∑
j=jn

βjpj,n,P )||{Vi}ni=1] .
BnMn

√
log(kn)

j
γρ−3/2
n

. (H.14)

Thus, results (H.12) and (H.14) together with Markov’s inequality allow us to conclude

sup
f∈Fn

‖Ŵn(Proj{f |P⊥n,P })qknn ‖r = Op(
k

1/r
n BnMn

√
log(kn)

j
γρ−3/2
n

)) (H.15)

uniformly in P ∈ P. Hence, the claim of the Theorem follows from noting that the

linearity of Ŵn and W?
n,P and f = Proj{f |Pn,P }+ Proj{f |P⊥n,P } together imply that

sup
f∈Fn

‖Ŵnfq
kn
n −W?

n,P fq
kn
n ‖r ≤ sup

f∈Fn
‖Ŵn(Proj{f |Pn,P })qknn −W?

n,P (Proj{f |Pn,P })qknn ‖r

+ sup
f∈Fn

‖Ŵn(Proj{f |P⊥n,P })qknn ‖r + sup
f∈Fn

‖W?
n,P (Proj{f |P⊥n,P })qknn ‖r , (H.16)

which in conjunction with results (H.6), (H.11), and (H.15) conclude the proof.

Lemma H.1. Let Assumptions 3.1, 3.2(i), H.1(i)-(ii) hold, and {ωi}ni=1 be i.i.d. with

ωi ∼ N(0, 1) independent of {Vi}ni=1. If jnkn log(jnkn)Bn = o(n), then uniformly in P

sup
‖β‖2≤Dn

‖Ŵn(pjn′n,Pβ)qknn −W?
n,P (pjn′n,Pβ)qknn ‖r = Op(

DnB
1
2
n k

1
4

+ 1
r

n (jn log(kn))
3
4 (log(jn))

1
4

n
1
4

) ,

for W?
n,P a linear isonormal process on Sn,P ≡ span{pjnn,P ⊗qknn } independent of {Vi}ni=1.

Proof: For notational simplicity, let dn ≡ jnkn, set rdnn,P (v) ≡ qknn (z)⊗ pjnn,P (v), and

Σ̂n(P ) ≡ 1

n

n∑
i=1

rdnn,P (Vi)r
dn
n,P (Vi)

′ Σn(P ) ≡ EP [rdnn,P (Vi)r
dn
n,P (Vi)

′] . (H.17)

Letting rd,n,P (v) denote the dth coordinate of rdnn,P (v) further note that ‖rd,n,P ‖L∞P . Bn

since ‖pj,n,P ‖L∞P is uniformly bounded by Assumption H.1(ii) and ‖qk,n,‖L∞P ≤ Bn by
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Assumption 3.2(i). Therefore, if for every M > 0 and P ∈ P we define the event

An,P (M) ≡ {‖Σ̂1/2
n (P )− Σ1/2

n (P )‖o,2 ≤MRn} , (H.18)

for Rn ≡ {jnkn log(jnkn)B2
n/n}1/4, then Assumption H.1(ii) and Lemma H.3 yield

lim inf
M↑∞

lim inf
n→∞

inf
P∈P

P ({Vi}ni=1 ∈ An,P (M)) = 1 . (H.19)

Next, let Ndn ∈ Rdn follow a standard normal distribution and be independent

of {(ωi, Vi)}ni=1 (defined on the same suitably enlarged probability space). Further let

{ν̂d}dnd=1 denote eigenvectors of Σ̂n(P ), {λ̂d}dnd=1 represent the corresponding (possibly

zero) eigenvalues and define the random variable Zn,P ∈ Rdn to be given by

Zn,P ≡
∑
d:λ̂d 6=0

ν̂d ×
(ν̂ ′dŴn(rdnn,P ))√

λ̂d
+
∑
d:λ̂d=0

ν̂d × (ν̂ ′dNdn) . (H.20)

Then note that since Ŵn(rdnn,P ) ∼ N(0, Σ̂n(P )) conditional on {Vi}ni=1, and Ndn is inde-

pendent of {(ωi, Vi)}ni=1, Zn,P is Gaussian conditional on {Vi}ni=1. Furthermore,

E[Zn,PZ′n,P |{Vi}ni=1] =

dn∑
d=1

ν̂dν̂
′
d = Idn (H.21)

by direct calculation for Idn the dn × dn identity matrix, and hence Zn,P ∼ N(0, Idn)

conditional on {Vi}ni=1 almost surely in {Vi}ni=1 and is thus independent of {Vi}ni=1.

Moreover, we also note that by Theorem 3.6.1 in Bogachev (1998) and Ŵn(rdnn,P ) ∼
N(0, Σ̂n(P )) conditional on {Vi}ni=1, it follows that Ŵn(rdnn,P ) belongs to the range of

Σ̂n(P ) : Rdn → Rdn almost surely in {(ωi, Vi)}ni=1. Therefore, since {ν̂d : λ̂d 6= 0}dnd=1

spans the range of Σ̂n(P ), we conclude from (H.20) that for any γ ∈ Rdn we must have

γ′Σ̂1/2
n (P )Zn,P = γ′

∑
d:λ̂d 6=0

ν̂d(ν̂
′
dŴn(rdnn,P )) = Ŵn(γ′rdnn,P ) . (H.22)

Analogously, we also define for any γ ∈ Rdn the isonormal process W?
n,P on Sn,P by

W?
n,P (γ′rdnn,P ) ≡ γ′Σ1/2

n (P )Zn,P , (H.23)

which is trivially independent of {Vi}ni=1 due to the independence of Zn,P . Hence, letting

ek ∈ Rkn denote the vector whose ith coordinate equals 1{i = k}, and 1{An,P (M)} be
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an indicator for whether the event {Vi}ni=1 ∈ An,P (M) occurs, we obtain that

sup
‖β‖2≤Dn

‖Ŵn(pjn′n,Pβ)qknn −W?
n,P (pjn′n,Pβ)qknn ‖r1{An,P (M)}

≤ k1/r
n × sup

‖β‖2≤Dn
max

1≤k≤kn
|(ek ⊗ β)′(Σ̂1/2

n (P )− Σ1/2
n (P ))Zn,P |1{An,P (M)} . (H.24)

Defining Tn ≡ {1, . . . , kn}× {β ∈ Rjn : ‖β‖2 ≤ Dn}, next set for any (k, β) = t ∈ Tn

W̄n,P (t) ≡ |(ek ⊗ β)′(Σ̂1/2
n (P )− Σ1/2

n (P ))Zn,P |1{An,P (M)} , (H.25)

and observe that conditional on {Vi}ni=1, W̄n,P (t) is sub-Gaussian under dn(t̃, t) ≡
‖(Σ̂1/2

n (P )−Σ
1/2
n (P ))(ek̃ ⊗ β̃− ek ⊗ β)‖2 for any t̃ = (k̃, β̃) and t = (k, β). Moreover, by

standard arguments and definition (H.18), we obtain that under An,P (M)

N(ε, Tn, dn) . kn × (
‖Σ̂1/2

n (P )− Σ
1/2
n (P )‖o,2Dn

ε
)jn ≤ kn × (

MRnDn

ε
)jn . (H.26)

Therefore, noting that supt,t̃∈Tn dn(t, t̃n) ≤ 2MDnRn under the event An,P (M), we

obtain from Corollary 2.2.8 in van der Vaart and Wellner (1996) and (H.26) that

E[ sup
t∈Tn
|W̄n,P (t)||{Vi}ni=1] .

∫ ∞
0

√
log(N(ε, Tn, dn))dε

.
∫ 2MDnRn

0
{log(kn) + jn log(

MDnRn
ε

)}
1
2dε . (H.27)

Hence, exploiting (H.27) and the change of variables u = ε/MDnRn we can conclude

E[ sup
t∈Tn
|W̄n,P (t)||{Vi}ni=1]

.MDnRn

∫ 2

0
{log(kn) + jn log(

1

u
)}

1
2du .MDnRn ×

√
log(kn) + jn . (H.28)

Next, for notational simplicity let δn ≡ k
1/r
n DnRn

√
log(kn) + jn, and then note that

results (H.24), (H.25), and (H.28) together with Markov’s inequality yield

P ( sup
‖β‖2≤Dn

‖Ŵn(pjn′n,Pβ)qknn −W?
n,P (pjn′n,Pβ)qknn ‖r > M2δn; An,P (M))

≤ P (k1/r
n sup

t∈Tn
|W̄n,P (t)| > M2δn) ≤ EP [

k
1/r
n

M2δn
E[ sup

t∈Tn
|W̄n,P (t)||{Vi}ni=1]] .

1

M
.

(H.29)
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Therefore, combining results (H.19) and (H.29), we can finally conclude that

lim sup
M↑∞

lim sup
n→∞

sup
P∈P

P ( sup
‖β‖2≤Dn

‖Ŵn(pjn′n,Pβ)qknn −W?
n(pjn′n,Pβ)qknn ‖r > M2δn)

. lim sup
M↑∞

lim sup
n→∞

sup
P∈P
{ 1

M
+ P ({Vi}ni=1 /∈ An,P (M))} = 0 , (H.30)

which establishes the claim of the Lemma given the definitions of δn and Rn.

Lemma H.2. Let Bn ≡ {{βj}∞j=jn : βj ≤ Mn/j
γρ} for some jn ↑ ∞, Mn > 0, and

γρ > 1, and define the metric ‖β‖`1 ≡
∑

j≥jn |βj |. For any ε > 0 it then follows that

logN(ε,Bn, ‖ · ‖`1) ≤ {( 2Mn

ε(γρ − 1)
)

1
γρ−1 + 1− jn ∨ 0} × log(

4Mn

j
γρ
n ε

+ 1) .

Proof: For any {βj} ∈ Bn and integer k ≥ (jn−1) we first obtain the standard estimate

∞∑
j=k+1

|βj | ≤
∞∑

j=k+1

Mn

jγρ
≤Mn

∫ ∞
k

u−γρdu = Mn
k−(γρ−1)

(γρ − 1)
. (H.31)

For any a ∈ R, let dae denote the smallest integer larger than a, and further define

j?n(ε) ≡ d( 2Mn

ε(γρ − 1)
)

1
γρ−1 e ∨ (jn − 1) . (H.32)

Then note that (H.31) implies that for any {βj} ∈ Bn we have
∑

j>j?(ε) |βj | ≤ ε/2.

Hence, letting An(ε) ≡ {{βj} ∈ Bn : βj = 0 for all j > j?n(ε)}, we obtain

N(ε,Bn, ‖ · ‖`1) ≤ N(ε/2,An(ε), ‖ · ‖`1)

≤
j?(ε)∏
j=jn

N(ε/2, [−Mn

jγρ
,
Mn

jγρ
], | · |) ≤ (d4Mn

j
γρ
n ε
e)(j?n(ε)−jn)∨0 , (H.33)

where the product should be understood to equal one if j?(ε) = jn− 1. Thus, the claim

of the Lemma follows from the bound dae ≤ a+ 1 and results (H.32) and (H.33).

Lemma H.3. Let Assumption 3.1 hold, {fd,n,P }dnd=1 be a triangular array of functions

fd,n,P : Rdv → R, and define fdnn,P (v) ≡ (f1,n,P (v), . . . , fdn,n,P (v))′ as well as

Σn(P ) ≡ EP [fdnn,P (Vi)f
dn
n,P (Vi)

′] Σ̂n(P ) ≡ 1

n

n∑
i=1

fdnn,P (Vi)f
dn
n,P (Vi)

′ .

If sup1≤d≤dn ‖fd,n,P ‖L∞P ≤ Cn for all P ∈ P, the eigenvalues of Σn(P ) are bounded

uniformly in n and P ∈ P, and dn log(dn)Cn = o(n), then it follows that

lim sup
M↑∞

lim sup
n→∞

sup
P∈P

P (‖Σ̂1/2
n (P )− Σ1/2

n (P )‖o,2 > M{dn log(dn)C2
n

n
}1/4) = 0 .
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Proof: Set K0 so that ‖Σn(P )‖o,2 ≤ K0 for all n and P ∈ P, and then note that

‖ 1

n
{fdnn,P (Vi)f

dn
n,P (Vi)

′ − Σn(P )}‖o,2 ≤
dnC

2
n

n
+
K0

n
(H.34)

almost surely for all P ∈ P since each entry of the matrix fdnn,P (Vi)f
dn
n,P (Vi)

′ is bounded

by C2
n. Similarly, exploiting ‖fdnn,P (Vi)f

dn
n,P (Vi)

′‖o,2 ≤ dnC2
n almost surely we obtain

‖ 1

n
EP [{fdnn,P (Vi)f

dn
n,P (Vi)

′ − Σn(P )}2]‖o,2

≤ 1

n
‖EP [{fdnn,P (Vi)f

dn
n,P (Vi)

′}2]‖o,2 +
1

n
‖Σ2

n(P )‖o,2 ≤
dnC

2
nK0

n
+
K2

0

n
. (H.35)

Thus, employing results (H.34) and (H.35), together with dn log(dn)Cn = o(n), we

obtain from Theorem 6.1 in Tropp (2012) (Bernstein’s inequality for matrices) that

lim sup
M↑∞

lim sup
n→∞

sup
P∈P

P (‖Σ̂n(P )− Σn(P )‖o,2 > M

√
dn log(dn)Cn√

n
)

≤ lim sup
M↑∞

lim sup
n→∞

dn exp{−M
2dn log(dn)C2

n

2n

n

(dnC2
n +K0)(K0 +M)

} = 0 . (H.36)

Since Σ̂n(P ) ≥ 0 and Σn(P ) ≥ 0, Theorem X.1.1 in Bhatia (1997) in turn implies that

‖Σ̂1/2
n (P )− Σ1/2

n (P )‖o,2 ≤ ‖Σ̂n(P )− Σn(P )‖1/2o,2 (H.37)

almost surely, and hence the claim of the Lemma follows from (H.36) and (H.37).
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Kretschmer, T., Miravete, E. J. and Perńıas, J. C. (2012). Competitive pressure

and the adoption of complementary innovations. The American Economic Review,

102 1540.

Ledoux, M. and Talagrand, M. (1988). Un critère sur les petites boules dans le
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