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ABSTRACT ― We analyse the economic impacts of place-based policies that aim to 

enhance economic development by stimulating growth and productivity of firms in 

designated areas. We use unique panel data from China with information on 

manufacturing firms’ production factors, productivity and location, and we exploit 

temporal and spatial variation in place-based interventions due to the opening of 

science parks in the metropolitan area of Shenzhen. The identification strategy 

enables us to address the issues that (i) science parks are located in favourable 

locations and that (ii) high-productivity firms sort themselves in science parks. We 

find that productivity is approximately 15-25 per cent higher due to the policies. The 

results also show that local wages have increased in science parks. Weaker evidence 

suggests that displacement effects are sizeable. 
 

JEL–code ― H2, R3, R5 

Keywords ― place-based policies, transitional economies, science parks, productivity 

 

I. Introduction 

Many governments spend considerable amounts of money to stimulate employment growth, 

fight unemployment, and spur productivity. These investments are often not space-neutral 

but differ between regions, cities and even between neighbourhoods within cities. In 

developed countries, place-based policies tend to focus on distressed regions or 

neighbourhoods (Gobillon et al., 2012). In the European Union, for example, the Regional 
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Development Fund explicitly targets regions with high unemployment and a (nominal) 

income below 75 per cent of the EU average. Similarly, in the US, programmes such as federal 

urban Empowerment Zones (EZs) and Enterprise Communities are designed to use grants 

and hiring credits to benefit lagging neighbourhoods (see e.g., Busso et al., 2010).  

The common rationale for both place-based and people-based (i.e., spatially blind) 

policies is to improve the prospects of poor and disadvantaged households (Barca et al., 

2012; Neumark and Simpson, 2015). Place-based investments in lagging regions may be 

more effective in reaching deprived households than economy-wide investments (Garretsen 

et al., 2013; McCann and Ortega-Argilés, 2013). However, the focus on lagging regions may 

come at a (welfare) cost: the inefficiencies caused by place-based policies could be 

substantial. Glaeser (2008) provides several arguments against place-based policies. First, 

place-based policies that target deprived areas bring economic activity to the least 

productive places, thus lowering overall productivity. Second, productivity also falls if poor 

regional performance can be traced back to negative spillovers from local people or firms. 

Third, the distributional effects of place-based policies are unclear. For example, beneficiaries 

of the aid may be the richer people in the impacted area, thereby increasing inequalities 

within the region. Related to that point, the spatial extent of the effects of place-based 

investments may be unpredictable, so choosing a scale for a place-based policy can be 

problematic (Cheshire et al., 2014).  

Whether place-based policies have large welfare costs depends on the responses of the 

people in the designated areas. Kline (2010) argues that place-based employment policies 

are most efficient when the demand and supply of labour are inelastic – in that case, the 

policy instrument produces little distortion of behaviour. Similarly, Busso et al. (2013) show 

that a larger heterogeneity in workers’ preferences regarding commuting and residential 

locations leads to fewer job changes and capitalisation in wages instead of in land rents. 

Employment decisions and the degree to which workers and firms change location thus 

determine the welfare effects of the policies. As a result, the welfare costs or deadweight 

losses of such programmes can be approximated by interpreting the local economy’s 

responses to the programme. 

The empirical results on the effectiveness and the welfare costs of place-based policies are 

mixed (see for an overview Neumark and Simpson, 2015). Most studies find that positive 

effects are offset by substantial displacement effects within adjacent localities, but virtually 

all of the empirical studies on place-based policies examine programmes for deprived areas in 

developed countries. The welfare arguments may be different when applied to place-based 

policies for leading areas in developing and transition economies. Policies stimulate relatively 

productive firms and people and foster positive spillovers rather than negative spillovers. 

While almost unstudied, China, India, Brazil, South Africa, Russia, and many other transition 

economies extensively apply place-based policies and special economic zones to promote 

development (Rodriguez-Pose and Hardy, 2014). The available empirical evidence, therefore, 
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is not representative of many of the place-based policies that have been implemented 

worldwide (Barca et al., 2012; Foray, 2015).  

This paper investigates the economic impacts of substantial place-based investments in 

Shenzhen. In China, economic place-based policies were carried out primarily to promote 

foreign direct investment, technology transfers, and exports. Science parks are an actively 

used policy-instrument in this. Firms in science parks are expected to cooperate and interact 

more intensely by locating in close proximity to each other. In other words, place-based 

investment aim to foster agglomeration economies and innovation within science parks. In 

China, the number of science parks has increased dramatically in the last decade, which 

demonstrates the strong belief in the effectiveness of these policies (Cheng et al., 2014). Yet, 

with many economic, social and institutional characteristics differing from those in Western 

economies, the economic impact of science-parks in China and other developing countries 

are highly doubted and even called ‘pipedreams’ (Rodriguez-Pose & Hardy, 2014). However, 

systematic quantitative research supporting or questioning science park policies is lacking. 

We use data on manufacturing industries in the Shenzhen metropolitan area to 

investigate the impact of science parks on firm productivity. We use a 10-year panel on 

approximately 10,000 firms. For each firm we have information on output, workforce size, 

capital stock, and wages. The data also provide information on a number of other firm 

characteristics and the location of the firms at the neighbourhood level. In Shenzhen’s science 

parks, property rights to the land are guaranteed, and there is better access to fast internet. 

Moreover, different financial incentives are available for innovative firms. More information 

on the exact incentives will be given in the next Section.  

Our analysis contributes to the literature in the following ways. First, it complements the 

knowledge on the effects of place-based strategies with a micro-data approach in a non-

Western country.1 By studying the Chinese context, we contribute to the discussion on the 

effectiveness of place-based development strategies in transition economies.  

Second, we examine the productivity and spatial mobility effects caused by science park 

policies within a theoretical framework. This enables us to interpret our empirical results as 

‘sufficient statistics’ (Chetty, 2009), allowing inferences on welfare using estimated 

elasticities. In our data, we cannot observe the different instruments of the programme, but 

we show that with minimal information, one may still obtain an estimate of the relative size 

of the productivity effects and the deadweight losses from the policy. 

As a third contribution, the paper aims to identify the causal impacts of a place-based 

development programme. Often, governments single out specific locations for grants or to 

establish economic zones. Moreover, once a place-based policy is initiated (or even 

anticipated), productive firms and workers may sort into these areas because they benefit 

                                                                 
1 There is one notable exception; Wang (2013) uses data at the municipality level and finds that 
productivity, FDI and wages all have increased due to the policies that target Special Economic Zones in 
China. 
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from the policy or because the policy specifically applies to them. Ignoring the selection of a 

policy area and sorting processes in the evaluation of a place-based policy may lead to biased 

estimates of the true policy effects. To identify a causal effect of the science park policy, we 

need to control for unobserved locational traits and trends because science parks may have 

innate attractive geographic features and may evolve differently from non-targeted areas. To 

control for unobserved locational endowments, we rely on spatial differencing. This 

approach implies that we compare firms in science parks with firms in areas that are very 

close to science parks – areas that are very similar in geographical and functional 

characteristics. Hence, conditional on selecting areas very close to a science park boundary, 

the exact location of the boundary is considered to be random. We relax this assumption by 

including flexible functions of distance to the nearest science park boundary or geographic 

coordinates. To further address the issue that highly productive firms may sort themselves 

into science parks, for example because of entry requirements, we exploit the panel nature of 

our data and include firm fixed effects. Hence, we identify the effect of science parks by 

comparing productivity differences before and after the opening of a science park for a firm 

located in a science park vis-à-vis a firm that is located just outside a science park. A worry 

one might have is that the estimated parameter will be an overestimate of productivity 

effects if local displacement effects are important. We therefore also consider an alternative 

identification strategy in the sensitivity analysis, based on the observation that local 

industrial parks are often promoted to science parks later on, making them a feasible control 

group. 

Our results show that area-based incentives have a substantial impact on firms’ 

productivity in Shenzhen science parks. Even if we include firm fixed effects and use spatial 

differencing, firms’ output is increased by 15-25 per cent due to science park policies. These 

large and economically meaningful effects are in line with the findings of Wang (2013) and 

contribute to the idea that place-based policies have more sizable effects in transition 

economies. We furthermore show that local wages have increased by approximately 10-15 

per cent, which is smaller in magnitude than the productivity effects. Despite the large 

productivity effects, we also show that these policies seem to generate distortive effects. 

Workforce size increases in science parks, which suggests a displacement effect. Given the 

assumptions of our theoretical model, we estimate that the deadweight loss due to these 

displacement effects are sizeable (about 40 percent of the total effect on productivity). 

However, we note that these effects are statistically imprecise. We subject our results to an 

extensive sensitivity analysis, including an analysis based on another (cross-sectional) 

dataset.  

The remainder of the paper is organised as follows. In Section II, we outline our 

theoretical framework and derive conditions under which we can approximate a deadweight 

loss of science park policies. Section III discusses the regional context and the data. In Section 

IV, we outline our empirical strategy. Section V presents the main results for productivity, 

wages, employment, and capital stock. Using these estimates and the structure of the 
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theoretical model, we estimate the deadweight loss associated with these policies. In Section 

VI, we conduct an extensive sensitivity analysis. Section VII concludes. 

 

II. Theoretical framework: place-based policies and deadweight losses 

To structure our thoughts, we first discuss the potential welfare effects of place-based 

policies. The intuition follows Kline (2010), Kline and Moretti (2013) and Busso et al. (2013) 

and helps to interpret our empirical results as ‘sufficient statistics’ (Chetty, 2009) – allowing 

inferences on welfare using estimated elasticities. Our approach is more parsimonious than 

related structural models because we rely on spatial differencing to identify the policy 

effects. Comparing firms that are at very short distances from each other implies that a 

worker’s residential decision does not vary much between the compared working locations. 

The design thus circumvents the issue that consumption amenities affect labour supply 

decisions and the issue that we do not observe such amenities. We assume that the place-

based policies (i.e., setting up a science park) involve a bundle of instruments: they may 

directly affect productivity via an increased technology level (e.g., availability of broadband 

internet) and stimulate the use of capital and labour. In our data, we cannot observe the 

different instruments of the programme, but we show that with minimal information, one 

may still obtain an estimate of the relative size of the productivity effects and the deadweight 

losses from the policy. 

We assume that there are two locations, 𝑧 = 1,2. The science park policy only targets 

location 1. Firms in both locations employ labour and capital to produce a numéraire 

consumption good. Capital is hired from a ‘large’ competitive financial market where firms 

(re-)finance capital at a competitive rate. Workers and owners of land and capital consume 

the numéraire good and offer labour to firms in one of the two locations such that they can 

decide where to work. A worker's utility 𝑢𝑖𝑧 is equal to the consumption of the numéraire 

good and a worker-specific heterogeneity term:  

(1) 𝑢𝑖𝑧 = 𝑐𝑖 + 𝜉𝑖𝑧  . 

The worker’s heterogeneity term 𝜉𝑖𝑧 depends on the location 𝑧 in which the worker is 

employed. This dependence of location allows for working location preferences that are 

separate from wages. As we compare firms at the boundaries of science parks, it is unlikely 

that 𝜉𝑖𝑧 captures differences in preferences for commuting and geographic attributes. 

Instead, differences in 𝜉𝑖𝑧 may be explained by a required mastery of English, administrative 

skills, levels of workplace stress, preferences for specific types of companies (international, 

high-tech) or prestige. For the purpose of the welfare analysis, we are agnostic about how 

exactly these preferences take form.  

The production function of a firm 𝑗 depends on labour ℓ𝑗𝑧, capital 𝑘𝑗𝑧, location-specific 

technology constant 𝐴𝑧 and a firm-specific heterogeneity term 𝜔𝑗 . Firm productivity is thus a 

composite of an individual technology term and a location-specific productivity shifter. The 

total production is: 𝑞𝑗𝑧 = 𝑞(𝐴𝑧, ℓ𝑗𝑧, 𝑘𝑗𝑧, 𝜔𝑗), so profit is given by: 
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(2) max
ℓ,𝑘

𝜋𝑗𝑧 = 𝑞𝑗𝑧 − 𝑤𝑧(1 − 𝑡𝑧)ℓ𝑗𝑧 − 𝑟(1 − 𝑠𝑧)𝑘𝑗𝑧, 

where we allow for any explicit or implicit subsidies to the employment of labour (𝑡𝑧) or 

capital (𝑠𝑧). The first-order condition of the profit-maximisation implies that d𝑞𝑗𝑧𝑑/dℓ𝑗𝑧 =

𝑤𝑧(1 − 𝑡𝑧) so that the wage of a worker is determined by his marginal productivity, corrected 

for the subsidy. 

We assume that the place-based policy can affect the technology in location 1 (𝐴1) and 

subsidises factor employment at costs 𝑡1𝑤1𝐿1 and 𝑠1𝑟𝐾1, where 𝐿1 = ∫ ℓ𝑗d𝑗
𝑗∈𝑧=1

 and 

𝐾1 = ∫ 𝑘𝑗d𝑗
𝑗∈𝑧=1

 are the cumulative factor uses for location 1. We assume that the individual 

firm productivity term 𝜔𝑗  and the location-specific technology term 𝐴𝑧 are log-separable. 

This assumption implies that location-specific productivity shocks affect the log productivity 

of efficient and inefficient firms in the same way. Because there are no policies in location 2, it 

holds that 𝑡2 = 𝑠2 = 0.  

The total costs of the productivity improvements are 𝑇1 = 𝑇(𝐴1, 𝑄1), where 𝑄1 = ∫ 𝑞𝑗1𝑑𝑗 

is the aggregate production in location 1. Note that a higher technology level 𝐴1 requires a 

higher budget. The term 𝑄1 enters because given a level of productivity, higher production 

could imply a larger required budget: e.g., if firms enter or expand production, more 

broadband investment could be required to maintain the same level of technology. If 

technology inputs are non-rival, a higher level of production 𝑄1 implies that a higher budget 

is needed to achieve the same productivity level 𝐴1.  

The welfare function is the sum of individual utilities, firm profits, capital earnings and the 

net government budget. Consumers’ wages equal their consumption of the numéraire. Thus, 

the welfare function is given by: 

(3) 𝒲 = ∫ 𝑤𝑖𝑧 + 𝜉𝑖𝑧d𝑖 + ∫ 𝜋𝑗𝑧d𝑗 + 𝑟(𝐾1+𝐾2) − ∫ 𝑡1𝑤1ℓ𝑗1 d𝑗 − ∫ 𝑠1𝑟𝑘𝑗1 d𝑗 − 𝑇(𝑄1, 𝐴1) . 

The place-based policy causes direct productivity improvements (via the technology level) 

and changes in labour and capital levels. The costs of the policy are the implicit or explicit 

subsidies given to capital and labour and the costs of increasing the overall productivity level. 

Let us denote the application of the place-based policy by the variable 𝑝1. 

Using the welfare function, we can study the welfare effects of the science park policy. 

Differentiating with respect to 𝑝1 and using the Envelope theorem on the profit function, the 

welfare effect is:  

(4) 
d𝒲

d𝑝1
=

𝜕𝑄1

𝜕𝐴1

d𝐴1

d𝑝1
− (

𝜕𝑇1

𝜕𝐴1
+

𝜕𝑇1

𝜕𝑄1

𝜕𝑄1

𝜕𝐴1
)

d𝐴1

d𝑝1
 − 𝑡1𝑤1

d𝐿1

d𝑡1

d𝑡1

d𝑝1
 − 𝑠1𝑟1

d𝐾

d𝑠1

d𝑠1

d𝑝1
. 

The first term in (4) is the direct increase in production due to the science park policy 

through its increase in firm productivity, which accounts for the direct effect on production 

net of any increases in factor employment. In Section V.A, we estimate this effect using micro-

data while controlling for changes in production factor usage. The second term in (4) is the 

composite effect on the required budget 𝑇1. Increasing the technology level comes at the 
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direct cost of increasing the budget. Indirectly, increased productivity might lead to higher 

production levels, which in turn could raise the budget; this second-order effect is captured 

in the second term (𝜕𝑇1 𝜕𝑄1⁄ )(𝜕𝑄1 𝜕𝐴1⁄ ).  

The third term denotes the labour market effect of the policy: 𝑡1𝑤1(d𝐿1 d𝑡1⁄ )(d𝑡1 d𝑝1⁄ ). 

The welfare effects of changes in the workforce are considerably simplified by noting that a 

marginally affected worker is indifferent to working in the science park or not: possible wage 

differences are exactly reflected in his preference for locations 𝜉𝑖𝑧.2 Using this notion, the 

welfare loss from labour reallocation is the (implicit) subsidy multiplied by the workers that 

are displaced. Intuitively, if workers do not move, the policy is simply a transfer of which the 

net effect on welfare is zero in our welfare function. Only if workers move after the subsidy, 

there is a welfare loss: some workers preferred not to work in location 1 but are induced to 

do so by the labour subsidy. The degree to which science park policies subsidise labour is left 

implicit in the term d𝑡1 d𝑝1⁄  because in our empirical application, we do not know the actual 

rate of subsidies. The elasticity of labour supply is important in determining the deadweight 

losses of the policy. To provide a supplementary empirical analysis of the labour supply 

responses, we investigate the wage responses to the policy in Section V.B. Note that although 

the wage responses are not present in the welfare effects, they are not ruled out by the 

theoretical model; changes in wages without changes in allocation are simply a welfare-

neutral transfer. 

The capital market is similarly affected by the place-based policy, as the fourth term in (4) 

illustrates: 𝑠1𝑟1(d𝐾 d𝑠1⁄ )(d𝑠1 d𝑝1⁄ ). Similar to the labour-market-related policies, the welfare 

losses crucially depend on the capital mobility response. Intuitively, if capital does not move, 

the subsidy is simply a loss to the government offset by a gain to the capital owner. If capital 

moves, the subsidy compensates the higher productivity that capital could have achieved in 

another location.  

We can obtain an indication of the relative size of the deadweight losses associated with 

the place-based policy that allows for a comparison of the direct benefits (in terms of changes 

in the technology level) with the deadweight losses of the factor employment responses. The 

sum of the welfare effects is the direct productivity effect, the deadweight losses due to factor 

employment changes, and the financing costs of the productivity effects (all of which are 

incorporated in equation (4)). We assume that the labour and capital-related policies change 

with the science park status, so d𝑡1 d𝑝1⁄  and d𝑠1 d𝑝1⁄  may be non-zero. The employment 

responses can then be written into elasticities: multiplying and dividing the welfare loss from 

labour reallocation by 𝐿1 gives −𝐿1𝑤1𝑒ℓ, where 𝑒ℓ is the elasticity of labour supply with 

respect to the science park policies. Next, the term 𝐿1𝑤1 can be written as a cost share of 

                                                                 
2 The incentives to change job location can, of course, be restricted to wages by assuming zero 
heterogeneous preferences for location of work. This special case yields very stark theoretical welfare 
conclusions (see, for instance, Busso et al., 2013) but does not change our empirical welfare results. 
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production, 𝛼ℓ𝑄1. Rewriting the capital response in the same way and factoring the level of 

production 𝑄1, the net welfare effect Δ𝑊 can be written as: 

(5) Δ𝒲 =  𝑄1(Δℛ𝒲) − (
𝜕𝑇1

𝜕𝐴1
+

𝜕𝑇1

𝜕𝑄1

𝜕𝑄1

𝜕𝐴1
), 

with: 

(6) Δℛ𝒲 =  𝑒𝐴

d𝐴1 d𝑝1⁄

𝐴1
− 𝛼ℓ𝑒ℓ − 𝛼𝑘𝑒𝑘 , 

where we refer to Δℛ𝒲 as the gross relative welfare effect, 𝑒𝐴 is the direct semi-elasticity of 

production to the science park policies (via productivity), and 𝑒ℓ and 𝑒𝑘 are the elasticities of 

labour and capital employment to the science park policies. By formulating the welfare 

effects as elasticities weighed by shares of production, the separate effect of each welfare 

gain and loss can be compared at a common scale – the output level. This approach does not 

allow us to derive absolute levels of welfare losses, but it does allow us to compare the direct 

productivity benefits with the loss due to labour (or capital) reallocation per unit of output. 

Thus, the welfare losses are interpreted relative to the productivity increases in percentages 

of output. The term 𝑒𝐴 (d𝐴1 d𝑝1⁄ ) 𝐴1⁄  represents the percentage increase in output due to 

science park policies, keeping capital and labour constant – this term therefore represents 

the partial effect due to changes in the technology constant. This direct effect is estimated in 

Section V.A. The magnitude of the deadweight loss strongly depends on whether the place-

based policy leads to changes in factor employment. Therefore, we estimate the effect of the 

science park on factor usage in addition to its effects on productivity in Section V.C. The 

labour and capital responses to the place-based policy are weighted with the cost shares 𝛼ℓ 

and 𝛼𝑘. The cost shares can be recovered by estimating a Cobb-Douglas production function, 

which we estimate in Section V.A. Using the cost shares, the productivity gains and the factor 

movement deadweight losses are measured in terms of output, which allows us to compare 

the two quantities.  

Intuitively, a high level of employment elasticity points to large deadweight losses, but 

especially if the cost share of labour is high: then, the explicit or implicit labour subsidies may 

also have been high. In Section V.C, we put the productivity effects and factor employment 

changes together to present an estimate of the relative size of the deadweight losses. Note 

that the last term in equation (5) represents the costs of public funds, which are unknown in 

our application, so we will only be able to measure the gross relative welfare effect. 

This stylised model does not consider land use because data on land use are only available 

for a subset of firms in our dataset. In Section VI.E, we investigate whether this limitation 

impacts our main conclusions. For the welfare analysis, land use does not contribute much to 

the results, as science park land is in fixed supply.3 There may also be agglomeration effects 

at play that drift across science park boundaries. In principle, this would lead to an 

                                                                 
3 If anything, in our data, firms in science parks pay somewhat higher land rents, which suggests a 
small role for land market instruments. 
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underestimate of the results because at the boundary the differences in productivity due to 

agglomeration economies are zero. However, in the sensitivity analysis we show that 

agglomeration economies drifting across the boundary are unlikely to be important in our 

setting. We therefore relegate the discussion of agglomeration effects in the theoretical 

model to Appendix A. 

 

III. Regional context and data 

A. Regional context 

Shenzhen is considered one of the most important high-tech hubs in China. It was originally 

established as one of four special economic zones (SEZs) in 1979 to operate a socialist 

market economy because of its proximity to Hong Kong, which had been facing increasing 

pressure from rising labour costs and a tight land supply since the 1970s. Initially, the SEZs 

were geographically isolated but economically open areas where special and flexible 

economic policies were carried out primarily to promote foreign direct investment, 

technology transfers, and exports. The special treatment of these areas co-evolved with high 

economic and population growth rates. Figure 1 shows that the population of Shenzhen 

increased from a mere 310 thousand in 1980 to almost 11 million in 2010. A large proportion 

of the residents are migrants (more than 70 per cent).4 Shenzhen received a substantial 

inflow of industrial activities from Hong Kong after the border was opened, most of which are 

low-tech and medium-tech manufacturing activities such as parts assembly (Enright et al., 

2005). Compared with their foreign counterparts, Shenzhen’s manufacturing firms have 

relatively thin profit margins that have been further eroded by rising land and labour costs in 

recent years (Gu and Chen, 2001; Shenzhen Planning Bureau, 2006; Linden et al., 2009). 

Not long after the launch of the SEZs, the zones began to be emulated throughout China to 

foster economic growth and promote innovation. The concept was appealing because cities 

and regions could cordon off limited areas to offer special incentives to foreign and later also 

to domestic investors (Wu and Gaubatz, 2013, pp. 115). The next wave of zones was in the 

form of science parks, also called high-tech zones. In these areas, research institutions and 

firms are expected to cooperate and interact by locating in close proximity to each other. 

Some policies target more conventional manufacturing firms, while others promote high-tech 

enterprises and business services.  

A strategy to develop science parks was also implemented in Shenzhen. The policy was 

designed to attract high-tech industries, stimulate innovation and foster entrepreneurship 

(Shenzhen Bureau of Trade and Industry, 2001; Ng, 2003). The first high-tech science park in 

China, the ‘Shenzhen Science Park’ (Shenzhen Keji Yuan, known as the Shenzhen High-tech  

  
                                                                 
4 Migrants are defined as residents that are not ‘Hukou’ holders. Hukou is a registration system of 
residents and can be granted to migrants when certain requirements are met. Hukou holders enjoy 
greater social security rights than non-Hukou holders.  
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FIGURE 1 ― POPULATION AND MIGRANTS IN SHENZHEN SINCE 1980 
 

 

 

 

FIGURE 2 ― GEOGRAPHIC DISTRIBUTION OF SCIENCE PARKS IN THE SHENZHEN AREA 
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Industrial park (SHIP) today) was established in 1985. It was selected and certified as one of 

the first six national-level science parks in China in 1996 (Ma and Chen, 2010). In addition, in 

1998, the Shenzhen municipal government issued a policy document with regulations to 

further support the growth and development of high-tech industries. This document includes 

a package of preferential policies that apply exclusively to firms in science parks (Cheng et al., 

2014). First, firms in these areas are offered a streamlined channel to government agencies 

that guarantees their ability to obtain more efficient services from the government. Second, 

science park agencies provide services in terms of financing, management, administration 

and marketing. Third, firms in science parks also have easier access to start-up funds and to a 

special fund that was exclusively established for science and technology firms in science 

parks (Keji Sanxiang Jingfei). This fund provides 10 million yuan each year to returned-from-

overseas Chinese start-ups and 20 million yuan for R&D activities. Firms engaged in high-

tech activities in science parks can receive R&D subsidies in amounts equivalent to 3-10 per 

cent of their total sales. Fourth, facilities such as banks, schools, restaurants, post offices, 

meeting places and supermarkets are offered in the science parks. Fifth, land policies are 

different inside science parks. Although all land in China is formally state-owned, firms in 

science parks typically enjoy exemptions from land use fees and other fees related to land 

leases. They are also exempt from property taxes for self-built or purchased properties for 

five years following start-up.5 

The Shenzhen municipal government’s policies have led to competition among the high-

tech parks within the city (Cheng et al., 2014). By 2007, Shenzhen had fifteen science parks 

(see Figure 2). In addition, existing local industrial parks and other agglomerations may be 

upgraded in the future to science parks. The strategy is that by improving the economic 

conditions, developing market-based institutions and providing financial capital and 

subsidies to firms in science parks, the firms will be more likely to invest in physical and 

human capital, which will in turn lead to innovations and sustainable economic growth. 

Possibly as a result of these preferential policies, the Shenzhen region has seen a rapidly 

increasing number of high-tech firms since 2000.  

 

B. Data and variables 

The establishment-level data are acquired from the Chinese Industrial Statistics Database. 

This database is maintained by the Chinese National Statistical Bureau through compulsory 

registration and an annual firm survey collected by lower level statistical bureaus. The 

survey provides information on manufacturing firms. In total, there are over 3 million firm 

records over the period from 1998-2009. The database that we use in this paper only 

includes firms with annual turnover exceeding 5 million yuan (approximately 0.8 million 

USD). Only larger firms are included, but because the target population for the survey 

                                                                 
5 The extent to which these land use policies lead to changes in land consumption is investigated in 
Appendix B. 
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consists of companies that generate more than 90 per cent of China’s total industrial output, 

any selection bias is expected to be small. In this study, we have data on firms located in the 

Shenzhen area for the years 1998, 1999, 2001, 2004, 2006 and 2007. After excluding 

unreliable observations (less than 5 per cent), we obtain 22,535 observations on 9,345 firms. 

Firms are not necessarily present in all years because they may have been too small in 

certain years, went out of business or relocated to areas outside Shenzhen. 

The data provide information on firm location and the most important firm 

characteristics, such as fixed assets (capital), employment and taxes. Using the year of 

establishment, we calculate the firm’s age and determine whether a firm is a start-up. We 

also have information on ownership status. Specifically, we know whether a firm is state-

owned, privately owned, is owned by a firm from Hong Kong, Taiwan, or Macau (HTM), or is 

foreign-owned. Because we are uncertain whether state-owned firms have an incentive to 

maximise profits, we exclude them from the analysis (only 2 per cent of the observations). Of 

the total observations, 2.2 per cent relate to firms with multiple establishments. Because we 

are not sure whether these other establishments are located in other zones, we drop them 

from our dataset.  

To control for the effect of spatial factors that may impact firm productivity, we use 

spatial differencing: we compare firms that are close to science park boundaries. To make the 

identification strategy more convincing, we collect additional data from the 2007 Land Use 

Survey conducted by the Shenzhen Planning Bureau. We calculate the distance from the 

centroid of each neighbourhood to the nearest employment centre, airport, seaport and the 

nearest highway ramp to control for accessibility. Additionally, we include a dummy variable 

that indicates whether a firm is located in the Special Economic Zone (SEZ), where 

preferential policies applied to firms in our period of analysis.6 Zoning has also been taken 

into account. In Shenzhen, strict land use regulations prohibit firms from locating in 

restricted zones, such as ecological protection zones, water reservoirs, and areas near 

polluting production facilities and the nuclear power plant. 

We have information on the location of firms at the neighbourhood level (shequ in 

Chinese). Neighbourhoods are generally quite small (316 hectares on average), so a science 

park usually consists of multiple neighbourhoods.7 One problem is that the science park 

boundaries do not necessarily match the neighbourhood boundaries. However, the 

boundaries are sometimes very close to the neighbourhood boundaries, and sometimes no 

firms are located in the remainder of the neighbourhood no firms (e.g., because it is a 

restricted zone). We therefore let the science park boundaries overlap with neighbourhood 

boundaries when one of the latter observations applies. We then calculate the share of each  
  

                                                                 
6 Since the 1990s, preferential policies in the SEZ have gradually been suspended. The last and most 
important policy, that firms in the Shenzhen SEZ enjoy a tax rate of 15 per cent, compared with 33 per 
cent elsewhere, was suspended in 2008.  
7 These neighbourhoods are approximately twice the area of a census block in the United States (which 
is on average approximately 112 square hectares). 
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FIGURE 3 ― AVERAGE DISTANCE OF THE NEIGHBOURHOOD TO THE SCIENCE PARK BOUNDARY 

 

 

 

TABLE 1 ― DESCRIPTIVE STATISTICS OF NATIONAL STATISTICS BUREAU SAMPLE 

 Other areas  Science parks 

 
𝜇 𝜎 min max  𝜇 𝜎 min max 

Output (in 10,000,000 ¥) 137.777 1,178.534 0.037 75,736.800  297.104 2,254.364 0.163 75,736.800 
Value added (in 10,000,000 ¥) 38.616 485.911 0.006 40,943.920  82.326 683.120 0.001 25,974.810 
Wage per worker (in 10,000 ¥) 21.599 22.407 7.500 750.000  26.964 26.549 7.516 437.834 
Science park (in % of the neighbourhood) 0.027 0.097 0.000 0.775  0.768 0.302 0.039 1.000 
Distance to science park boundary (in km) -3.954 3.152 -14.049 1.471  0.213 0.545 -2.321 1.471 
Special economic zone 0.311     0.350    
Distance to employment centre (in km) 15.551 9.899 0.350 48.032  15.327 9.580 2.318 38.888 
Distance to highway ramp (in km) 4.249 3.282 0.261 31.102  4.063 2.853 0.573 26.360 
Distance to airport (in km) 23.369 14.011 0.849 77.648  20.638 12.992 4.796 70.108 
Distance to seaport (in km) 19.779 8.963 0.700 39.886  20.031 8.508 8.491 33.761 
Restricted zone 0.262     0.189    
Employees 397.451 1,120.086 2.000 82,067.010  567.525 2,480.965 2.000 82,067.010 
Capital (in 10,000 ¥) 3.397 43.919 0.000 2,525.370  3.846 17.762 0.000 751.068 
Start-up 0.010     0.013    
Age 0-5 0.425     0.445    
Age 6-10 0.319     0.312    
Age >10 0.256     0.243    
Privately owned firm 0.334     0.393    
HTM-owned firm 0.511     0.424    
Foreign-owned firm 0.155     0.183    
Tax rate 0.017 0.080 -1.000 1.000  0.019 0.084 -1.000 1.000 

Notes. The effective number of observations for firms outside of science parks is 20,739 and for firms inside science parks is 4,279. For 
value added and wages we have 15,229 and 19,210 observations outside science parks, respectively, and 3,310 and 4,048 observations 
inside science parks, respectively. We exclude state-owned firms. 
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FIGURE 4 ― OUTPUT AND VALUE ADDED IN SCIENCE PARKS AND OTHER AREAS  
 

 

 

neighbourhood that is in a science park in the year prior to the year of observation. To 

calculate the distance to the science park boundary for each neighbourhood, we calculate for 

each point (using a 5 metre by 5 metre grid) within the neighbourhood the distance to the 

nearest science park boundary. Then, we take the average of the distances within the 

neighbourhood (where negative distances are locations outside of the science parks). Figure 

3 plots the relationship between the average distance to the nearest science park boundary 

in a neighbourhood and the share of the neighbourhood that is part of a science park for 

2007. Because we do not know the exact location of firms and we use micro data, 

measurement errors may occur, which can potentially lead to a downward bias of the 

estimated effect of science parks in a linear model. To avoid the problem of measurement 

error, we exclude observations in neighbourhoods that have shares that deviate from zero or 

one (approximately 1 per cent of the neighbourhoods, indicated by the grey dots in Figure 3). 

We also use another (cross-sectional) dataset in the robustness analysis for which we have 

the exact location of firms (Section VI.E). 
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In Table 1, we present descriptive statistics of the variables used in our analysis. The table 

shows that the average output is much higher for firms in science parks. However, this 

difference may be caused by some very large firms (such as Foxconn, a large high-tech 

multinational). The number of workers is indeed somewhat higher in science parks, but the 

amount of physical capital is not. Firm age and the number of start-ups are on average similar 

across science parks and other areas. 

In Figure 4, we plot the average logarithm of firm output and the logarithm of the value 

added over the years for science parks and other areas. It is apparent that productivity in 

science parks is approximately 40 per cent higher compared with productivity in other areas 

(Figure 4A). Although we do not include any control variables, this figure provides some 

suggestive evidence that firms in science parks are more productive or that science parks 

attract productive firms. In Figure 4B, we plot value added over time. The difference between 

science parks and other areas is approximately 25 per cent. Note that we do not have data on 

value added for the year 2004. 

For approximately 20 per cent of the firms, we observe a change in firm location. Only 20 

percent of the moving firms originating from a regular area relocate into a science park. For 

about 75 percent of the relocations, the science park status does not change (so either stay 

inside or outside science parks). The remaining firms move from a science park into a regular 

area. The average moving distance is 8.9 kilometres and the median moving distance is 4.96 

kilometres. Both of these observations suggest that the science park policy not just attracts 

firms from across the boundary. 

 

IV. Econometric framework 

A. Set-up 

We assume that productivity 𝑞𝑗𝑧𝑡 of firm 𝑗 located in neighbourhood 𝑧 in year 𝑡 can be 

described by a Cobb-Douglas production function (see Moretti, 2004; Greenstone et al., 

2010): 

(7) 𝑞𝑗𝑧𝑡 = 𝐴𝑧𝑡 ∏ 𝑥𝑗𝑡𝑚
𝛼𝑚

𝑀

𝑀=1

𝜈𝑖𝑗𝑡, 

where 𝑥𝑗𝑡𝑚 is an input 𝑚, such as labour and capital, 𝑚 = 1, … , 𝑀, 𝛼𝑚 is a productivity 

parameter, 𝐴𝑧𝑡 denotes the location-specific technology level, and 𝜈𝑗𝑧𝑡 captures unobserved 

heterogeneity. It is assumed that log 𝜈𝑗𝑧𝑡 = 𝜂𝑗𝑠𝑡 + 𝜙𝑡 + 𝜖𝑗𝑧𝑡, where 𝜂𝑗𝑠𝑡 denotes industrial 

sector 𝑠 fixed effects (which may sometimes change over time for a firm), 𝜙𝑡 are time fixed 

effects and 𝜖𝑗𝑧𝑡 is an independently and identically distributed error term. We may assume 

that technology 𝐴𝑧𝑡 only depends on the share of a neighbourhood in a science park 𝑝𝑧𝑡 (e.g., 

because of institutional arrangements and technology spillovers between firms located 

there), so 𝐴𝑧𝑡 = e𝛽𝑝𝑧𝑡. We note that 𝑝𝑧𝑡 is positive for firms in a science park in the year after 

the opening of the science park, which seems reasonable because we do not know the exact 

opening date of the science park. Equation (7) does not identify a causal effect of science 
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parks (i) if the locations of science parks are not randomly distributed over space and (ii) if 

more productive firms sort themselves in science parks.  

Most likely, the locations of science parks are not randomly chosen. For example, the 

selection may be based on the existing spatial distribution of high-tech industries. We 

address this issue by using spatial differencing. We compare science parks with neighbouring 

areas that are untreated but that are otherwise similar (Black, 1999; Bayer et al., 2007). 

Hence, we estimate a weighted regression where the weight is given by: 

(8) 𝓌𝑧𝑡̅ = (1 −
𝑑𝑧𝑡̅

𝑑𝑇
) 1𝑑𝑧𝑡̅<𝑑𝑇

, 

which implies that the weight is zero when a location is further than the threshold distance 

𝑑𝑇 kilometres from a science park boundary in 𝑡̅ = 2007. We include a set of boundary ‘fixed 

effects’ 𝜃𝑧𝑏𝑡̅, which are calculated as the share of a neighbourhood that is closest to boundary 

𝑏 in 𝑡̅ and zero otherwise.8 Thus: 

(9) log 𝑞𝑗𝑧𝑡 = 𝛼 log 𝑥𝑗𝑡 + 𝛽𝑝𝑧𝑡 + 𝜃𝑧𝑏𝑡̅ + 𝜙𝑡 + 𝜂𝑗𝑠𝑡 + 𝜖𝑗𝑧𝑡. 

We also control for observable neighbourhood variables denoted by 𝑛𝑧𝑡. In Appendix B, we 

test for robustness of the results with respect to the choice of 𝑑𝑇 and experiment with 

flexible spatial trends that may pick up unobserved factors. Note that spatial differencing 

implies that 𝛽 will be an underestimate of the causal effect when the benefits of science park 

policies extend beyond the science park boundaries (e.g. fast internet). However, we have 

argued that most policies exclusively apply to firms inside science parks, so we do not 

consider this as a major problem.  

However, the above equation does not control for the fact that firms may be more 

productive for unobserved reasons and sort themselves in science parks. It may even be that 

less productive firms are banned from science parks, while they are allowed to locate 

elsewhere. We therefore include firm fixed effects, which leads to:9 

(10) log 𝑞𝑗𝑧𝑡 = 𝛼 log 𝑥𝑗𝑡 + 𝛽𝑝𝑧𝑡 + 𝜁𝑛𝑧𝑡 + 𝜃𝑧𝑏𝑡̅ + 𝜙𝑡 + 𝜂𝑗𝑠𝑡 + 𝜔𝑗 + 𝜖𝑗𝑧𝑡, 

where 𝜔𝑗 denotes a firm fixed effect. Hence, we assume that unobserved firm effects are log-

separable from other effects. By including firm fixed effects, we exploit temporal variations in 

the assignment of science parks: we compare firms’ productivity before and after the opening 

of a science park vis-à-vis the productivity of a firm located close to a science park. A second 

source of identifying variation is derived from firms that relocate. The above equation 

identifies a causal effect if unobserved firm productivity trends are uncorrelated with science 

parks.  

However, one may argue that firms relocate in certain productivity stages. Furthermore, 

we may not properly control for all time-invariant location attributes that may be correlated 

                                                                 
8 Note that if we knew the exact location of firms rather than at the neighbourhood level, it would lead 
to the inclusion of dummies that equal one when the observation is closest to boundary 𝑏.  
9 It should be noted that by including firm fixed effects, we disregard the productivity effects for start-
ups or firms that close down. Because we already control for firm age and whether a firm is a start-up 
in the previous specifications, this approach is unlikely to cause problems. 
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with the assignment of science parks. In the empirical section, we therefore also estimate a 

specification where we include firm-neighbourhood fixed effects 𝜔𝑗𝑧. Hence, we control for 

all time-invariant characteristics of a location and a firm. Because we identify the effect on 

staying firms, it is unlikely that the comparison of nearby companies along the science park 

boundary is confounded by selection of companies due to shocks to their future prospects to 

innovate and productivity. We will test this in more detail in Appendix B. Another worry one 

might have is that 𝛽 will be an overestimate if firms just move across the boundary, as is 

often recorded in in the previous literature (see e.g. Einiö and Overman, 2012). We think this 

not a problem when we include firm-neighbourhood fixed effects because we do not identify 

the effect on moving firms but on firms that stay. Nevertheless, to fully rule out the possibility 

that the regression-discontinuity design leads to an overestimate, we pursue an alternative 

identification strategy in Section VI.B where control locations are not (necessarily) 

geographically close to treatment areas. 

 

V. Regression results 

A. Productivity effects 

Table 2 reports the estimates based on Equations (7)-(10). We start with a simple regression 

based on Equation (7), where we regress the logarithm of output on whether a 

neighbourhood is part of a science park while controlling for workforce size, the capital stock 

and year fixed effects.10 The coefficient suggests that firms are 26 per cent more productive 

in science parks.11 This effect should not be interpreted as a causal effect of science park 

policies because the allocation of science parks may be non-random. In column (2), we 

include additional firm control variables and industrial sector fixed effects. The coefficient is 

somewhat lower and statistically insignificant.  

When the location of science parks is not random and depends on geographic location and 

industrial conditions, this estimate is likely to be biased. For example, it might be that science 

parks are established at locations that have favourable geographical features, such as access 

to highways. We therefore use spatial differencing. This approach should address the 

problem of spatial unobservables, as we focus on areas close to science park boundaries, 

which should have a similar geography. On such a small spatial scale, the boundary of science 

parks is thought to be random. We then only include observations that are within 2.5  

 

                                                                 
10 To estimate the standard errors of the parameters of interest, one may cluster standard errors over 
space (at the science park area or neighbourhood level) or over time (at the firm level). Our pragmatic 
approach is that we cluster at the neighbourhood level because it leads to the largest standard errors 
and therefore to the most conservative conclusions. Nevertheless, it appears that the standard errors 
are very similar no matter whether we cluster at the science park, neighbourhood or firm level. We 
may also estimate a system of equations using seemingly unrelated regressions, including the 
regression equations for employment and capital. This approach would be more efficient and would 
therefore lead to lower standard errors. 
11 The marginal effect is calculated as e𝛽̂ − 1. 
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TABLE 2 ― BASELINE REGRESSION RESULTS ON THE IMPACT OF SCIENCE PARKS ON PRODUCTIVITY 
(Dependent variable: the logarithm of firms’ yearly output) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.230* 0.174 0.219*** 0.231*** 0.239** 0.195** 0.165* 
 (0.124) (0.107) (0.0778) (0.0725) (0.100) (0.0881) (0.0954) 
Employees (log) 0.546*** 0.614*** 0.631*** 0.635*** 0.588*** 0.587*** 0.582*** 
 (0.0164) (0.0152) (0.0282) (0.0288) (0.0443) (0.0438) (0.0432) 
Capital (log) 0.267*** 0.225*** 0.249*** 0.247*** 0.0949*** 0.0926*** 0.0886** 
 (0.0113) (0.00897) (0.0158) (0.0158) (0.0329) (0.0327) (0.0351) 
Start-up  -0.281*** -0.167 -0.160 -0.471*** -0.478*** -0.466*** 
  (0.0689) (0.114) (0.112) (0.149) (0.150) (0.156) 
Age 0-5  -0.0167 0.101* 0.105* 0.0522 0.0521 0.0460 
  (0.0295) (0.0540) (0.0540) (0.0720) (0.0719) (0.0757) 
Age 6-10  0.0290 0.136*** 0.133*** 0.0737 0.0770 0.0799 
  (0.0254) (0.0408) (0.0409) (0.0556) (0.0558) (0.0583) 
HTM-owned firm  -0.128*** -0.0689** -0.0651** 0.190* 0.194* 0.208 
  (0.0279) (0.0335) (0.0328) (0.110) (0.111) (0.127) 
Foreign-owned firm  0.172*** 0.199*** 0.204*** 0.155 0.157 0.186 
  (0.0372) (0.0624) (0.0624) (0.101) (0.101) (0.113) 
Special economic zone (SEZ)    0.180** 0.195 0.940**  
    (0.0861) (0.347) (0.473)  
Distance to employment centre (log)    -0.321** 0.0548 0.412**  
    (0.144) (0.149) (0.189)  
Distance to highway ramp (log)    -0.115*** -0.0813 -0.126  
    (0.0391) (0.149) (0.176)  
Distance to airport (log)    -0.0128 0.234 1.965  
    (0.150) (0.308) (1.709)  
Distance to seaport (log)    0.507* -0.214 -1.217  
    (0.290) (0.538) (5.752)  
Restricted zone    0.0442 0.172 -0.00818  
    (0.0820) (0.240) (0.265)  
        
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year FE (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 19,215 19,215 8,311 8,311 8,311 8,311 8,311 
R² 0.549 0.597 0.641 0.643 0.942 0.943 0.947 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, where 

𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic coordinates, which is approximated by a fifth-
order polynomial function of geographic coordinates, including interactions. Standard errors are clustered at the 
neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 
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kilometres of a science park boundary and include science park boundary fixed effects. In 

column (3), it can be observed that firms are 24 per cent more productive in science parks. 

The effect is almost identical if we include a range of neighbourhood control variables, such 

as distance to the nearest employment centre, distance to the international air- and seaports, 

and distance to the nearest highway ramp (column (4)). Because the coefficient hardly 

changes, this suggests that boundary fixed effects capture important locational endowments 

reasonably well.  

In column (5) of Table 2 we include firm fixed effects to control for sorting. Because of the 

entry requirements, low-productivity firms may not be allowed to locate in science parks. 

However, by investigating the productivity of the same firm before and after the opening of a 

science park, we control for these entry requirements. The coefficient is now somewhat 

higher: science park policies seem to have increased firms’ productivity by 27 per cent, which 

is very similar to the previous specifications. One may argue that neighbourhood variables 

may not capture all of the spatial variables that may be correlated with the boundaries of 

science parks. In column (6), we therefore add a flexible fifth-order polynomial function of 

geographic coordinates. The results indicate that the effect is slightly lower compared with 

the previous specification, but it still is statistically significant at the five per cent level. 

Another approach is to include firm-neighbourhood fixed effects to control for all time-

invariant location attributes. Column (7) indicates that firms that do not relocate have seen 

an increase in productivity of 18 per cent after the opening of a science park. 

The results undoubtedly suggest a strong and meaningful productivity effect of science 

parks, even if we control for firm selection. Our effects are in the same order of magnitude as 

those of Wang (2013), who finds even stronger productivity effects of special economic zones 

(up to 65 per cent).  

The control variables have plausible signs. Production inputs, such as employment and 

capital, increase productivity. Start-ups are much less productive (15-61 per cent). 

Conditional on being a start-up, younger firms seem to be somewhat more productive. 

Furthermore, we find some evidence that foreign-owned firms have a higher output (17-23 

per cent). The effect of distance to employment centres is unclear: when we include firm 

fixed effects, the sign switches. However, we note that if we would exclude the distance to the 

nearest employment centre, the effect of science parks is hardly affected. 

 

B. Wages 

We find a substantial productivity effect of the science park policy. The subsequent question 

then is whether these productivity increases have translated into higher wages. If, for 

instance, workers are very mobile and are elastically supplied, it should imply that wages 

have not increased due to science park policies. Conversely, when workers have strong 

idiosyncratic preferences and are inelastically supplied, we expect positive wage increases 

due to the opening of science parks. We therefore also run wage regressions. Wage is defined  
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 TABLE 3 ― REGRESSION RESULTS OF THE IMPACT OF SCIENCE PARKS ON FIRM WAGES 
(Dependent variable: the logarithm of the average wage) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.202** 0.187** 0.159*** 0.147*** 0.112** 0.128*** 0.112*** 
 (0.0878) (0.0737) (0.0486) (0.0408) (0.0479) (0.0433) (0.0427) 
        
Firm variables (5) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year FE (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,582) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,773)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 17,814 17,814 7,697 7,697 7,697 7,697 7,697 
R² 0.182 0.242 0.334 0.343 0.778 0.780 0.790 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, 

where 𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic coordinates, which is 
approximated by a fifth-order polynomial function of geographic coordinates, including interactions. Standard 
errors are clustered at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

as the average wage per worker in a firm (implying that we divide the total wage bill by the 

number of employees). This measure may be slightly noisy if there are outliers (e.g., CEOs 

who earn a lot compared with the average worker). It is also not available for all firms 

(approximately 7.5 per cent of the observations are missing in this respect). Table 3 reports 

the regression results. 

We again start with the naïve specification in Table 3, column (1). The coefficient seems to 

suggest that wages are 22 per cent higher in science parks. This effect is slightly smaller once 

we include firm control variables and industrial sector fixed effects (column (2)). In column 

(3), we use spatial differencing to improve on the identification of a causal effect of science 

park policies on wages. Again, we find a positive and meaningful effect of science parks on 

wages (17 per cent). This coefficient is very similar when we include neighbourhood 

variables in column (5). Once we control for firm sorting by including firm fixed effects in 

column (4), the effect of science park policies on wages is 11.9 per cent. This effect becomes 

statistically stronger when we include a flexible function of geographic coordinates (column 

(6)) or when we only focus on firms that have not relocated by including firm-neighbourhood 

fixed effects (column (7)). Hence, the results unambiguously suggest that wages have become 

higher due to science park policies, which implies that the policies have at least generated 

some benefits for local workers, if that the local costs of living have not increased. The wage 
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effect, however, is somewhat smaller in magnitude than the productivity effect, which 

suggests that displacement effects might be present. 

 

C. Displacement effects and deadweight losses 

The previous analyses suggest a substantial productivity effect of science parks and higher 

wages for employees working in science parks. In a perfectly competitive market with zero 

profits and a somewhat elastic supply of labour, place-based policies may lead to wage 

differences but may also generate displacement effects. Table 4 reports the results of 

regressions where the dependent variable is either the workforce size or the capital stock of 

firms. 

In Panel A of Table 4 we test the impact of place-based policies on workforce size. The 

naïve specification in column (1) suggests that firms in science parks do not have a larger 

workforce than firms outside of those areas. This result also holds if we include firm control 

variables and industry fixed effects (column (2)), if we use spatial differencing (column (3)), 

and if we include neighbourhood variables (column (4)). However, when we control for firm 

sorting by including firm fixed effects in column (5), the results show that the coefficient 

becomes positive and statistically significant. This result suggests that firms are 16 per cent 

larger due to science park policies. When we include a flexible function of geographic 

coordinates in column (6), the point estimate is similar but not statistically significant at 

conventional levels. This result also holds if we include firm-neighbourhood fixed effects in 

column (7). Hence, although the estimates are imprecise, the policies seem to have generated 

some displacement effects with respect to labour. 

In Panel B of Table 4, we investigate whether the increase in workforce size is 

accompanied by increases in the capital stock. This inquiry is interesting, as displacement 

effects may refer to both changes in the labour force and in the capital stock (see equation 

(5)). Column (1) provides the naïve regressions without any locational or firm controls. The 

coefficient suggests that firms operating in science parks use more capital. This result also 

holds if we include firm control variables and if we focus on observations close to the science 

park boundaries, including science park fixed effects. However, this effect is unlikely to be a 

causal effect of science park policies because high-tech firms that have relatively high shares 

of capital use are more likely to end up in science parks because of entry requirements. 

Indeed, once we include firm fixed effects, the coefficient becomes statistically insignificant 

and essentially equal to zero (columns (4)-(7)). 

Using the framework developed in Section II, we can estimate the productivity effect net 

of changes in factor use, which we will refer to as the ‘gross relative welfare effect’, and the 

deadweight losses associated with science park policies. To estimate the net welfare effect, 

we would need information on the costs of the programme, which is not public. It should be 

noted that the results presented in Table 5 depend on a model with two generic regions, and 

capital and labour as the only production factors, so the results should be interpreted with  
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TABLE 4 ― REGRESSION RESULTS OF THE IMPACT OF SCIENCE PARKS ON WORKFORCE SIZE AND THE CAPITAL STOCK 
(Dependent variable: the logarithm of firms’ employment) 

Panel A: Workforce size 
(1) (2) (3) (4) (5) (6) (7) 
OLS OLS WLS WLS WLS WLS WLS 

        
Science park -0.0579 -0.0313 0.0507 0.0728 0.149** 0.131 0.110 
 (0.0886) (0.0933) (0.0585) (0.0593) (0.0745) (0.0822) (0.0889) 
        
Firm variables (5) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year FE (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 19,215 19,215 8,311 8,311 8,311 8,311 8,311 
R² 0.012 0.165 0.206 0.212 0.936 0.936 0.941 

Panel B: Capital stock 
(1) (2) (3) (4) (5) (6) (7) 
OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.465*** 0.401*** 0.467*** 0.485*** 0.0121 -0.0305 -0.0538 
 (0.155) (0.116) (0.144) (0.142) (0.109) (0.107) (0.0926) 
        
Firm variables (5) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year FE (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 19,215 19,215 8,311 8,311 8,311 8,311 8,311 
R² 0.053 0.202 0.235 0.239 0.911 0.911 0.918 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, where 

𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic coordinates, which is approximated by a fifth-order 
polynomial function of geographic coordinates, including interactions. Standard errors are clustered at the neighbourhood 
level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

caution. Given that it is not possible to observe individual instruments of the science park 

with our data (such as actual explicit or implicit factor employment subsidies or the cost of 

funding), we therefore assume that the causal effects of science parks on firms' productivity 

and employment choices are the result of one policy bundle, which is captured by the 

variable 𝑝𝑧. We then use equation (6) to estimate the gross welfare effect and deadweight 

losses: 
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(11) Δℛ̂𝒲 = 𝑒𝐴

d𝐴𝑧𝑡 d𝑝𝑧𝑡⁄

𝐴𝑧𝑡
− 𝛼ℓ𝑒ℓ − 𝛼𝑘𝑒𝑘 = (e𝛽̂𝐴 − 1) − 𝛼̂ℓ(e𝛽̂ℓ − 1) − 𝛼̂𝑘(e𝛽̂𝑘 − 1), 

where the circumflexes refer to estimated values. The welfare effect comprises three terms: 

the direct productivity increase (e𝛽̂𝐴 − 1); and the two deadweight losses on the markets for 

labour and capital. They are of comparable magnitude here, because they are all scaled to 

relative change to output value. Table 5 reports the results when we estimate equation (11). 

The column numbers refer to their respective specifications in Tables 2 and 4. To calculate 

the standard errors, we use seemingly unrelated estimation (SUE) and the delta method 

because we have nonlinear combinations of coefficients. 

Column (1) in Table 5 relates to the naïve regression. The results suggest a positive gross 

welfare effect of 14 per cent, but this effect is far from statistically significant, partly because 

of a seemingly substantial positive displacement effect of capital. In columns (2), (3) and (4), 

the gross relative welfare effect is also statistically insignificant. However, these results are 

mainly due to a strong and seemingly large displacement effect related to capital. The results 

suggest a total deadweight loss of approximately 45 to almost 60 per cent of the total 

productivity effect (𝛼̂ℓ(e𝛽̂ℓ − 1) (e𝛽̂𝐴 − 1)⁄ ). However, these displacement effects are unlikely 

to be causal effects of science park policies because high-tech, capital-intensive firms sort 

themselves into science parks.  

When we move to our preferred estimates based on spatial differencing and firm fixed 

effects (columns (5)-(7)), we find a gross relative welfare effect of 10.9 per cent, although this 

effect is not statistically significantly different from zero at conventional levels (𝑝-

value = 0.211) (see column (5)). The results in column (5) of Table 5 further suggest that the 

deadweight loss related to labour is 12.7 percent, or about 50 percent of the productivity 

effect. Note again that because the estimated effects are functions of different coefficients, the 

confidence intervals are quite wide. This also holds for the results in columns (6) and (7). The 

gross relative welfare effect appears to be positive and economically meaningful, but the 

deadweight loss related to labour becomes smaller once we include firm-neighbourhood 

fixed effects  in column (7). Nevertheless, it is still about 40 percent of the productivity effect 

(𝛼̂ℓ(e𝛽̂ℓ − 1) (e𝛽̂𝐴 − 1)⁄ ) 

Thus, it seems that the gross relative welfare effect is about 5-16 percent, albeit imprecise. 

The science park policy elicits workers who would otherwise not work in the science park. 

Meanwhile, the responses to the use of capital do not seem to imply deadweight losses. First, 

the capital employment is not statistically significantly sensitive to science park policies in 

the most reliable estimates (Table 5, columns (4)-(7)), and second, its cost share is relatively 

low, with a Cobb Douglas weight of 0.08. Note that the assumption of a fixed capital financing 

rate in the theoretical model should not affect the result: with inelastic capital responses, the 

deadweight losses due to capital market distortions are small. 
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 TABLE 5 ― ESTIMATES OF THE GROSS RELATIVE WELFARE EFFECT AND THE DEADWEIGHT LOSS 

 (1) (2) (3) (4) (5) (6) (7) 
 SUE SUE WSUE WSUE WSUE WSUE WSUE 

        
Gross relative welfare effect, Δℛ̂𝒲 0.131 0.0976 0.0636 0.0580 0.109 0.157* 0.116 
 (0.166) (0.162) (0.101) (0.0990) (0.0872) (0.0899) (0.0933) 
        
Deadweight loss – labour  -0.0307 -0.0188 0.0328 0.0479 0.127*** 0.0879** 0.0677 
 (0.0459) (0.0556) (0.0388) (0.0404) (0.0378) (0.0381) (0.0414) 
Deadweight loss – capital 0.158** 0.111*** 0.148*** 0.154*** 0.00355 -0.00417 -0.00464 
 (0.0653) (0.0383) (0.0551) (0.0552) (0.00826) (0.00711) (0.00541) 
Deadweight loss – total 0.127 0.0921 0.181** 0.202** 0.131*** 0.0838** 0.0631 
 (0.0900) (0.0764) (0.0824) (0.0871) (0.0427) (0.0408) (0.0419) 
        
Firm variables (5) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year FE (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 19,215 19,215 8,311 8,311 8,311 8,311 8,311 

Notes: WSUE stands for Weighted Seemingly Unrelated Estimation. The column numbers refer to the coefficient 
estimates from Tables 2, 4 and 5. Standard errors are calculated using the delta method and clustered at the 
neighbourhood level. The  standard errors are in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

The high deadweight loss estimate of labour relative to the direct policy benefits differs 

from related studies on U.S. place-based policies. Busso et al. (2013) find deadweight losses 

of up to roughly fifty per cent of our estimates (comparing their figures that are not corrected 

for the marginal costs of public funds). In part, the variation could be explained by 

methodological differences. We compare firms around a border, whereas Busso et al. 

compare ‘runner-up’ tracts that actually experienced the policy. The obstacles to changing 

jobs may therefore be lower in our sample. The role of amenities and housing contributes 

relatively little to the deadweight loss estimates of Busso et al., so it is unlikely that they 

explain the difference from our analyses. An obvious and important explanation for the 

differences is the institutional context of the policies. The Chinese labour market has 

different institutions and cultures, and production is relatively labour-intense, which 

potentially provides extra weight to labour market policies (Hsing, 2010). The bargaining 

position of Chinese manufacturing workers appears to be relatively weak, and workers may 

be easily substitutable due to a large supply. Moreover, the rationale of the two place-based 

policies is different: the Chinese science park policies target relatively well-performing areas, 

whereas the US empowerment zones intend to stimulate economically lagging regions. 
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Clearly, workers’ motives to move to economically leading areas where the policy leads to 

(relatively high-skilled) job demand are different from the motives to move into 

economically lagging areas (Cazes and Verick, 2013). The fact that the results point towards a 

deadweight loss in labour may seem surprising given that high-tech, capital-intensive firms 

in particular are attracted to science parks. However, high-tech industries in China are much 

more labour-intensive than high-tech industries in many Western countries. 

 

VI. Sensitivity analysis 

A. Introduction 

We have argued that the estimated productivity and wage effects may be interpreted as a 

causal effect of place-based policies. In this subsection, we report what we consider as the 

most important robustness checks. We first consider an alternative identification strategy 

using local industrial parks as control areas instead of locations close to science park 

boundaries. We then proceed with the use of an alternative measure of productivity. Third, 

we examine whether the presence of agglomeration economies, proxied by firm density, may 

provide an explanation for the productivity effect. If agglomeration economies are an 

important driver of the productivity effect, there may be substantially different welfare 

implications. Finally, we use another (cross-sectional) dataset to corroborate our results and 

investigate whether the omission of information on land use matters for the results. 

We relegate another set of sensitivity analyses to Appendix B. There, we investigate 

whether the inclusion of firm-specific linear trends affect the main results. We also we 

investigate whether the effect of science park policies is different for domestic and foreign-

owned firms and we check whether our results can be explained by differences in tax 

regimes. We continue with testing and relaxing the assumptions made in the spatial 

differencing estimation strategy. Eventually, we test robustness of the results by deliberately 

ignoring measurement error by also including observations in neighbourhoods that are 

partly in science parks.  

 

B. Alternative identification strategy: local industrial parks vs. science parks 

The approach to identify a causal effect of science park policies is to combine spatial 

differencing with temporal differencing. We may also use another source of identifying 

variation based om classification of different dedicated areas. There are two categories: local 

industrial parks and science parks. Only in the latter attractive institutional arrangements 

described in Section II are offered. However, local industrial parks are often upgraded to 

science parks later on and can therefore be considered as a feasible control group. A similar 

approach has been used by Wang (2013) and Busso et al. (2013) who also use ‘runner-up’ 

locations as a counterfactual. If the upgrading of local parks into science parks is random 

over time, or is at least not correlated with 𝜖𝑗𝑧𝑡, 𝛽 measures a causal impact of science parks 

on productivity. We then estimate a weighted regression where the weight is equal to the 

share of the neighbourhood in a local industrial park or science park in 2007.   
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TABLE 6 ― SENSITIVITY ANALYSIS: LOCAL INDUSTRIAL PARKS VS. SCIENCE PARKS 
(Dependent variable: the logarithm of firms’ yearly output) 

 (1) (2) (3) (4) 
 WLS WLS WLS WLS 

     
Science park 0.197*** 0.153*** 0.160 0.155 
 (0.0448) (0.0400) (0.105) (0.110) 
     
Firm variables (7) Yes Yes Yes Yes 
Neighbourhood variables (6) No Yes Yes Yes 
Year FE (6) Yes Yes Yes Yes 
Industry FE (33) Yes Yes Yes Yes 
Firm FE (3,856) No Yes Yes Yes 
Firm-neighbourhood FE (4,001)  No No No Yes 
Industrial park FE (50) Yes Yes Yes Yes 
     
Number of observations 8,427 8,427 8,427 8,427 
R² 0.648 0.651 0.940 0.942 

Notes: We estimate weighted regressions where the weight is equal to the share of the 
neighbourhood in a local industrial park and science park in 2007. Standard errors are 
clustered at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

Table 6 reports the results for productivity. In column (1) we include science and local 

industrial park fixed effects, and control for firm characteristics, industry, and year fixed 

effects. Firms in science parks seem to be 21 percent more productive. In column (2) we 

control for neighbourhood attributes, leading to a slightly lower but similar and highly 

statistically significant coefficient (16.5 percent). In column (3) we control for unobserved 

firm heterogeneity by including firm fixed effects. The coefficient of science parks is very 

similar to the previous specification, but it is somewhat imprecisely estimated and only 

statistically insignificant at the 13 percent level. This is not too surprising as the effective (i.e. 

weighted) number of observations is only 5,217.  Also when we include firm-neighbourhood 

fixed effects, the coefficient remains very similar, but again, somewhat imprecise. In general, 

the point estimates are almost identical to the ones obtained by spatial differencing in Table 

2.  

 

C. Value added 

As an alternative to the total value of production, we can use an alternative measure of 

productivity. We then take the total value added as the measure of firms’ output. We note 

that we do not have observations for the year 2004, so the number of observations is lower 

than in the baseline regressions. Table 7 reports the results.  
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TABLE 7 ― SENSITIVITY ANALYSIS: THE IMPACT OF SCIENCE PARKS ON VALUE ADDED 
(Dependent variable: the logarithm of firms’ value added) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.322* 0.257* 0.187* 0.171* 0.241* 0.252* 0.204 
 (0.168) (0.145) (0.104) (0.0938) (0.136) (0.136) (0.175) 
        
Firm variables (7) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year FE (5) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,194) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,338)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 14,015 14,015 6,062 6,062 6,062 6,062 6,062 
R² 0.535 0.569 0.599 0.606 0.903 0.904 0.908 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, 

where 𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic coordinates, which is 
approximated by a fifth-order polynomial function of geographic coordinates, including interactions. Standard 
errors are clustered at the neighbourhood level and in parentheses.  
 * Significant at the 0.10 level 

 

 

 

Column (1) is the naïve regression of locating in science parks while controlling for 

workforce size and capital usage, as well as year fixed effects. The results indicate that the 

value added is 38 per cent higher for firms in science parks. When we control for other firm 

variables and industry fixed effects, the effect is 29 per cent (column (2)). We then use spatial 

differencing without and with neighbourhood variables (columns (3) and (4), respectively). 

The effects of science park policies are 20.5 and 18.5 per cent, respectively. In column (5), 

where we control for firm fixed effects, the effect becomes somewhat stronger (27 per cent). 

The effect is similar once we include a flexible function of geographic coordinates (column 

(6)). Column (7) in Table 7 includes firm-neighbourhood fixed effects, so we only identify the 

effect of science parks based on science park openings. The point estimate is then very 

similar to previous specifications, but it is imprecise and not statistically significantly 

different from zero at conventional significance levels (p-value = 0.246). In any case, because 

we have fewer observations, the results are less precise than the baseline results. However, 

the point estimates are very similar to the regression results reported in Table 2. 

 

D. Agglomeration economies 

A part of the productivity effect may be caused by the presence of agglomeration economies. 

It has been widely confirmed that productivity advantages through industrial concentration  
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TABLE 8 ― SENSITIVITY ANALYSIS: AGGLOMERATION ECONOMIES 
(Dependent variable: the logarithm of firms’ output) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.206* 0.152 0.204*** 0.206*** 0.241** 0.188** 0.171* 
 (0.108) (0.0932) (0.0696) (0.0695) (0.102) (0.0918) (0.0988) 
Agglomeration 𝜌 = 2.5 (log) 0.0822*** 0.0859*** 0.0906*** 0.0993*** -0.00419 0.0269 -0.0185 
 (0.0260) (0.0231) (0.0337) (0.0332) (0.0696) (0.0743) (0.0989) 
        
Firm variables (7) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year FE (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 19,215 19,215 8,311 8,311 8,311 8,311 8,311 
R² 0.551 0.600 0.642 0.643 0.942 0.943 0.947 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, 

where 𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic coordinates, which is approximated 
by a fifth-order polynomial function of geographic coordinates, including interactions. Standard errors are clustered 
at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

stimulate interactions and foster economic growth, which we refer to as agglomeration 

economies (Glaeser et al., 1992; Glaeser, 2008; Greenstone et al., 2010). Because of a 

concentration of high-tech firms in science parks, firms may be more productive due to input 

and output sharing, labour market pooling and knowledge spillovers, among other things. If 

these nonmarket interactions are important, area-based incentives might lead to an increase 

in social welfare, and job creation strategies may be (more) efficient. 

However, it is well understood that the intensity of interactions between firms decay over 

space continuously, which implies that spatial differencing would lead to an underestimate of 

the productivity effects of clustering. To test whether agglomeration economies are 

important, we calculate the spatially weighted density of firms, following Lucas and Rossi–

Hansberg (2002) and Koster et al. (2014). The weighted density of all firms 𝒜𝑧𝑡 for a certain 

location 𝑧 in year 𝑡 is given by: 

(12) 𝒜𝑧𝑡 = 𝜌 ∑ e−𝜌𝑑𝑧𝑧̃𝑓𝑧𝑡

𝑧

 

where 𝑑𝑧𝑧 is the distance between the centroid of neighbourhood 𝑧 and the centroid of 

another neighbourhood 𝑧̃, 𝜌 is a decay parameter and 𝑓𝑧𝑡 is the count of firms in a certain 

neighbourhood 𝑧̃. We assume that 𝜌 = 2.5, which implies that after 500 metres, the spatial 
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weight is approximately one-third. To avoid collinearity, we do not control for distance to the 

nearest employment centre in the different models. The results are reported in Table 8. 

We find that the coefficients of science parks are only slightly lower when we include the 

agglomeration variable. Column (1) suggests a positive agglomeration effect: doubling the 

number of firms increases productivity by 5.7 per cent. The coefficient related to science 

parks is very similar to the baseline specification. When we use spatial differencing in column 

(3) and include neighbourhood control variables in column (4), the results are almost 

unaffected. In columns (5), (6) and (7) in Table 8 we include firm fixed effects, which implies 

that we identify the effects of agglomeration over time and by staying firms. The coefficients 

related to science parks are essentially the same compared to the baseline specifications. 

Agglomeration no longer has an effect on productivity, but it could also be that there is 

insufficient identifying variation to estimate this effect, given the relatively large standard 

errors. We have also investigated whether these results hold for different values of the decay 

parameter 𝜌, and if we only include high-tech industries in 𝒜𝑧𝑡, but the coefficient related to 

science parks is approximately the same and is hardly affected by the inclusion of the 

agglomeration variables. 

 

E. SBTI data 

The quality of Chinese national data has been criticised, as they may reflect politicised 

aggregations of data submitted by local and other statistical bureaus (Au and Henderson, 

2006). While this is usually not the case for local micro data, it is worthwhile to investigate 

whether our results hold when another dataset is used.  

Therefore, we alternatively use another cross-sectional, establishment-level dataset that 

is derived from the 2007 Shenzhen Industrial Enterprise Survey. This dataset is collected and 

maintained by the Shenzhen Bureau of Trade and Industry (SBTI) through a compulsory 

annual firm survey. It provides firm-specific information, including exact firm location 

(rather than at the neighbourhood level), employment and annual turnover. The SBTI dataset 

does not cover all manufacturing firms. Instead, only firms with annual turnover exceeding 5 

million CNY (approximately 0.8 million USD) are surveyed. After excluding unreliable 

observations (less than 5 per cent), we have 8,837 firms in our dataset that generate 97 per 

cent of the industrial output in Shenzhen (Shenzhen Statistics Bureau 2008). We do not have 

detailed information on capital, but we include the use of electricity and water as proxies. 

Because we know the exact location of firms, we use the original boundaries of science parks 

rather than using data aggregated at the neighbourhood level. We also control for the share 

of highly educated employees and the share of employees that engage in research and 

development activities. Table B2 in Appendix B reports the descriptive statistics, which look 

similar to our baseline sample. 

Table 12 reports the regression results. In column (1), we only include the science park 

dummy and firms’ workforce size and use of electricity and water. The productivity effect is  
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TABLE 9 ― SENSITIVITY ANALYSIS: SBTI DATA 
(Dependent variable: the logarithm of firms’ yearly output) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.167* 0.0648* 0.103** 0.111*** 0.166*** 0.135*** 0.123*** 
 (0.0794) (0.0329) (0.0353) (0.0330) (0.0339) (0.0307) (0.0302) 
Employees (log) 0.508*** 0.628*** 0.670*** 0.667*** 0.661*** 0.678*** 0.676*** 
 (0.0178) (0.0247) (0.0355) (0.0352) (0.0101) (0.00996) (0.0102) 
Electricity usage (log) 0.0148*** 0.0181*** 0.0164*** 0.0170*** 0.0169*** 0.0183*** 0.0181*** 
 (0.00341) (0.00454) (0.00335) (0.00352) (0.00236) (0.00318) (0.00328) 
Water usage (log) 0.0395*** 0.0432*** 0.0579*** 0.0605*** 0.0574*** 0.0594*** 0.0591*** 
 (0.0109) (0.00563) (0.00827) (0.00775) (0.00320) (0.00317) (0.00309) 
Share college graduates  1.474*** 1.531*** 1.445*** 1.297*** 1.367*** 1.350*** 
  (0.0934) (0.0969) (0.0887) (0.0355) (0.0594) (0.0556) 
Share R&D employees  -0.0313 -0.107 -0.153 -0.212** -0.423*** -0.430*** 
  (0.427) (0.553) (0.556) (0.0915) (0.0814) (0.0816) 
Special economic zone (SEZ)    0.245***    
    (0.0602)    
Distance to employment centre (log)    -0.0329 0.0447 0.0394 0.156*** 
    (0.0290) (0.0462) (0.0332) (0.0358) 
Distance to highway ramp (log)    -0.0707*** -0.119*** -0.156** -0.186** 
    (0.0221) (0.0345) (0.0595) (0.0661) 
Distance to airport (log)    -0.0221 0.462* 0.745** 0.758* 
    (0.0347) (0.245) (0.331) (0.386) 
Distance to seaport (log)    0.0271 0.408* 0.542* 2.841*** 
    (0.101) (0.240) (0.311) (0.819) 
Restricted zone    -0.0771 0.00333 -0.0617 -0.0979* 
    (0.0611) (0.0320) (0.0468) (0.0521) 
        
Geographic coordinates Υ( ∙ ) No No No No No No Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Neighbourhood FE (191) No No No No Yes Yes Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 8,873 8,837 4,184 4,184 4,184 2,748 2,748 
R² 0.383 0.480 0.533 0.536 0.558 0.574 0.579 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, where 

𝑑𝑇 = 2.5. In columns (6) and (7), 𝑑𝑇 = 1.25. In column (7), we include a flexible function Υ( ∙ ) of geographic 
coordinates, which is approximated by a fifth-order polynomial function of geographic coordinates, including 
interactions. Standard errors are clustered at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

18.2 per cent. If we include additional firm characteristics and industrial sector fixed effects, 

we find that firms in science parks are 6.7 per cent more productive. When we employ spatial 

differencing, we again find a positive effect of science parks of 10.8 per cent (column (3)). 

This effect is hardly affected once we include the neighbourhood control variables (column 

(4)). In column (5), we include neighbourhood fixed effects, which implies that we compare 

firm productivity between science parks and areas outside of science parks but within the 
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neighbourhood. Note that the effects of neighbourhood characteristics are also identified 

within neighbourhoods.12 The effect of science parks is somewhat stronger: science parks 

seem to increase productivity by 18.1 per cent. Column (6), Table 9, improves on this result 

by reducing the threshold distance by a half to 1.25. The coefficient is very similar to the 

previous specification. In column (7), we also control for a flexible function of geographic 

coordinates. We still find a positive and meaningful effect of science parks on firms’ 

productivity of 13.1 per cent. These effects are very much in line with the baseline results 

presented in Table 2, which increases our confidence in the results. We might also estimate 

regressions for employment and capital, but because we cannot include firm fixed effects to 

control for sorting effects, we think that those results will not be very informative.  

We interpret the productivity effect as the causal effect of science parks on technology, 

which is captured by 𝐴𝑖 in our theoretical model. We then control for labour and capital and 

assume that the consumption of land is fixed. However, when land is much cheaper in science 

parks, firms may substitute capital or labour for land, and (part of) the productivity effect 

may be explained by changes in the consumption of land. We investigate this issue further in 

Appendix B by exploiting additional information on rents and the use of land that is (only) 

available in the SBTI data. The results show that this issue does not seem to be a problem. 

 

VII. Conclusions 

In this paper, we analyse the economic impact of place-based governmental investments in 

science parks in the Chinese city of Shenzhen. Virtually all of the empirical studies on place-

based policies traditionally examine programmes for deprived areas in developed economies. 

However, the welfare arguments may be different when applied to place-based policies in 

leading areas of developing and transition economies. We argue that especially in China, 

institutional circumstances, pronounced demographic and economic transitions, and a 

substantial rural-urban migration, enabled the application of placed-based policies in the 

form of science parks and special economic zones in cities on scales that are unprecedented 

in Western economies (Wu and Gaubatz, 2013). These policies might stimulate relatively 

productive firms and people and foster positive spillovers rather than reinforcing negative 

spillovers, as is often observed in Western countries.  

We note that place-based policies can have large welfare costs depending on the 

responses of the people and places that the policies are applied to. As a result, the welfare 

costs or deadweight losses of such programmes can be approximated by interpreting local 

economy’s responses to such a programme. Because the theoretical underpinnings as well as 

the empirical results on the effectiveness and welfare costs of place-based policies are mixed, 

we contribute to the place-based policy discussion in three ways. First, we introduce a 

theoretical model in which welfare gains and losses, productivity, wages and employment are 

                                                                 
12 Because the Special Economic Zone (SEZ) boundaries overlap with neighbourhood boundaries, we 
cannot estimate the coefficient once we include neighbourhood fixed effects. 
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simultaneously introduced and measured in relation to each other. This stylised model 

informs us of the magnitude of the displacement effects and potential deadweight losses of 

the localised policies. Second, we empirically test the effectiveness of place-based 

development strategies on firm-level productivity by focusing on science park development 

in Shenzhen, China while controlling for observed and unobserved heterogeneity, sorting and 

selection. This approach enables us to be reasonably persuasive with respect to the 

measurement of a causal effect of the policies. Third, we contribute to the potentially 

important discussion on differences in context between developed and transition countries. 

While almost unstudied, China, India, Brazil, South Africa, Russia, and many other transition 

countries extensively use place-based policies, science parks and special economic zones to 

promote development. The empirical evidence to date is therefore arguably not 

representative of many of the place-based policies that are in place worldwide. 

Our results show that area-based incentives have a substantial impact on firms’ 

productivity in Shenzhen’s science parks. Even if we include firm fixed effects and use spatial 

differencing, firms’ output has increased by 15-25 per cent due to science park policies. 

These large and economically meaningful effects are in line with the findings of Wang (2013) 

and contribute to the idea that place-based policies have much more profound effects in 

developing countries and transition economies. We subject our results to an extensive 

sensitivity analysis, including an analysis based on another identification strategy and a 

(cross-sectional) dataset. We also test the impact of science parks on wages and employment. 

We find positive causal effects of the policies on wages. We also find weak evidence that firms 

have hired more people due to the science park policies. Using a stylised theoretical model, 

we estimate that these displacement effects may imply a deadweight loss of up to 40 per cent 

of the total productivity effect. This result suggests that place-based policies may have 

substantial distortive effects on local economies, but we note that the estimated effects are 

statistically imprecise. 

These outcomes are important for determining the effectiveness of place-based policy 

strategies in developing countries. On the one hand, the welfare and productivity effects in 

science parks are impressive and are remarkably large. On the other hand, in recent years, 

following the Torch Programme, numerous special zones and science parks (whichever they 

are named) have proliferated throughout China. In addition to the nationally designated 

areas, there are also provincial-, county- and city-sponsored development zones – such as in 

Shenzhen. Wu and Gaubatz (2013) observe that science parks attract not only foreign direct 

investment, they also stimulate domestic investments. Our analyses nevertheless show that 

science parks may also lead to displacement effects on labour that are on average larger than 

those observed as a result of place-based policies in developed countries. Place-based 

policies may therefore help the development of the designated areas while hampering 

productive development nearby.  
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Appendix A.     Place-based policies and agglomeration externalities 

One objection to the use of factor employment changes in welfare measures is that there may 

be positive externalities, especially agglomeration externalities. These externalities 

potentially bias the welfare conclusions. To observe the argument, suppose that the 

multiplicative technology 𝐴1 is taken as given by producers, but it in fact depends on regional 

employment: 𝑄1 = 𝐴1(𝐿1, 𝑇1) ∙ 𝑓(𝐾1, 𝐿1). The first-order derivative with respect to welfare is 

then the sum of the displacement effect and the externality: 

(13) −𝑡1𝑤1

dℓ1

d𝑡1
+ ∑

𝑞𝑧

𝐴𝑧

𝜕𝐴𝑧

𝜕ℓ𝑧

dℓ𝑧

d𝑡1𝑧
 . 

The latter term is the agglomeration effect due to labour reallocation in all regions z. For the 

moment, we will assume that the net effect can be positive if the policy concentrates workers 

in agglomerated areas – intuitively, moving one worker from a small region to a large, more 

productive region increases the net agglomeration benefit. The rate at which an average 

worker moving to region 1 changes aggregate productivity is his gain in region 1 minus the 

agglomeration benefits lost in an average origin location (𝑧−1): 

(14) 𝜓ℓ =
𝑞1

𝐴1

𝜕𝐴1

𝜕ℓ1
+ ∑

𝑞𝑧

𝐴𝑧

𝜕𝐴𝑧

𝜕ℓ𝑧

dℓ𝑧/d𝑡1

dℓ1/d𝑡1𝑧−1
 

Suppose that the cost share of labour is 𝛼ℓ (in our empirical specification, this is the Cobb-

Douglas parameter for labour). Multiplying and dividing by 𝑡1 and 𝐿1 and using the definition 

gives an expression of the welfare change as: 

(15) −𝑤1ℓ1

dℓ1

d𝑡1

𝑡1

ℓ1
(1 −

𝜓ℓ

𝑡1𝑤1
), 
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where 𝜓ℓ is the average agglomeration benefit per moving worker, and 𝑡1𝑤1 is the per 

worker subsidy cost. High agglomeration benefits relative to the subsidy can diminish the 

welfare loss or even turn it into a gain. Thus, with agglomeration externalities, an estimate of 

the welfare costs could be overstated, or the welfare effect could even be interpreted as a loss 

when there is a net positive effect.  

In our methodology, the agglomeration effects do not influence our estimates of 

displacement. The reason is that we compare firms that are close to science park borders that 

have no substantial barriers. Therefore, any agglomeration effects due to firm density are 

comparable between just inside and just outside the science park border. Hence, they should 

impact the treatment and control groups alike. To check this in the data, we investigate 

agglomeration externalities by incorporating access measures to the other firms in the area – 

they do not matter for our estimates of the science park effect. See Section VI.D for more 

details. 

 

Appendix B.     Additional sensitivity analyses 

A. Firm-specific trends 

In the current analysis we analyse the effect of science park policies using spatial and 

temporal differencing. More specifically, we compare the productivity changes between a 

firm that is in a science park with a firm that is just across the border of a science park. It is 

therefore unlikely that the comparison of nearby companies along the science park boundary 

is confounded by selection of companies due to shocks to their future prospects to innovate 

and productivity. For example, a firm may come up with a more potential portfolio of 

innovative projects than a rival company, so that the latter firm is not allowed to locate in a 

science park. Because we compare stayers, we think that unobserved shocks to firm’s 

productivity are unlikely to play a major role. Nevertheless, we may include firm-specific 

linear trends, so that we identify the effect of science parks based on non-linear changes in 

productivity.  

In columns (1) and (2) of Table B1 we replicate the baseline specifications in columns (5) 

and (7) in Table 2, so we use spatial differencing, but we extend the model by including for 

each firm a linear trend. It is shown that the coefficients are quite imprecise, which is not too 

surprising because the firm-specific trends soak up most of the relevant identifying variation. 

Nevertheless, the point estimates are similar to the baseline specifications, in particular once 

we include firm-neighbourhood fixed effects. The latter implies that we identify the effect 

based on stayers. In columns (3) and (4) we use the alternative identification strategy with 

local industrial locations as control locations. Again, the results are imprecise, but the point 

estimates are very similar to the previous specifications, which is reassuring. Hence, although 

including firm-specific trends leads to large standard errors, we do not find strong evidence 

that our results can be explained by firm-specific unobserved shocks. 
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TABLE B1 ― SENSITIVITY ANALYSIS: FIRM-SPECIFIC TRENDS 
(Dependent variable: the tax rate) 

 Spatial differencing  Local industrial parks 

 (1) (2)  (3) (4) 
 WLS WLS  WLS WLS 

      
Science park 0.0863 0.123  0.0950 0.141 
 (0.126) (0.197)  (0.153) (0.181) 
      
Firm variables (7) Yes Yes  Yes Yes 
Year fixed effects (6) Yes Yes  Yes Yes 
Industry FE (33) Yes Yes  Yes Yes 
Firm FE  Yes Yes  Yes Yes 
Firm-specific year trends Yes Yes  Yes Yes 
Firm-neighbourhood FE  No Yes  No Yes 
Science park boundary FE (15) Yes Yes  Yes Yes 
      
Number of observations 8,311 8,311  8,427 8,427 
R² 0.959 0.960  0.983 0.984 

Notes: The weights for the weighted least squares (WLS) specifications in columns 
(1) and (2) are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇

, where 𝑑𝑇 = 2.5. The weight is 

equal to the share of the neighbourhood in a local industrial park and science park in 
2007 in columns (3) and (4). Standard errors are clustered at the neighbourhood 
level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

B. Firm heterogeneity and ownership 

One may wonder whether the productivity effect we find applies to all firms or for example 

only to large multinational enterprises that will probably mainly produce for international 

markets. We then interact the science park dummy with the ownership status. The results 

reported Table B2 are essentially a replication of Table 2. Columns (1) and (2) seem to 

suggest that indeed the productivity effect mostly applies to foreign-owned firms. Also 

columns (3) and (4) seem to suggest that the effect is the most pronounced for foreign-

owned firms, while there is no effect for firms owned by enterprises based in Hong Kong, 

Taiwan, or Macau (HTM) However, if we move to the more believable specifications with 

firm fixed effects in columns (5)-(7), it is shown the effects between the different types of 

firms are similar and  not statistically significantly different from each other (the p-value 

= 0.689 in column (5) and 0.615 and 0.919 in columns (6) and (7) respectively). However, in 

column (7) the results become statistically imprecise with coefficients being statistically 

significant only around the 20 percent level. Nevertheless, we do not find much robust 

evidence that the science park effect only benefits one type of firm. 
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TABLE B2 ― SENSITIVITY ANALYSIS: OWNERSHIP AND THE PRODUCTIVITY EFFECT 
(Dependent variable: the logarithm of firms’ output) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park  0.240** 0.161* 0.229*** 0.238*** 0.337** 0.302** 0.202 
     × Domestic firm (0.0997) (0.0937) (0.0693) (0.0598) (0.160) (0.138) (0.146) 
Science park  -0.0166 0.0619 0.0968 0.119 0.195 0.150 0.154 
     × HTM-owned firm (0.0998) (0.0905) (0.0755) (0.0765) (0.122) (0.114) (0.126) 
Science park  0.639*** 0.404** 0.433*** 0.446*** 0.232** 0.183* 0.142 
     × Foreign-owned firm (0.190) (0.179) (0.149) (0.146) (0.0965) (0.0987) (0.113) 
        
Firm variables (7) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year fixed effects (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 19,215 19,215 8,311 8,311 8,311 8,311 8,311 
R² 0.551 0.598 0.643 0.645 0.942 0.943 0.947 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, where 

𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic coordinates, which is approximated by a fifth-
order polynomial function of geographic coordinates, including interactions. Standard errors are clustered at the 
neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

C. Tax rate 

Firms may be more productive in science parks solely because of lower taxes and tax 

exemptions. The tax rate is officially lower in science parks, and some firms receive tax 

holidays for a certain number of years. To investigate whether there are structural 

differences in tax rates between firms in science parks and other areas, we repeat the 

analysis, but now the dependent variable is the tax rate. The coefficient in column (1), Table 

B3, suggests that the tax rate is not statistically significantly different for firms in science 

parks. When controlling for other firm variables and industrial sector fixed effects, the tax 

rate is still not statistically significantly different for firms inside and outside of science parks. 

In column (3), where we use spatial differencing, we find weak evidence that taxes are lower 

in science parks. When we include neighbourhood control variables in column (4), the results 

suggest that tax rates are approximately 0.7 percentage points lower in science parks. When 

we include firm fixed effects, the effect of science parks on tax rates is statistically 

insignificant, although the point estimate suggests a sizeable effect on taxes of approximately 

3 percentage points. The point estimate is similar once we include a flexible function of 

geographic coordinates and firm-neighbourhood fixed effects in columns (6) and (7). 
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TABLE B3 ― SENSITIVITY ANALYSIS: TAX RATES 
(Dependent variable: the tax rate) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park -0.000603 -0.00208 -0.00514* -0.00753** -0.0312 -0.0372 -0.0437 
 (0.00254) (0.00231) (0.00303) (0.00327) (0.0224) (0.0253) (0.0289) 
        
Firm variables (7) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year fixed effects (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 19,215 19,215 8,311 8,311 8,311 8,311 8,311 
R² 0.067 0.084 0.101 0.103 0.555 0.556 0.566 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, where 

𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic coordinates, which is approximated by a fifth-
order polynomial function of geographic coordinates, including interactions. Standard errors are clustered at the 
neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 
TABLE B4 ― SENSITIVITY ANALYSIS: INCLUDING THE TAX RATE IN THE PRODUCTIVITY REGRESSIONS 

(Dependent variable: the logarithm of firms’ output) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.229* 0.170 0.211*** 0.220*** 0.214** 0.165* 0.130 
 (0.125) (0.107) (0.0769) (0.0720) (0.101) (0.0858) (0.0906) 
Tax rate -1.563*** -1.614*** -1.453*** -1.454*** -0.806*** -0.812*** -0.783*** 
 (0.143) (0.136) (0.215) (0.216) (0.245) (0.245) (0.256) 
        
Firm variables (5) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year FE (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 19,215 19,215 8,311 8,311 8,311 8,311 8,311 
R² 0.557 0.606 0.648 0.650 0.943 0.944 0.948 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, 

where 𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic coordinates, which is 
approximated by a fifth-order polynomial function of geographic coordinates, including interactions. Standard 
errors are clustered at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 
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We can also directly control for tax rate in the productivity regressions, although we are 

aware that the tax rate is likely to be endogenous because, for example, larger firms may be 

more effective in negotiating tax exemptions. Table B4 reports the results for the impact of 

science parks on firms’ output while controlling for the tax rate. The table shows that the 

point estimates are generally slightly lower but are very similar to the baseline specifications 

reported in Table 2. It can be observed that the point estimates are very similar to our 

baseline specifications, although with somewhat higher standard errors. Hence, the fact that 

firms in science parks pay lower taxes can only explain a small part of the productivity effect 

related to science park policies. 

 

D. Spatial differencing: sensitivity 

We also investigate the robustness regarding the assumptions when we use spatial 

differencing. The results are summarised in Table B5 and are compared with the baseline 

specifications that are reported in columns (5) and (7) of Table 2. We first investigate 

whether the results are robust to assumptions on the weighting function. In column (1), we 

use a tricube weighting function instead of a linear weighting function, which is given by: 

 (16) 𝓌𝑧𝑡̅ = (1 − (
𝑑𝑧𝑡̅

𝑑𝑇
)

3

)

3

1𝑑𝑧𝑡̅<𝑑𝑇
. 

The results indicate that the effect of science park policies is very similar. This result also 

holds for the specification using firm-neighbourhood fixed effects (column (5)).  

In columns (2) and (3), we test whether our results are robust to changing the boundary 

threshold. As suggested by Imbens and Lemieux (2008), we present the results for threshold 

distances that are twice and half the size of the originally chosen threshold distance. In 

column (2), we set 𝑑𝑇 = 1.25 (half of the original threshold distance). The point estimate is 

very similar. The corresponding specification using firm-neighbourhood fixed effects in 

column (6) also confirms that the findings are hardly influenced by the choice of boundary 

threshold. However, due to the lower number of observations, the standard error is 

somewhat higher, so the point estimate is not statistically significantly different from zero in 

the latter specification. In column (3), we set the threshold distance to twice the size of the 

original threshold, so 𝑑𝑇 = 5. The coefficient in column (3) is very similar to the baseline 

specification in Table 2. Column (7) also suggests a very comparable effect, but it is 

somewhat imprecise.  

When using spatial differencing, one may also include a flexible trend of the assignment 

variable (Hahn et al., 2001). In our case, this would imply that we should include a spatial 

trend. We therefore include a flexible function of the average distance to a science park 

boundary. We estimate this function using a fifth-order polynomial. Column (4), Table B5, 

   

  

  



— 40 — 

 

TABLE B5 ― SENSITIVITY ANALYSIS: SPATIAL DIFFERENCING 
(Dependent variable: the logarithm of firms’ output) 

 (1) (2) (3) (4)  (5) (6) (7) 
 WLS WLS WLS WLS  WLS WLS WLS 

 Tricube 
weighting 

𝑑𝑇 = 1.25 𝑑𝑇 = 5.00 
Distance to 

science park 
 Tricube 

weighting 
𝑑𝑇 = 1.25 𝑑𝑇 = 5.00 

         
Science park 0.241** 0.199** 0.256** 0.166*  0.166* 0.145 0.164 
 (0.100) (0.0970) (0.0994) (0.0902)  (0.0972) (0.107) (0.101) 
         
Firm variables (5) Yes Yes Yes Yes  Yes Yes Yes 
Neighbourhood variables (6) Yes Yes Yes Yes  Yes Yes Yes 
Distance to science park boundary Ω( ∙ ) No No No Yes  No No Yes 
Year FE (6) Yes Yes Yes Yes  Yes Yes Yes 
Industry FE (33) Yes Yes Yes Yes  Yes Yes Yes 
Firm FE (3,707) Yes Yes Yes Yes  Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No  Yes Yes Yes 
Science park boundary FE (15) Yes Yes Yes Yes  Yes Yes Yes 
         
Number of observations 8,311 3,509 13,154 8,311  8,311 3,509 13,154 
R² 0.943 0.946 0.939 0.942  0.947 0.949 0.945 

Notes: Standard errors are clustered at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

shows that the effect is positive, albeit somewhat lower, and statistically significantly 

different from zero at the 10 per cent level.13 Hence, different assumptions regarding 

identification strategy do not affect our main conclusions. 

 

 

E. Measurement error 

A further robustness analysis focuses on the presence of measurement error in the variable 

of interest. In the previous analyses, we excluded firms in neighbourhoods that have a share 

that deviates from one or zero to avoid measurement error. In this subsection, we include all 

observations.14 It may be that the excluded neighbourhoods are a non-random subset of the 

  

                                                                 
13 Note that because distance to a science park boundary is time-invariant, it will drop when we include 
firm-neighbourhood fixed effects, so we do not report a similar specification with firm-neighbourhood 
fixed effects because the results are the same as those reported in column (7) of Table 2. 
14 In a special case, we may say something about the bias of the estimated parameter 𝛽 due to the 
measurement error in 𝑝𝑧𝑡 . Let us assume that log 𝑞𝑗𝑧𝑡 = 𝛽𝑝𝑧𝑡 + 𝜖𝑗𝑧𝑡 , and let us also assume that firms 

are uniformly distributed within neighbourhoods and that 𝑝𝑧𝑡 = 𝑝𝑧𝑡
∗ + 𝜇𝑧𝑡, where 𝑝𝑧𝑡

∗  is an 

(unobserved) dummy indicating whether a firm is in a science park. Then, plim(𝛽) = 𝛽̂(1 − 𝜎𝜇 𝜎𝑝⁄ ). 

Because 𝑝𝑧𝑡
∗  is either one or zero, it may be shown that 𝜎𝑧 = (1 𝑛⁄ ) ∑ 𝑝𝑧𝑡(1 − 𝑝𝑧𝑡)𝑛

𝑗=1 , which implies that 

when 𝑝𝑧𝑡  is always zero or one, 𝜎𝜇 = 0. One may estimate an errors-in-variables regression with 

reliability equal to (1 − 𝜎𝜇 𝜎𝑝⁄ ). However, we also include other variables in the regression analysis 
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 TABLE B6 ― SENSITIVITY ANALYSIS: MEASUREMENT ERROR 
(Dependent variable: the logarithm of firms’ output) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.156 0.111 0.183** 0.181*** 0.163** 0.134** 0.103 
 (0.117) (0.101) (0.0737) (0.0669) (0.0687) (0.0645) (0.0736) 
        
Firm variables (7) No Yes Yes Yes Yes Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes No 
Year fixed effects (6) Yes Yes Yes Yes Yes Yes Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Firm FE (3,707) No No No No Yes Yes Yes 
Firm-neighbourhood FE (3,910)  No No No No No No Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 22,116 22,116 11,212 11,212 11,212 11,212 11,212 
R² 0.557 0.603 0.644 0.646 0.942 0.942 0.948 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 −
𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇

, where 𝑑𝑇 = 2.5. In column (6), we include a flexible function Υ( ∙ ) of geographic 

coordinates, which is approximated by a fifth-order polynomial function of geographic coordinates, 
including interactions. Standard errors are clustered at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

population, as they are the neighbourhoods that are close to science park boundaries. An 

advantage of including all observations is that, due to the higher number of observations, the 

effects may be more precisely estimated. However, due to the measurement error, the effects 

are likely to be downward biased. Table B6 reports the results. 

Columns (1) and (2) show that firms in science parks are not necessarily more productive. 

However, the estimated effects are quite imprecise. Column (3) focuses on neighbourhoods 

that are close to science park boundaries. In this case, science parks seem to increase 

productivity by 20 per cent. This effect is almost identical if we include neighbourhood 

control variables. In column (5), we include firm fixed effects. The productivity effect is 18 

per cent, while it is slightly lower if we control flexibly for geographic coordinates in column 

(6). Column (7) includes firm-neighbourhood fixed effects. The effect is slightly lower and not 

statistically significant. This result is not very surprising if we take into account that the 

effect will be downward biased due to the measurement error. In any case, the results largely 

confirm the estimates that we found earlier. 
                                                                                                                                                                                         
(such as distance to the nearest employment centre), which may be correlated with the variable of 
interest and may also be measured with error. Hence, we cannot easily solve the problem by estimating 
an errors-in-variables regression. 
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TABLE B7 ― DESCRIPTIVE STATISTICS OF SBTI SAMPLE 

 Other areas  Science parks 

 
𝜇 𝜎 min max  𝜇 𝜎 min max 

Output (in 10,000,000 ¥) 115.624 2,221.319 5.010 187,469.400  267.946 2,011.515 5.010 41,918.490 
Science park 0.000 0.000 0.000 0.000  1.000 0.000 1.000 1.000 
Distance to science park (in km) -4.434 3.322 -14.728 -0.005  0.428 0.323 0.007 1.891 
Special economic zone (SEZ) 0.295 0.456 0.000 1.000  0.253 0.435 0.000 1.000 
Dist. to employment centre (in km) 7.855 4.877 0.218 31.390  8.182 4.711 0.274 24.709 
Dist. to highway ramp (in km)  4.836 3.340 0.093 37.304  5.004 3.793 0.052 30.623 
Dist. to airport (in km) 27.725 15.520 1.097 91.726  23.836 15.900 5.066 85.045 
Dist. to seaport (in km) 25.373 10.261 1.230 48.329  25.788 8.880 10.810 40.555 
Restricted zone 0.059 0.237 0.000 1.000  0.000 0.000 0.000 0.000 
Employees 302.671 2,458.576 1.000 199,908.000  493.163 2,604.361 1.000 77,472.000 
Electricity usage (in 10,000,000 ¥) 127.524 463.554 0.000 9,609.000  163.356 496.233 0.000 7,729.575 
Water usage (in 10,000,000 ¥) 3.153 14.998 0.000 810.324  4.623 21.867 0.000 529.873 
Share college graduates 0.203 0.234 0.000 1.000  0.236 0.261 0.000 1.000 
Share R&D employees 0.036 0.100 0.000 1.000  0.058 0.136 0.000 1.000 

Notes. The total number of observations is 8,873. The number of observations in science parks is 1,524 and in local industrial parks is 
2,302. 

 

 

 

F. SBTI data: other results 

Table B7 reports descriptive statistics for the alternative dataset based on the 2007 

Shenzhen Industrial Enterprise Survey. The results show that mean output as well as the 

variance in output are of the same order of magnitude as in the other dataset. Additionally, 

the average distances to science park boundaries are similar, which suggests that there is no 

geographic bias in the data selection. The share of college graduates is approximately 20 per 

cent and is slightly higher in science parks. Additionally, the share of R&D employees is 

higher in science parks (5.8 per cent versus 3.6 per cent). 

We interpret the productivity effect as the causal effect of science parks on technology, 

which is captured by 𝐴𝑖 in our theoretical model. We then control for labour and capital and 

assume that the consumption of land is fixed. However, when land is much cheaper in the 

science parks, firms may substitute capital or labour for land, and (part of) the productivity 

effect may be explained by changes in the consumption of land. To investigate this issue 

further, we exploit additional information on rents and the use of land that is (only) available 

in the SBTI data. 

Table B8 reports the results for the rent regressions, where the log of total rents paid for 

factory space is the dependent variable. This information is available for approximately 75 

per cent of the observations. In the naïve regression reported in column (1), it seems that 

rents are 16.8 per cent higher in science parks, although the effect is only marginally 

significant. This result is slightly lower if we control for neighbourhood characteristics 

(column (2)). When we focus on areas close to science parks and include science park fixed 
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TABLE B8 ― REGRESSION RESULTS ON THE IMPACT OF SCIENCE PARKS ON FACTORY RENTS 
(Dependent variable: the logarithm of firms’ total rents paid) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.156* 0.116*** 0.0856 0.00270 -0.0310 -0.0817 0.0569 
 (0.0852) (0.0337) (0.0709) (0.115) (0.132) (0.121) (0.0612) 
        
Firm control variables (5) No No No No No Yes Yes 
Neighbourhood variables (6) No Yes Yes Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No Yes Yes 
Industry FE (33) No No No No No Yes Yes 
Neighbourhood FE (191) No No No Yes Yes Yes Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 6,707 6,707 3,289 3,289 2,124 2,124 2,111 
R² 0.003 0.051 0.039 0.125 0.122 0.127 0.495 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, where 

𝑑𝑇 = 2.5. In columns (5), (6) and (7), 𝑑𝑇 = 1.25. In columns (6) and (7), we include a flexible function Υ( ∙ ) of 
geographic coordinates, which is approximated by a fifth-order polynomial function of geographic coordinates, 
including interactions. Standard errors are clustered at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

effects, the effect becomes statistically insignificant (column (3)). In column (4), where we 

include neighbourhood fixed effects, the rent effect becomes statistically insignificant. This 

result also holds if we reduce the boundary threshold to 1.25 km and when we control for a 

flexible function of geographic coordinates in columns (5) and (6), respectively. However, 

one might argue that we do not include any characteristics of the building (e.g., size or 

quality), which is advisable in these types of ‘hedonic’ regressions. To proxy for building 

characteristics, we therefore include firm characteristics in column (7). For example, it might 

be expected that firms with a larger workforce and a larger capital stock also need more 

space. We are aware that these variables are potentially endogenous (as the price of land also 

may impact workforce size and the size of the capital stock). The coefficient seems to suggest 

that, if anything, land is more expensive in science parks, rather than cheaper, which makes it 

more believable that our results are not explained by changes in the consumption of land. 

To test this more directly, we use information on land consumption. For approximately 17 

per cent of the observations, we have information on the consumption of land. We then 

interact the science park variable with a dummy variable that indicates whether land 

information is present. Furthermore, we control for the log of land consumption and include 

a dummy variable that indicates whether land use is missing. If the science park effect is 

much lower for firms for which we have information on the consumption of land, it may 

indicate that part of the effect is not explained by changes in technology but by changes in 

land consumption. Table B9 reports the results. 
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TABLE B9 ― REGRESSION RESULTS ON THE IMPACT OF SCIENCE PARKS ON PRODUCTIVITY, INCLUDING LAND CONSUMPTION 
 (Dependent variable: the logarithm of firms’ output) 

 (1) (2) (3) (4) (5) (6) (7) 
 OLS OLS WLS WLS WLS WLS WLS 

        
Science park 0.139** 0.0432 0.0854** 0.0973** 0.143*** 0.125*** 0.117*** 
 (0.0613) (0.0342) (0.0378) (0.0352) (0.0222) (0.0245) (0.0252) 
Science park × (1 ‒ Land missing) 0.0332 0.0353 0.0582 0.0376 0.0272 -0.00252 0.00266 
 (0.121) (0.116) (0.0907) (0.0793) (0.0422) (0.0283) (0.0306) 
Land (log) 0.175*** 0.150*** 0.157*** 0.163*** 0.173*** 0.180*** 0.182*** 
 (0.0324) (0.0282) (0.0301) (0.0295) (0.0187) (0.0153) (0.0139) 
Land missing 1.041*** 0.902*** 1.059*** 1.089*** 1.188*** 1.249*** 1.271*** 
 (0.333) (0.276) (0.283) (0.278) (0.167) (0.137) (0.128) 
        
Firm control variables (5) No Yes No No No Yes Yes 
Neighbourhood variables (6) No No No Yes Yes Yes Yes 
Geographic coordinates Υ( ∙ ) No No No No No No Yes 
Industry FE (33) No Yes Yes Yes Yes Yes Yes 
Neighbourhood FE (191) No No No No Yes Yes Yes 
Science park boundary FE (15) No No Yes Yes Yes Yes Yes 
        
Number of observations 8,873 8,837 4,184 4,184 4,184 2,748 2,748 
R² 0.419 0.500 0.550 0.554 0.576 0.590 0.596 

Notes: The weights for the weighted least squares (WLS) specifications are given by 𝓌𝑧𝑡̅ = (1 − 𝑑𝑧𝑡̅ 𝑑𝑇⁄ )1𝑑𝑧𝑡̅<𝑑𝑇
, where 

𝑑𝑇 = 2.5. In columns (5), (6) and (7), 𝑑𝑇 = 1.25. In columns (6) and (7), we include a flexible function Υ( ∙ ) of 
geographic coordinates, which is approximated by a fifth-order polynomial function of geographic coordinates, 
including interactions. Standard errors are clustered at the neighbourhood level and in parentheses.  
 *** Significant at the 0.01 level 
 ** Significant at the 0.05 level 
 * Significant at the 0.10 level 

 

 

 

Column (1) is a naïve regression without locational control variables, but with controls for 

workforce size and the use of electricity and water. Science parks seem to impact 

productivity positively. In column (2), we also control for industrial sector fixed effects and 

other firm characteristics, which leads to a statistically insignificant effect of locating in a 

science park. It should be noted that firms for which we do not have information on land 

consumption for some reason seem to be more productive. In columns (3)-(7), we again use 

spatial differencing. In all of the specifications, the coefficient related to science parks is 

positive and statistically significant at the five per cent level. Additionally, in all of the 

specifications, the interaction effect of science parks and a dummy that indicates whether we 

have information on land consumption is statistically insignificant. The interaction effect is 

close to zero, which suggests that firms for which we have information on land use encounter 

a similar productivity effect; thus, controlling for land consumption does not seem to 

influence our main conclusions. 


