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Polyequilibrium 

Igal Milchtaich, Bar-Ilan University 

June 2015 

Polyequilibrium is a generalization of Nash equilibrium that is applicable to any strategic 

game, whether finite or otherwise, and to dynamic games, with perfect or imperfect 

information. It differs from equilibrium in specifying strategies that players do not choose 

and by requiring an after-the-fact justification for the exclusion of these strategies rather 

than the retainment of the non-excluded ones. Specifically, for each excluded strategy of 

each player there must be a non-excluded one that responds to every profile of non-

excluded strategies of the other players at least as well as the first strategy does.  

A polyequilibrium’s description of the outcome of the game may be more or less specific, 

depending on the number and the identities of the non-excluded strategy profiles. 

A particular property of the outcome is said to hold in a polyequilibrium if it holds for all 

non-excluded profiles. Such a property does not necessarily hold in any Nash equilibrium in 

the game. In this sense, the generalization proposed in this work extends the set of 

justifiable predictions concerning a game’s results.  

Keywords. Polyequilibrium, Polystrategy, Coarsening of Nash equilibrium, Subgame 

perfection, Bayesian perfection.   

1 Introduction 
A Nash equilibrium is a self-enforcing strategy profile. Each player 𝑖 is assigned a strategy 𝑥𝑖  

that is an optimal choice for him if all the other players choose the strategies assigned to 

them. Viewed from a different perspective, a Nash equilibrium excludes all but a single 

strategy for each player 𝑖. The exclusion is justified in that, if none of the other players 

chooses an excluded strategy, player 𝑖 also has no incentive to do so; choosing any excluded 

strategy would not make him better off in comparison with choosing the unique non-

excluded one.  

The first, conventional view of Nash equilibrium generalizes to rationalizability (Bernheim 

1984, Pearce 1984). A rationalizable strategy is a best response to some belief about the 

other players’ play that assigns positive probability only to strategies that are themselves 

rationalizable. Thus, unlike Nash equilibrium, the self-referring rationalizability condition 

potentially involves a set of strategies for each player rather than a single strategy. The same 

is true for the related solution concept of curb set (for Closed Under Rational Behavior; Basu 

and Weibull 1991). However, whereas rationalizability provides justification for the inclusion 

of the strategies in a player’s set, a curb set can be described as requiring justification for the 

exclusion of the strategies outside it, similarly to the above alternative view of Nash 

equilibrium. Specifically, in a curb set, each excluded strategy must not to be a best response 
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to any belief about the other players’ strategies that assigns positive probability only to 

strategy profiles without excluded strategies.1  

Polyequilibrium is similar to curb set in being an “excluding” set-valued solution concept but 

differs from it and from rationalizability in not involving beliefs, i.e., probability distributions 

over strategy profiles. Furthermore, like pure-strategy Nash equilibrium, polyequilibrium is a 

purely ordinal concept, invariant to arbitrary player-specific increasing transformations of 

the payoff functions. It requires that, for each excluded strategy of each player, there is a 

non-excluded one that yields the same or higher payoff against every profile of non-excluded 

strategies. Note that this requirement is weaker than requiring the excluded strategies to be 

(weakly) dominated, because (a) it only considers strategies of the other players that are not 

themselves excluded and (b) it allows for selection, that is, choosing among equally good 

strategies.  

In short, polyequilibrium may be described as a self-enforcing subgame. A subgame by 

definition restricts each player 𝑖 to a designated set of allowable strategies, and 

polyequilibrium requires the restriction to be self-enforcing in the sense that every strategy 

𝑥𝑖  outside the player’s designated set has an adequate substitute within it: an allowable 

strategy 𝑥𝑖
′ that responds at least as well as 𝑥𝑖  does to any profile of allowable strategies for 

the other players. Note that this requirement is a substantially stronger kind of self-

enforcement than that employed by another set-valued generalization of Nash equilibrium, 

the Nash retract (Kalai and Samet 1984). The latter’s definition changes the order of logical 

quantifiers and only requires that, against any given profile of allowable strategies for the 

other players, every strategy 𝑥𝑖  has an adequate substitute 𝑥𝑖
′.  

Polyequilibrium and the corresponding notion of self-enforcement are essentially a 

straightforward generalization of Shapley’s (1964) notion of generalized saddle point in the 

context of finite two-player zero-sum games. More precisely, generalized saddle point is a 

special case of strict polyequilibrium (see Section 2) and its weak version is a special case of 

polyequilibrium. See Section 4.1.  

The condition defining polyequilibrium ostensibly allows any strategy of any player –

justification is only required for the excluded strategies. This lenience in the definition is 

counterbalanced by a unanimity requirement when it comes to stating that a particular 

property of the game’s outcome holds for a particular polyequilibrium. That is, a property is 

said to hold only if all strategy profiles in the polyequilibrium have it. In particular, a player’s 

strategy is said to be a polyequilibrium strategy if there is a polyequilibrium where the 

player’s other strategies are all excluded. This means that, for example, a strategy in a finite 

game that is played with positive probability in some mixed-strategy equilibrium – and is 

thus automatically rationalizable – is not necessarily a polyequilibrium strategy (because the 

support of the player’s mixed strategy also includes other pure strategies). However, a 

polyequilibrium may be able to specify certain aspects of the game’s outcome without 

singling out a unique strategy profile. It may specify, for example, that a particular player 

does not take a particular action, that he receives a positive payoff, that the total payoff is 

                                                            
1 Another set-valued solution concept is strategic stability (Kohlberg and Mertens 1986). However, the 
solution in this case includes only strategy profiles that are themselves Nash equilibria.  
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less than 2, and so on. The polyequilibrium concept thus represents a somewhat different 

philosophy than Nash equilibrium and certain other solution concepts that are designed to 

be completely specific, or at least as specific as possible, about the players’ play. A 

polyequilibrium does not have to satisfy any set requirements in terms of its predictive 

power. Indeed, the collection of all strategy profiles in a game is a polyequilibrium (which 

immediately settles the question of existence). A polyequilibrium is, however, as good as the 

predictions it makes. Crucially, which predictions are “good”, or interesting, is not 

determined by any objective measure of interest but is entirely context-dependent and, 

ultimately, subjective. 

As an illustration of the difference between (Nash) equilibrium and polyequilibrium, consider 

the following two statements about a particular 2 × 2 game: “𝑇 is an equilibrium strategy 

for player 1” and “𝑇 is a polyequilibrium strategy for player 1”. Both statements do not 

mention player 2, which suggests that player 1 is the main subject of interest. The first 

statement means that it is possible to assign player 2 a strategy that is a best response to 1’s 

𝑇 and vice versa. It just does not spell out whether that strategy is 𝐿 or 𝑅 (or whether there 

are two equilibria, one with 𝐿 and the other with 𝑅). The second statement, by contrast, 

does not necessarily refer to a specific strategy of player 2 even implicitly. The 

polyequilibrium it refers to may specify that 2 plays 𝐿 or that he plays 𝑅 (equivalently, does 

not play 𝐿), but it may also leave 2’s strategy unspecified. There is of course nothing 

unfamiliar about justifying a player’s choice of strategy without considering the other 

players’ play. Choosing 𝑇 is justifiable if it is a dominant strategy. Thus, the notion of 

dominant strategy essentially also comes under the umbrella of polyequilibrium. A strictly 

dominated strategy, by contract, is never a polyequilibrium strategy.  

2 Definitions and Basic Facts 
A (strategic) game Γ is specified by a (possibly infinite) set of players, and for each player 𝑖, a 

nonempty set of strategies 𝑆𝑖 and a payoff function 𝑢𝑖 that determines 𝑖’s payoff for each 

strategy profile 𝑥 ∈ 𝑆 ≝ ∏ 𝑆𝑗𝑗 . The game is finite if so are its set of players and each player’s 

strategy set.  

A strategy 𝑥𝑖
′ of player 𝑖 responds to a strategy profile 𝑥″ at least as well as strategy 𝑥𝑖  does 

if 

𝑢𝑖(𝑥
″ ∣ 𝑥𝑖

′) ≥ 𝑢𝑖(𝑥
″ ∣ 𝑥𝑖), 

where the argument on each side of the inequality is the strategy profile obtained from 

𝑥″ by replacing 𝑖’s strategy 𝑥𝑖
″ with the indicated one. Strategy 𝑥𝑖

′ responds to a set of 

strategy profiles 𝑋 at least as well as 𝑥𝑖  does if (1) holds for all 𝑥″ ∈ 𝑋. If, in addition, at least 

some of the inequalities are strict or all of them are so, then 𝑥𝑖
′ (weakly) dominates or strictly 

dominates 𝑥𝑖, respectively, relative to 𝑋. Strategy 𝑥𝑖
′ is a best response to a strategy profile 

or a set of strategy profiles if it responds to it at least as well as every other strategy of 

player 𝑖 does. A never-best-response strategy relative to a set of strategy profiles 𝑋 is a 

strategy that is not a best response to any strategy profile in 𝑋. Such a strategy in not 

necessarily dominated relative to 𝑋 or vice versa. However, a strategy that is strictly 

(1) 
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dominated (by some other strategy) relative to 𝑋 is clearly also a never-best-response 

strategy relative to it. In each of the above expressions involving the phrase “relative to (a 

set of strategy profiles) 𝑋” the latter may be dropped, and in this case, it is understood that 

the expression refers to the entire collection of strategy profiles, that is, 𝑋 = 𝑆. 

A strategy profile 𝑥′ (i) responds to a strategy profile 𝑥″ at least as well as strategy profile 𝑥 

does if (1) holds for every player 𝑖, (ii) responds to a set of strategy profiles 𝑋 at least as well 

as 𝑥 does if the previous condition holds for all 𝑥″ ∈ 𝑋, and (iii) is a best response to a 

strategy profile or a set of strategy profiles if it responds to it at least as well as every other 

strategy profile does. A game has the best-response existence property if there is a best 

response to every strategy profile. Clearly, all finite games and all mixed extensions of finite 

games have this property.  

For a player 𝑖 in a game Γ, a polystrategy is any nonempty set of strategies, ∅ ≠ 𝑋𝑖 ⊆ 𝑆𝑖. 

Player 𝑖’s entire strategy set 𝑆𝑖 is referred to as his trivial polystrategy. A polystrategy that is 

a singleton, {𝑥𝑖}, may be identified with the strategy 𝑥𝑖. A polystrategy profile 𝑋 is an 

assignment of a particular polystrategy 𝑋𝑖 to each player 𝑖 or, equivalently, a nonempty 

rectangular subset of 𝑆. If the subset is a singleton, {𝑥}, it may be identified with its single 

strategy profile 𝑥. Every polystrategy profile 𝑋 defines a subgame of Γ, denoted Γ𝑋, in which 

the players are as in Γ but each player 𝑖 can only choose among the strategies in 𝑋𝑖 and his 

payoff function is the restriction of 𝑢𝑖 to 𝑋. For polystrategy profiles 𝑋′ and 𝑋″ with 𝑋′ ⊆

𝑋″, the interval [𝑋′, 𝑋″] is the collection of all strategy profiles 𝑋 with 𝑋′ ⊆ 𝑋 ⊆ 𝑋″. 

Definition 1. A polystrategy profile 𝑋 is a polyequilibrium if for every strategy profile 𝑥 ∉ 𝑋 

there is some 𝑥′ ∈ 𝑋 that responds to 𝑋 at least as well as 𝑥 does. 𝑋 is a strict 

polyequilibrium if for every player 𝑖 and strategy 𝑥𝑖 ∉ 𝑋𝑖 there is some 𝑥𝑖
′ ∈ 𝑋𝑖  that strictly 

dominates 𝑥𝑖  relative to 𝑋. A polystrategy profile 𝑋 is a simple polyequilibrium if some 

strategy profile 𝑥 ∈ 𝑋 is a best response to 𝑋. A minimal polyequilibrium is one that does not 

contain another polyequilibrium. 

The five facts below easily follow from the definitions. 

Fact 1. Every game has at least one strict polyequilibrium, namely, the trivial 

polyequilibrium 𝑆, which consists of all strategy profiles. 

Fact 2. A polystrategy profile that is a singleton, {𝑥}, is a polyequilibrium or a strict 

polyequilibrium if and only if its single element 𝑥 is a (Nash) equilibrium or a strict 

equilibrium, respectively.   

Fact 3. A sufficient condition for a polystrategy profile 𝑋 to be a polyequilibrium is that all 

strategy profiles in 𝑋 are equilibria. However, this condition is not necessary. A 

polyequilibrium 𝑋 satisfies it if and only if each player’s payoff in Γ𝑋 is independent of his 

own strategy, that is, 𝑢𝑖(𝑥) = 𝑢𝑖(𝑥 ∣ 𝑥𝑖
′) for all 𝑖, 𝑥 ∈ 𝑋 and 𝑥𝑖

′ ∈ 𝑋𝑖.
2 

                                                            
2 An example of such a polyequilibrium is the dominance solution of a dominance solvable finite game 
(Moulin 1979), which is obtained by the successive elimination of all dominated strategies. 
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Fact 4. For strategy profiles 𝑋′ and 𝑋″ with 𝑋′ ⊆ 𝑋″, [𝑋′, 𝑋″] is a polyequilibria interval (that 

is, all its elements are polyequilibria) if and only if for every strategy profile 𝑥 there is some 

𝑥′ ∈ 𝑋′ that responds to 𝑋″ at least as well as 𝑥 does.   

Fact 5. For a polyequilibrium 𝑋 in a game with the best-response existence property, and for 

any strategy profile 𝑥1 ∈ 𝑋, some 𝑥2 ∈ 𝑋 is a best response to 𝑥1. Successive use of this fact 

yields a best-response sequence 𝑥1, 𝑥2, 𝑥3, … where each entry is an element of 𝑋 that is a 

best response to its immediate predecessor. 

Fact 6. A sufficient condition for a polystrategy profile 𝑋 in a subgame Γ′ of a game Γ to be a 

polyequilibrium in Γ′ is that 𝑋 is a polyequilibrium in Γ. If the subgame is of the form 

Γ′ = Γ𝑋
′
, where 𝑋′ is a polyequilibrium in Γ, then this condition is also necessary.  

Note that the above definitions and facts do not involve randomization or beliefs, and in 

particular, ‘strategy’ and ‘equilibrium’ always mean pure strategy and pure-strategy 

equilibrium.3 Moreover, the concepts introduced here are all ordinal in the sense that they 

are invariant to arbitrary increasing transformations of the players’ payoff functions and, in 

fact, could be alternatively formulated in terms of preferences over strategy profiles rather 

than payoffs.  

2.1 Strategy Substitution 
A polyequilibrium may be alternatively described in terms of strategy substitution. Whereas 

an equilibrium prescribes one, specific strategy for each player, a polyequilibrium may be 

viewed as a prescription of a suitable substitute for each of the player’s strategies. 

A prescription of substitute strategies for a player 𝑖 is expressed by a function 𝜙𝑖: 𝑆𝑖 → 𝑆𝑖.
4 

Any family of such functions, one for each player, defines a substitution function 𝜙: 𝑆 → 𝑆 by 

(𝜙(𝑥))𝑖 = 𝜙𝑖(𝑥𝑖) for all 𝑖. A substitution function 𝜙 is rational if, for all 𝑥 and 𝑖, 

𝑢𝑖(𝜙(𝑥)) ≥ 𝑢𝑖(𝜙(𝑥) ∣ 𝑥𝑖). 

The inequality means that it is optimal for player 𝑖 to use the recommended substitute 

𝜙𝑖(𝑥𝑖) to strategy 𝑥𝑖  if all the other players also follow their recommendations. This 

formulation differs from Definition 1 in that it combines the specification of the players’ 

polystrategies with the justification for them. Specifically, the logical relation between the 

two concepts is as follows.  

Fact 7. A polystrategy profile 𝑋 is a polyequilibrium if and only if it is the image of some 

rational substitution function 𝜙 (that is, 𝜙(𝑆) = 𝑋). 

                                                            
3 This aspect of the setup reflects the view that the class of allowable strategies is part of the game’s 
specification. Allowing the use of mixed strategies in a game Γ would turn it into another game, 
namely, the mixed extension Γ∗. Since the polyequilibrium concept does not introduce randomization, 
a polyequilibrium in Γ is not the same thing as a polyequilibrium in Γ∗. See Section 4. 
4 It may be natural to require the function 𝜙𝑖 to be idempotent, which means that any strategy that is 
some other strategy’s substitute is also its own substitute. Adding this requirement would not affect 
any of the assertions below.  
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A number of continuity results immediately follow from the definition. For example, in a 

game where the players’ strategy sets are topological spaces and their payoff functions are 

continuous (with respect to the product topology), any substitution function that is the 

pointwise limit of rational substitution functions is also rational. 

3 Polyequilibrium Results 
Polyequilibrium is a predictive solution concept, not a prescriptive or normative one. As a 

polyequilibrium generally includes multiple strategy profiles, there is no general sense in 

which it may be “played”. Instead, a polyequilibrium predicts certain outcomes, or results, of 

the players’ choice of strategies.  

Formally, a result 𝑅 in a game Γ is any set of strategy profiles. Its negation ~𝑅 is the 

complementary set 𝑆 ∖ 𝑅. A result 𝑅 holds in a polystrategy profile 𝑋 if 𝑋 ⊆ 𝑅, and it is a 

polyequilibrium result if it holds in some polyequilibrium in Γ. A result may be specified 

either explicitly or implicitly, as a particular property or consequence of strategy profiles (for 

example, “player 1’s payoff is higher than 2’s payoff”). In the second case, 𝑅 is the collection 

of all strategy profiles that have the specified property, so that the result holds in a 

polyequilibrium 𝑋 if and only if all strategy profiles 𝑥 ∈ 𝑋 have the property. In particular, for 

a player 𝑖, a strategy 𝑥𝑖  is a polyequilibrium strategy if there is some polyequilibrium 𝑋 with 

𝑋𝑖 = {𝑥𝑖}, and a real number 𝑣𝑖 is a polyequilibrium payoff if there is some polyequilibrium 𝑋 

with 𝑢𝑖(𝑥) = 𝑣𝑖 for all 𝑥 ∈ 𝑋. A generalization of polyequilibrium payoff is polyequilibrium 

payoff interval for player 𝑖, which is any convex set of real numbers 𝐸 such that “𝑖’s payoff 

lies in 𝐸” is a polyequilibrium result, that is, 𝑢𝑖(𝑋) ⊆ 𝐸 for some polyequilibrium 𝑋. Another 

generalization is limit polyequilibrium payoff, which is any extended real number 𝑣𝑖 (that is, a 

number, ∞ or −∞) such that every convex neighborhood of 𝑣𝑖  is a polyequilibrium payoff 

interval for player 𝑖. Similar definitions may be applied to payoff vectors.  

The concept of result may be used also for special kinds of polyequilibria, and in particular 

for equilibria. Every equilibrium result is also a polyequilibrium result but not conversely. 

There are also some logical differences between the two concepts. For example, for any 

result 𝑅 ≠ 𝑆 , the proposition “𝑅 holds in every polyequilibrium” is false (because the result 

does not hold in the trivial polyequilibrium), but the proposition “there does not exist a 

polyequilibrium where ~𝑅 holds” may or may not be false. Thus, the two propositions are 

not logically equivalent even though they would be so if ‘polyequilibrium’ were replaced by 

‘equilibrium’. The reason, of course, is the possibility that in a polyequilibrium 𝑋 both 𝑅 and 

its negation do not hold. For 𝑅 that is the collection of all strategy profiles with a particular 

property, this is so if and only if some, but not all, strategy profiles in 𝑋 have the property.  

Example 1. In the finite (that is, pure-strategy) version of matching pennies, the only 

polyequilibrium is the trivial one. Therefore, there is no polyequilibrium where player 1 plays 

Heads and no polyequilibrium where he does not play Heads (equivalently, plays Tails). 

A game will be said to be plain if every polyequilibrium in it includes at least one equilibrium, 

equivalently, if all polyequilibrium results are also equilibrium results. In a plain game, a 

polyequilibrium where all strategy profiles have a particular property exists if and only if 
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some equilibrium has the property. In a non-plain game, some results that do not hold in any 

equilibrium do hold in a polyequilibrium. The next three examples present such games.    

Example 2. For both players in the finite game  

    𝐿    𝐶   𝑅   
𝑇
𝑀
𝐵

(
1,1 0,0 0,0
0,0 2,3 3,2
0,0 3,2 2,3

)
 

(Basu and Weibull 1991) the only equilibrium payoff is 1, but [2,3] is also a polyequilibrium 

payoff interval. The former corresponds to the game’s unique (pure-strategy) equilibrium 

{𝑇, 𝐿} and the latter to the polyequilibrium {𝑀, 𝐵} × {𝐶, 𝑅}. If a third player were added to 

the game, whose payoff is the average payoff of the original two players and who does not 

take any meaningful action, then only 1 would be an equilibrium payoff for that player but 

2.5 would be a polyequilibrium payoff. The latter is obviously also a mixed-equilibrium payoff 

for all players (see Proposition 3 in Section 4). 

Example 3. Bilateral trade. A buyer has to offer a price 𝑝 to the owner of an item whose 

worth of 1 to the buyer and 0 to the owner, and the latter has to decide whether to sell at 

that price. The strategy “accept any price greater than zero” is a dominant strategy for the 

owner, yet it is not an equilibrium strategy because the buyer does not have a best response 

to it: offering any 𝑝 > 0 is less profitable than offering, say, half that price. Thus, the intuitive 

idea that the buyer’s strategy should be to offer “as little as possible”, or “an 𝜖”, is 

incompatible with the definition of equilibrium. However, this idea is compatible with 

polyequilibrium. For any 0 < 𝜖 ≤ 1, the owner’s strategy of accepting any positive price and 

the buyer’s polystrategy 0 < 𝑝 ≤ 𝜖 (“offer a positive price not higher than 𝜖”) together 

constitute a polyequilibrium. 

Example 4. In a symmetric two-player game, each player must choose a positive integer 𝑦 

and his payoff is 

𝑧 − |1 −
2𝑧

𝑦
|, 

where 𝑧 is the integer chosen by the other player. To receive his highest payoff of 𝑧, a player 

must choose 𝑦 = 2𝑧. However, such a choice prevents the other player from receiving his 

highest payoff of 𝑦 (which would require 𝑧 = 2𝑦), and therefore an equilibrium does not 

exist. In fact, as the total payoff is easily seen to be at most 𝑦 + 𝑧 − 2, even an 𝜖-equilibrium 

does not exist, for all 0 < 𝜖 < 1. However, the nonexistence of equilibrium arguably does 

not reflect a significant misalignment of interests. In particular, if the players alternately 

escalate their “bids” by doubling that of their rival, both payoffs spiral upwards. This 

observation is reflected in the fact that for every positive integer 𝐿 the (symmetric) 

polystrategy profile where both players’ polystrategy is 𝑦 > 𝐿 (“choose a number greater 

than 𝐿”) is a strict polyequilibrium, in which both of them receive at least 𝐿. Thus, infinity is a 

limit polyequilibrium payoff.  
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4 Finite Games and Their Mixed Extensions 
The game in Example 2 has three polyequilibria, which coincide with the supports of its 

three mixed-strategy equilibria (one of which is pure) as well as with the game’s three curb 

sets. However, such coincidences are the exception rather than the rule. In particular, that 

game is special in that its polyequilibria are all strict, and as can easily be seen, a strict 

polyequilibrium in a finite game is always a curb set. This observation aligns with the fact 

that the concept of curb set is meant as a generalization of strict, rather than Nash, 

equilibrium (Basu and Weibull 1991). 

Example 5. The finite game in Figure 1a has two mixed-strategy equilibria, two polyequilibria 

and two curb sets. None of the pairs coincides with another. The first, pure-strategy, 

equilibrium (𝑀, 𝐶) is a polyequilibrium but it is not a curb set. The support {𝑇, 𝐵} × {𝐿, 𝑅} of 

the second mixed-strategy equilibrium is not a polyequilibrium but it is a curb set. The trivial 

polyequilibrium is (trivially) also a curb set.  

Example 5 shows that, in general, a curb set in a finite game may not even contain a 

polyequilibrium and vice versa, and the support of a mixed-strategy equilibrium may not 

contain a polyequilibrium. However, the opposite of the last assertion is false: a 

polyequilibrium always contains the support of some mixed-strategy equilibrium (although it 

does not necessarily coincide with one). 

Proposition 1. In a finite game, every polyequilibrium includes (as a subset) the support of 

some mixed-strategy equilibrium.  

This result is an immediate corollary of Proposition 2 below, which identifies a connection 

between polyequilibria in a finite 𝑛-player game Γ and in its mixed extension Γ∗. By 

definition, an unqualified ‘strategy’ in Γ or in Γ∗ is a pure or mixed strategy in Γ, respectively. 

As the collection 𝑆𝑖 of all pure strategies for a player 𝑖 in Γ may be viewed as a subset of the 

collection 𝑆𝑖
∗ of all mixed strategies, Γ may be viewed as a subgame of Γ∗, with the same 

symbol 𝑢𝑖 denoting the payoff function of a player 𝑖 in both games. 

A polystrategy 𝑋𝑖 for a player 𝑖 in Γ∗ is a nonempty subset of 𝑆𝑖
∗, that is, a collection of mixed 

strategies in Γ, and the same is true for its convex hull conv 𝑋𝑖. In the special case of a pure 

polystrategy, 𝑋𝑖 ⊆ 𝑆𝑖, conv 𝑋𝑖  consists of all mixed strategies of player 𝑖 whose supports are 

subsets of 𝑋𝑖. Note that, for a polystrategy profile 𝑋 = 𝑋1 × 𝑋2 ×⋯× 𝑋𝑛 in Γ∗ or (as a 

special case) in Γ,   

conv 𝑋 = conv 𝑋1 × conv 𝑋2 ×⋯× conv 𝑋𝑛 

is a polystrategy profile in Γ∗.  

     𝐿        𝑅   
𝑇
𝑀
𝐵

(
−1,−3 1,−4
1,3 −1,4
0,3 0,4

) 

c 

Figure 1. Three finite games. 

 

    𝐿      𝐶      𝑅   
𝑇
𝑀
𝐵

(
−1,2 0,0 2, −1
0,0 0,0 0,0
2, −1 0,0 −1,2

)
 

 
a 

 𝐿        𝑅
𝑇
𝑀
𝐵

(
3,−3 0,0
1, −1 1,−1
0,0 3, −3

) 

b 
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Proposition 2. For every polyequilibrium 𝑋 in a finite game Γ or in its mixed extension Γ∗, 

conv 𝑋 is a polyequilibrium in Γ∗. This polyequilibrium (hence, every polyequilibrium in Γ∗ 

with convex polystrategies) includes at least one equilibrium (which is a mixed-strategy 

equilibrium in Γ). 

Proof. Consider any polyequilibrium 𝑋 in Γ or in Γ∗. For each player 𝑖, select for each (pure) 

strategy 𝑥𝑖 ∈ 𝑆𝑖 some 𝑥𝑖
′ ∈ 𝑋𝑖 such that (1) holds for all 𝑥″ ∈ 𝑋, and let 𝑋𝑖

′ ⊆ conv 𝑋𝑖 be 

some polytope (that is, the convex hull of a finite number of strategies in Γ∗) that includes 

each of these (finitely many) strategies 𝑥𝑖
′. A (mixed) strategy in 𝑆𝑖

∗ is a convex combination 

of elements in 𝑆𝑖. It follows, by the linearity of 𝑢𝑖 in each player’s strategy, that for every 

𝑥𝑖 ∈ 𝑆𝑖
∗ there is some 𝑥𝑖

′ ∈ 𝑋𝑖
′ such that (1) holds for all 𝑥″ ∈ 𝑋, and therefore (again by the 

multilinearity of 𝑢𝑖) also for all 𝑥″ ∈ conv 𝑋. Since the polystrategy profile 𝑋′ = ∏ 𝑋𝑖
′

𝑖  is a 

subset of conv 𝑋, this proves that both polystrategy profiles are polyequilibria in Γ∗ (see Fact 

4). The subgame Γ′ = Γ𝑋
′
 of Γ∗, where each player 𝑖 is restricted to strategies in the 

polytope 𝑋𝑖
′, is (identifiable with) the mixed extension of a finite game, and therefore has at 

least one equilibrium. By the second part of Fact 6, every such equilibrium is also an 

equilibrium in Γ∗. ∎ 

By the first part of Fact 6 and Proposition 2, the following implications hold for every 

polystrategy profile 𝑋 in a finite game Γ (equivalently, every pure-polystrategy profile in the 

mixed extension Γ∗): 

𝑋 is a polyequilibrium in Γ∗ ⇒ 𝑋 is a polyequilibrium in Γ ⇒ conv 𝑋 is a polyequilibrium in Γ∗. 

As the next example shows, neither of the implications is an equivalence: the converse of 

the first implication may be false, and the same holds for the second implication. In either of 

the games in the following example, a counterexample for the former is obtained by taking 

𝑋 = 𝑆, the trivial polyequilibrium in Γ, and for the latter, by choosing 𝑋 = {𝑇, 𝐵} × {𝐿, 𝑅}.  

Example 6. The mixed extension Γ∗ of the game Γ in Figure 1b has two disjoint polyequilibria 

intervals, which together include all its polyequilibria. The first interval is [{𝑥}, 𝑋′], where 

𝑥 = (1/2 𝑇 + 1/2 𝐵, 1/2 𝐿 + 1/2 𝑅) is the unique equilibrium in Γ∗ and  

𝑋′ = { (𝑝𝑇 + (1 − 2𝑝)𝑀 + 𝑝𝐵, 1/2 𝐿 + 1/2 𝑅) ∣∣ 0 ≤ 𝑝 ≤ 1/2 }, 

and the second interval is [𝑋″, 𝑆∗], where  

𝑋″ = { (𝑝𝑇 + (1 − 𝑝)𝐵, 𝑞𝐿 + (1 − 𝑞)𝑅) ∣∣ 0 ≤ 𝑝, 𝑞 ≤ 1 } 

and 𝑆∗ is the trivial polyequilibrium in Γ∗. The polyequilibria in the first interval are all simple 

and those in the second one are strict. None of the polyequilibria is a pure-polystrategy 

polyequilibrium. The same is not true for the mixed extension of the game in Figure 1a, 

which has the equilibrium (𝑀, 𝐶). Its other polyequilibria are the elements of the disjoint 

polyequilibria intervals  

[{𝑥}, { (𝑝𝑇 + (1 − 2𝑝)𝑀 + 𝑝𝐵, 𝑞𝐿 + (1 − 2𝑞)𝐶 + 𝑞𝑅) ∣∣ 0 ≤ 𝑝, 𝑞 ≤ 1/2 }] 

and  

[{ (𝑝𝑇 + (1 − 𝑝)𝐵, 𝑞𝐿 + (1 − 𝑞)𝑅) ∣∣ 0 ≤ 𝑝, 𝑞 ≤ 1 }, 𝑆∗], 
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where 𝑥 is the equilibrium (1/2 𝑇 + 1/2 𝐵, 1/2 𝐿 + 1/2 𝑅) and 𝑆∗ is the trivial 

polyequilibrium. 

The above examples and results underline the importance of clearly distinguishing between 

a finite game Γ and its mixed extension Γ∗. In particular, they show that the identity 

between the (pure-strategy) equilibria in Γ and those equilibria in Γ∗ that only involve pure 

strategies does not extend to polyequilibria.5 The set of polyequilibria in Γ does not generally 

coincide with but is rather a superset of the (possibly, empty) set of pure-polystrategy 

polyequilibria in Γ∗. At the same time, there is a simple one-to-one correspondence between 

the former and a different set of polyequilibria in Γ∗: a polyequilibrium 𝑋 in Γ is matched 

with its convex hull conv 𝑋.  

The set of all mixed-strategy equilibria in Γ (which includes the pure-strategy ones) coincides 

with the set of all equilibria in Γ∗. As the next example demonstrates, this set may not be 

connected in a simple way with the set of polyequilibria in Γ∗. Specifically, the example 

shows that the inclusion indicated by Proposition 2 does not always hold for polyequilibria 

with non-convex polystrategies.  

Example 7. A polyequilibrium that does not include an equilibrium. In the mixed extension of 

the game in Figure 1c, a strategy profile is an equilibrium if and only if players 1 and 2 play 𝑇 

and 𝐿, respectively, with probability 1/2. However, regardless of player 2’s strategy, any 

strategy 𝑝𝑇 + 𝑝′𝑀 + (1 − 𝑝 − 𝑝′)𝐵 of player 1 yields him the same payoff as the 

corresponding non-equilibrium strategy  

𝑓(𝑡)𝑇 + (𝑓(𝑡) − 𝑡)𝑀 + (1 − 2𝑓(𝑡) + 𝑡)𝐵, 

where 𝑡 = 𝑝 − 𝑝′ and  

𝑓(𝑡) = {
1/2 (𝑡 + 1), 1/3 ≤ 𝑡 ≤ 1
𝑡,   0 < 𝑡 < 1/3
0,   − 1 ≤ 𝑡 ≤ 0

 . 

Therefore, the following polystrategy profile 𝑋 = (𝑋1, 𝑋2) is a polyequilibrium: 𝑋1 consists of 

all strategies of player 1 except the equilibrium ones and 𝑋2 consists of all strategies of 

player 2. A smaller, minimal polyequilibrium is obtained by including in 𝑋1 only the strategies 

of the form (2), with −1 ≤ 𝑡 ≤ 1 and 𝑓 given by (3).6 It is easy to check that, in this 

polyequilibrium, player 2’s payoff satisfies |𝑢2| ≥ 1. His unique equilibrium payoff, by 

contrast, is 0. 

It would not be possible to find a similar example where player 2’s payoff (rather than the 

absolute value of the payoff) in some polyequilibrium 𝑋 is greater than 0, while his unique 

equilibrium payoff is 0. This fact is a consequence of the second part of the following 

proposition.  

                                                            
5 This difference between equilibrium and polyequilibrium means that, for the latter, even if the 
particular strategies examined are all pure, it still matters whether or not players could use mixed 
strategies if they wanted. Both alternatives are legitimate, but there is no escaping choosing one.  
6 A rational substitution function whose image is this polyequilibrium is essentially defined by 𝑓. 

(2) 

(3) 
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Proposition 3. For each player 𝑖 in a finite game Γ, with mixed extension Γ∗, the following 

inclusions and equalities hold, and the inclusions may be strict: 

    equilibrium payoffs in Γ ⊆ polyequilibrium payoffs in Γ ⊆ mixed-equilibrium payoffs in Γ 

= equilibrium payoffs in Γ∗ = polyequilibrium payoffs in Γ∗. 

Moreover, in both Γ and Γ∗, every polyequilibrium payoff interval for player 𝑖 includes at 

least one of 𝑖’s mixed-equilibrium payoffs in Γ. 

Proof. Example 2 shows that both inclusions may be strict. The first inclusion and the first 

equality are trivial, and the second ones are special cases of the proposition’s second part. 

To prove the latter, consider a polyequilibrium payoff interval 𝐸 for player 𝑖 in either Γ or Γ∗, 

and a corresponding polyequilibrium 𝑋 such that 𝑢𝑖(𝑋) ⊆ 𝐸. By Proposition 2, there is some 

equilibrium payoff 𝑣𝑖 for player 𝑖 in Γ∗ such that 𝑣𝑖 ∈ 𝑢𝑖(conv 𝑋) ⊆ conv 𝑢𝑖(𝑋) ⊆ 𝐸. ∎ 

Proposition 3 shows that, in the mixed extension Γ∗ of a finite game Γ, the only 

polyequilibrium payoffs are the equilibrium ones. It follows from the second part of the next 

theorem that for generic Γ a stronger proposition holds: all the polyequilibrium results in Γ∗ 

are also equilibrium results.   

Theorem 1. If a polyequilibrium 𝑋 in the mixed extension Γ∗ of a finite game Γ does not 

include any equilibrium, then its convex hull conv 𝑋 includes infinitely many equilibria. 

Therefore, if Γ∗ has only finitely many equilibria, then it is plain: every polyequilibrium 

includes at least one equilibrium. 

Proof. It has to be shown that, for any polyequilibrium 𝑋 in Γ∗ and any finite set 𝐴 ⊆

conv𝑋 ∖ 𝑋, the set conv𝑋 ∖ 𝐴 includes an equilibrium. If 𝐴 = ∅, the inclusion follows from 

Proposition 2. Suppose then that 𝐴 = {𝑥1, … , 𝑥𝐿}, with 𝐿 ≥ 1. For each 1 ≤ 𝑙 ≤ 𝐿, let �̅�𝑙 ∈ 𝑋 

(necessarily, �̅�𝑙 ≠ 𝑥𝑙) be a strategy profile that responds to 𝑋, and hence also to conv𝑋, at 

least as well as 𝑥𝑙  does. For each player 𝑖, let 𝑋𝑖
′ ⊆ conv𝑋𝑖 be a polytope as in the proof of 

Proposition 2, except that it is also required that {𝑥𝑖
1, … , 𝑥𝑖

𝐿 , �̅�𝑖
1, … , �̅�𝑖

𝐿} ⊆ 𝑋𝑖
′. As shown 

there, every equilibrium 𝑥∗ in the subgame Γ′ of Γ∗ obtained by restricting each player 𝑖 to 

strategies in 𝑋𝑖
′ is an equilibrium also in Γ∗. Therefore, is suffices to show that some such 

equilibrium satisfies 𝑥∗ ∉ 𝐴. Note that, by construction, for every player 𝑖 and 1 ≤ 𝑙 ≤ 𝐿 

𝑢𝑖(𝑥 ∣ �̅�𝑖
𝑙) ≥ 𝑢𝑖(𝑥 ∣ 𝑥𝑖

𝑙), 𝑥 ∈ 𝑋′, 

where 𝑢𝑖 is player 𝑖’s payoff function in Γ∗ (and in Γ′) and 𝑋′ = ∏ 𝑋𝑖
′

𝑖 .  

Claim 1. For each player 𝑖 there is a continuous function 𝑔𝑖: 𝑋𝑖
′ → 𝑋𝑖

′ such that 

𝑢𝑖(𝑥 ∣ 𝑔𝑖(𝑥𝑖)) ≥ 𝑢𝑖(𝑥), 𝑥 ∈ 𝑋′ 

and, for every 1 ≤ 𝑙 ≤ 𝐿 satisfying 𝑥𝑖
𝑙 ≠ �̅�𝑖

𝑙, 

𝑔𝑖(𝑥𝑖) ≠ 𝑥𝑖
𝑙 , 𝑥𝑖 ∈ 𝑋𝑖

′. 

The meaning of (5) is that changing player 𝑖’s strategy from any 𝑥𝑖  to 𝑔𝑖(𝑥𝑖) cannot decrease 

his payoff in Γ′. 

(4) 

(5) 

(6) 
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The function is defined as 𝑔𝑖 = 𝑔𝑖
𝐿 ∘ ⋯ ∘ 𝑔𝑖

1, the successive composition of 𝐿 functions 

𝑔𝑖
𝑙: 𝑋𝑖

′ → 𝑋𝑖
′ (𝑙 = 1,… , 𝐿), which are constructed as follows. If 𝑥𝑖

𝑙 = �̅�𝑖
𝑙, 𝑔𝑖

𝑙 is the identity 

function, 𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖. If 𝑥𝑖

𝑙 ≠ �̅�𝑖
𝑙, it is defined by  

𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖 + 𝛼𝑖

𝑙𝜙𝑖
𝑙(𝑥𝑖)(�̅�𝑖

𝑙 − 𝑥𝑖
𝑙), 

where 0 < 𝛼𝑖
𝑙 < 1 is a constant that is chosen as described below and  

𝜙𝑖
𝑙(𝑥𝑖) = max{𝛼 ≥ 0 ∣ 𝑥𝑖 + 𝛼(�̅�𝑖

𝑙 − 𝑥𝑖
𝑙) ∈ 𝑋𝑖

′}. 

It is not difficult to see that the function 𝜙𝑖
𝑙: 𝑋𝑖

′ → [0,∞) defined by (8) is continuous and 

satisfies 

𝜙𝑖
𝑙(𝑥𝑖) = 𝜙𝑖

𝑙(𝑥𝑖
′) + 𝛼 

for every 𝑥𝑖 , 𝑥𝑖
′ ∈ 𝑋𝑖

′ and 𝛼 such that 𝑥𝑖 + 𝛼(�̅�𝑖
𝑙 − 𝑥𝑖

𝑙) = 𝑥𝑖
′. In particular, for any 𝑥𝑖  such that 

𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖

𝑙  (hence, 𝑥𝑖 + 𝛼𝑖
𝑙𝜙𝑖
𝑙(𝑥𝑖)(�̅�𝑖

𝑙 − 𝑥𝑖
𝑙) + (�̅�𝑖

𝑙 − 𝑥𝑖
𝑙) = �̅�𝑖

𝑙), 𝜙𝑖
𝑙(𝑥𝑖) = 𝜙𝑖

𝑙(�̅�𝑖
𝑙) +

𝛼𝑖
𝑙𝜙𝑖
𝑙(𝑥𝑖) + 1, and therefore 

𝛼𝑖
𝑙 ≤ 1 − 1/𝜙𝑖

𝑙(𝑥𝑖) ≤ 1 − 1/𝑀,  

where 𝑀 is the maximum of the function 𝜙𝑖
𝑙. To guarantee that, in fact, 

𝑔𝑖
𝑙(𝑥𝑖) ≠ 𝑥𝑖

𝑙 , 𝑥𝑖 ∈ 𝑋𝑖
′, 

it is required that 𝛼𝑖
𝑙 be chosen greater than 1 − 1/𝑀. An additional requirement is that 𝛼𝑖

𝑙 

be sufficiently close to 1 (but smaller than it) to make the inequality (1 − 𝛼𝑖
𝑙)𝑀 < 𝜙𝑖

𝑙(𝑥𝑖
𝑙′) 

hold for all 𝑙′ ≠ 𝑙 satisfying 𝜙𝑖
𝑙(𝑥𝑖

𝑙′) > 0. This requirement guarantees that, for every 𝑙′ ≠ 𝑙 

and strategy 𝑥𝑖,  

𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖

𝑙′ ⇒ 𝑥𝑖 = 𝑥𝑖
𝑙′ . 

This is because, if 𝑔𝑖
𝑙(𝑥𝑖) = 𝑥𝑖

𝑙′, then by (9) 𝜙𝑖
𝑙(𝑥𝑖) = 𝜙𝑖

𝑙(𝑥𝑖
𝑙′) + 𝛼𝑖

𝑙𝜙𝑖
𝑙(𝑥𝑖), so that 𝜙𝑖

𝑙(𝑥𝑖
𝑙′) =

(1 − 𝛼𝑖
𝑙)𝜙𝑖

𝑙(𝑥𝑖) ≤ (1 − 𝛼𝑖
𝑙)𝑀, which by the above requirement implies that 𝜙𝑖

𝑙(𝑥𝑖
𝑙′) = 0, 

and therefore also 𝜙𝑖
𝑙(𝑥𝑖) = 0, so that 𝑥𝑖 = 𝑔𝑖

𝑙(𝑥𝑖) = 𝑥𝑖
𝑙′. 

It follows from (4) and (7) that each of the functions 𝑔𝑖
𝑙 satisfies a condition similar to (5) 

(trivially so if 𝑔𝑖
𝑙 is the identity). Since by definition 𝑔𝑖(𝑥𝑖) = 𝑔𝑖

𝐿(⋯ (𝑔𝑖
1(𝑥𝑖))⋯ ), (5) itself 

clearly also holds. It remains to prove that (6) holds for every 𝑙 satisfying 𝑥𝑖
𝑙 ≠ �̅�𝑖

𝑙. Suppose 

that this is not so: for some 𝑙′ with 𝑥𝑖
𝑙′ ≠ �̅�𝑖

𝑙′  and strategy 𝑥𝑖
′, 𝑔𝑖

𝐿(⋯ (𝑔𝑖
1(𝑥𝑖

′))⋯ ) = 𝑥𝑖
𝑙′. 

Necessarily, 𝑙′ ≠ 𝐿, since an equality would violate (10) for 𝑙 = 𝐿. Therefore, by (11) (again 

with 𝑙 = 𝐿), 𝑔𝑖
𝐿−1(⋯ (𝑔𝑖

1(𝑥𝑖
′))⋯ ) = 𝑥𝑖

𝑙′. A repeated use of the same argument now shows 

that 𝑙′ ≠ 𝑙 also for all 𝑙 < 𝐿. This contradiction completes the proof of Claim 1.     

Define a function 𝑔: 𝑋′ → 𝑋′ by (𝑔(𝑥))𝑖 = 𝑔𝑖(𝑥𝑖) for all 𝑖. Construct a game Γ̅, which has the 

same players and strategy sets as Γ′ (but is not necessarily the mixed extension of a finite 

game), by assigning to each player 𝑖 the payoff function �̅�𝑖 defined by  

(7) 

(8) 

(9) 

(10) 

(11) 
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�̅�𝑖(𝑥) = 𝑢𝑖(𝑔(𝑥) ∣ 𝑥𝑖). 

The function �̅�𝑖 is linear in player 𝑖’s own strategy 𝑥𝑖, which implies that the set 𝐵𝑖(𝑥) of the 

player’s best response strategies to any strategy profile 𝑥 is a nonempty convex subset of his 

strategy set 𝑋𝑖
′. The continuity of 𝑔 and of (the multilinear function) 𝑢𝑖 implies that the 

correspondence 𝑥 ↦ 𝐵𝑖(𝑥) has a closed graph. It therefore follows from Kakutani fixed-

point theorem that Γ̅ has some equilibrium �̅�. To complete the proof of the theorem, it 

remains to establish the following. 

Claim 2. The strategy profile 𝑥∗ = 𝑔(�̅�) satisfies 𝑥∗ ∉ 𝐴, and it is an equilibrium in Γ′. 

Consider any 1 ≤ 𝑙 ≤ 𝐿. Since 𝑥𝑙 ≠ �̅�𝑙, there is some 𝑖 such that 𝑥𝑖
𝑙 ≠ �̅�𝑖

𝑙. By (6), 𝑔𝑖(�̅�𝑖) ≠ 𝑥𝑖
𝑙, 

which proves that 𝑥∗ = 𝑔(�̅�) ≠ 𝑥𝑙. Thus, 𝑥∗ ∉ 𝐴. For every player 𝑖 and strategy 𝑥𝑖 ∈ 𝑋𝑖
′, 

𝑢𝑖(𝑥
∗) = 𝑢𝑖(𝑔(�̅�) ) = 𝑢𝑖(𝑔(�̅�) ∣ 𝑔𝑖(�̅�𝑖) ) ≥ 𝑢𝑖(𝑔(�̅�) ∣ �̅�𝑖) 

= �̅�𝑖(�̅�) ≥ �̅�𝑖(�̅� ∣ 𝑥𝑖) = 𝑢𝑖(𝑔(�̅�) ∣ 𝑥𝑖) = 𝑢𝑖(𝑥
∗ ∣ 𝑥𝑖), 

where the first inequality follows from (5), the second inequality holds since �̅� is an 

equilibrium in Γ̅, and all the equalities follow from the definitions. This proves that 𝑥∗ is an 

equilibrium in Γ′. ∎ 

4.1 Zero-Sum Games  
Shapley (1964) called a strict polyequilibrium in a finite two-player zero-sum game a 

generalized saddle point, and called a polyequilibrium a weak generalized saddle point.7 He 

showed that, in a game as above, the intersection of any number of generalized saddle 

points is also a generalized saddle point, so that the intersection of all of them, called the 

saddle, is the game’s unique minimal strict polyequilibrium. For weak generalized saddle 

points, this is not so. Two of them may have a nonempty intersection that does not even 

include a weak generalized saddle point, and every equilibrium is a minimal polyequilibrium. 

However, it follows as a conclusion from the next proposition that a unique equilibrium is 

necessarily also the game’s unique minimal polyequilibrium. By Theorem 1, the same is true 

for every game that is the mixed extension of a finite game. However, the conclusion here 

and the proposition from which it follows concern any two-player zero-sum game: finite, the 

mixed extension of a finite game, or otherwise.  

Proposition 4. A two-player zero-sum game is plain if and only if it has an equilibrium.  

Proof. Suppose that a two-player zero-sum game Γ has an equilibrium, with payoffs 𝑣 (which 

is the value of the game) and −𝑣 to players 1 and 2 respectively, but some polyequilibrium 

𝑋 = (𝑋1, 𝑋2) does not include any equilibrium. The first assumption means that both players 

have optimal strategies, and the second one implies that at least one player’s polystrategy in 

𝑋, say 𝑋1, does not include any such strategy. Since any of the optimal strategies yields 

player 1 a payoff of at least 𝑣 against every strategy in 𝑋2, there must be some 𝑥1 ∈ 𝑋1 that 

does the same. Since 𝑥1 is not optimal, there is some strategy 𝑥2 of player 2 against which 𝑥1 

yields less than 𝑣. However, this conclusion contradicts the definition of polyequilibrium, 

since it implies that no strategy in 𝑋2 responds to 𝑥1 at least at well as 𝑥2 does. The 

                                                            
7 Duggan and Le Breton (1996) use the last term in a somewhat different sense. 
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contradiction proves that a polyequilibrium 𝑋 as above cannot in fact exist in a game that 

has an equilibrium. ∎ 

A finite two-player zero-sum game Γ may or may not have a (pure-strategy) equilibrium. 

(The former holds, for example, if Γ can be presented as an extensive form game with 

perfect information. The latter holds for the game in Figure 1b.) However, the mixed 

extension of such a game, that is, a matrix game, always has an equilibrium. It therefore 

follows from Proposition 4 that, in matrix games, the sets of equilibrium and polyequilibrium 

results always coincide (which is not true for their non-zero-sum counterparts, as Example 7 

demonstrates). The actual collections of equilibria and polyequilibria vary in their relative 

sizes. In rock-scissors-paper, the game’s unique equilibrium is also its only non-trivial 

polyequilibrium. Other matrix games with a unique equilibrium, such as the mixed extension 

of the game in Figure 1b, have larger, richer sets of polyequilibria (see Example 6).  

5 Successive Elimination of Strategies 
In a polyequilibrium, the exclusion of strategies is given an after-the-fact justification. That is, 

each excluded strategy does not do better than some retained strategy of the same player 

against any profile of the other players’ retained strategies. In this, exclusion differs from 

elimination of dominated strategies, which involves the stronger requirement that some 

alternative is better even relative to the collection of original strategy profiles. Successive 

elimination of dominated strategies blurs this distinction. The relations between successive 

elimination and polyequilibria are explored below. Usefully, the elimination process itself 

can be naturally described in terms of polystrategies. 

Definition 2. Successive elimination of (weakly) dominated or strictly dominated strategies 

means a nonincreasing finite sequence of polystrategy profiles 𝑆 = 𝑋0 ⊇ 𝑋1 ⊇ ⋯ ⊇ 𝑋𝐿, 

with 𝐿 ≥ 1, such that for every 1 ≤ 𝑙 ≤ 𝐿, player 𝑖, and (eliminated) strategy 𝑥𝑖 ∈ 𝑋𝑖
𝑙−1 ∖ 𝑋𝑖

𝑙 

there is some 𝑥𝑖
′ ∈ 𝑋𝑖

𝑙  that dominates 𝑥𝑖  or strictly dominates it, respectively, relative to 

𝑋𝑙−1. Successive elimination of never-best-response strategies is defined similarly, except 

that the requirement concerning 𝑥𝑖  is replaced by the requirement that it is a never-best-

response strategy relative to 𝑋𝑙−1. A polystrategy profile is said to be obtained by successive 

elimination of one of these kinds if it is the last entry 𝑋𝐿 in some sequence as above. 

Clearly, every dominant strategy is a polyequilibrium strategy, whereas a strictly dominated 

strategy, or more generally a never-best-response one, is not a polyequilibrium strategy. The 

following two propositions extend these observations to successive elimination.  

Proposition 5. A polystrategy profile that is obtained by successive elimination of dominated 

strategies is a polyequilibrium.  

Proof. With the notation of Definition 2, consider any player 𝑖 and 1 ≤ 𝑙 ≤ 𝐿. If a strategy 

𝑥𝑖
′ ∈ 𝑋𝑖

𝑙  dominates a strategy 𝑥𝑖 ∈ 𝑋𝑖
𝑙−1 ∖ 𝑋𝑖

𝑙 relative to 𝑋𝑙−1, then in particular the first 

strategy responds to 𝑋𝐿 at least as well as the second one does. The last relation between 

the two strategies is clearly transitive, which implies that for every strategy 𝑥𝑖 ∉ 𝑋𝑖
𝐿 there is 

a strategy in 𝑋𝑖
𝐿 that responds to 𝑋𝐿 at least as well as 𝑥𝑖  does.  ∎ 
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Proposition 6. In a game with the best-response existence property, a polystrategy profile 

that is obtained by successive elimination of never-best-response strategies shares at least 

one strategy profile with each of the game’s polyequilibria. Therefore, in such a game, any 

strategy that is eliminated during successive elimination of never-best-response (or, as a 

special case, strictly dominated) strategies is not a polyequilibrium strategy.  

Proof. In a game with the best-response existence property, consider successive elimination 

of never-best-response strategies, that is, a finite sequence 𝑆 = 𝑋0 ⊇ 𝑋1 ⊇ ⋯ ⊇ 𝑋𝐿 as in 

Definition 2. Consider also any polyequilibrium 𝑋, and a best-response sequence 

𝑥1, 𝑥2, 𝑥3, … of elements of 𝑋 as in Fact 5. It is easy to see, by induction, that 

{𝑥𝑙+1, 𝑥𝑙+2, … } ⊆ 𝑋𝑙  for all 0 ≤ 𝑙 ≤ 𝐿. (If 𝑙 = 0, the inclusion is trivial, and if 𝑙 > 0, it is 

implied by the inclusion for 𝑙 − 1, since the latter indicates that 𝑥𝑙+1, 𝑥𝑙+2, … are best 

responses to strategy profiles in 𝑋𝑙−1.) In particular, 𝑋 ∩ 𝑋𝐿 ≠ ∅. ∎ 

Example 8. The Traveler’s Dilemma (Basu 1994). In this finite symmetric two-player game, 

the strategy sets are 𝑆1 = 𝑆2 = {2,3, … ,100}. For a player choosing strategy 𝑦, the payoff is 

𝑦, 𝑦 + 2 or 𝑧 − 2 if the other player’s choice 𝑧 is equal to, greater than or less than 𝑦, 

respectively. Clearly, the unique best response to any strategy 𝑧 is 𝑦 = max{𝑧 − 1,2}. 

Therefore, successive elimination of never-best-response strategies eliminates 100,99, … ,3, 

simultaneously for both players. It follows, by Proposition 6, that the game’s unique 

equilibrium (2,2) is included in each of its (489, as it turns out) polyequilibria. Thus, there is 

no polyequilibrium in which either player does not choose 2, and therefore also no 

polyequilibrium where the total payoff is greater than 4. It follows from the second part of 

Theorem 1 that the same is true also for the mixed extension of the game. 

The last example is somewhat special in that the polystrategy profile obtained by successive 

elimination of never-best-response strategies is a singleton. It is not difficult so see that, in a 

game with the best-response existence property, such a singleton must be an equilibrium. 

However, if the obtained polystrategy profile 𝑋𝐿 is not a singleton, then it is not necessarily 

a polyequilibrium (but only intersects every polyequilibrium in the game). For example, in 

the finite game in Figure 1b, elimination of the never-best-response strategy 𝑀 gives the 

polystrategy profile {𝑇, 𝐵} × {𝐿, 𝑅}, which is a curb set and the support of the game’s unique 

mixed-strategy equilibrium but is not a polyequilibrium (because neither 𝑇 nor 𝐵 responds 

to both 𝐿 and 𝑅 at least as well as 𝑀 does). The only polyequilibrium the game is the trivial 

one.8  

In Proposition 6, the assumption that the game has the best-response existence property 

cannot be dropped. In fact, as the next example shows, in a game without this property 

successive elimination (unlike a one-time elimination) of strictly dominated strategies may 

eliminate a polyequilibrium strategy. Note that the same it not true for equilibrium 

strategies, which never get eliminated this way. Thus, equilibria and polyequilibria differ in 

this respect. 

                                                            
8 It is noteworthy that, even though strategy 𝑀 is strictly dominated by a mixed strategy and is 
therefore not rationalizable, not playing it is not a polyequilibrium result in the (finite) game.  



16 

Example 9. The strategy set of player 1 consists of all integers and that of player 2 is {0,1}. If 

they choose 𝑦 and 𝑧, respectively, player 1 receives 𝑦 and player 2 receives (𝑦 + 𝑧) mod 2. 

Consider the following two ways of successively eliminating strictly dominated strategies: 

first, either all odd or all even numbers are eliminated for player 1, and then strategy 0 or 1, 

respectively, is eliminated for player 2. In both cases, a polyequilibrium is obtained. Thus, 

each of player 2’s two strategies is a polyequilibrium strategy even though it is eliminated 

during successive elimination of strictly dominated strategies. 

6 Dynamic Games 
The defining property of polystrategy is that a player’s course of action may be only partially 

specified. In a dynamic context, this may mean that the specification is restricted to only 

some of the player’s information sets.  

As for strategic games, a polystrategy 𝑋𝑖 of a player 𝑖 in a dynamic game 𝐺 with either 

perfect or imperfect information is any nonempty set of strategies. Depending on the kind of 

strategies the players may use, ‘strategy’ means either pure strategy or behavior strategy. 

That is, at each of the player’s information sets it prescribes either an action or a probability 

distribution over actions, respectively. A polystrategy 𝑋𝑖 excludes a particular action or 

distribution over actions at a particular information set if none of the strategies in 𝑋𝑖 

prescribes it (in other words, if every strategy that does prescribe it is excluded). A 

polystrategy is rectangular if it includes all the strategies that do not prescribe excluded 

actions or distributions over actions at any of the player’s information sets. A profile of 

rectangular polystrategies may be viewed as a polystrategy profile in the agent normal form 

of the game.  

The simplest kind of dynamic game is an (either perfect- or imperfect-information) extensive 

form game, which is one that can be described by a finite game tree, possibly with chance 

nodes. As in the case of general dynamic games, it still needs to be specified whether all 

behavior strategies or only pure strategies may be used. Any statement where this is not 

specified (or can be understood from the context) is to be interpreted as referring to both 

cases.   

Example 10. The centipede game (Rosenthal 1981). In this extensive form game with perfect 

information, there are 𝑚 ≥ 2 decision nodes, numbered from 1 to 𝑚 (see Figure 2). The 

odd- and even-numbered nodes are controlled by player 1 and 2, respectively. At each node, 

Figure 2. The centipede game (with an odd number of decision nodes 𝒎). 
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Figure 3. Two polyequilibria that do not include an equilibrium, in complete-information games that begin with 

a chance move. a Each player’s polystrategy comprises two strategies, one indicated by black lines and the 

other by gray ones. b Each player’s polystrategy comprises three strategies: one indicated by black lines, one 

by gray lines, and one by thick lines of either color.  
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the controlling player has to choose between Stop and Continue, except that at node 𝑚 only 

Stop can be chosen. The payoffs are determined by the first node 𝑘 at which Stop was 

chosen: the player controlling node 𝑘 receives 2𝑘  and the other player receives 2𝑘/3.   

Consider the version of the centipede game where only pure strategies may be used. 

Effectively, each strategy is described by the index 1 ≤ 𝑘 ≤ 𝑚 + 1 of the first node at which 

the player chooses Stop, with 𝑘 = 𝑚 + 1 standing for the strategy of never stopping (which 

is relevant only for the player not controlling node 𝑚). Therefore, a polystrategy profile is 

any subset of {1,2, … ,𝑚 + 1} (specifically, the collection of “first Stop” nodes) that includes 

at least one odd number and at least one even number. A necessary condition for such a 

subset to be a polyequilibrium is that it is of the form {1,2, … , 𝑙}, for some 2 ≤ 𝑙 ≤ 𝑚 + 1. 

This is because, by Fact 5, a polyequilibrium that includes any strategy 2 ≤ 𝑘 ≤ 𝑚 + 1 must 

also include the unique best response to it, which is strategy 𝑘 − 1. The above condition is 

also sufficient for polyequilibrium. This is because, for any 2 ≤ 𝑙 ≤ 𝑚 + 1, the strategy of 

first stopping at 𝑙 or 𝑙 − 1 (depending on the player’s identity and on the evenness or 

oddness of 𝑙) responds to {1,2, … , 𝑙} at least as well as any strategy that prescribes a later 

stopping time does, which means that the latter may be legitimately excluded. Thus, a 

polystrategy profile is a non-trivial polyequilibrium if and only if the two players’ 

polystrategies are to stop no later than node 𝑙, for some (fixed, common) 2 ≤ 𝑙 ≤ 𝑚. The 

game therefore has 𝑚 nested polyequilibria: the largest polyequilibrium is the trivial one, 

and the smallest (corresponding to 𝑙 = 2) is the game’s unique equilibrium. It is thus a plain 

game. 

As the next example shows, there are also perfect-information extensive form games that 

are not plain. Moreover, there are such games where a player’s payoffs in some 

polyequilibrium are higher than his unique equilibrium payoff. 

Example 11. Semi-dictator games. Players 1 and 2 have $2 to share. They flip a coin, and the 

winner can either dictate an equal split of the money or ask for the whole sum. If he chooses 

the latter, however, the other player may object, and in this case, no one receives anything. 

Assuming that only pure strategies can be used, each player has four strategies. However, 
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since the only decision that affects a player’s own payoff is the one he makes if he wins the 

coin toss, any polystrategy that does not exclude any of the two possible decisions there is 

part of a polyequilibrium. Such a polyequilibrium 𝑋 is shown in Figure 3a. Each player’s 

polystrategy includes two strategies, Black and Gray, which prescribe choosing the actions 

indicated by black and gray lines, respectively, in both decision nodes. It is easy to see that 

none of the four strategy profiles in 𝑋 is an equilibrium. The game in Figure 3b is a variant of 

the first one, and can be described as involving an additional, inconsequential coin toss. The 

polystrategy 𝑋𝑖  shown for each player 𝑖 includes three strategies, Black, Gray and Thick, 

which prescribe choosing the actions indicated by lines with these properties in all decision 

nodes. In particular, at the two decision nodes of player 𝑖 that immediately follow the 

chance node 𝐶, his polystrategy prescribes three pairs of actions; the only one missing is 

choosing the actions indicated by thin lines in both nodes. However, the latter yields player 𝑖 

the same (expected) payoff as Thick, as long as the other player 𝑗 only uses strategies 

belonging to his polystrategy 𝑋𝑗. This proves that 𝑋 = (𝑋1, 𝑋2) is a polyequilibrium. None of 

the nine strategy profiles in 𝑋 is an equilibrium. Moreover, the outcome of each of them, 

that is, the distribution it induces over the terminal nodes, is not an equilibrium outcome. 

Indeed, it is not difficult to check that every strategy profile in 𝑋 yields the players a total 

payoff of either 1 or 1.5, whereas in every (pure-strategy) equilibrium in the game the total 

payoff is 2. If a third player, whose only role is to receive the money if the others do not get 

it, were added to the game, that player’s payoff would be greater than 0 in the 

polyequilibrium 𝑋 but 0 in every equilibrium. Parenthetically, the last statement would not 

be true if behavior strategies were allowed, as a corresponding equilibrium yielding a 

positive payoff to the third player does exist. This fact is actually an immediate corollary of 

Proposition 3.        

6.1 Subgame Perfection 
A strategy 𝑥𝑖  of a player 𝑖 in a dynamic game 𝐺 induces a strategy for 𝑖 in each subgame of 

𝐺. That strategy, which may also be denoted by 𝑥𝑖  if the meaning is clear from the context, is 

obtained by restricting the original strategy to the information sets included in the 

subgame.9 These observation and notation convention extend to strategy profiles, 

polystrategies and polystrategy profiles.  

Definition 3. A polystrategy profile 𝑋 in a dynamic game 𝐺 is a weak subgame perfect 

polyequilibrium if, in every subgame of 𝐺, the induced polystrategy profile is a 

polyequilibrium. The last condition may be expressed more explicitly as follows: for every 

strategy profile 𝑥 ∉ 𝑋 and every subgame 𝐺′ there is some 𝑥′ ∈ 𝑋 that in 𝐺′ responds to 𝑋 

at least as well as 𝑥 does. A polystrategy profile 𝑋 is a subgame perfect polyequilibrium if it 

satisfies the following stronger condition: for every strategy profile 𝑥 ∉ 𝑋 there is some 

𝑥′ ∈ 𝑋 that in all subgames of 𝐺 responds to 𝑋 at least as well as 𝑥 does. 

The difference between subgame perfection and weak subgame perfection is illustrated by 

Figure 4. (Another example is Figure 3, where the polyequilibrium in a is subgame perfect 

                                                            
9 A subgame by definition includes either none or all of the decision nodes in every information set. 
Note that the meaning of ‘subgame’ in the present, dynamic context (Selten 1975) is different from 
that in the strategic context (Shapley 1964; see Section 2).    
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Figure 4. Subgame perfect polyequilibrium (SPP) and weak SPP. a In this one-player game, the singleton {𝑹𝑹′} 

is a SPP and its complement {𝑹𝑳′,𝑳𝑹′,𝑳𝑳′} is a weak SPP. b In this game, where only player 1’s payoffs are 

shown, 𝑿 = {𝑳𝑹′,𝑳𝑳′} × {𝒓, 𝒍} is a weak SPP. It is not a SPP, since neither of player 1’s strategies responds to 𝑿 

at least as well as 𝑹𝑳′ does both in the whole game (where 𝑳𝑹′ does so) and in the subgame starting at the 

player’s second decision node (where 𝑳𝑳′ does so).  
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whereas that in b is only a weak subgame perfect polyequilibrium.) Both properties are 

“hereditary” in the sense that a polyequilibrium with either property induces a 

polyequilibrium with that property in every subgame.  

A polystrategy profile that is a singleton is a subgame perfect polyequilibrium if and only if 

its single element is a subgame perfect equilibrium. In general, however, a subgame perfect 

polyequilibrium may not include a subgame perfect, or even any, equilibrium (see Figure 3a). 

Two exceptions to this general rule are presented by the next two propositions. 

Proposition 7. In a perfect-information extensive form game, every weak subgame perfect 

polyequilibrium 𝑋 where each player’s polystrategy is rectangular includes a subgame 

perfect equilibrium. 

Proof. Consider the collection 𝒳 of all weak subgame perfect polyequilibria that are subsets 

of 𝑋 and consist of rectangular polystrategies. (By assumption, 𝑋 ∈ 𝒳.) For each element of 

𝒳, count the number of decision nodes at which at least two actions or distributions over 

actions are not excluded, and consider some 𝑋′ ∈ 𝒳 for which this number is minimal. If the 

number is zero, then 𝑋′ is a singleton, which implies that it is a subgame perfect equilibrium, 

and the proof is complete. It therefore suffices to assume that the number is greater than 

zero, and show that this assumption leads to a contradiction. The assumption implies that, 

for 𝑋′, there is some decision node 𝑣 such that, (i) at each of the nodes following 𝑣, only one 

action or distribution over actions is not excluded, but (ii) this is not so for 𝑣 itself. Expand 

the set of excluded actions or distributions over actions at 𝑣 to include all but a single, 

optimal one. This modification of 𝑋′ gives a new polystrategy profile, 𝑋″ ⊆ 𝑋′, which is 

clearly also an element of 𝒳, a contradiction to the minimality assumption concerning 𝑋′. ∎ 

Proposition 8. If a perfect-information extensive form game 𝐺 has a unique subgame perfect 

equilibrium 𝑥, then every subgame perfect polyequilibrium in 𝐺 includes 𝑥.  

Proof. Suppose that 𝑥 ∉ 𝑋 for some subgame perfect polyequilibrium 𝑋. To show that this 

assumption leads to a contradiction, consider a strategy profile 𝑥′ ∈ 𝑋 that in all subgames 

responds to 𝑋 at least as well as 𝑥 does. There is some subgame 𝐺′ in which the strategy 

profiles induced by 𝑥′ and by 𝑥 differ only at the root, where they prescribe different actions 
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or distribution over actions to the acting player 𝑖. Since in 𝐺′ strategy 𝑥𝑖
′ responds to 𝑥′ 

(hence, to 𝑥) at least as well as 𝑥𝑖  does, and 𝑥 is a subgame perfect equilibrium, player 𝑖’s 

payoff in 𝐺′ under 𝑥′ must be the same as under 𝑥, which implies that both strategy profiles 

induce subgame perfect equilibria in 𝐺′. This conclusion clearly contradicts the assumption 

that 𝐺 has a unique subgame perfect equilibrium. ∎ 

In the above analysis of the centipede game (Figure 2), ‘strategy’ actually refers to a number 

of equivalent strategies, which specify the same first Stop node but differ in their 

prescription of actions at the player’s later decision nodes. This is so in general: 

polyequilibrium analysis never requires distinguishing between equivalent strategies, 

because the payoffs they yield are always identical and therefore any one (or more) of them 

may be arbitrarily excluded. However, since equivalent strategies may differ in the strategies 

they induce in subgames, the distinction between them may be important in the context of 

subgame perfection.  

Example 10 (continued). As shown, a polystrategy profile in the centipede game is a 

polyequilibrium if and only if it has the form {1,2, … , 𝑙}, for some 2 ≤ 𝑙 ≤ 𝑚 + 1. For each 

such polyequilibrium, and for each 1 ≤ 𝑘 ≤ 𝑙, which represents all equivalent strategies 

whose first Stop is at node 𝑘, consider the representative strategy that prescribes Stop also 

at each of the player’s later decision nodes. Such a choice of representative strategies makes 

the polyequilibrium a weak subgame perfect polyequilibrium, since it is not difficult to check 

that the polystrategy profile it induces in every subgame is again of the general form 

indicated above. This weak subgame perfect polyequilibrium 𝑋 is moreover subgame perfect 

if 2 ≤ 𝑙 ≤ 5. However, for larger 𝑙 this is not so. To see this, suppose that 𝑙 ≥ 6 and consider 

the strategy 𝑥1 of player 1 that instructs him to continue only at his second decision node 

(no. 3). No strategy 𝑥1
′ ∈ 𝑋1 responds to 𝑋 in all subgames at least as well as 𝑥1 does. This is 

because, to do so in the two subgames starting at player 1’s first and second decision nodes, 

𝑥1
′  must specify the same actions there as 𝑥1. However, by construction, no strategy in 𝑋1 

does so. This proves that the weak subgame perfect polyequilibrium 𝑋 is not subgame 

perfect if 𝑙 ≥ 6. Note that 𝑋 consists of rectangular polystrategies if and only if 2 ≤ 𝑙 ≤ 4. 

However, for all 2 ≤ 𝑙 ≤ 𝑚 + 1, 𝑋 includes the game’s unique subgame perfect equilibrium, 

which corresponds to 𝑙 = 2 (cf. Propositions 7 and 8).10 

A significant advantage of subgame perfect polyequilibrium over subgame perfect 

equilibrium manifests itself in dynamic games with many information sets. Whereas a 

subgame perfect equilibrium must prescribe a carefully selected action at each information 

set, including those lying far away from the equilibrium path, a polyequilibrium is allowed to 

ignore all but a relatively small number of relevant information sets.  

Example 12. Sequential competition (Milchtaich, Glazer and Hassin 2015, Example 4). 

A market for a particular good has a continuum of consumers on one side and two sellers on 

the other side. The consumers arrive in a steady flow: in any time interval of length 𝑙, the 

total mass of arriving consumers is 𝑙. Each consumer demands a single unit of the good, and 

leaves the market after buying it or spending a unit of time in the market, whichever comes 

                                                            
10 For an analysis of curb sets in the centipede game, see Pruzhansky (2003). If 𝑚 is odd, the only curb 
set is the trivial polyequilibrium. 
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first. In the first case, the consumer’s payoff is 1 − 𝑥 − 𝑝, where 𝑥 is the time he has been in 

the market and 𝑝 is the price he paid for the good, and in the second case, the payoff is zero. 

Thus, the longer a consumer waits until he buys the good, the lower is his valuation of it. The 

two sellers produce the good at zero cost. Seller 1 arrives at time 1 and seller 2 arrives at 

time 1.1. An arriving seller announces a price 𝑝 for the good, sells the demanded quantity 𝑞, 

and immediately leaves. His payoff is thus 𝑝𝑞. 

For any price 0 < 𝑝1 < 1 that seller 1 sets, the total mass of the consumers who would 

receive positive payoff from buying at that price is 1 − 𝑝1. However, the seller’s actual profit 

from setting price 𝑝1 may be lower than his monopoly profit of 𝑝1(1 − 𝑝1), because if 

consumers expect seller 2’s price 𝑝2 to be significantly lower than 𝑝1, some of them may 

choose to wait. The wait may in turn affect 𝑝2, by changing the demand seller 2 faces. By 

definition, a strategy for seller 2 prescribes a price 𝑝2 for every conceivable demand. Thus, it 

has to consider all possible partitions of the time interval [0,1] that ends with seller 1’s 

arrival into two subsets: the arrival times of the consumers who bought from that seller and 

of those who did not. One may suspect that these myriad decision nodes are not all equally 

relevant. This is where the notions of polystrategy and (subgame perfect) polyequilibrium, 

which legitimize the consideration of only some decision nodes, come in handy.  

As shown below, for every price 0.4 ≤ 𝑝∗ ≤ 0.5 there is a subgame perfect polyequilibrium 

with 𝑝1 = 𝑝
∗ and 𝑝2 = 0.9. Since the second price is higher, none of seller 1’s potential 

customers opts for waiting. Nevertheless, except for in the extreme-right case, seller 1 does 

not take advantage of this by setting his monopoly price of 0.5. The reason is the credible 

threat implicit in the consumers’ strategy, which is the following. Consumers always buy at 

any price 𝑝 that leaves them with nonnegative payoff, except when it is seller 1’s price and it 

is higher than 𝑝∗, in which case they buy only if the resulting payoff is at least 𝑝 − 0.2. Thus, 

if seller 1 sets a price 𝑝1 ≤ 𝑝
∗, all the consumers who arrived in the time interval [𝑝1, 1] buy 

from him, but if 𝑝1 > 𝑝
∗, only those who arrived in [2(𝑝1 − 0.1), 1] do so (or no one does, if 

𝑝1 > 0.6). In the first case, seller 1’s profit is 𝑝1(1 − 𝑝1), and it thus attains its maximum, 

which is between 0.24 and 0.25, at 𝑝1 = 𝑝
∗. In the second case, the profit is only 𝑝1(1 −

2(𝑝1 − 0.1)) (or 0), which is less than 0.16. For player 2, the only relevant decision nodes 

are those corresponding to the two kinds of time intervals indicated above. In those 

corresponding to 𝑝1 ≤ 𝑝
∗ (≤ 0.5), player 2’s profit-maximizing price 𝑝2 is 0.9, and in those 

corresponding to 𝑝1 > 𝑝
∗, 𝑝2 is the minimum between 𝑝1 − 0.1 and 0.5. In the second case, 

the difference between 𝑝2 and 𝑝1 is precisely that required to compensate for the loss of 

payoff due to the waiting time of 0.1 and guarantee that both the consumers who bought 

from seller 1 (if there are any such consumers) and those who chose to wait acted optimally. 

This optimality is the sense in which the threat implicit in the consumers’ strategy is credible, 

and it is what makes this strategy, together with seller 1’s strategy of selling at price 𝑝∗ and 

seller’s 2 rectangular polystrategy just described, a subgame perfect polyequilibrium.  

Note that the polyequilibrium in Example 12 has a well-defined path as it prescribes a 

unique action at every information set that may actually be reached. In this, it differs from 

every non-equilibrium polyequilibrium in the centipede game, which includes strategy 

profiles that specify several different paths in the game tree.  
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6.2 Bayesian Perfection  
In the context of dynamic games with imperfect information, the subgame perfection 

requirement is arguably too weak. A number of refinements of Nash equilibrium take a 

different approach and require each player’s action or distribution over actions at each 

information set to be optimal with respect to a suitable system of beliefs about the history 

of play. A belief system 𝜇 specifies a probability distribution over the nodes in each 

information set 𝑈 of every player 𝑖. The probability assigned to a set of nodes 𝑉 ⊆ 𝑈 is 

denoted 𝜇(𝑉) (with 𝜇(𝑈) = 1). A minimal consistency requirement is that this probability 

coincides with that derived from the players’ actual strategy profile 𝑥 by Bayes’ rule if 

possible, that is,  

𝜇(𝑉) =
Pr𝑥(𝑉)

Pr𝑥(𝑈)
  if Pr𝑥(𝑈) ≠ 0, 

where Pr𝑥(𝑉) is the probability that, under 𝑥, one of the nodes in 𝑉 is reached (and similarly 

for Pr𝑥(𝑈)). A belief system satisfying this requirement is said to be weakly consistent with 

the strategy profile 𝑥. Under perfect recall, which is assumed below, weak consistency 

entails that the beliefs concerning an information set 𝑈 of a player 𝑖 do not change if only 𝑖’s 

strategy changes, provided that the probability that 𝑈 is reached is positive for both the old 

and the new strategy. The reason there is no change is that, since player 𝑖 has a perfect 

recall of his actions, all nodes in 𝑈 are preceded by the same sequence of 𝑖’s actions, and 

therefore the relative probabilities that they are reached only depend on the probabilities of 

the other players’ actions. Thus, for 𝑉 ⊆ 𝑈 and all strategies 𝑥𝑖
′ and 𝑥𝑖

″ of player 𝑖,  

Pr𝑥∣𝑥𝑖
′(𝑉)

Pr𝑥∣𝑥𝑖
′(𝑈)

=
Pr𝑥∣𝑥𝑖

″(𝑉)

Pr𝑥∣𝑥𝑖
″(𝑈)

  if Pr𝑥∣𝑥𝑖
′(𝑈) , Pr𝑥∣𝑥𝑖

″(𝑈) ≠ 0, 

where the subscripts refer to the strategy profiles obtained by replacing 𝑖’s strategy in 𝑥 with 

the indicated strategies.  

An existing solution concept that may be viewed as a beliefs-based refinement of the 

polyequilibrium concept is essentially perfect Bayesian equilibrium (Blume and Heidhues 

2006). An EPBE may be described as a simple polyequilibrium 𝑋 that is obtained from a 

specified strategy profile 𝑥 by declaring certain information sets irrelevant. The collection of 

irrelevant information sets must (i) have zero probability of being reached when 𝑥 is played 

and (ii) include every information set that follows any irrelevant one. 𝑋 is then defined as the 

collection of all strategy profiles that agree with 𝑥 (in the sense of specifying the same action 

or distribution over actions) in each of the relevant (that is, not irrelevant) information sets. 

By requirement (i), any belief system 𝜇 that is weakly consistent with 𝑥 is also weakly 

consistent with every other strategy profile in 𝑋. Requirement (ii) implies that the 

polystrategy 𝑋𝑖 of each player 𝑖 is a special kind of rectangular polystrategy. The definition of 

EPBE is completed by the additional requirement that there is some weakly consistent belief 

system 𝜇 as above (which may be considered part of the EPBE) such that, for every relevant 

information set 𝑈 of every player 𝑖, strategy 𝑥𝑖  is a best response to 𝑋 in the continuation 

game starting at 𝑈 with the distribution over 𝑈’s nods specified by 𝜇. This requirement 

implies that, for each player 𝑖, strategy 𝑥𝑖  is a best response to 𝑋 also in the whole game, so 

that 𝑋 is a simple polyequilibrium. 

(12) 
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Essentially perfect Bayesian equilibrium may be regarded a solution to technical problems 

associated with the perfect Bayesian equilibrium solution concept (Blume and Heidhues 

2006). Alternatively, as indicated, it may be viewed as one way of incorporating optimality 

with respect to a weakly consistent belief system into the polyequilibrium concept. 

However, EPBS has certain features that, in the general context of polyequilibria in dynamic 

games, are quite special and restrictive. The first special, albeit arguably desirable, aspect is 

that an EPBS is required to specify a unique outcome: all strategy profiles in the 

polyequilibrium give the same distribution over terminal nodes. The second restrictive 

aspect is that, at each information set, either the acting player’s choice is completely 

specified or it is left completely unspecified, and in the second case, the same must hold also 

for each of the following information sets. As Blume and Heidhues (2006) point out, one 

consequence of this requirement is that, in the (perfect information) centipede game 

(Example 10), the only EPBE is the subgame perfect equilibrium.  

The limitations of the EPBS concept reflect a fundamental tension between the underlying 

principles of Bayesian perfection and polyequilibrium, which concerns the way the players’ 

beliefs at the various information sets relate to the actual strategy profile. In a perfect 

Bayesian equilibrium and a number of related solution concepts, beliefs are reasonable 

hypotheses, or conjectures, about the events that preceded the arrival at an information set. 

In particular, a choice of action at an off-path information set may be justified by a theory as 

to why the set has been reached even though it should not have been reached according to 

the strategy profile. Different solution concepts have different definitions of “reasonable” 

hypotheses and different requirements as to how they should reflect the players’ actual 

strategies. However, they all leave at least some leeway, which means that beliefs are often 

effectively chosen much like strategies are chosen. It is hard to reconcile this element of 

choice with the spirit of an excluding solution concept such as polyequilibrium.  

There is, however, a simple, natural way to incorporate beliefs in a manner consistent with 

exclusion rather than choice. In a polyequilibrium 𝑋, the exclusion of a strategy of a player 𝑖 

requires the existence of an alternative strategy that responds to every strategy profile 

𝑥 ∈ 𝑋 at least as well as the first strategy does. This condition may be extended by replacing 

“every 𝑥 ∈ 𝑋” with “every 𝑥 ∈ 𝑋 and every belief system that is consistent with 𝑥”. Thus, at 

each of player 𝑖’s information sets 𝑈, the alternative strategy should be an adequate 

substitute to the excluded one for every strategy profile 𝑥 ∈ 𝑋 and every distribution over 

𝑈’s nodes that is consistent with it. If under 𝑥 the probability that 𝑈 is reached is positive, 

the consistency requirement singles out a unique distribution there. Otherwise, there may 

be many consistent distributions, each reflecting a different plausible hypothesis as to why 𝑈 

has been reached. As detailed below, the idea that all these hypotheses need to be 

considered leads to the notion of perfect Bayesian polyequilibrium (PBP).  

Perfect Bayesian polyequilibrium is not a generalization of perfect Bayesian equilibrium but a 

fundamentally different, stronger concept. The difference is illustrated by Figure 5a. The 

equilibrium shown is perfect Bayesian, since Player 2’s choice of 𝑟 rather than 𝑙 is justified by 

some belief, namely, that if player 1 switched from his strategy 𝑂𝑢𝑡 to some alternative 

strategy, it would be 𝑅 rather than 𝐿. However, any belief of player 2 at his off-equilibrium 

information set is consistent with 𝑂𝑢𝑡. Therefore, in a PBP, which requires the exclusion of a 
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strategy to be justified under all consistent beliefs, 𝑙 cannot be excluded, and consequently 𝐿 

and 𝑅 cannot be both excluded. Therefore, there is no PBP where player 1 plays 𝑂𝑢𝑡, so that 

this perfect Bayesian equilibrium result and player 2’s maximal payoff of 2 are not PBP 

results.  

The last example highlights a basic difference between perfect Bayesian polyequilibrium and 

other solution concepts such as perfect Bayesian equilibrium, essentially perfect Bayesian 

equilibrium and sequential equilibrium. The difference is that a PBP is not allowed to specify 

actions that are justifiable only under particular arbitrary beliefs about the history of play. 

The choice of such actions (for example, 𝑟 in Figure 5a) entails the exclusion of one or more 

alternative actions that under different but equally reasonable beliefs are actually better. 

The disallowance of such exclusions may make it impossible to single out any action. Such an 

outcome is of course entirely in tune with the central idea of polyequilibrium, which is that 

the players’ strategies may be only partly specified.  

Example 13. Only player 1 knows whether or not it will rain tomorrow – two possibilities 

that a priori are equally likely. The value of this information for player 2, who would prefer 

taking an umbrella only if necessary, is $1. Player 1 gives him a take-it-or-leave-it offer to buy 

the information. His payoff is the asking price 𝑝 if the offer is accepted and 0 otherwise. For 

simplicity, only pure strategies are allowed. Every 0 ≤ 𝑣1 ≤ 1 is a perfect Bayesian 

equilibrium payoff for player 1. It is obtained in an equilibrium where 𝑝 = 𝑣1 and player 2 is 

willing to pay this price but would reject the offer, and take an umbrella, if player 1 asked 

any other price. This reaction is justified by a belief that a price different from 𝑣1 indicates 

rain. By contrast, the only perfect Bayesian polyequilibrium payoff for player 1 is 1. To see 

this, consider a perfect Bayesian polyequilibrium 𝑋 where the payoff is 𝑣1 < 1. For every 

𝑣1 < 𝑝 < 1, player 2’s polystrategy 𝑋2 excludes acceptance of this price, for if it included a 

strategy that prescribes acceptance, it would not be possible to exclude player 1’s strategy 

of asking 𝑝. Consider some such 𝑝 that is also different from the prices specified by some 

strategy 𝑥1 ∈ 𝑋1. (In principle, player 1’s asking price may depend on whether or not it will 

rain tomorrow.) If player 1 uses 𝑥1, player 2’s information set where he is asked to pay 𝑝 is 

not reached. No action there does as well as the excluded one of acceptance under all 

Figure 5. Perfect Bayesian equilibria (black lines) that are not (singleton) perfect Bayesian polyequilibria.  

a Player 2’s choice of 𝒓 is justified by the belief 𝒑 = 𝟎 but not by 𝒑 = 𝟏. b Player 2’s choice of 𝑷 is justified  

only for 𝟏/𝟑 ≤ 𝒑 ≤ 𝟐/𝟑 . (In this game, players 3’s payoffs are identical to those of 1, and are not indicated.) 
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beliefs, or even only under the two extreme ones: that it will surely rain tomorrow and that 

it will not rain. For example, with no rain, rejecting the offer and taking an umbrella is a 

worse option than paying 𝑝 and acting according to the provided information. This 

contradiction leaves 𝑣1 = 1 as the only perfect Bayesian polyequilibrium payoff. It is 

obtained in the polyequilibrium where player 1’s strategy is 𝑝 = 1 and player 2’s 

polystrategy is acceptance of this price and rejection of any higher one. The reaction to 

prices lower than 1 is left unspecified. 

Solution concepts that involve a single, specific belief system 𝜇 usually impose on it certain 

internal consistency requirements, which express the idea that beliefs at different off-path 

information sets should not only reflect the players’ strategy profile but also represent a 

coherent hypothesis about their deviation from it. In particular, beliefs at an information set 

that follows another information set of the same player should be derived from the beliefs 

at the latter whenever possible. This requirement is formally expressed by the 

preconsistency condition (Hendon et al. 1996, Perea 2002), which is based on Fudenberg and 

Tirole’s (1991) notion of reasonable assessment. Internal consistency between beliefs at 

information sets belonging to different players is guaranteed by the stronger full consistency 

condition, which is the central pillar of Kreps and Wilson’s (1982) sequential equilibrium 

solution concept.11 Perfect Bayesian polyequilibrium does not specify a single belief system, 

which renders the whole internal consistency idea moot. This brings about a considerable 

simplification, since consistency is narrowed down to the “local” requirement that beliefs at 

a particular information set 𝑈 of a particular player 𝑖 are reconcilable with a specified 

strategy profile 𝑥.  

If under 𝑥 the probability that 𝑈 is reached is zero, the weak consistency condition (Eq. (12)) 

does not specify any beliefs there. Yet player 𝑖 may actually know a great deal about the 

history of play at that information set. Specifically, he knows that at another information set 

the acting player 𝑗 took a particular action 𝑎 if all nodes in 𝑈 are preceded by (that 

information set and) action 𝑎. (By the perfect-recall assumption, this is so in particular for 

each of player 𝑖’s own past actions.) This means that in the set 𝒜 of all actions 𝑎 as above 

the probabilities specified by 𝑥 are irrelevant; the effective probabilities are 1.12 Therefore, it 

remains for player 𝑖 to only speculate about the other players’ behavior at information sets 

that do not involve actions in 𝒜. The simplest hypothesis is that the players adhere to 𝑥 

there. In other words, the hypothesis effectively replaces 𝑥 with the strategy profile 𝑥𝒜  

obtained from it by specifying that every action in 𝒜 is taken with probability 1. If under 𝑥𝒜  

the probability that 𝑈 is reached is positive, this hypothesis yields by Bayes’ rule a unique 

probability distribution on the nodes in 𝑈, which arguably represents the unique beliefs 
                                                            
11 In an extensive form game, a belief system 𝜇 is said to be fully consistent with a strategy profile 𝑥 if 
they are, respectively, the limits of some sequences (𝜇𝑛)𝑛=1

∞  and (𝑥𝑛)𝑛=1
∞  such that each 𝑥𝑛 is a 

completely mixed strategy profile, that is, one assigning positive probability for every action in every 
information set, and 𝜇𝑛 is the unique belief system that is weakly consistent with 𝑥𝑛. 
12 Probability 1 here means that the action was actually taken, not that the acting player 𝑗 meant it to 
be played for sure. For an action 𝑎 that precedes all the nodes in 𝑈, there is no effective difference 
between 1 and any other positive probability. Therefore, if the probability that player 𝑗’s strategy 
assigns to 𝑎 is not 0, it may be left unchanged. Note that the discussion here and the definitions 
below are relevant both when the players are assumed to use only pure strategies and when all 
behavior strategies are allowed.  
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there that are consistent with 𝑥. However, if even under 𝑥𝒜  the probability that 𝑈 is 

reached is zero, then reaching it indicates that at least one action 𝑎 ∉ 𝒜  was taken even 

though the probability assigned to 𝑎 by 𝑥 in the relevant information set is 0. As a 

generalization of the above reasoning, consider a set of actions 𝒜′ that is minimally 

sufficient for reaching 𝑈 under 𝑥, in the sense that 𝑈 is reached with positive probability 

under 𝑥𝒜
′
 but not under 𝑥ℬ, for all ℬ ⊊ 𝒜′ (which clearly implies that 𝑥 assigns probability 

0 to every action in 𝒜′). Each minimally sufficient set 𝒜′ specifies by Bayes’ rule a 

probability distribution on 𝑈, which may be viewed as consistent with the players’ strategy 

profile 𝑥 if 𝑈 was reached.13 Note that the set of all such distribution is finite if the 

information set itself is finite. This is because a set of actions that is minimally sufficient for 

reaching a finite 𝑈 necessarily consists of all actions that precede some node 𝑣 ∈ 𝑈 and are 

assigned probability 0 by 𝑥.  

A deviation from 𝑥 that involves a non-minimally sufficient set of actions represents a non-

parsimonious hypothesis as to why an information set 𝑈 was reached; it assumes more than 

it has to. Moreover, such a hypothesis may have the troubling aspect that it implies a future 

deviation from 𝑥. This can happen if some players have information sets that include both 

nodes that precede 𝑈 and nodes that follow it, as in Figure 5b, which is taken from Kreps 

and Ramey (1987). In this game, the players’ order of moves is random – either player 1 or 

player 3 moves before player 2 moves – and is unknown to them. The only (Nash) 

equilibrium outcome is that players 1 and 3 both play 𝑄 for sure, so that player 2’s 

information set is not reached. The choice of 𝑄 reflects the fact that there is no equilibrium 

strategy for player 2 that specifies playing either 𝐿 or 𝑅 with probability 2/3 or greater. In 

particular, neither action is played with probability 1, which means that any equilibrium 

strategy for player 2 can be justified only by beliefs that assign positive probability to both 

nodes in his information set. Obtaining such probabilities require that both player 1 and 

player 3 deviate from their equilibrium strategies by playing 𝑃 with positive probability. 

However, such simultaneous deviations are inconsistent with an assumption that the player 

acting after player 2 will be using his equilibrium strategy. Thus, this example shows that a 

non-parsimonious hypothesis about the past may project onto the future. With a 

parsimonious hypothesis about the deviations from 𝑥 that led to an information set 𝑈 of a 

player 𝑖 being reached, this cannot happen. If a set of actions 𝒜 is minimally sufficient for 

reaching 𝑈 under 𝑥, then the probability that some information set where 𝑥 and 𝑥𝒜  

disagree is reached after 𝑈 is reached is zero, both under 𝑥𝒜  and under any strategy profile 

that differs from it only in player 𝑖’s strategy. This is because any history that has positive 

probability under such a strategy profile and reaches 𝑈 must, by the minimal-sufficiency 

assumption, first go through all the actions in 𝒜, which by the perfect-recall assumption 

means that it cannot reach any of the corresponding information sets again after 𝑈. A 

parsimonious hypothesis is thus structurally consistent with 𝑥 in the sense of Kreps and 

Ramey (1987, p. 1338), which is a stronger requirement than Kreps and Wilson’s (1982) 

notion of structural consistency of beliefs (for which the strategy profile is irrelevant). This is 

not the case for the beliefs that justify player 2’s equilibrium strategy in the above example, 

which are only convex structurally consistent. That is, these beliefs can be obtained only as 
                                                            
13 It follows immediately from the minimality of 𝒜′ that the same distribution on 𝑈 would result also 
if the actions in 𝒜′ were assigned arbitrary positive probabilities, that are not necessarily 1.  
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convex combinations of the two structurally consistent ones, which are those that assign 

probability 1 to one of player 2’s nodes and reflect a hypothesized deviation by only one, 

particular other player.  

The fundamental reason why this problematic aspect of perfect Bayesian and sequential 

equilibria is not shared by perfect Bayesian polyequilibrium lies in the logical difference 

between justifying the choice of a particular strategy and justifying its exclusion. As 

indicated, justifying the exclusion of a strategy of a player 𝑖 under a strategy profile 𝑥 

involves examining, for each of the player’s information sets 𝑈, all distributions over 𝑈’s 

nodes that are consistent with 𝑥. If the examination of two or more such distributions 

reveals that the excluded strategy indeed does not do better than the specified alternative 

strategy, then this is automatically the case also for all convex combinations of these 

distributions, which therefore do no need to be explicitly examined. By contrast, the choice 

of a strategy may be justified only by the beliefs expressed by one, particular convex 

combination. Hence the difference. 

The above discussion leads to the following formal definition of PBP, where consistent 

beliefs are expressed as appropriately modified strategy profiles.14 The definition uses the 

following notation. For an information set 𝑈 of a player 𝑖, 𝑢𝑖(𝑥 ∣𝑈 𝑥𝑖
′) denotes the player’s 

payoff under a strategy profile that differs from 𝑥 only in that, at 𝑈 and all the information 

sets that follow it, player 𝑖 plays according to strategy 𝑥𝑖
′.   

Definition 4. A polystrategy profile 𝑋 in a dynamic game with perfect recall is a perfect 

Bayesian polyequilibrium if for every strategy profile 𝑥 ∉ 𝑋 there is some 𝑥′ ∈ 𝑋 such that, 

for every player 𝑖 and information set 𝑈 of that player, the inequality  

𝑢𝑖(𝑥
″𝒜  ∣𝑈 𝑥𝑖

′) ≥ 𝑢𝑖(𝑥
″𝒜  ∣𝑈 𝑥𝑖) 

holds for every 𝑥″ ∈ 𝑋 and every set of actions 𝒜 that is minimally sufficient for reaching 𝑈 

under 𝑥″.15 

The next proposition shows that PBP may be considered a generalization of subgame perfect 

polyequilibrium. As discussed above, it is not a generalization of perfect Bayesian 

equilibrium, essentially perfect Bayesian equilibrium or sequential equilibrium. The exact 

sense in which the last solution concept is weaker than singleton PBP is spelled out by 

Theorem 2 below.  

                                                            
14 Replacing this notion of consistency, which is the one presented above, with any weaker notion, 
and in particular with weak consistency, would result in a stronger definition. That is, the set of PBPs 
would be smaller. The opposite is true for any stronger notion of consistency.  
15 If 𝑈 is reached with positive probability under 𝑥″, then the only minimally sufficient set is 𝒜 = ∅, 

for which 𝑥″𝒜 = 𝑥″. Technically, the definition is meaningful even if minimally sufficient sets do not 
exist, which can happen with a continuum of outcomes to chance moves. However, this case would 
be addressed more satisfactorily if sure past outcomes were assigned probability 1, like players’ 
actions. A more comprehensive modification of the definition will need to deal with conditional 
probability distributions on zero-probability events, which is probability doable but technically more 
challenging.  

(13) 
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Proposition 9. In an extensive form game, every perfect Bayesian polyequilibrium is also 

subgame perfect. With complete information, the converse holds too.  

Proof. For given PBP 𝑋 and strategy profile 𝑥, let 𝑥′ ∈ 𝑋 be as in Definition 4, and consider 

any 𝑥″ ∈ 𝑋, player 𝑖 and subgame 𝐺′. Denote player 𝑖’s payoff function in 𝐺′ by 𝑢𝑖
′. It has to 

be shown that, in 𝐺′, strategy 𝑥𝑖
′ responds to 𝑥″ at least as well as 𝑥𝑖  does. Clearly, a 

sufficient condition for this is that 𝑢𝑖
′(𝑥″ ∣𝑈 𝑥𝑖

′) ≥ 𝑢𝑖
′(𝑥″ ∣𝑈 𝑥𝑖) for every information set 𝑈 of 

player 𝑖 in 𝐺′ that is not preceded by any other such information set and is reached with 

positive probability in 𝐺′ when the strategy profile is 𝑥″. The inequality is equivalent to (13), 

where 𝒜 is the set of all actions preceding the root of 𝐺′ that are assigned probability 0 by 

𝑥″. This completes the proof of the first assertion in the proposition. The second assertion is 

clear from the fact that, in a complete-information game, every information set includes 

only one node, which is the root of a subgame.  ∎ 

Theorem 2. A strategy profile 𝑥 in an extensive form game is a (singleton) perfect Bayesian 

polyequilibrium if and only if (𝑥, 𝜇) is a sequential equilibrium for every belief system 𝜇 that 

is fully consistent with 𝑥.   

The proof of the theorem is based on the following lemma, which is of independent interest. 

The lemma connects three collections of beliefs at a particular information set: those that 

arise from fully consistent assessments, those arising from minimally sufficient sets of 

actions, and those that are convex combinations of the latter. It shows that the first 

collection includes the second collection and is included in the third one. (It can furthermore 

be shown that, in general, both inclusions are strict.) This result strengthens and extents the 

Proposition in Kreps and Ramey (1987), which asserts that every fully consistent assessment 

satisfies convex structural consistency. 

Lemma 1. For a strategy profile 𝑥 and information set 𝑈 in an extensive form game, let 𝔄 be 

the (finite) collection of all sets of actions that are minimally sufficient for reaching 𝑈 

under 𝑥. For 𝒜 ∈ 𝔄, let 𝜇𝒜  be the probability distribution on 𝑈 induced by 𝑥𝒜:  

𝜇𝒜(𝑉) =
Pr𝑥𝒜(𝑉)

Pr𝑥𝒜(𝑈)
, 𝑉 ⊆ 𝑈. 

(i) The probability distributions {𝜇𝒜  }𝒜∈𝔄 have pairwise disjoint supports. 

(ii) Each of them 𝜇𝒜  coincides with the probability distribution on 𝑈 specified by some 

belief system 𝜇 that is fully consistent with 𝑥:  

𝜇𝒜(𝑉) = 𝜇(𝑉), 𝑉 ⊆ 𝑈. 

(iii) For every belief system 𝜇 that is fully consistent with 𝑥, the probability distribution 

on 𝑈 specified by 𝜇 is a convex combination of the distributions {𝜇𝒜}𝒜∈𝔄:   

𝜇(𝑉) = ∑ 𝜆𝒜𝜇𝒜(𝑉)

𝒜∈𝔄

, 𝑉 ⊆ 𝑈 

for some (unique, by (i)) nonnegative coefficients {𝜆𝒜}𝒜∈𝔄 that sum up to 1. 

(14) 

(15) 

(16) 
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Proof. To prove (i), it has to be shown that Pr𝑥𝒜({𝑣})Pr𝑥𝒜′
({𝑣}) = 0 for all 𝑣 ∈ 𝑈 and 

𝒜,𝒜′ ∈ 𝔄 with 𝒜′ ≠ 𝒜. If Pr𝑥𝒜({𝑣}) > 0, then the minimal sufficiency of the set of actions 

𝒜 implies that all its elements precede node 𝑣. Because the actions in 𝒜 ∖𝒜′ are assigned 

probability 0 by 𝑥𝒜
′
, this implies that Pr

𝑥𝒜
′({𝑣}) = 0. 

To prove (ii), consider any 𝒜 ∈ 𝔄, with cardinality |𝒜| = 𝐿 (≥ 0). Let �̃� be some fixed 

completely mixed strategy profile and, for 0 < 𝜖 < 1/2, let 𝑥𝜖  be the strategy profile that, at 

each information set, assigns the following probability 𝑥𝜖(𝑎) to each action 𝑎: 

𝑥𝜖(𝑎) = (1 − 𝜖 − 𝜖𝐿+1)𝑥(𝑎) + 𝜖𝑥𝒜(𝑎) + 𝜖𝐿+1�̃�(𝑎), 

where 𝑥(𝑎), 𝑥𝒜(𝑎) and �̃�(𝑎) are the probabilities specified by 𝑥, 𝑥𝒜  and �̃�. The unique 

belief system 𝜇𝜖 that is weakly consistent with 𝑥𝜖  satisfies  

𝜇𝜖(𝑉) =
Pr𝑥𝜖(𝑉)

Pr𝑥𝜖(𝑈)
, 𝑉 ⊆ 𝑈. 

For any 𝑣 ∈ 𝑉, Pr𝑥𝜖({𝑣}) = ∏ 𝑥𝜖(𝑎𝑘)𝑘 , where the 𝑎𝑘’s are all the actions preceding node 𝑣. 

Using (17), this product can be expressed as a polynomial in 𝜖. For 𝑙 < 𝐿, the coefficient of 𝜖𝑙  

is 0, because a positive coefficient would mean that Pr𝑥ℬ({𝑣}) > 0 for some ℬ ⊊ 𝒜, which 

contradicts the minimal-sufficiency assumption concerning 𝒜. By a similar argument, the 

coefficient of 𝜖𝐿 is Pr𝑥𝒜({𝑣}). It follows that, for 𝑉 ⊆ 𝑈, (1/𝜖𝐿) Pr𝑥𝜖(𝑉) → Pr𝑥𝒜(𝑉) as 

𝜖 → 0, which implies that the quotient in (18) converges to that in (14). Therefore, if (𝜖𝑛)𝑛=1
∞  

is any sequence of positive numbers converging to 0 such that (𝜇𝜖𝑛)𝑛=1
∞  converges to some 

limit 𝜇, then that belief system, which is clearly fully consistent with 𝑥, satisfies (15). The 

existence of such a sequence follows from the obvious compactness of the set of all belief 

system.   

To prove (iii), consider any belief system 𝜇 that is fully consistent with 𝑥, and some 

sequences (𝜇𝑛)𝑛=1
∞  and (𝑥𝑛)𝑛=1

∞  as in footnote 11. For every 𝒜 ∈ 𝔄, the minimal-sufficiency 

condition implies that there is some 𝑢 ∈ 𝑉 that is preceded by all the actions in 𝒜 and 

satisfies Pr𝑥𝒜({𝑢}) > 0. For every 𝑛 ≥ 1, Pr𝑥𝑛({𝑢}) = ∏ 𝑥𝑛(𝑎𝑘)𝑘 , where the 𝑎𝑘’s are all 

the actions preceding 𝑢. Therefore, 

1

∏ 𝑥𝑛(𝑎)𝑎∈𝒜
 Pr𝑥𝑛({𝑢}) = ∏ 𝑥𝑛(𝑎𝑘)

𝑘
𝑎𝑘∉𝒜

 
𝑛→∞
→    Pr𝑥𝒜({𝑢}). 

A result similar to (19) holds with 𝑢 replaced by any other node 𝑣 ∈ 𝑉 that is preceded by all 

the actions in 𝒜, which implies that 

𝜇𝒜({𝑣})

𝜇𝒜({𝑢})
=
Pr𝑥𝒜({𝑣})

Pr𝑥𝒜({𝑢})
= lim
𝑛→∞

Pr𝑥𝑛({𝑣})

Pr𝑥𝑛({𝑢})
= lim
𝑛→∞

𝜇𝑛({𝑣})

𝜇𝑛({𝑢})
=
𝜇({𝑣})

𝜇({𝑢})
 

if 𝜇({𝑢}) > 0, and if 𝜇({𝑢}) = 0, then 𝜇({𝑣}) = 0. Therefore, for 𝑣 ∈ 𝑉 that is preceded by 

all the actions in 𝒜, 𝜇({𝑣}) = 𝜆𝒜 𝜇𝒜({𝑣}), where 𝜆𝒜 = 𝜇({𝑢})/ 𝜇𝒜({𝑢}). As shown in the 

first part of the proof, such 𝑣 also satisfies 𝜇𝒜
′
({𝑣}) = 0 for all 𝒜′ ∈ 𝔄 with 𝒜′ ≠ 𝒜, so 

that the equality in (16) holds for 𝑉 = {𝑣}. To prove that it holds generally, it remains to 

(17) 

(18) 

(19) 
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note that every 𝑣 ∈ 𝑉 is preceded by all the actions in some 𝒜 ∈ 𝔄, since the set of actions 

preceding 𝑣 that are assigned probability 0 by 𝑥 necessarily has a subset that is minimally 

sufficient for reaching 𝑈 under 𝑥. Setting 𝑉 = 𝑈 in (16) proves that the coefficients sum up 

to 1. ∎ 

Proof of Theorem 2. By definition, 𝑥 is a PBP if and only if, for every player 𝑖 and strategy 𝑦𝑖  

and information set 𝑈 of that player, the inequality  

𝑢𝑖(𝑥
𝒜  ∣𝑈 𝑥𝑖) ≥ 𝑢𝑖(𝑥

𝒜  ∣𝑈 𝑦𝑖) 

holds for every set of actions 𝒜 that is minimally sufficient for reaching 𝑈 under 𝑥. It follows 

from (ii) in Lemma 1 that a sufficient condition for this is that (𝑥, 𝜇) is a sequential 

equilibrium for every belief system 𝜇 that is fully consistent with 𝑥. Conversely, it follows 

from (iii) in the lemma that the last condition holds if 𝑥 is a PBP. ∎ 

6.3 Beliefs Based on Strategic Reasoning  
The notion of consistency implicit in Definition 4 is based on the principle of parsimony: 

a particular deviation from the players’ strategies is assumed to have occurred only if this 

assumption is needed for explaining why an off-path information set was reached. However, 

the simplest explanation is not always the most convincing one. In particular, a forward 

induction argument (Kohlberg and Mertens 1986) may lend credence to inconsistent beliefs. 

That is, a detected past deviation of another player from his strategy may hint at an 

additional, unobservable deviation. Unlike consistency, which is a notion based wholly on 

the game form, forward induction also involves an examination of the strategic interests of 

the deviating players. For example, in the perfect Bayesian equilibrium and (singleton) 

polyequilibrium shown in Figure 6a, player 2’s choice of 𝑟 is justified by a belief that player 1 

would follow his strategy in the subgame and choose 𝑅 there. However, if 2’s information 

set is actually reached, which indicates that player 1 deviated from his strategy in the whole 

Figure 6. The destructive and constructive potential of beliefs reflecting strategic considerations. a In the 

(singleton) polyequilibrium shown, player 2’s action is justified by the unique beliefs consistent with player 1’s 

strategy in the subgame. However, a deviation by player 1 from his strategy that leads to the subgame being 

reached may suggest an additional deviation there – an attempt to get positive payoff. b The Beer-Quiche 

game. The game has two pure-strategy perfect Bayesian equilibria (black and gray lines), only one of which 

(black) satisfies the intuitive criterion. Both equilibria are not perfect Bayesian polyequilibria. However, 

adopting the restriction on off-equilibrium beliefs underlying the intuitive criterion would make one of them 

(black) a PBP.  
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game by playing 𝐼𝑛, player 2 may reason that the most likely explanation for the deviation is 

that player 1 is aiming for the better equilibrium of the subgame, with payoffs 1, which 

means that he played 𝐿 rather than 𝑅 there. Such a belief makes 𝑙 the better choice for 

player 2.  

Past deviations may also be taken as indicators of intended future ones. This possibility is 

illustrated by the game the differs from that in Figure 6a only in the order of moves in the 

subgame: player 2 chooses his action before player 1 does so. As the two moves are actually 

effectively simultaneous, this game is essentially identical to that considered above, so that 

the same argument applies: if player 1 deviated once, then strategic considerations suggest 

he intends to deviate again. 

A different potential outcome of strategic reasoning is ruling out certain beliefs that are not 

inconsistent with the players’ strategies. For example, a belief that some player chose a 

strictly dominated action may be considered unreasonable if there is an alternative 

explanation for reaching an off-equilibrium information set that does not involve dominated 

actions. In games with multiple perfect Bayesian or sequential equilibria, restriction to 

reasonable consistent beliefs may eliminate some of the equilibria. For example, it may 

eliminate all pooling equilibria in Spence’s signaling model with two types of worker (Cho 

and Kreps 1987). The effect of a similar restriction on beliefs on PBPs is in a sense the 

diametric opposite. In Spence’s signaling model, in particular, none of the pooling equilibria 

is a perfect Bayesian polyequilibrium to begin with. The reason is that the choice of any non-

equilibrium education level cannot be excluded, because consistency in the sense described 

in the previous subsection does not preclude a belief by the employer that such a choice 

indicates a high quality worker. Thus, as for equilibria, further restrictions on off-equilibrium 

beliefs, based on strategic considerations, may be warranted. However, as such restrictions 

effectively lead to a stronger notion of consistency, they do not eliminate PBPs but can only 

add new ones (see footnote 14). Thus, in particular, the set of singleton perfect Bayesian 

polyequilibria, which is typically contained in the sets of perfect Bayesian and sequential 

equilibria (Theorem 2), expands while the latter contract, which means that the gap between 

the corresponding sets of results may narrow. The following example illustrates this 

possibility. 

Example 14. Consider the Beer-Quiche game shown in Figure 6b, where for simplicity only 

pure strategies are allowed. There are two (Nash) equilibria, which are both pooling. In one 

equilibrium (black lines), types 𝑡𝑤 and 𝑡𝑠 of player 1 both choose Beer, and in the other (gray 

lines), they choose Quiche. The second equilibrium is eliminated by the intuitive criterion 

(Cho and Kreps 1987). The criterion is based on a restriction of player 2’s possible beliefs 

regarding player 1’s type, which in particular precludes beliefs that, following a choice of 

Beer, attach a positive probability to 𝑡𝑤. The reason such beliefs are deemed unreasonable is 

that this type’s equilibrium payoff of 3 is higher than anything he may get by choosing Beer. 

The same problem does not arise in the first equilibrium (black lines), where both types of 

player 1 choose Beer and player’s 2 would choose Duel only as a response to Quiche. That 

response is justified by the unique reasonable belief following a choice of Quiche by player 1, 

which is that his type is 𝑡𝑤 (because 𝑡𝑠 would necessarily be harmed by such a choice). Put 

differently, the unreasonableness of all other beliefs at the off-equilibrium information set 
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justifies the exclusion of the alternative action (Don’t Duel) there. The same argument also 

shows that a restriction to reasonable beliefs would make the equilibrium under 

consideration a PBP. Thus, the logic underlying the intuitive criterion singles out the same 

equilibrium for both solution concepts, perfect Bayesian equilibrium and perfect Bayesian 

polyequilibrium. This coincidence contrasts with the situation for the original, unmodified 

definitions, according to which both equilibria are perfect Bayesian equilibria but neither of 

them is a PBP. It is, however, a rather special outcome, which is due to the fact that the 

additional reasonableness requirement on off-equilibrium beliefs pins them down uniquely.  

7 Incomplete Information Games 
In a game with incomplete information, the players’ payoffs are determined by both their 

actions and the state (of the world) 𝜔, which is an element of some set Ω. Each player 𝑖 is 

associated with a certain partition of Ω, the player’s information partition, whose elements 

are 𝑖’s information sets. Each state 𝜔 thus lies in one, and only one, information set 𝐼 of 

player 𝑖. The player knows the identity of 𝐼 but, unless 𝐼 is a singleton, does not know which 

of its element is the true state. A strategy for player 𝑖 prescribes an action at each of his 

information sets. In other words, it is a mapping from Ω to 𝑖’s set of actions that is 

measurable with respect to the player’s information partition. A strategy profile thus 

determines the action each player takes at each state. The players’ payoffs in the game are 

their resulting expected payoffs, where the expectation is with respect to a specified 

probability measure on Ω, the players’ common prior.   

Example 15. The electronic mail game (Rubinstein 1989). This two-player game has a 

countably infinite set of states, Ω = {𝜔0, 𝜔1, 𝜔2, … }. Players 1 and 2 must each choose one 

of two actions, 𝐴 or 𝐵. Depending on whether the state is 𝜔0 or one of 𝜔1, 𝜔2, …, their 

payoffs are given by the payoff matrices  

𝐴       𝐵
𝐴
𝐵

(
1,1 0, −𝐿
−𝐿, 0 0,0

)
   

 
 

or
 

   
𝐴       𝐵

𝐴
𝐵

(
0,0 0, −𝐿
−𝐿, 0 1,1

)
, 

respectively, where 𝐿 > 1 is a fixed parameter. The common prior assigns probability 

1/2 < 𝑝 < 1 to 𝜔0 and probability (1 − 𝑝)𝜖(1 − 𝜖)𝑙−1 to every other state 𝜔𝑙 (𝑙 ≥ 1 ), with 

0 < 𝜖 < 1. The information partition of player 1 is {{𝜔0}, {𝜔1, 𝜔2}, {𝜔3, 𝜔4}, … } and that of 

player 2 is {{𝜔0, 𝜔1}, {𝜔2, 𝜔3}, {𝜔4, 𝜔5}, … }. A strategy profile 𝑥 can therefore be viewed as 

a sequence of actions 𝑎0, 𝑎1, 𝑎2, …, where each entry 𝑎𝑙 ∈ {𝐴, 𝐵} (𝑙 = 0,1,2, …) is the action 

taken at the information set where the highest-index state is 𝜔𝑙. Depending on whether 𝑙 is 

even or odd, that information set belongs to player 1 or 2, respectively.   

Since 𝑝 > 1/2, a strategy profile 𝑥 may yield a payoff of 𝑝 or higher to either player only if 

𝑎0 = 𝐴. Among all strategy profiles satisfying this condition, only one is an equilibrium, 

namely, that where  𝑎𝑙 = 𝐴 for all 𝑙 (Rubinstein 1989, Proposition 1). In the equilibrium, 

both players’ payoff is precisely 𝑝. Thus, there is a no equilibrium where either player 

receives more than 𝑝. 
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The equilibrium just described is also the only polyequilibrium in the electronic mail game 

where some player 𝑖 (∈ {1,2}) receives at least 𝑝. To see this, consider any such 

polyequilibrium 𝑋. Necessarily, every strategy profile in 𝑋 satsifies 𝑎0 = 𝑎1 = 𝐴. Consider 

any best-response sequence 𝑥1, 𝑥2, 𝑥3, … of elements of 𝑋 as in Fact 5. It is not difficult to 

show, by induction, that for all 𝑙 the strategy profile 𝑥𝑙  satisfies 𝑎0 = 𝑎1 = ⋯ = 𝑎𝑙 = 𝐴. 

Consider now any strategy 𝑥𝑖 ∈ 𝑋𝑖. If one or more of 𝑖’s actions in 𝑥𝑖  were 𝐵, the limit 

lim𝑙→∞ 𝑢𝑖(𝑥
𝑙 ∣ 𝑥𝑖) would be less than 𝑝, a contradiction to the assumption concerning the 

player’s payoff in 𝑋. Therefore, 𝑋𝑖 must be the singleton whose single element is the 

(equilibrium) strategy of player 𝑖 where he chooses 𝐴 in all information sets. This strategy is 

not a best response to any strategy of the other player 𝑗 that prescribes choosing action 𝐵 at 

any information set of that player other than the first one. Therefore, 𝑗’s polystrategy cannot 

include any such strategy, which means that the polyequilibrium 𝑋 includes only the 

equilibrium strategy profile 𝑎0 = 𝑎1 = ⋯ = 𝐴.  
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