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Abstract

We propose a theory-based experimental approach to compare the properties of

approval voting (AV) with those of plurality. This comparison is motivated by the

theoretical predictions that, in our aggregate uncertainty setup, AV should produce

close to first-best outcomes, while plurality will not. The experiment shows, first, that
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1 Introduction

Election procedures are a defining feature of democracies. They also determine how de-

cisions are made in smaller groups, from parliaments to board committees. Designing a

voting system that produces the best possible outcomes given voter preferences and infor-

mation is thus essential.1 The literature proposes a variety of voting systems, each of them

with potential strengths and weaknesses, and only a few are used in practice (Bormann and

Golder 2013). Not that there is either an empirical proof or even a common belief that those

in use are actually better. To the contrary, their flaws have been repeatedly emphasized.

But we lack evidence that the alternatives would perform sufficiently better, and this stalls

reform.2

Enhancing our knowledge about the capacity of alternative voting systems to outperform

the ones currently in use requires a combination of theory and empirics: we need theory to

identify which electoral systems are potentially best performing. We need empirics to test

whether theoretical predictions are met in practice. The empirical question is twofold: first,

do voters actually behave as theory predicts (in particular, are they strategic or sincere)?

Second, can a change in the voting system actually deliver the predicted welfare gains? A

strong limitation to empirical work is that observational data are scant, since only a handful

of electoral systems are used in practice.

In this paper, we adopt a theory-based experimental approach to achieve a dual ob-

jective: (i) comparing the welfare properties of two voting systems, and (ii) shedding new

light on the debate about whether voters behave strategically. Theory shows that, in large

electorates, approval voting (AV) should produce close to first-best welfare results if voters

face aggregate uncertainty and behave strategically (Bouton and Castanheira 2012).3 With

the objective of testing our results in the laboratory, we develop a model to compare AV

with plurality voting (the system used e.g. in the U.S. and the U.K.) for any electorate size.

1The voting system must be able to aggregate heterogeneous preferences (see e.g. Borda 1781, Arrow

1951, Brams and Fishburn 1978, Myerson and Weber 1993, Myerson 1999, 2002, Castanheira 2003, Myatt

2007, Bouton 2013, Felsenthal and Machover 2012, and the references therein) and/or heterogeneous in-

formation (see e.g. Condorcet 1785, Austen-Smith and Banks 1996, Feddersen and Pesendorfer 1996, 1997,

1998; Myerson 1998, Piketty 2000, Bhattacharya 2012, Mandler 2012, and the references therein).
2These limitations resonate in civil society, where there is growing frustration with existing electoral

systems. A large number of activists lobby in favor of reforming the electoral system (e.g. the Electoral

Reform Society (www.electoral-reform.org.uk) and the Fair Vote Reforms initiative (www.fairvote.org)), and

many official proposals have been introduced. A recent example comes from the UK, which held a national

referendum in 2011 on whether to replace plurality voting with alternative voting.
3Under AV, voters can “approve” of as many candidates as they want. Each approval counts as one

point and the candidate obtaining the largest number of points wins.
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We show that AV should produce significant welfare gains.

Our laboratory experiments confirm these predictions. The welfare-maximizing alterna-

tive wins with much higher probability under AV, and welfare gains are actually higher than

theory predicts. This is for three reasons: first, the subjects’ behavior is closer to the theo-

retical prediction in AV than in plurality. The multiplicity of equilibria in plurality produces

coordination failures, which reduces welfare compared to theoretical predictions. Second,

AV appears more robust to collective mistakes than plurality. Third, the experiment shows

that voters specialize in AV (i.e. adopt asymmetric strategies) in ways that produce higher

welfare than predicted by the symmetric strategy equilibrium.

In our setup, majority voters have common value preferences but face aggregate uncer-

tainty: they are divided by opposing information as to which of two majority alternatives

is the best. The minority supports another candidate, who is a Condorcet loser.4 In plu-

rality, we find that aggregate uncertainty produces a novel “informative equilibrium” in

which all three alternatives receive a strictly positive vote share. This equilibrium coexists

with “Duverger’s Law equilibria” in which majority voters coordinate all their ballots on a

single candidate.5 The experiment identifies when each equilibrium gets selected: subjects

select a Duverger’s Law equilibrium when the size of the minority is large — the informative

equilibrium would then result in much lower welfare. When the minority is small, subjects

select the informative equilibrium, even when it results in moderately lower welfare than

a Duverger’s Law equilibrium. In contrast, AV typically features a unique (symmetric)

equilibrium, which produces strictly higher welfare than any equilibrium in plurality.

While our setup differs from the traditional one (no aggregate uncertainty, and voters

have full information about the relative value of each alternative), we perceive that an

aggregate uncertainty setup is both more realistic and necessary to capture empirically

relevant voting behavior. The voters’ imperfect information captures “rational ignorance”

and actually explains why inferior equilibria disappear in AV (see Bouton and Castanheira

2012 for more detail). The common value component also provides majority voters with

two conflicting incentives: on the one hand, they benefit from aggregating the information

dispersed in the electorate — this requires dividing their ballots across the two majority

4 In a large Poisson game setup, Bouton and Castanheira (2012) show that the theoretical properties of

AV remain the same when majority voters are also divided by heterogeneous preferences. We can thus focus

on the simpler case of pure common values without losing the insights from the more general setup.
5 In a different setup, the pioneering work by Myatt (2007) already identified aggregate uncertainty as

key to understand the properties of plurality. Before his work, the literature typically assumed that voters

know the distribution of preferences in the electorate. In this case, only Duverger’s Law equilibria should

be stable (Riker 1982, Palfrey 1989, Bouton et al. 2015).
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alternatives. On the other hand, they want to defeat the Condorcet loser — this requires

coordinating their ballots on a single majority alternative. Varying the size of the minority

in the lab alters the relative value of these two incentives, and allows us to test novel

implications of the model on the subjects’ strategic responses.

Our results have several implications for future research. Regarding plurality, our find-

ing that aggregate uncertainty produces an empirically-relevant “informative” equilibrium

shows that one cannot systematically associate “sincere voting” with “non-strategic” or non

“short term instrumentally rational” voting (Cox 1997). Which ballot is a voter’s best re-

sponse actually depends on which equilibrium is selected by the rest of the electorate. This

modifies the way in which we typically measure strategic voting (see a.o. Guarnascheli et

al. 2000, Feddersen 2004, Hortala-Vallve and Llorente-Saguer 2010, Kawai and Watanabe

2013, Spenkuch 2013, and Esponda and Vespa 2014). In our experiment, and taking ac-

count of equilibrium selection, the fraction of “strategic” subjects is found to be comprised

between a lower bound of 2778% and an upper bound of 7223% across treatments.

Regarding approval voting, the experiment also reveals that subjects coordinated on an

asymmetric equilibrium. In that equilibrium, some subjects (almost) always double vote

for the two majority alternatives, and other subjects (almost) always single vote for their

preferred alternative, given their signal. We verify that such asymmetric equilibria in pure

strategy exist theoretically, and produce higher welfare than the symmetric equilibrium.

This pattern points to the need to consider equilibria in asymmetric strategies in future

theoretical research (see also Ladha et al. 1996). It also suggests that the subjects can

actually much better exploit the favorable properties of AV than what is typically perceived

(see e.g. the debates between Brams and Fishburn 1983, versus Niemi 1984, Saari and

Newenhizen 1988, and Nagel 2007).

There are obviously other voting systems that could and should be considered (a.o.

runoff voting and Borda count). Our focus on plurality voting and approval voting is

arbitrary to some extent but several reasons justify it. First, plurality voting is one of the

most widely used electoral systems around the world (see e.g. Bormann and Golder 2013).

The other main contender is runoff voting, which also suffers from significant weaknesses,

some similar to those of plurality (see Bouton 2012 and Bouton and Gratton 2015). Second,

the voting literature highlights that approval voting has desirable properties (see e.g. Brams

and Fishburn 1978, 1983, Myerson 1999, 2002, Weber 1995, Forsythe et al. 1996, Laslier

2010, Nuñez 2010, and Bouton and Castanheira 2012). By contrast, a voting system like

Borda features significant weaknesses, in particular a lack of decisiveness (see Myerson and
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Weber 1993, Forsythe et al. 1996, Myerson 2002).

Forsythe et al. (1993, 1996) are closest to our paper. There are few other papers com-

paring plurality to AV: for instance, Rapoport et al. (1991), Van der Straeten et al. (2010),

Dellis et al. (2011) or Bassi (2015) study whether voters behave more or less strategically

under plurality and/or whether Duverger’s Law applies in each system. These papers focus

on the case of private values and perfect information (see also Rietz 2008 and Palfrey 2013

for detailed reviews of that literature). By contrast, our majority voters have common val-

ues and they are uncertain about their preferred alternative. Our paper also relates to the

experimental literature on the Condorcet jury theorem, with the difference that we consider

three alternatives; see e.g.Guarnaschelli et al. (2000), Battaglini et al. (2008, 2010), Goeree

and Yariv (2011), and Bhattacharya et al. (2014).

2 The Model

While the literature typically focuses on results valid for arbitrarily large electorates, we

want to identify theoretical results that are valid for any population size. This is necessary

to test the results in the laboratory. We thus consider a voting game with an electorate of

fixed and finite size who must elect one alternative  out of three:   and .

The electorate is split in two groups:  active voters who constitute a majority, and

 passive voters who constitute a minority.
6 There are two states of nature:  = { },

which materialize with probabilities  ()  0. The actual state of nature is not observed

before the election.

A majority voter’s utility depends on the policy outcome and on the state of nature.

Utility is highest if the winning alternative matches the state, intermediate if there is a

mismatch between the two, and lowest if alternative  is elected:

 ( ) =   0 if ( ) = ( ) or ( )

=  ∈ (0  ) if ( ) = ( ) or ( ) (1)

= 0 if  = ∀

Minority voters prefer  to either  or , and are indifferent between the latter options.

Hence, their dominant strategy is to vote for . We focus on the interesting case in which

-voters represent a large minority: − 1    2. Thus,  is a Condorcet loser but

6The results directly extend to  and  being drawn from either a binomial or a Poisson distribution.
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it can win the election if active voters split their votes between  and .7

Timing. Before the election (at time 0), nature chooses whether the state is  or . At time

1, each voter receives a signal  ∈  ≡ { }  with conditional probabilities  (|) ∈
(0 1) and  (|) +  (|) = 1 These signals are informative,  (|)   (|)  but
private and voter cannot communicate (communication is studied a.o. by Coughlan 2000,

Persico 2004, and Austen-Smith and Feddersen 2006). We say that the distribution of

signals is unbiased if  (|) =  (|) and biased if  (|) 6=  (|). By convention, we
focus on the case in which the “more abundant” signal is :  (|) +  (|) ≥ 1.

Having received her signal, the voter updates her beliefs through Bayes’ rule:  (|) =
()  (|)  (()  (|) + ()  (|))  Like Bouton and Castanheira (2012), we assume
that signals are sufficiently strong to create a divided majority :

 (|)  12   (|)  (2)

That is, conditional on receiving signal , alternative  yields strictly higher expected

utility than alternative , and conversely for a voter who receives signal .

The election is held at time 2, when the actual state of nature is still unobserved.

Payoffs realize at time 3: the winner of the election and the actual state of nature are

revealed, and each voter receives utility  ( ).

Strategy space and equilibrium concept. How voters can allocate their votes depends

on whether the electoral rule is plurality or approval voting. In plurality (), each voter

can vote for exactly one alternative or abstain. Their action set is:

Ψ = {∅} 

where, by an abuse of notation, action  (respectively , ) denotes a ballot in favor of 

(resp. , ), and ∅ denotes abstention — which will prove to be a dominated action.

In approval voting ( ), each voter can vote for one, two or three alternatives — or

abstain:

Ψ = {∅} 

where, by an abuse of notation, action  denotes a ballot in favor of  only, action 

7A possible alternative interpretation of our setup is that voters vote on whether to reform a status

quo policy (). Two policies could replace this status quo ( and ), and a qualified majority of


+
is

required for passing a reform (see e.g. Dewan and Myatt 2007).
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denotes a joint approval of  and , etc. Each approval counts as one vote: when a voter

only approves of , then only alternative  is credited with a vote. If the voter approves

of both  and , then  and  are credited with one vote each, and so on.

Let an action profile  be the vector that lists the realized number of ballots  ∈ Ψ,

 ∈ { } at time 2. The total number of votes received by an alternative  is denoted
by  Under plurality the total number of votes received by alternative  for instance,

is simply:  =  Under AV, it is:  =  +  +  +   The winner of the

election is the alternative receiving the largest number of votes — ties are broken by a fair

dice.

A symmetric strategy is a mapping  :  → 4 (Ψ), and we denote by  () the

probability that some randomly sampled active voter who received signal  plays . Given

a strategy , the expected share of active voters playing action  in state  is  () =P
  ()  (|), whereas the expected number of ballots  is E [ () | ] =  () 

For now, we focus on the properties of symmetric Bayesian Nash equilibria that satisfy

what we call sincere stability. That is, the equilibrium must be robust to the case in which

voters may tremble by voting sincerely (that is:  ()   () ≥   0 and we look for

sequences of equilibria with → 0). Sincere stability, by imposing that a small fraction of

the voters votes for their preferred alternative, implies that at least some pivot probabilities

remain strictly positive. This eliminates equilibria in weakly dominated strategies such as

the ones in which all voters play the same action only because this strategy implies that all

pivot probabilities are zero.

The advantage of our sincere stability refinement is twofold: it captures the essence of

properness in a tractable way,8 and it is behaviorally relevant. Indeed, experimental data

(both in our experiments and others) suggest that some voters vote for their ex ante most

preferred alternative no matter what.

3 Plurality

This section analyzes key equilibrium properties of plurality voting (see Appendix A1 for

technical details and proofs). Below, we show that two types of equilibria coexist: in one,

all majority voters play the same (pure) strategy independently of their signal: they all

8We do not use more traditional refinement concepts such as perfection or properness because, in the

voting context, the former does not have much bite, and the latter is quite intractable since it requires a

comparison of all pivot probabilities for totally mixed strategies.
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vote for either  or . This type of equilibrium is known as a Duverger’s Law equilibrium,

in which only two alternatives receive a strictly positive vote share. In the second type of

equilibrium, a majority voter’s strategy does depend on her signal. Depending on parameter

values, this equilibrium either features sincere voting, that is, voters with signal  (resp.

) vote  (resp. ) or a strictly mixed strategy in which voters with the most abundant

signal ( by convention) mix between  and . We find that these three-party equilibria

exist for any population size, are robust to signal biases, and do not feature any tie. They

are thus not “knife edge” in the sense of Palfrey (1989).

3.1 Duverger’s Law Equilibria

The game theoretic version of Duverger’s Law (Duverger 1963, Riker 1982, Palfrey 1989,

Myerson and Weber 1993, Cox 1997) states that, when voters behave strategically, only two

alternatives should obtain a strictly positive fraction of the votes in plurality elections. In

our setup, these equilibria are as follows:

Definition 1 A Duverger’s Law equilibrium is such that either all majority voters vote for

 or all vote for .

These Duverger’s Law equilibria ensure that  cannot win the election, since either

 or  receive ( ) votes. However, they also prevent information aggregation: the

winner of the election is fully determined by ex ante voter coordination, which amounts to

throwing away all the voters’ private signals. Our first proposition is that:

Proposition 1 Duverger’s Law equilibria always exist under plurality.

The intuition for the proof (see Appendix A1) is straightforward: if an alternative, say

 collects the ballots from almost all the other voters, then a ballot for  is much more

likely to be pivotal against  than a ballot for . This ensures that all majority voters

value a vote for  strictly more than a vote for : they do not want to waste their ballot

on an alternative that is very unlikely to win.

3.2 Informative Equilibria

In Duverger’s Law equilibria, voters discard the information in their possession. Yet, this

type of equilibrium is typically considered the only reasonable one if voters are short-term
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instrumentally rational, in Cox’s (1997) terminology. Indeed, in a world without aggregate

uncertainty, equilibria with more than two alternatives obtaining votes are typically “knife

edge” and “expectationally unstable” (Palfrey 1989, Fey 1997).9 Therefore, empirical re-

search typically associates strategic voting with the voters’ propensity to abandon their

preferred but non-viable candidates, and vote for more serious contenders (see Cox 1997,

Alvarez and Nagler 2000, Blais et al 2005, Fujiwara 2011, Spenkuch 2013).10

Instead, Propositions 2 and 3 below show that even if all voters are short-term in-

strumentally rational, there exists an equilibrium in which no candidate is abandoned by

her supporters. This breaks the link between non-instrumental voting and the observation

that only relatively low fractions of the electorate switch to their second-best alternative.

This discussion revolves around the existence and stability of what we call an informative

equilibrium:

Definition 2 An informative equilibrium is such that ( i) all alternatives receive a strictly

positive vote share, ( ii) these vote shares are different across alternatives (no knife-edge

equilibrium), and ( iii)  is the strongest majority contender in state , and  in state .

To prove the existence of such an equilibrium, we first focus on the case in which

information is close to being symmetric across states. Then, voters vote sincerely in an

informative equilibrium: a voter who receives signal  votes for , whereas a voter who

receives signal  votes for . That is, abandoning one’s preferred candidate is not a best

response when one expects other voters to vote sincerely:

Proposition 2 In the unbiased case  (|) =  (|)  the sincere voting equilibrium
exists ∀   Moreover, there exists a value  ( )  0 such that sincere voting is an

equilibrium for any distribution satisfying  (|)−  (|)   ( ) 

The intuition is that, in the unbiased case, sincere voting implies that the likelihood of

being pivotal against  is the same with an -ballot in state  as with a -ballot in state

. Therefore, -voters strictly prefer to vote for  and -voters strictly prefer to vote for

. Importantly, this equilibrium exists even if signals are slightly biased.

9 In contrast, Dewan and Myatt (2007), Myatt (2007) and Bouton et al. (2015) emphasize the existence

of three-candidate equilibria when there is aggregate uncertainty. In our setup as well, informative equilibria

would still exist if -voters always preferred  and -voters always preferred , i.e. if they had private

value preferences.
10Kawai and Watanabe (2013) acknowledge the weakness of the private-value pivotal voter model in

organizing observational data.
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The pros and cons of sincere voting are the exact flip-side of the ones identified for

Duverger’s Law equilibria: as illustrated by the following example, it produces information,

but does not guarantee a defeat of the Condorcet loser.

Example 1 Consider a case in which  = 12  = 7 and  (|) =  (|) = 23.11

Sincere voting implies that the best alternative ( in state ;  in state ) wins with a

probability of 73%.  has the second largest expected vote share and wins with a probability

of 23% in either state. The alternative with the lowest —but strictly positive— vote share is

 in state  and  in state .

When  is 9, the alternative with the largest expected vote share is , who then wins with a

probability larger than 71%, whereas the best alternative wins with a probability below 29%.

This example illustrates the voters’ main trade-off in plurality: voting sincerely ag-

gregates information, but at the cost of letting  win some times. Coordinating on a

Duverger’s Law equilibrium reverses the costs and benefits. Thus, coordinating on the

informative equilibrium becomes costly when the size of the minority becomes large. In Ex-

ample 1, ’s probability of winning jumps from 23% to above 71% when  increases from

7 to 9. Expected payoffs drop accordingly, from 152 to 70. While our theory is silent about

equilibrium selection, this suggests that the informative equilibrium should be empirically

more relevant when minority size is small and conversely when it is large. We return to this

when discussing the experimental results (see Section 6).

Based on this example and on Proposition 2, one may be misled into thinking that infor-

mative equilibria require signals to be (almost) unbiased. Instead, the fact that the signal

structure becomes too biased to sustain sincere voting produces an informative equilibrium

in which voters increase their support for the weakest candidate:

Proposition 3 Let  (|)−  (|)   ( ). Then, there exists an informative equi-

librium in which voters with signal  play a non-degenerate mixed strategy:  () ∈ (0 1)
and  () = 1.

The intuition for the proof is best conveyed through a second numerical example, which

illustrates that the existence of this equilibrium does not rely on some form of symmetry

between vote shares (see also Bouton and Castanheira 2009 for the case of large electorates):

11Each numerical example reproduces the parameters used in one of the treatments of our laboratory

experiments (see Section 5). In all examples, the two states of nature are equally likely, and the payoffs are:

 = 200;  = 110 and the value of  is 20.

10



Example 2 Let electorate size still be  = 12 and  = 7, but the signal structure be

 (|) = 89  23 =  (|). For these parameter values, an -voter would strictly

prefer to vote for  if all the other voters were to vote sincerely. Indeed, under sincere

voting, a larger  (|) substantially decreases the probability of being pivotal in favour of
 in state . In contrast, the probability of being pivotal for  in state  remains high, and

now dominates all the other pivot probabilities. Hence,  (|)− (|)  0
The informative equilibrium is reached when  () = 0915 and  () = 1: by reducing

the expected vote share of  and increasing that of , the relative probability of being pivotal

in favor of  in state  increases to the point in which -voters are indifferent between

voting  and , whereas -voters still strictly prefer to vote . Importantly, all vote shares

are strictly positive and the full information Condorcet winner is the most likely winner in

both states of nature (their winning probabilities are respectively 96% and 79% in states 

and ):

 = 081    = 069 



= 058    = 031   = 019

This informative equilibrium gives  a strictly positive probability of victory (3% in state 

and 18% in state ) but expected utility is higher in this equilibrium than in a Duverger’s

Law equilibrium.

4 Approval Voting

This section analyzes key equilibrium properties of AV (see Appendix A2 for technical

details and proofs). First, note that the action set under AV is an extension of the action

set under plurality. As shown by Ahn and Oliveros (2013, Proposition 1), this implies that,

in a pure common-value game, there exists an equilibrium in AV for which welfare is weakly

higher than for any equilibrium in plurality.12 We prove an even stronger result (which also

extends the analysis of Bouton and Castanheira 2012): with a minority that has preferences

opposite to the majority’s, the welfare dominance of AV over plurality is strict.

Theorem 1 There always exists an equilibrium in AV for which expected welfare is strictly

higher than for any equilibrium in plurality. In that equilibrium, some voters must double-

vote, and  ()   ()  0

12Ahn and Oliveros (2013) exploit McLennan (1998)’s argument to show that, in a common value setup,

one can rank equilibrium outcomes under AV as opposed to plurality and negative voting. By revealed

preferences, since the action set in the two other rules is a strict subset of the action set under AV, “the

maximal equilibrium utility under approval voting is greater than or equal to the maximal equilibrium utility

under plurality voting or under negative voting.” (p. 3).
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The intuition for the proof (see Appendix A2) is as follows: the only difference between

the set of undominated actions in plurality and in AV is the possibility to double-vote .

Following Ahn and Oliveros (2013), if one voter wants to double-vote, the other voters’

expected utility must also increase. We find that a voter’s strict best response is precisely

to double-vote when the other voters single-vote “excessively” (Lemma 2 in Appendix A2),

which implies that all equilibria in plurality are strictly payoff dominated.

Another question is to assess the magnitude of the potential welfare gains from moving

from plurality to AV. In a large electorate setting, AV selects the best alternative with

a probability that converges to 1. Welfare may thus increase up to  . Achievable welfare

in plurality depends on which equilibrium is selected. In a Duverger’s Law equilibrium,

 cannot win. But, depending on the probability of each state of nature, welfare may lie

anywhere between  and  . In an informative equilibrium,  wins with strictly positive

probability and, as illustrated in Example 1, may even become the most likely winner.

Expected welfare may thus fall below . We come back to this in Section 6.5.

A shortcoming of Theorem 1 is that it does not establish equilibrium uniqueness, which

would require arbitrarily large population sizes (see Bouton and Castanheira, 2012), while

our focus is on finite — possibly small — population sizes. Yet, our next theorem identifies

unique voting patterns for any interior equilibrium:

Theorem 2 Whenever both - and -voters adopt a nondegenerate mixed strategy in

equilibrium, voters with signal  only mix between  and , and voters with signal 

only mix between  and .

This theorem builds on the comparison between the preferences of  and  voters:

conjecture for instance a case in which the former play  with strictly positive probability.

Since a voter with signal  values  even more, she must only play , which contradicts

the nature of an interior equilibrium. As explained, finite population sizes imply that we

cannot extend this result beyond interior equilibria. Yet, numerical simulations showed that,

for all the parameter values we checked, the equilibrium was unique and such that voters

with signal  only mix between  and , while voters with signal  never play . This

held both for interior equilibria and for equilibria in which (one of the two groups of) voters

play a degenerate strategy.

Two additional examples are useful to illustrate these results and better understand the

features and comparative statics of voting equilibria in AV:
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Example 3 Consider the same set of parameters as in Example 1:  = 12  = 7 or 9

and  (|) =  (|) = 23. The unique equilibrium is such that:

 () =  () = 064 and  () =  () = 036 when  = 7

 () =  () = 030 and  () =  () = 070 when  = 9

When  = 7, these equilibrium strategies imply that  wins with a probability of 82%

in state  (as does  in state ), whereas ’s probability of winning is below 1% . When

 = 9,  wins with a probability of 73% in state  (as does  in state ), whereas ’s

probability of winning remains as low as 1.5%. These values should be contrasted with the

sincere voting equilibrium in plurality (see Example 1), in which the probability of selecting

the best outcome was substantially lower, and the risk that  wins was substantially larger.

Comparing equilibrium behavior with  = 7 and  = 9 in Example 3 shows that the

larger  , the more double-voting in equilibrium. This pattern was found to be monotonic

and consistent across numerical examples for any value of  and signal structures.

Example 4 Consider the same set of parameters as in Example 3, except for  (|) =
89 This reproduces the biased signal setup of Example 2. As in Example 3, the equilibrium

is unique:  () = 026   () = 052 and  () = 074   () = 048 This

equilibrium implies that  wins with a probability of 87% in state , whereas  wins with

a probability of 90% in state . ’s winning probabilities are 0.5% in state  and 2.8% in

state .

This example highlights a second feature of AV: when the signal structure is biased

(here towards ), -voters double-vote more than -voters. In other words, in equilib-

rium, voters who support the strongest alternative should lend support to the underdog,

by double-voting more. Such predictions (predicted behavior is different between plurality

and approval voting, and across types) will allow us to disentangle rational behavior from

sincere voting in the experiment.

5 Experimental Design and Procedures

We test our theoretical predictions through controlled laboratory experiments. To this end,

we introduced subjects to a game that had the very same structure as the one presented in

the model. All participants were given the role of an active voter, whereas passive voters
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were simulated by the computer.13 In all treatments, the number of active voters was  = 12

and subjects were told that the computer casts  votes for gray in each election ( was

set equal to 7 or 9 depending on the treatments).

Following the experimental literature on the Condorcet Jury Theorem, the two states

of the world were called blue jar and red jar, whereas the signals were called blue ball and

red ball. One of the jars was selected randomly by the computer, with equal probability.

The subjects were not told which jar had been selected, but were told how the probability

of receiving a ball of each color depended on the selected jar. After seeing their ball, each

subject could vote from a set of three candidates: blue, red or gray.14 Blue and red were

the two majority candidates and gray was the Condorcet loser. As in Guarnaschelli et al.

(2000), abstention was not allowed (remember that abstention is a strictly dominated action

in our setup).15

The subjects’ payoff depended on the color of the selected jar and on that of the election

winner. If the color of the winner matched that of the jar, the payoff to all members of the

group was 200 euro cents. If the winner was blue and the jar red or the other way around,

their payoff was 110 cents. Finally, if gray won, their payoff was 20 cents.

We consider three treatment variables: the voting rule (plurality or approval voting),

the size of the minority (small or large), and the signal structure (biased or unbiased). Each

treatment corresponds to one of the examples in Sections 3 and 4. Table 1 summarizes the

six different treatments.

Experiments were conducted at the BonnEconLab of the University of Bonn between

July 2011 and January 2012. We ran a total of 18 sessions with 2 groups of 12 subjects in

each of them. No subject participated in more than one session. Students were recruited

through the online recruitment system ORSEE (Greiner 2004) and the experiment was

programmed and conducted with the software z-Tree (Fischbacher 2007).

All experimental sessions were organized along the same procedure: subjects received

detailed written instructions, which an instructor read aloud.16 Each session proceeded in

two parts: in the first part, subjects played one of the treatments in fixed groups for 100

13Morton and Tyran (2012) show that preferences in one group are not affected by preferences of an

opposite group. Therefore, having computerized rather than human subjects should not alter the behavior

of majority voters in a significant way. Partisans (the equivalent to our passive voters) simulated by the

computer has been used in previous studies — see Battaglini et al. (2008, 2010).
14The colors that we used in the experiments were blau, rot and schwarz.
15 In a setting related to ours, Forsythe et al (1993) allowed for abstention and found that the abstention

rate was as low as 0.65%. Note also that, under AV, abstention is strategically equivalent to approving of

all candidates. Subjects chose that option only 0.08% of the time.
16The instructions can be found in the supplementary appendix.
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Treatment
Voting

rule

Minority

size ()

Blue balls

in blue jar

Red balls

in red jar

Sessions /

Ind. Obs.
Group #

PL7 Plurality 7 23 23 3 / 6 1-6

PL9 Plurality 9 23 23 3 / 6 7-12

AV7 Approval 7 23 23 3 / 6 13-18

AV9 Approval 9 23 23 3 / 6 19-24

PL7B Plurality 7 89 23 3 / 6 25-30

AV7B Approval 7 89 23 3 / 6 31-36

Table 1: Treatment overview. Note: "Blue balls in blue jar" stands for the "fraction of blue balls

in the blue jar" and "ind. obs." stands for “individual observations”.

periods. Before starting, subjects were asked to answer a questionnaire to check their full

understanding of the experimental design. At the end of the experiment, subjects received

new instructions, and made 10 choices in simple lotteries, as in Holt and Laury (2002). We

ran this second part to elicit the subjects’ risk preferences.

To determine payment, the computer randomly selected four periods from the first part

and one lottery from the second part.17 In total, subjects earned an average of 13.47,

including a show-up fee of 3. Each experimental session lasted approximately one hour.

Our choice of fixed matching is not innocuous. The main advantage of fixed matching

is that, for given costs, it delivers more independent units of observation, hence more power

for non-parametric tests. A typical drawback of fixed matching is that it favours repeated

game effects. One might thus fear that outcomes based on fixed matching could display more

cooperative behavior than in the theory. However, this is not an issue in our setup: since

voters have common values, there is no gap between a potential “cooperative equilibrium”

and the equilibrium in a one-shot game.18 Hence, the only relevant effect of fixed matching is

that it may facilitate the subjects’ learning about the equilibrium selected by the group. For

instance, Forsythe et al. (1993, 1996) observe that Duverger’s Law equilibria emerge more

easily among voters with a common history. Since we are more interested in the equilibrium

properties of the voting systems under consideration than out-of-equilibrium coordination

failures, fixed matching emerges as a natural choice. Finally, given equilibrium multiplicity

under plurality and equilibrium uniqueness under AV, fixed matching essentially stacks the

17 In the first round of experiments (the seven sessions with the groups 1, 2, 7, 8, 9, 10, 13, 14, 15, 16,

19, 20, 21 and 22), we selected seven periods to determine payment. We reduced this to four periods after

realizing that the experiment had taken much less time than expected. We find no difference in behavior

between these two sets of sessions.
18 In the setup of the Condorcet Jury Theorem, Ali et al. (2008) find no significant difference between

random matching (or ad hoc committees) and fixed matching (or standing committees).
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deck against the latter in welfare comparisons.

Several reasons justify our choice of a large number of repetitions. First, repetitions

allow subjects to get familiar with the trade-offs of the environment. Second, despite fixed

matching, we anticipated that subjects would need time to (i) solve the coordination prob-

lems under plurality (due to the co-existence of informative and Duverger’s Law equilibria),

and (ii) fine-tune their mixed strategies under AV. A large number of repetitions allows us

to (i) identify possible learning effects on those dimensions, and (ii) study how the systems

perform once they had time to adjust their strategy. Last but not least, we can still capture

possible coordination failures or departures from the right equilibrium mix, and their effects

on systems’ performances, by focusing on the first periods of the experiment. Accordingly,

we distinguish between the results in the first and the last 50 periods.

5.1 Hypotheses

In this section, we distill our theoretical results into testable hypotheses. Hypotheses H1-H3

refer to voting behavior while H4 refers to welfare comparisons.

Hypothesis 1 The frequency of sincere voting will be (weakly) higher in treatment PL7

than in treatment PL9.

Hypothesis 2 The frequency of double voting will be higher in treatment AV7 than in

treatment AV9.

Hypothesis 3 Voters will compensate for biases in the signal structure, that is:

H3a: Conditional on converging to an informative equilibrium, the frequency of sincere

voting under PL7B will be lower for blue than for red voters.

H3b: The frequency of double voting under AV7B will be higher for blue than for red voters.

Hypothesis 4 For each combination of  and signals, average payoffs will be higher under

AV than under PL.
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6 Experimental Results

6.1 Unbiased Treatments

6.1.1 Plurality

As shown in Section 3, two types of equilibria coexist under plurality when information is

unbiased: in Duverger’s Law equilibria, participants should disregard their signal and coor-

dinate on always voting blue or always voting red. In sincere voting equilibria, participants

should vote their signal. Table 2 shows the average frequencies with which subjects voted

sincerely (we call this voting the signal), for the color opposite to their signal (we will call

this voting opposite) or for gray.

In the presence of a small minority (PL7), the subjects’ voting behavior is consistent

with sincere voting: taking an average across all groups and periods, 91.38% of the ballots

were sincere in PL7, with a lowest value of 86.42% in one independent group. This behavior

is quite stable over time: regressing the frequency of “voting the signal” on the period

number, we find that the coefficient is not significantly different from zero ( = 0648). This

evidence of sincere voting stands in stark contrast with the findings of Forthsythe et al.

(1996), which only found convergence to Duverger’s Law Equilibria.

Voting behavior is substantially different in the presence of a large minority (PL9).

First, only 63.86% of the observations are consistent with sincere voting. This percentage is

significantly lower than the one observed in PL7 (Mann-Whitney,  = 2882,   001) and,

hence, Hypothesis H1 is validated.19 Second, the frequency of voting the signal significantly

decreases over time: the predicted frequency of sincere voting drops from 73.90% in the

first periods to 53.70% in the last period. That is, participants begin the experiment by

voting sincerely (94.44% of them voted their signal in the first period), and then they adjust

their behavior by increasingly voting against their signal. This pattern actually reveals a

progressive shift from a sincere voting equilibrium to a Duverger’s Law equilibrium, with

sometimes significant coordination failures in the interim periods. Figure 1 illustrates this

shift. As one can see, all six groups eventually converged to a Duverger’s Law equilibrium.

This raises two empirical questions regarding equilibrium selection. The first one is why

all groups selected a Duverger’s Law equilibrium in the PL9 treatment, and the informative

equilibrium in the PL7 treatment. The second question is how each PL9 group selected its

19 In all nonparametric tests we used a group as an independent observation, because from period 2

onwards, individual choices were affected by observing other group members. Unless otherwise noted, we

aggregated the data across all 100 periods in a matching group.
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Minority Periods Periods Equilibrium

Treatment Size 1-50 51-100 Sincere Voting Duverger’s Law

PL7 Small Signal 91.80 90.94 100.00 50.00

Opposite 7.78 8.89 - 50.00

Gray 0.42 0.17 - -

PL9 Large Signal 68.47 59.25 100.00 48.92∗

Opposite 31.11 40.67 - 51.08∗

Gray 0.41 0.08 - -

Table 2: Aggregate voting behavior in plurality treatments with unbiased information, separated

by first and second half, and equilibrium predictions. ∗In the case of Duverger’s Law in PL9, the
prediction is adjusted to the color that each group converged to.

Duverger’s Law equilibrium.

We can identify at least two reasons why Duverger’s Law equilibria are the most natural

focal point in PL9: first, according to Example 1, the expected utility in the informative

equilibrium is 69.76 in PL9, instead of 152.76 in PL7. This compares with an expected utility

of 155 in a Duverger’s Law equilibrium. The incentive to get away from sincere voting is

thus more important in PL9. Second, the range of strategy profiles for which sincere voting

is a best response is quite narrow in the case of PL9. The phase diagrams in Figure 2

illustrate this graphically. One can readily see that the attraction zone of the sincere voting

equilibrium is much larger in PL7 than in PL9.20 Therefore, even relatively small departures

from sincere voting make it optimal to vote for the leading majority candidate in PL9.

Turning to the second question, most groups coordinated on the first color that obtained

strictly more than six of the majority votes.21 This is in line with the findings of Forsythe

et al. (1993, p235): “a majority candidate who was ahead of the other in early elections

tended to win the later elections, while the other majority candidate was driven out of

subsequent races”. Yet, the transition from sincere voting to the selected Duverger’s Law

equilibrium can take a substantial amount of time: the first period from which either

blue or red consistently obtained enough votes to win was 50, 59, 83, 63, 21 and 26 for

groups 7-12 respectively. This shows that experiments using shorter horizons may fail to

capture equilibrium convergence (the welfare consequences of these coordination failures are

analyzed in Section 6.5).

20Confronting the strategies actually played by the subjects to these theoretical predictions, we found

that, even in early periods, the typical voting realization falls outside the sincere voting attraction zone in

PL9, and inside that zone in PL7.
21 It happened in period 1 for four groups and in period 2 for one group. The only exception is group 11,

where blue got 7 votes in the first period and then red received more votes from period 2 onwards.
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Figure 1: Frequency of voting blue, red and gray, irrespective of the signal in groups of treatment

PL9. The dashed line indicates the minimum frequency of vote share required to defreat gray (in

case nobody from the majority votes for the Condorcet loser).

6.1.2 Approval Voting

Table 3 summarizes the subjects’ behavior in AV treatments. These two treatments re-

produce the parametric cases covered in Example 3, which we found to display a unique

symmetric equilibrium. In that equilibrium a voter should only single-vote her signal or

double-vote blue and red. More than 94% of actions were in line with this prediction.

The second prediction drawn from Example 3 refers to the effect of minority size: it

should increase the frequency of double-voting (Hypothesis H2). Table 3 shows that this

is indeed the way in which the subjects adapted their behavior: the percentage of double-

voting was multiplied by more than two, from 23.29% in treatment AV7 to 48.66% in

treatment AV9. This difference is significant at 1% (Mann-Whitney,  = 2722,   001).

We observe an increase of the frequency of double voting over time. However, the aver-

age frequency of double voting in AV9 is higher than in AV7 in every single period (and

statistically significant at 10% in all but periods 1, 2 ,3 ,4 and 6).

Although the comparative statics go in the direction predicted by theory, the amount

of double-voting was well below theoretical predictions. These differences are significant at

5% in both AV7 and AV9 (Mann-Whitney,  = 2201,   005). One might think that

19



Figure 2: Phase diagram of treatments PL7 and PL9. The horizontal axis displays the probability

of sincere voting by blue voters while the vertical axis displays the probability of sincere voting by

red voters. The solid line indicates the indifference curve for the blue voters, while the dashed line

indicates the indifference curve for the red voters. The arrows help identify the attraction zones of

each of the three equilibria mentioned.

risk aversion (or, more precisely, the lack of risk aversion) helps explain this discrepancy.

However, we do not find any significant relation between a subject’s level of risk aversion

and her propensity to double-vote. Another possibility for this discrepancy is that it is

more costly for subjects to double-vote than to single-vote (they have to click twice instead

of once). A third, and perhaps more subtle, possibility is that subjects did not play mixed

strategies and coordinated on an asymmetric equilibrium. We discuss this in Section 6.3.

Finally, we note that aggregate behavior is homogeneous across independent groups in

AV7. In contrast, there is one group in AV9 (group 22) for which behavior differs substan-

tially from the other five groups: in group 22, 17.33% of the votes were single-votes against

the signal. According to our theoretical predictions, this should not happen in equilibrium.

Looking closer at individual voting data, we observe that four subjects consistently single-

voted red irrespective of their signal. This implies that red was consistently winning the

elections, which prevented information aggregation.22

22Aggregate measures displayed in Table 3 are robust to the exclusion of group 22. In the last 50 periods,

for example, the level of double voting would switch from 51.64 to 52.80 and the level single voting would

switch from 43.33 to 44.63. In the same vein, the tests provided throughout the section are also robust to

the exclusion of group 22.
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Periods Periods

Treatment Minority Size 1-50 51-100 Equilibrium

AV7 Small Signal 70.92 71.94 64.00

Double Vote 22.22 24.36 36.00

Opposite 6.50 3.69 -

Gray 0.36 0.00 -

AV9 Large Signal 47.08 43.33 30.00

Double Vote 45.67 51.64 70.00

Opposite 6.86 4.97 -

Gray 0.39 0.06 -

Table 3: Aggregate voting behavior in approval voting treatments with unbiased information. Gray

refers to voting for gray or a combination of gray and others.

6.2 The Effects of Biased Information

In PL7, we observed that all independent groups coordinated on the sincere voting equi-

librium. One reason might be the symmetry between the blue and red signals, which made

coordination challenging for the subjects. To test whether this is the case, treatment PL7B

instead makes the signal structure strongly biased in favor of the blue signal by setting

 (blue ball | blue jar) = 89. So, if the voters were to keep playing sincere, blue would win
disproportionately more often than red. Propositions 1 and 3 show that voters may still

coordinate on either the Duverger’s Law equilibrium or on the informative equilibrium in

which blue voters should mix between voting blue and voting red (see Example 2).

In the experiment, we observe that one independent group (group 28) coordinated on

the “blue” Duverger’s Law equilibrium. The other five adopted a strategy coherent with

the informative equilibrium of Example 2. Let us analyze each in turn: in group 28,

almost all subjects cast a blue ballot as of period 31. From that period onwards, blue

consistently obtained enough votes to win. Table 4 summarizes the behavior of the other

five independent groups. Looking at the last 50 periods, we observe that, in line with

theoretical predictions, red subjects voted sincerely with a higher probability than blue

subjects. The difference between these two behaviors is statistically significant (Wilcoxon,

 = 2023,   0043). This result is in line with Hypothesis H3a. Interestingly, this pattern

only appears after subjects had enough time to solve the coordination problem and fine-

tune their strategies. Indeed, the difference is not statistically significant in the first 30, 40,

or 50 periods. Actually, despite some heterogeneity across groups, there is no statistically

significant difference between the theoretical prediction and the observed frequency of voting

blue when getting a blue ball (Mann-Whitney,  = 0405,  = 0686). Note however that,
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Periods Periods

1-50 51-100 Equilibrium

Signal if blue 92.99 90.75 91.53

Opposite if blue 6.89 8.38 8.47

Signal if red 96.39 97.48 100

Opposite if red 3.13 1.74 0

Gray 0.27 0.83 0

Table 4: Aggregate voting behavior in treatment PL7B. Group 28 was excluded given that it

converged to a Duverger’s Law equilibrium.

as pointed out in Brown and Rosenthal (1990) and subsequent papers (see, e.g. Cason and

Friedman 1993, and Cason et al. 2010), the fact that average play converges to the one

predicted in equilibrium need not imply that behavior does. We explore this issue further

in Section 6.3.

The model helps identify two reasons why the informative equilibrium is more likely to

be selected. First, it yields a higher expected payoff than Duverger’s Law equilibria (178.37

instead of 155). Second, as identified by the phase diagram in Figure 3, when starting

from sincere voting (the top-right corner), the local dynamics of individual best responses

point towards the informative mixed strategy equilibrium (the black dot on the graph)

rather than towards either Duverger’s Law equilibria. This provides additional evidence

that informative equilibria are empirically relevant when voters face aggregate uncertainty.

Turning to approval voting, the only difference between treatments AV7B and PL7B is

that subjects can exploit the possibility of double-voting instead of having to vote for or

against their signal. According to Example 4, blue voters should double-vote more often

than red voters, and no subject should single-vote against his or her signal. Table 5 shows

that the subjects’ behavior was in line with this prediction. The difference between the

blue and red voters is significant not only for the second half of the sample but also for the

whole experiment (Mann-Whitney,  = 2201,  = 0028). This confirms Hypothesis H3b.

6.3 Asymmetric Equilibria with Approval Voting

Let us now focus on individual voting behavior. We saw in Section 6.1.2 that the fraction of

subjects who double-vote is lower than predicted by the theory in a symmetric equilibrium.

To obtain a better understanding of this gap between the theory and the observations,

we can delve deeper into individual behavior. Figure 4 disaggregates voting behavior at

the individual level in the last 50 periods of treatments AV7 (left panel) and AV9 (right
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Figure 3: Phase diagram of treatment PL7B. The horizontal axis displays the probability of sincere

voting by blue voters, while the vertical axis displays the probability of sincere voting by red voters.

The solid line indicates the indifference curve for the blue voters; the dashed line indicates the

indifference curve for the red voters.

Periods Periods

1-50 51-100 Equilibrium

Signal if blue 66.95 61.16 50.1

Double-vote if blue 29.87 37.16 49.9

Signal if red 74.56 80.52 92.6

Double-vote if red 20.52 17.98 7.4

Opposite 2.94 1.56 0

Gray 0.89 0.06 0

Table 5: Aggregate Voting Behavior in treatment AV7B.

panel).23

According to Theorem 2, in a symmetric equilibrium, subjects should adopt the same

strategy of mixing between voting their signal and double-voting. If all subjects voted in this

way, all the circles in Figure 4 should be located at the same point on the negative diagonal

between (0,1) and (1,0). While most circles are indeed on this diagonal, we observe that

very few subjects are in the vicinity of the orange triangle, which describes the predicted

symmetric strategy.24 Instead, we observe two opposite subject clusters: one that plays the

23See supplementary appendix for similar figures in all other treatments. Interestingly, we do not observe

such asymmetric behavior in plurality treatments.
24Fewer observations are located along this negative diagonal in the first 50 periods. This shows again

that, when subjects are given more time, they do fine-tune their strategy, which becomes progressively closer

to theoretical predictions (see Section 6.4).
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Figure 4: Individual behavior in AV treatments with unbiased information. Each hollow circle in

the graph corresponds to the observed frequence of play: its size represents the number of subjects

who actually adopted that frequence of play. The red circle represents the average frequency of play

observed, the orange triangle represents the symmetric equilibrium prediction and the green square

represents the asymmetric equilibrium prediction.

pure strategy of (almost) always double-voting and another one with subjects who (almost)

always single-vote their signal — 84.72% of the subjects either voted their signal or double-

voted at least 75% of the times in the last 50 periods of the experiment, and 73.77% played

a pure strategy of casting the same ballot 100% of the times. The treatment effect between

AV7 and AV9 observed in Section 6.1.2 is mainly driven by a switch in the relative number

of subjects in each cluster: in treatment AV7, 20.83% double vote at least 75% of the

time, while this number increases to 45.83% in the case of AV9 (Mann-Whitney,  = 2934,

 = 0003).25

This pattern points at the need to consider asymmetric strategies. Pushing the line of

reasoning of McLennan (1998) and Ahn and Oliveros (2013) further, allowing for asymmetric

strategies can be interpreted as another extension of the group’s choice set, which can

increase expected welfare. Allowing some voters to specialize in double or single-voting may

produce significant advantages. The challenge is to identify potential equilibria by relaxing

the assumption of symmetric strategies, ubiquitous as it is in the voting literature.26

25The number of players who double vote is quite homogeneous across independent groups: 2, 2, 2, 3, 3

and 3 in AV7, versus 6, 6, 5, 4, 7 and 5 in AV9.
26There are noticeable exceptions such as McLennan (1998), and Ladha, Miller and Oppenheimer (1996).
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Relaxing the constraint that voters who receive the same signal must play the same

strategy, the following proposition proves, for a broad set of parameter values (including the

ones used in the experiment), the existence of at least one equilibrium in which voters play

asymmetric strategies. It also characterizes this asymmetric equilibrium: voters specialize

independently of their signal in either single-voting or double-voting. That is, some voters

always single-vote and others always double-vote. If the signal structure is sufficiently

unbiased, all “single-voters” vote their signal, i.e.  if signal  and  if signal  If the

bias in the signal structure is stronger, then the voters receiving the less abundant signal

vote sincerely whereas those who receive the more abundant signal mix between  and .

Proposition 4 Suppose that  () =  (),  (|) ≥  (|) and  ≤ 2. Any strategy
profile satisfying the following conditions is an asymmetric equilibrium:

1. 2 − + 1 voters always double-vote;

2. The rest of the voters single-vote informatively with 1 () = 1 and

1 () =

⎧⎪⎪⎨⎪⎪⎩


−
−−1−1



−
−−1 (|)−(|)

if 
−

−−1 
( |)
( |)  where  =

(|)
(|)

1 if 
−

−−1 ≤ ( |)
( |)



where 1 () is the probability that a single-voter of type  plays action 

Proof. See supplementary appendix.

Such an asymmetric behavior is an equilibrium because the voters who specialize in

single-voting perceive the expected payoff of each ballot differently from voters specializing

in double-voting. In particular, “single-voters” are pivotal only when , , and  receive

exactly the same number of votes, whereas “double-voters” are pivotal if either  is trailing

behind by one vote or if it is leading by one vote. The best responses of these two groups

of voters are thus different. The following example illustrates this result in more detail.

Example 5 Assume (as in Example 3)  = 12  = 7 and  (|) =  (|) = 23. In
the asymmetric equilibrium, 2 −+1 = 3 voters double-vote, and the other 9 single-vote

their signal

Compared with the symmetric equilibrium, the aggregate level of double-voting decreases

from 36% to 25%, but this is enough to ensure that the Condorcet loser never wins the
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election. Indeed, with 3 double-votes and 9 single-votes, one of the two majority alternatives

must receive at least 8 votes, i.e. strictly more than the Condorcet loser. Finally, the

likelihood of choosing the best candidate increases from 82% in the symmetric equilibrium

to 855%. Information aggregation is improved because the (expected) number of voters

who reveal their information, i.e. the expected number of single-voters, is larger in this

asymmetric equilibrium than in the symmetric one (9 vs. 768).

Such asymmetric equilibria under AV appear to organize laboratory data better than

the symmetric equilibrium. In treatment AV7, the predicted level of double-voting in the

asymmetric equilibrium is 25%, to be compared with the observed 24.46% in the laboratory.

This difference is not significant (Wilcoxon,  = −0524  = 060). In the case of AV9, the
predicted level of double-voting is 58.33% compared to the observed 51.64%. The difference

is still significant (Wilcoxon,  = 2201,  = 0028), although the gap is much smaller than

with the symmetric equilibrium.

Three remarks are in order. First, the equilibrium in Proposition 4 makes an interesting

prediction for the biased treatment AV7B: the level of double-voting should be independent

of the signal structure. This is not what we observe in the data (see Table 5). Second,

the existence of such an asymmetric equilibrium does not invalidate the welfare results in

Theorem 1: indeed, the logic of the proof is the same. Finally, it is possible that fixed

matching facilitated the emergence of asymmetric equilibria.

6.4 On Voter Rationality

A heated debate in political science is whether one may take seriously the assumption that

voters behave strategically (see Section 3.2 for a short discussion). We explore this question

in three steps. First, we analyze whether subject behavior follows some minimal criteria

of self-interest. Second, we study the groups’ behavior across treatments to confront the

sincere voting and strategic voting hypotheses. Third, we assess the fraction of subjects who

adopted a rational voting behavior.

A minimal criterion of self-interest is to check whether subjects played dominated strate-

gies. We find that less than 2.1% of the subjects chose a dominated action more than 5%

of the times — this pattern is constant across treatments. A stricter test is whether sub-

jects play actions that are not in their best-response set. Concretely, this means not voting

sincerely in PL7, and not voting for same color as the rest of the group in PL9 (i.e. one

action out of three is in each voter’s best-response set). In AV, the best response set con-
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Figure 5: Cumulative distribution of percentage of each subject’s propensity to cast ballots

not in their best response set in the last 50 periods. The left (right) panel describes behavior

under a minority of 7 (9).

tains sincere single- and double-voting (i.e. two actions out of seven). Figure 4 illustrates

the outcome. Two clear conclusions emerge: first, more than 70% of the subjects played a

non-equilibrium strategy less than 5% of the time. Second, subjects made more mistakes

under plurality than under AV (see also Section 6.5).

We need other metrics to discriminate between strategic and sincere behavior. For

instance, if 100% of the subjects single voted their signal in AV9, then 100% of the data

are both in the undominated and the best-reponse sets, despite the fact that this cannot be

an equilibrium behavior. Exploiting the testable implications of our model, we can reject

the hypothesis that all subjects behave sincerely. In particular, (1) 40.67% of the votes in

PL9 were incompatible with sincere voting (see Table 2). (2) In line with Hypothesis 2, the

voters’ propensity to double vote is significantly higher in AV9 than in AV7. (3) In line

with Hypothesis 3, subjects compensated for the biased signals in AV7B and PL7B. (4) In

line with Theorem 2, the switch from PL7 to AV7 produced a clear drop in “single-vote

the signal” (from 90.94% to 71.94%) and the switch from PL9 to AV9 induced subjects

to essentially stop “single-voting opposite” (from 40.67% to 4.97% — these differences are

statistically significant: Mann-Whitney,  = 2882,   001 in both cases).

Note still that similar arguments can be made to exclude the reverse hypothesis that all

subjects behaved as predicted by the model: in PL9, for instance, 15.28% of the subjects

voted sincerely more than 90% of the times. An obvious question is thus to assess which

fraction of subjects behaved “rationally” according to the model. To do so, we identify
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a lower and an upper bound on the fraction of subjects displaying a behavioral response

that is only compatible with strict criteria of rational behavior. First observe that, in the

last 50 periods of PL9, 72.23% of the subjects voted for the majority candidate more than

90% of the times (and 64% of the subjects voted so all the time). Second, observe that the

propensity to double vote increased by 27.78% between AV7 and AV9. In summary, a lower

bound is 27.78% and an upper bound 72.23%. This figure is in line with recent findings on

observational data in the literature (Kawai and Watanabe 2013, Spenkuch 2013).

6.5 Welfare

Previous laboratory experiments about multicandidate elections were based on theories that

are inconclusive when it comes to comparing welfare across voting systems (this is the case,

for instance, with the theoretical predictions of Myerson and Weber 1993 used in Forsythe

et al. 1996). A valuable feature of our common value setup is that it allows for such direct

comparisons: by Theorem 1, in equilibrium, the active voters’ payoff should be strictly

higher with AV than with plurality.

Table 6 (in columns 2 and 3) displays the average payment obtained by the subjects in

each treatment, respectively for the first and second 50 periods. Comparing PL and AV

treatments two by two, one can see that realized payoffs are systematically higher in AV

treatments. All these differences are significant at the 1% confidence level.27 This validates

Hypothesis H4. This comparison is robust to various time windows. If we consider groups

of 10 periods, the average payoff is always higher under AV than under PL (and significantly

higher in 20 out of 30 cases). Interestingly, realized payoffs under AV are relatively close

to the payoffs that a benevolent dictator would achieve if informed about all the signals

in the group (191.00, 188.90 and 197.60 in the last 50 periods for AV7, AV9 and AV7B,

respectively).

These results lead to several conclusions. First, plurality performs relatively poorly

both when coordination problems are salient and when they have been resolved. Why AV

performs better even in early periods can be due to several reasons. For instance, (i) subjects

fine-tune their strategies much faster under AV than they can solve coordination problems

under plurality. (ii) AV does not require full fine-tuning to perform better than plurality.

(iii) Plurality performs very poorly unless coordination problems have been fully addressed.

Regarding point (i), we observed in Section 6.4 that subjects make fewer “mistakes” in

27Mann-Whitney tests are:  = 2882 and - = 00039 for AV7-PL7,  = 2722 and - = 00065

for AV9-PL9, and  = 2913 and - = 00036 for AV7B-PL7B.
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Periods Periods Equilibrium

Treatment 1-50 51-100 Symmetric∗ Asymmetric

PL7 136.70 138.50 154.87 -

PL9 101.15 147.80 156.20 -

PL7B 169.85 171.95 178.76 -

AV7 167.00 183.95 179.65 189.80

AV9 146.75 168.95 164.70 181.10

AV7B 188.90 192.50 193.58 194.68

Table 6: Average payoff and theoretical predictions. ∗ In the case of plurality, equilibrium predic-

tions refer to the equilibrium where experimental groups converged to.

AV than in plurality. This happens despite the fact that voters have to choose from a larger

choice set in AV than in plurality. This suggests that the “individual complexity” of having

to choose from a larger choice set is actually much simpler to address than the “strategic

complexity” of having to adapt behavior to which equilibrium was selected by the other

voters.

Regarding point (ii), one should realize that AV can produce quite higher welfare than

PL even if subjects do not perfectly fine-tune their strategy to the equilibrium predicted

by the theory. To show this, we calculate the predicted level of expected welfare under

AV when voters adopt any given mixture between single and double-voting, and compare

it with the case in which voters coordinate perfectly on the Duverger’s Law equilibrium

under plurality, i.e. the payoff-maximizing equilibrium both in PL7 and PL9. This clearly

stacks the deck against AV. The results shown in Figure 6 are striking: with symmetric

strategies (remember from Section 6.3 that asymmetric strategies perform even better), the

welfare dominance of AV over plurality is robust to large mistakes in the mix between single

and double-voting. For a small minority, virtually any positive amount of double-voting

( 0174%) makes AV welfare-superior to plurality. For a large minority, AV dominates

plurality as long as voters double-vote with a probability higher than 451%. In contrast,

in plurality treatments PL7 and PL9, respectively, at least 2/3 and 83.3% of the subjects

must coordinate on a same color to achieve the maximum achievable payoff of 155. This

shows that (a) AV does not require perfect fine-tuning to perform better than plurality, and

(b) plurality performs poorly unless a very large fraction of the voters have coordinated on

the same equilibrium.

Regarding point (iii), it is interesting to look at the effect of the size of the minority on

welfare. In plurality, the expected payoff should be strictly decreasing in  in an infor-

mative equilibrium. In a Duverger’s Law equilibrium instead, it should remain independent
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gray line represents the expected payoff under AV as a function of the frequency of double
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the expected payoff of the Duverger’s Law equilibrium strategy.

of  , at 155. Table 6 shows an interesting reversal: in the first 50 periods, the average

payoff is higher in treatment PL7 than in treatment PL9, while the opposite is true for the

second half. This is explained by the substantial costs of the coordination failures that we

observe in the first 50 periods in PL9. Across the entire experiment session, payoff is lower

under PL9 than under PL7 (Mann-Whitney test,  = 1922, - = 00547), while the

opposite should hold if coordination was perfect.

7 Conclusions

In this paper, we adopted a theory-based experimental approach to achieve a dual objective:

(i) comparing the welfare properties of plurality and approval voting, and (ii) shedding new

light on the debate about whether voters behave strategically.

Our experiments confirmed that the theoretical promises of AV are largely met in prac-

tice, both at the aggregate level — welfare increases substantially — and in terms of individual

responses — subjects’ strategic behavior moves in line with theoretical predictions. This gives

weight to “rational-strategic” theories of voting, at least in a setup with a small electorate

and a large number of repetitions that allows voters to learn how their actions map into

outcomes.

Clearly, this paper can only produce part of the answers needed to form definite proposals
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about how to reform our collective decision-making processes. In the future, we will also

need to consider other systems (e.g. Instant-Runoff), pre-election polls, preference settings

(e.g. majority voters have a mix of private and common values), and larger electorates.
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Appendices

Appendix A1: Plurality

Pivot Events, Probabilities, and Expected Gains

When deciding for which alternative to vote, a voter must assess the expected value of each feasible

action, which depends on pivot events. We denote by  the pivot event that one voter’s ballot

changes the outcome from a victory of  towards a victory of . The probability of  in state

 is denoted  

The fact that   2 implies that the probability of being pivotal between  and  is zero:

Pr () = 0. Only Pr () and Pr () can be strictly positive. A direct corollary is that

voting for  and abstaining are dominated actions. It remains to check which of actions  and 

have the highest expected payoff.

A ballot, say , can only be pivotal if  ∈ { − 1 }. To assess the probability of such an
event, a voter must identify the distribution of the other −1 votes, given the strategy . Dropping
 from the notation for the sake or readability, the pivot probabilities in favor of  and  are:

 ≡ Pr ( |Plurality) = (− 1)!
2

()
−1()

−−1

(−1)!(−−1)!

∙



+


− 

¸
 (3)

 ≡ Pr ( |Plurality) = (− 1)!
2

()
−1()

−−1

(−1)!(−−1)!

∙



+


− 

¸
 (4)

where the two terms between brackets represent the cases in which one vote respectively breaks and

makes a tie. Note that pivot probabilities are continuous in  and 

 The expected gains of action

 and  over abstention are thus:

 (|) =  (|)   +  (|)   ( 0) (5)

 (|) =  (|)   +  (|)   ( 0) (6)

and the payoff difference between the two is:

 (|)− (|) =  (|) [  −  ] +  (|) [ −   ] (7)

7.0.1 Proofs of Section 3

Proof of Proposition 1.. Consider e.g.  () =  and  () = 1 From (3) and (4), we have:




=

µ



¶2−  (− ) + 

 +  (− )
→
→0

0

Hence, from (7), we have that  (|)− (|)  0 for any  in the neighborhood of 0.

Proof of Proposition 2. We start with the unbiased case, i.e.  (|) =  ( |)  Under sincere

36



voting,  () = 1 =  (), (3) and (4) imply 

 =    =   Then, from (7):

 (|)− (|) = [  −  ] [ (|)−  (|)] 

Hence  (|) −  (|)  0   (|) −  (|), since  (|) −  (|)  0   (|) −
 (|)  Sincere voting is thus an equilibrium strategy. By the continuity of pivot probabilities with
respect to  and   it immediately follows that there must exist a value  ( )  0 such that

sincere voting is an equilibrium for any | (|)−  (|)|   ( ).

Proof of Proposition 3. Consider a distribution of signals such that  (|)− (|)   ( ),

in which case sincere voting is not an equilibrium. That is, there exists a signal ̄ ∈ { }
such that all the voters who received signal ̄ strictly prefer to deviate from a strategy profile

sincere ≡ { ()   ()} = {1 1} 
Case 1: ̄ = . In this case, 

sincere ⇒  (|)− (|)  0. Now, consider a second strategy
profile 0 ≡

n
[ (|) +  (|)]−1  1

o
. With this profile, we have:  =   and   =  and

thus  =   0 and  =   0 and, from (7):

 (|)− (|) = [  −  ] [ (|)−  (|)]  (8)

where (i) [  −  ] is positive, and (ii) [ (|)−  (|)] is positive for  and negative

for . In other words, all voters would strictly prefer to deviate from 0 by voting sincerely.
This means that the value of  (|) −  (|) changes sign when  () is increased from

[ (|) +  (|)]−1 to 1. Since all pivot probabilities are continuous in  , there must exist a

value ∗ () ∈
³
[ (|) +  (|)]−1  1

´
such that voters with signal  are indifferent between

playing  and . It is easy to check that, for this strategy, a voter who received signal  strictly

prefers to play  and hence that { ()   ()} =
©
∗ ()  1

ª
is an equilibrium.

Case 2: ̄ = . In this case, 
sincere ⇒  (|) −  (|)  0 for both signals. Now, consider

another strategy profile 00 ≡ { 1}, with  → 0 (and hence  () → 1). From Proposition 1,

this strategy profile implies  (|)− (|)  0 for both signals. By the continuity of the payoffs
with respect to  ()  there must therefore exist a value 

∗∗

() ∈ (0 1) such that  (|) −

 (|) = 0 and, by the same argument as above,  (|) −  (|)  0. Hence, the strategy

profile { ()   ()} =
©
∗∗ ()  1

ª
is an equilibrium.

Note that sincere stability is not a binding restriction, since all voters vote for their preferred

alternative with a probability strictly larger than 0.

Appendix A2: Approval Voting

Preliminaries

Under AV, voters have a larger choice set. Single approvals ( , ) have the same effect as in

plurality. Double or triple approvals instead allow voters to abstain selectively. The following lemma

identifies the set of dominated and undominated actions:
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Lemma 1 Independently of a voter’s signal, the actions  ∈ {∅} are weakly
dominated by some action in  ∈ {}. Hence, in equilibrium:

 () +  () +  () = 1 ∀ ∈ { }  (9)

Proof. Straightforward.

Pivotal Events, Probabilities, and Expected Gains

Let  denote the probability that a single- ballot is pivotal in favor of  against  in state

 ∈ { } when the voting rule is AV. There are two important differences with the probabilities
 in plurality. First,  can be strictly positive since double-voting can increase the score of

both  and  above that of . Second, we need to determine the value of the double ballot .

The pivotal event  is defined as follows:

   − 1 and  +  ∈ { − 1 } , or
 =  − 1 and  +  =  

Given the multinomial distribution, Pr (|) = !
Y

∈Ψ

()
()

()!
, the probability of event  in

state  is:

 ≡ Pr
¡
 |, AV

¢
= (− 1)!

1X
=0

2(−)−X
=0

()
−− ()

 ()
(−1)−(−)

2(−−)!  ! (−1−+)!

+
(− 1)!
3

[

 ]

−1− ()
2+1−

[(−1−)!]2 (2−+1)! +
(− 1)!
6

()
−1− ()

2−()
−

(−1−)! (−)! (2−)! 

The probability of event  in state , 

  can be computed similarly. The pivot probability

of  in state  is given by:

 ≡ Pr
¡
 |, AV

¢
= (− 1)!

1X
=0

+2(−1)−X
=

()
−()

+(−1)−2()


2!(−)!(+−1−2)!

+
(− 1)!
3

[

]

−1− ()
2+1−

[(−1−)!]2 (2−+1)! +
(− 1)!
6

()
−1− ()

2−()
−

(−1−)! (−)! (2−)! 

and  is defined in the same way. The expected value 
 of single- and single- ballots under

AV are thus:

 (|) =  (|) [ +  ( − )] +  (|) [ +  ( −  )] (10)

 (|) =  (|) [ +  ( −  )] +  (|) [ +  ( − )] (11)

The value of a double ballot follows almost immediately from (10) and (11):

 (|) =  (|) [ +  − ] +  (|) [ +  − ] (12)
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where  and  are correcting terms for three-way ties. These correcting terms are:28

 = [Pr ( =  =  − 1|) ( + ) + Pr ( =  + 1 =  |)  + 

+Pr ( + 1 =  =  |) +Pr ( =  =  |) ( + )]6 and

 = [Pr ( =  =  − 1|) ( + ) + Pr ( =  + 1 =  |) + 

+Pr ( + 1 =  =  |)  +Pr ( =  =  |) ( + )]6

To understand what these correcting terms represent, consider the case in which, without voter ’s

ballot, both alternatives  and  lose to  by one vote. A single- ballot creates a tie between

 and . Thus, the ballot is pivotal in favor of  with probability 12. Likewise, a single- ballot

is pivotal in favor of  with probability 1/2. Instead, a double-vote  creates a three-way tie,

the winning probabilities of  and  are 1/3 instead of 12. Summing up the probabilities 
and  overestimates the value of the double ballot by ( + ) 6.  and  correct for such

overestimations in that and three other cases: when  trails behind  and  by one vote, when

 trails behind  and  by one vote, and when   and  have the same number of votes. We

directly see that  = 0 when  ∈ {0 1} or  = 0, or  = 0 These correcting terms become
vanishingly small and can be omitted when the population size increases towards infinity.

It follows that the payoff differential between actions  and  is:

 (|)− (|) =  (|) [ ( − )−  + ] (13)

+ (|)
h
 ( −  )−  + 

i


The first term in (13) may either be positive or negative. The second is strictly negative. Similarly,

the first term in (14) is strictly negative:

 (|)− (|) =  (|) [ ( −  )−  + ] (14)

+ (|)
h
 ( − )−  + 

i


These payoffs differentials highlight the main trade-off faced by voters under AV: on the one

hand, they want to double-vote more if  is a threat. On the other hand, they want to double-vote

less if  is not a threat. In particular, if no other voter double-votes, a vote can never be pivotal

between  and :  =  =  = 0, and both payoff differentials must be negative. Hence:

Lemma 2 The strategies that are an equilibrium in plurality cannot be an equilibrium in AV.

Conversely, imagine that all the other voters double-vote. In that case:  =  =  = 0

and either (13) or (14) must be strictly positive. Hence:

Lemma 3 Pure double-voting is never an equilibrium in AV.

Next, we show that different voter types cannot mix over the same set of actions in equilibrium:

28Proof available upon request.
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Lemma 4 If there exists a signal  such that

 (|)− (|) = 0 then  (|)− (|)   (|)− (|) (15)

 (|)− (|) = 0 then  (|)− (|)   (|)− (|) , and
 (|)− (|) = 0 then  (|)− (|)   (|)− (|) 

Proof. We detail the proof for (15). It is similar for the other two implications. Remember that

the second term in (13) is necessarily negative. Thus  (|)− (|) = 0 implies that the
first term must be strictly positive. It follows immediately that:

 (|)− (|) ≥ 0 iff  (|)
 (|) ≥

 ( − ) +  − 

 ( − )−  + 


Thus, (15) follows from
(|)
(|) 

(|)
(|) .

Finally, neither  nor  can have  votes with probability 1:

Lemma 5 In any voting equilibrium under AV, neither  nor  can be approved by all voters.

Proof. We use a proof by contradiction, for the limit case  → 0. By definition the results hold

when   0. Policy  is approved by all voters iff  () +  () = 1 =  () +  () 

In this case, we have:  +  =  and hence  = 0 =  and  = 0. The only possible

pivot events are when  = − 1 or − 2. Hence:

 (|)− (|) =
£
 (|) −  (|)

¤
( − ) ≷ 0

 (|)− (|) =
£
 (|) −  (|)

¤
( − ) ≷ 0

with:  =
()

−1

2
, and  =

()
−2

2
[(− 1) + (2− )  ]  Therefore,




=

µ
 


¶−2
(− 1) + (2− )  
(− 1) + (2− ) 

 (16)




=

µ

 

¶−1
 (17)

Now, we show that




is increasing in




(from (17)  it is straightforward that




is also

increasing in




). Taking logs, we have that the RHS of (16) is:

(− 2) £log   − log ¤+ log £(− 1) + (2− )  
¤− log [(− 1) + (2− )  ] 

Differentiating with respect to   yields:
−2



− −2
(−1)+(2−)



 which is non-negative iff   ≤ 1.
Therefore, we have    and    when    , and conversely.

We now use this result to prove that  cannot be approved by all voters. From Theorem 1,

Lemma 3, and Lemma 4, there are 2 cases to check: (i)  () = 1 and  () ∈ [0 1) and (ii)
 () = 0 and  () ∈ (0 1]. If  () = 1 and  () ∈ [0 1), then     Hence,
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we have that    which implies  (|) −  (|)  0 Thus, there cannot be any

equilibrium in which  () = 1 and  () ∈ [0 1) If  () ∈ (0 1] and  () = 0, then either
    or 


     If 


    then    and thus  (|)− (|)  0

If      then    and thus  (|) − (|)  0 Therefore, there cannot be

any equilibrium in which  () = 0 and  () ∈ (0 1]

Proofs of Section 4

Proof of Theorem 1. From McLennan (1998), a strategy that maximizes expected utility

must be an equilibrium of such a common value game (and any finite Bayesian game like ours

must have an equilibrium). Now, conjecture some strategy profile  that can be played under

plurality. That is,  () = 0 for  =   . By Lemma 2, 
 (|) −  (|)  0 and

 (|) −  (|)  0 ∀ which implies that  = 0 cannot be part of an equilibrium,

and that the welfare-maximizing equilibrium under AV must produce strictly higher expected utility

than plurality.

It remains to show that this equilibrium is sincerely stable. We actually show the stronger

statement that, to maximize expected welfare, a strategy must satisfy  ()   ()  0. We

show this by contradiction: suppose that ̂ maximizes expected welfare and is such that ̂ () = 0.

By Lemma 5, we have  

 


  0 and hence ̂ ()  0. Then, compare ̂ with some other

strategy 0 in which -voters transfer some of their votes from  towards  whereas -voters

adapt their voting strategy so as to maintain all vote shares unchanged in state .29

The total vote share of in state must then increase (i.e.  (
0)+ (

0)   (̂)+

 (̂)),

together with the expected fraction of double-votes. As a result, in state , the probability that 

wins must increase, whereas the probability that  wins decreases weakly. In state , winning

probabilities are unchanged. Hence, ̂ cannot maximize expected welfare.

Proof of Theorem 2. We prove the Theorem in two steps. First, we show that there is no interior

equilibrium in which a voter strictly mixes across the three actions   and . Second, we show

that -voters never play , nor -voters play  in an interior equilibrium It follows that the only

possible interior equilibrium is such that voters with signal  mix between  and , and voters

with signal  mix between  and .

First, conjecture an equilibrium in which  ()   ()   ()  0 This requires

 (|) =  (|) =  (|). In this case, by Lemma 4 -voters must be playing  with

probability 1 i.e.  () = 1 The equilibrium is therefore not interior, a contradiction. Similarly,

-voters must play  with probability 1 if -voters strictly mix between   and .

Second, imagine that -voters playwith strictly positive probability in equilibrium:  () ∈
(0 1). This requires either (i)  (|) =  (|) ≥  (|) or (ii)  (|) =  (|) ≥
 (|)  By Lemma 4 both (i) and (ii) imply that  (|)   (|)   (|)  and hence
that ’s strategy cannot be interior. By symmetry,  () ∈ (0 1) cannot be part of an interior
equilibrium either.

29 If ̂ () = 1, then one must consider a transfer of -votes from  towards , and -voters

adapt their strategy to maintain all  unchanged.
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