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Abstract

The classical Heckman (1976, 1979) selection correction estimator (heckit) is mis-

specified and inconsistent if an interaction of the outcome variable with an ex-

planatory variable matters for selection. To address this specification problem, a

full information maximum likelihood estimator and a simple two-step estimator are

developed. Monte-Carlo simulations illustrate that the bias of the ordinary heckit

estimator is removed by these generalized estimation procedures. Along with OLS

and ordinary heckit, we apply these estimators to data from a randomized trial that

evaluates the effectiveness of financial incentives for reducing obesity. Estimation

results indicate that the choice of the estimation procedure clearly matters.
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1 Introduction

The Heckman (1976, 1979) selection correction (heckit) estimator is a workhorse of ap-

plied econometrics, commonly used for removing possible bias due to selection on unob-

servables.1 In many applications, selection into the subsample of observations with an

observed outcome is directly affected by the value of the outcome variable itself. Think,

for instance, of estimating a wage equation. Here, wages are only observed for individuals

who have accepted a wage offer. Yet, the likelihood of accepting the offer increases with

the offered wage. The regular specification of the heckit estimator implicitly accounts for

a possible impact of the outcome on selection, given that all exogenous variables enter

the selection part of the model.2

However, unlike the above case, the regular heckit estimator is misspecified and biased

if the offered pay is of differential relevance depending on individual characteristics such

as gender. That is, heterogeneous effects of the outcome variable on selection are not

accommodated by the regular heckit approach. In order to allow for heterogeneity with

respect to a certain individual characteristic, any selection correction estimator must

take the interaction of the outcome variable with the relevant covariate into account.

The present paper develops generalizations of the regular heckit estimator that overcome

the inconsistency of the ordinary heckit model in the presence of heterogeneous effects of

the outcome on selection. In particular, we suggest a full information maximum likelihood

(FIML) estimator and a computationally very simple two-step approach.

We test the performance of the suggested estimators using Monte Carlo simulations.

We also apply the estimators to data gathered from a randomized field experiment, which

was conducted to examine the effectiveness of financial incentives to induce weight loss in

obese individuals. This experiment represents an exemplary application of the proposed

1The model’s popularity notwithstanding, it has been criticized for being very vulnerable to various
kinds of misspecification (e.g. Puhani, 2000; Grasdal, 2001), and less restrictive semi-parametric alter-
natives have been proposed (e.g. Ichimura and Lee, 1991; Ahn and Powell, 1993); see Vella (1998) for a
survey.

2The commonly used tobit (type 1) (Tobin, 1958) model represents an extreme case with selection
exclusively depending on the outcome.
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generalized selection-correction estimators because the design of the monetary rewards

makes favorable outcomes more likely to be reported than unfavorable ones. Thus, a link

between the outcome variable and the probability of observing the outcome is first of all

expected for those participants who were offered a reward for weight loss, but not for

members of the control group who were not exposed to financial incentives.

The remainder of the paper is organized as follows. Section 2 develops the generalized

heckit estimators. Section 3 compares the performance of the different estimators using

a Monte Carlo experiment. Section 4 provides a real data application and Section 5

concludes.

2 A Generalized Heckit Model

Consider a familiar linear regression model, where the focus of the econometric analysis

is on estimating the coefficient vector β:

Yi = β′
Xi + εi. (1)

Here i indexes observations, and Yi, εi, and Xi denote the outcome variable, a random

error, and the vector of exogenous explanatory variables, respectively. The latter includes

the variable Di, which is of special relevance to the analysis.

However, Yi is observed only for a subsample of observation. In the present application,

selection into this subsample, indicated by Si = 1, is modeled as suggested by Heckman

(1979). Yet, besides a K-dimensional vector Zi that includes Xi and some further exoge-

nous variables, Yi as well as the interaction term YiDi are allowed to enter the selection

equation:

Si =











1 if θ′Zi + τYi + γYiDi + υi > 0

0 else.
(2)

As in the ordinary heckit model, joint normality N(0, 0, σ2
ε , σ2

υ , σευ) is assumed for the
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error terms εi and υi. θ1, . . . , θK, τ, and γ denote unknown coefficients. Substituting Yi

by (1) and rearranging terms leads to

Si =











1 if υ̃i > −α′Zi − γβ′XiDi

0 else
(3)

υ̃i = υi + (τ + γDi) εi, (4)

where αk = θk + τβk holds for any regressor k included in Xi and αk = θk holds for those

variables that enter Zi but do not enter Xi. Evidently, the coefficient τ has no impact on

the general structure of the model.3 Hence, for the special case γ = 0, (1), (3), and (4)

represent the standard Heckman (1979) selection model.

For γ 6= 0, however, the model deviates from the standard case for two reasons: (i) a

full set of interaction terms XiDi enters the selection equation and (ii), more important,

Di enters the error υ̃i, rendering the the error variance-covariance structure heterogeneous

with respect to Di:

var(υ̃i|Di) = σ2
υ + 2 (τ + γDi) σευ + (τ + γDi)

2 σ2
ε (5)

cov(εi, υ̃i|Di) = σευ + (τ + γDi) σ2
ε . (6)

Ignored heteroscedasticity in the probit and, hence, in the selection part of the heckit

model, is well known to render probit estimation inconsistent (Wooldridge, 2002; Harvey,

1976). Thus, a generalized estimator is required.

2.1 FIML Estimation

In oder to develop a FIML estimator that accounts for the model structure, with no loss

of generality, we introduce the normalization

σ2
υ + 2τσευ + τ2σ2

ε = 1. (7)

3Effectively, τ only changes the unknown error variance-covariance structure, which is subject to
estimation. Hence, τ is not identified.
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That is, we assume standard normality for υ̃i conditional on Di = 0. This is equivalent

to the familiar normalization required for identifying the coefficients of any probit model.

We re-parameterize as follows:

ρ ≡ cor(εi, υ̃i|Di = 0) =
σευ

σε
+ τσε. (8)

Then the individual log-likelihood li reads as

li =



































log Φ

(

−α′Zi−γβ′XiDi√
1+2ρσεγDi+σ2

ε γ2D2
i

)

if Si = 0

log Φ

(

α′Zi+γβ′XiDi+(Yi−β′Xi)(
ρ
σε
+γDi)√

1−ρ2

)

− 1
2

(

Yi−β′Xi

σε

)2
− log

(

σε

√
2π

)

if Si = 1.

(9)

See Appendix A.1 for how (9) is derived from the log-likelihood function of the ordinary

heckit model. Besides the coefficient vectors α and β, the scalar parameters γ, σε, and ρ

are subject to estimation.4 Note that Di may either be continuous, a count, or binary.

The model is straightforwardly transferred to the case where the effect of Yi on selection

differs across M + 1 mutually exclusive groups, indexed by m = 0, . . . , M. For group

membership being indicated by a set of binary indicators D0i, . . . , DMi, the log-likelihood

conditional on Dmi = 1 is identical to (9), besides Di is substituted by the value one and

γ is replaced by γm.
5 Here, γ0 has to be restricted to zero in order to render the model

identified.

2.2 Two-Step Estimation

The model (9) is, however, difficult to fit and may cause problems in the optimization

procedure. Yet, for a binary variable Di and, more general, group-wise heterogeneity,

a computationally very simple two-step estimator is available. Here, the heterogeneity

in the selection mechanism is accounted for by estimating group-wise probit models at

4Technically, atanh(ρ) and log(σε) are estimated in the optimization procedure in order to avoid a
bounded valid parameter space.

5Typically, all dummies Dmi, except for D0i indicating the reference category, enter Xi and Zi.
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the first stage. For each group m, a specific coefficient vector αm is estimated, where

the coefficients attached to D1i, . . . , DMi need to be restricted to the value of zero. At

the second stage a vector of group-specific inverse Mills-ratios λ(·) enter as additional

regressors

Yi = β′
Xi +

M

∑
m=0

δmλ(α̂′mZi)Dmi + ε̃i if Si = 1. (10)

The attached coefficients δm, subject to estimation, capture σε cor(εi, υ̃i|Dmi = 1). Two-

step estimation, however, comes at the cost of efficiency loss. As in the case of the

two-step estimator for the ordinary heckit model, The present model is less efficient than

FIML. Moreover, it ignores many parameter restrictions that stem from the structural

model, inflating the number of parameters subject to estimation by M(K − 1)− M2.

The model in (10) may also suffer from near-collinearity of correction terms and group

indicators. On the other hand, two-step estimating involves less assumptions about the

selection mechanism than FIML and, hence, also accommodates types of heterogeneity

in selection that render (9) misspecified.

3 Monte Carlo Analysis

In order to illustrate the performance of the FIML and the two-step estimators and

to compare them with those of ordinary heckit and simple OLS estimation, we run a

Monte-Carlo (MC) experiment, where the endogenous variables Yi and Si are generated

according to (1) and (2). The exogenous variables, i.e. the vector Zi, are drawn once

and then kept fixed. We draw the binary indicator Di from the B(1, 0.5) distribution

and two continuous control variables from the uniform U(−1, 1) distribution. One of the

latter is excluded from the vector Xi, while Di enters (2) not only through Zi but also

interacted with Yi. For all coefficients βk and θk, we choose the value of one, except for

the constant terms, which both are set to zero. With respect to the variance-covariance

matrix of the normal errors, we choose σ2
ε = 2, σ2

υ = 1, and σευ = 0.75. We run six

different simulations, varying the experimental setup with respect to: (i) γ, for which we

use the values −1, 0, and 1; and (ii) τ, for which we use the two values consistent with
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Table 1: Monte-Carlo Simulation Results
FIML Two-Step Ordinary Heckit OLS

Bias MSE Bias MSE Bias MSE Bias MSE

simulation (i): γ = −1; τ = −0.75

D 0.001 0.002 0.005 0.024 −0.496 0.248 −0.756 0.573
control 0.000 0.001 0.001 0.001 −0.035 0.002 0.927 0.861
constant −0.001 0.003 −0.001 0.004 0.272 0.077 −0.506 0.257

simulation (ii): γ = −1; τ = 0

D 0.001 0.004 0.001 0.009 −1.223 1.496 −1.225 1.501
control 0.000 0.001 0.000 0.001 −0.197 0.040 0.841 0.709
constant 0.000 0.002 0.001 0.004 0.612 0.379 0.494 0.244

simulation (iii): γ = 0; τ = −0.75

D −0.002 0.002 0.000 0.008 −0.003 0.001 0.082 0.008
control 0.001 0.001 0.001 0.001 0.001 0.001 1.082 1.172
constant 0.002 0.002 0.000 0.004 0.002 0.002 −0.512 0.263

simulation (iv): γ = 0; τ = 0

D 0.000 0.002 0.002 0.004 0.001 0.002 −0.268 0.073
control 0.002 0.001 0.002 0.002 0.002 0.001 0.737 0.545
constant 0.000 0.002 −0.001 0.004 0.000 0.002 0.515 0.266

simulation (v): γ = 1; τ = −0.75

D −0.001 0.003 −0.002 0.006 0.724 0.526 0.811 0.659
control 0.000 0.001 0.000 0.001 −0.209 0.045 0.842 0.709
constant 0.001 0.002 0.002 0.004 −0.336 0.117 −0.501 0.251

simulation (vi): γ = 1; τ = 0

D −0.001 0.002 −0.002 0.004 0.238 0.058 −0.099 0.011
control −0.002 0.001 −0.001 0.002 −0.058 0.005 0.600 0.361
constant 0.002 0.002 0.001 0.004 −0.102 0.013 0.544 0.297

Notes: results based on 2 000 replications; sample size N = 10 000; exogenous variables drawn once and then kept fixed;
true coefficient values: βD = 1, βcontrol = 1, and βconst = 0.

(7), i.e., −0.75 and 0. The sample size is 10 000 and the size of the simulations is 2 000

repetitions. Our focus is on the estimators’ performance in estimating the coefficients β.

Hence, for each estimator, we report estimates for bias(β̂) and MSE(β̂).

As predicted by theory, MC-results display no significant (warranted by simulation

based tests on joint unbiasedness of β̂) bias for the FIML and the Two-Step estimator,

while OLS is biased in any simulation; see Table 1. Furthermore, the ordinary heckit

estimator does not exhibit a significant bias for γ = 0, while it is severely biased for

γ 6= 0. Focussing on the coefficient attached to Di, depending on the sign of γ, an

upward or an downward bias may occur. Interestingly, for γ 6= 0, the ordinary heckit

does not perform much better than OLS in terms of the estimated bias. In simulation (vi),

it even performs worse. This means that correcting parametrically for selection bias but

misspecifying the selection mechanism may not be an improvement compared to simply

ignoring selectivity. As expected, in terms of the estimated MSE, Two-Step estimation
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performs worse than FIML.6 Even for γ = 0 (simulations iii and iv), FIML exhibits an

MSE that just marginally exceeds the MSE of the ordinary heckit model.

4 Real Data Application

We further apply the estimators to data from a randomized trial; see Augurzky et al.

(2012) for a detailed description and a comprehensive empirical analysis. This experiment

aims at analyzing the effectiveness of financial incentives for assisting obese individuals in

losing body weight. By the end of a rehab hospital stay, 698 overweight individuals were

given an individual weight-loss target of 6 to 8 percent of current body weight, which

they were prompted to realize within four months. Participants were then randomly

assigned to two incentive groups and one control group. Contingent on success, a reward

of up to ¤150 (group 150) and ¤300 (group 300), respectively, was offered to members

of the treatment groups. The control group received no financial incentive. Rewards

were offered as a function of the degree of target achievement, i.e., participants who lost

some weight but failed to realize the weight-loss target received less than the maximum

reward. After four months, participants were requested to visit an assigned pharmacy

for verifying actual weight loss, but a substantial number of participants failed to show

up at the weigh-in. More precisely, 178 individuals selected themselves out of the trial,

while 520 complied and attended the weigh-in. The compliance rate varied substantially

between groups: it was 66.5 percent for the control group, 72.9 percent for group 150,

and 84.3 for group 300. This nicely meets our prior expectation that the probability of

reporting weight is affected by the interaction of actual weight loss and group membership,

as only those who were both successful and members of one of the treatment groups had

a financial incentive to attend the weigh-in.

In the present empirical analysis, the degree of target achievement, i.e., actual weight-

6For simulations based on a small sample (N = 400), this shortcoming of two-step estimation becomes
even more prominent. There, in terms of the MSE, two-step estimation may even be outperformed by
the biased ordinary heckit estimator.
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loss divided by targeted weight loss, serves as the dependent variable.7 Indicators for

group membership are the key explanatory variables, with the control group serving as

the reference. In addition, age and indicators for being female and being born in Germany

enter the regression equation as controls. A further dummy indicating that a participant

had to visit a nearby pharmacy, i.e., one within the same zip-code area as the place of

residence, exclusively enters the selection equation. This exclusion restriction is justified

by travel time representing a likely determinant for the decision of whether to show up

at the weigh-in, but having no obvious link to success.

Table 2 displays regression results for FIML, two-step, ordinary heckit, and OLS. Test

results do not clearly argue for selection on unobservables since the estimate for ρ does

not significantly deviate from zero, neither for ordinary heckit nor for FIML estimation.

This equivalently holds for the two-step approach, where the group-specific Mill’s ratios

are jointly insignificant. Yet, conditional on selection correction, both FIML and two-

step are clearly favored over ordinary heckit by Wald-test of the respective restrictions

(p-values 0.03 and 0.01).

Focussing on the estimated treatment effects, the choice of estimation method clearly

matters. OLS and ordinary heckit both suggest that receiving a financial incentive in-

creases the success rate by roughly 40 to 50 percentage points. Yet, the amount of the

financial reward seems to be immaterial. FIML and two-step estimation of the gener-

alized model, however, yield a different picture. For the latter, no significant incentive

effect is found. Here, the inefficiency of two-step estimation is underpinned by rather

large standard errors. For FMIL, the estimated treatment effect for group 300 is similar

to its counterpart from OLS and ordinary heckit estimation. Yet, the estimated effect for

group 150 is substantially smaller and even becomes statistically insignificant. Hence, on

basis of FIML, one concludes that the amount of the reward matters for weight loss. The

estimates for γ¤150 and γ¤300 have the expected positive sign. However – contrary to

expectations – the latter is much smaller. Moreover, a large standard error renders the

7Since participants may gain weight or exceed the weigh-reduction target, the dependent variable has
support over the entire real line.
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Table 2: Results for Weight-Loss Experiment

FIML Two-Step Ordinary Heckit OLS

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Main equation:
¤150 0.215 0.143 0.238 0.373 0.429∗∗ 0.091 0.408∗∗ 0.088
¤300 0.470∗∗ 0.154 0.272 0.392 0.506∗∗ 0.104 0.452∗∗ 0.086
age −0.001 0.004 −0.001 0.006 −0.003 0.004 −0.005 0.004
female −0.160∗∗ 0.079 −0.147∗ 0.085 −0.172∗∗ 0.077 −0.178∗∗ 0.076
native 0.020 0.088 0.020 0.091 0.013 0.087 0.008 0.087
δcontrol - - 0.059 0.687 - - - -

δ¤150 - - 0.470 0.425 - - - -

δ¤300 - - 0.762 0.903 - - - -

constant 0.340 0.255 0.409 0.577 0.445 0.302 0.655∗∗ 0.201

Selection equation:
¤150 −0.077 0.206 - - 0.200 0.124 - -

¤300 0.521∗ 0.277 - - 0.595∗∗ 0.133 - -

age 0.020∗∗ 0.005 - - 0.019∗∗ 0.005 - -

female 0.115 0.128 - - 0.076 0.116 - -

native 0.039 0.143 - - 0.057 0.129 - -

nearby pharmacy 0.332∗∗ 0.122 - - 0.309∗∗ 0.108 - -

constant −0.817∗∗ 0.326 - - −0.741∗∗ 0.278 - -

Selection equation control group:
age - - 0.016∗∗ 0.008 - - - -

female - - −0.042 0.198 - - - -

native - - 0.075 0.216 - - - -

nearby pharmacy - - 0.300∗ 0.179 - - - -

constant - - −0.569 0.489 - - - -

Selection equation ¤150 group:
age - - 0.024∗∗ 0.008 - - - -

female - - 0.023 0.195 - - - -

native - - −0.018 0.208 - - - -

nearby pharmacy - - 0.537∗∗ 0.183 - - - -

constant - - −0.836∗∗ 0.424 - - - -

Selection equation ¤300 group:
age - - 0.019∗∗ 0.009 - - - -

female - - 0.308 0.231 - - - -

native - - 0.175 0.274 - - - -

nearby pharmacy - - −0.056 0.215 - - - -

constant - - −0.077 0.522 - - - -

γ¤150 1.206∗∗ 0.484 - - - - - -

γ¤300 0.142 0.495 - - - - - -

σε 0.836∗∗ 0.034 - - 0.802∗∗ 0.036 0.795

ρ 0.199 0.252 - - 0.260 0.271 -

Notes:
∗∗ significant at 5%; ∗ significant at 10%; total number of obs. is 698; for 178 obs. weight-loss information is

missing.

estimate for γ¤300 statistically insignificant. This may be explained by the small number

of dropouts in group 300, which makes the identification of γ¤300 difficult.

5 Conclusions

In this article we demonstrate that the classical Heckman (1976, 1979) selection correction

estimator is misspecified and inconsistent when an interaction of the outcome with an

explanatory variable matters for selection. Randomized trials assessing the effects of an
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incentive scheme may serve as a typical example for this kind of sample selection problem.

A FIML and a simple two-step estimator that both address this specification problem

are developed. Monte-Carlo simulations illustrate that the bias of the ordinary Heckman

(1976, 1979) estimator is removed by these generalized estimation procedures. Finally,

the suggested estimators are applied to data from a randomized trial that evaluates the

effectiveness of financial incentives for assisting obese in their attempt to lose weight.

Estimation results indicate that the choice of the estimation procedure clearly matters.
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A Appendix

A.1 Generalizing the Log-Likelihood Function

In order to generalize the log-likelihood function of the ordinary heckit model (see e.g.

Amemiya, 1985, p. 386), we augment the index function α′Zi by γβ′XiDi and replace

the scalar parameters σ2
υ and σευ by the functions (5) and (6), respectively:

li =























































log Φ

(

−α′Zi−γβ′XiDi√
var(υ̃i|Di)

)

if Si = 0

log Φ









α′Zi+γβ′XiDi+(Yi−β′Xi)

(

cov(εi ,υ̃|Di)

σ2
ε

)

√

var(υ̃i|Di)

(

1− cov(εi ,υ̃i |Di)
2

σ2
ε var(υ̃i |Di)

)









− 1
2

(

Yi−β′Xi

σε

)2
− log

(

σε

√
2π

)

if Si = 1.

(11)

Then we apply the normalization (7) to (5), and eliminate τ and σευ by entering (8)

into the equation, yielding

var(υ̃i|Di) = 1 + 2γ(σευ + τσ2
ε )Di + σ2

ε γ2
D

2
i

(12)

= 1 + 2ρσεγDi + σ2
ε γ2

D
2
i
,

which is nonnegative, by ρ being bounded to the [−1, 1] interval. Further, using (6) and,

once more, eliminating τ and σευ by entering (8) into the equation yields

cov(εi, υ̃i|Di)

σ2
ε

=
σευ + (τ + γDi) σ2

ε

σ2
ε

=
ρ

σε
+ γDi. (13)

Finally, using (13) and (12) we simplify

var(υ̃i|Di)

(

1 − cov(εi, υ̃i|Di)
2

σ2
ε var(υ̃i|Di)

)

= var(υ̃i|Di)− σ2
ε

(

ρ

σε
+ γDi

)2

(14)

= var(υ̃i|Di)− ρ2 − 2ρσεγDi − σ2
ε γ2

D
2
i

= 1 − ρ2,

i



and substitute (12), (13), and (14) into (11), yielding (9).

ii


