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Abstract

In this article we focus on a representative firm that can decide
when to invest under default risk. On the one hand, this firm can
benefit from generous tax depreciation allowances, on the other hand it
faces a default risk. Our aim is to study the effects of tax depreciation
allowances in a risky environment. As will be shown in our numerical
analysis, generous tax depreciation allowances lead to a decrease in a
firm’s leverage and, in most cases, cause a reduction in default risk.
This result has a strong policy implication, in that it shows that an
investment stimulus pack is expected neither to increase the default
risk nor to cause financial instability.
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1 Introduction

The last decade has been characterized by the well-known Great Recession
which caused a substantial increase in financial instability.1 In 2008, the G20
committed to a broad range of policy reforms that addressed the major fault
lines that caused the crisis. At the same time, many Governments intro-
duced fiscal stimulus packs aimed mainly at stimulating investment during
the recession.

Over the last two decades, a part of the relevant literature has been study-
ing the effects of taxation on firms’ choices, thereby analyzing the interactions
between financial and start-up decisions in a dynamic context (with or with-
out complete information).2 Other articles have focused on the neutrality
properties of taxation in a real-option setting,3 as well as the non-linear tax
effects on investment (e.g., Gries et al., 2012). Despite the growing interest
in these topics, only Mauer and Ott (1995) have analyzed the effects of tax
depreciation allowances on investment decisions. However, they only focused
on an equity-financed investment, thereby disregarding default risk.4

In this article we aim to study the effects of tax depreciations allowances
on both real and financial decisions. In particular, we will focus on a rep-
resentative firm that can decide when to invest and how much to borrow,
under default risk. This joint analysis allows us to understand the effects
of accelerated depreciation allowances in a risky environment. Given the
capital structure of a firm, it is straightforward to show that accelerated de-
preciation stimulates investment. This means that, due to the tax benefit, a
firm decides to invest with a lower initial EBIT. Coeteris paribus however,

1As stressed by Bhamra et al. (2010), there is a link between firms’ capital structure
and systemic risk. In particular, they find that leverage accounts for most of the macro-
economic risk relevant for predicting defaults. Another interesting article is Keen et al.
(2010), which studies the relationship between taxation and the financial crisis. In par-
ticular, the authors stress the fact that tax distortions did not cause the financial crisis.
However, they led to higher leverage and more complexity, with some negative drawbacks.

2See, for example, Mauer and Ott (2000), Miao (2005), Lambrecht (2001), Lambrecht
and Perraudin (2003), Mauer and Sarkar (2005), Moretto and Panteghini (2007) and
Panteghini (2007a,b).

3See, for example, Niemann (1999) and Niemann and Sureth (2005).
4Danielova and Sarkar (2012) study the effects of investment incentives and tax incen-

tives. They show that when debt financing is possible, it is generally optimal to use a
combination of tax reduction and investment subsidy.However, they do not investigate tax
effects on the default risk and, therefore, disregard systemic risk.
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a lower EBIT implies a higher probability of default. If this is true, accel-
erated depreciation may cause an increase in bankruptcies and thus lead to
higher systemic risk. Our model shows that, using realistic parameter values,
accelerated depreciation delays the event of default. This result has an inter-
esting policy implication: generous tax depreciation allowances are expected
to stimulate investment without increasing systemic risk.

The structure of this article is as follows. In Section 2, we develop a
continuous-time model describing a representative firm that can decide both
investment timing and the leverage ratio. Since the relationship between
investment and financial choices is non-linear, we cannot find a closed-form
solution. For this reason, Section 3 provides a numerical analysis. Section 4
summarizes our findings and discusses their policy implications.

2 The model

In this section we introduce an EBIT-based model in the spirit of Goldstein
et al. (2001).

Let us assume that a company starts to earn an EBIT, denoted by Πt,
once a depreciable investment cost I has been paid. Moreover, we introduce
the following:

Assumption 1 A firm’s EBIT evolves according to a geometric Brownian

motion, where σ is the instantaneous standard deviation and dzt is the in-

crement of a standard Wiener process. Moreover, at any time t there is a

probability λdt that the existing project dies during the short internal dt.

Given Assumption 1, a firm’s EBIT evolves as follows:

dΠt
Πt

= αdt+ σdzt − dqt, with Π0 > 0, (1)

where dqt is the increment of a Poisson process with arrival rate λ. Under
eq. (1), therefore, the expected lifetime of an investment project is finite,
although uncertain. As shown by Dixit and Pindyck (1994, p. 270), the
expected time until the Poisson jump occurs is E (T ) = 1/λ. For simplicity,
below we will omit the time variable.
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Capital markets and debt Let us assume that risk is fully diversifiable,
credit markets are perfectly competitive and information is symmetric.

Debt causes both costs and benefits. On the one hand, debt finance
may lead to default. On the other, the tax deductibility of interest payments
ensures levered companies a saving (Modigliani and Miller, 1963; Leland,
1994).

When a company does not meet its debt obligation, default takes place.
In this case, shareholders are expropriated by the lender. Denoting C as the
coupon paid to the lender, we introduce the following:

Assumption 2 At time 0, the company issues a consol bond and pays a

coupon C, which is not renegotiable.

According to Assumption 2 a company sets a coupon. Given C it is
straightforward to find the mark-to-market value of debt. For simplicity, we
also assume that debt cannot be renegotiated: this means that we apply a
static model, where a company’s financial policy cannot be reviewed later.5

Assumption 3 If Π drops to a threshold value, default occurs.

Assumption 4 The cost of default is υC with υ > 0.

Assumptions 3 and 4 introduce the risk and the cost of default, respec-
tively. Given (1), it is assumed that, if a company’s EBIT falls to a given
threshold value, the company cannot meet its obligation and is fully expro-
priated by the lender (Assumption 3). In the event of default, the lender
faces a sunk cost, which is proportional to the coupon paid (Assumption 4).6

Taxation Let us next focus on the tax system. Given the corporate tax
rate τ , we introduce the following:

Assumption 5 Interest payments are fully deductible.

Assumption 6 A straight-line tax depreciation allowance, equal to λF times

the investment cost I, is granted throughout the investment’s lifetime.

5We leave debt renegotiation for further research.
6The quality of results does not change if, according to Leland (1994), we assume that

the default sunk cost is proportional to a firm’s value. In both cases, the value of a
distressed firm is proportional to the coupon C.
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Assumption 7 Before default, the lender’s tax rate is nil. After default, the

lender becomes shareholder and the relevant tax rate is τ .

Assumption 8 The tax system is fully symmetric.

Assumption 5 introduces the tax benefit of interest deductibility.7 As-
sumption 6 describes a simple straight-line fiscal depreciation allowance which
is granted throughout the investment’s lifetime. When the project dies, this
deduction vanishes. To analyze the expected present value of such deprecia-
tion allowance we must consider that the expected lifetime of an investment
project is E (T ) = 1/λ. We can therefore say that, at any time t, a company
can deduct λF I, thereby enjoying a benefit equal to τλF I. If the equality
λF = λ holds, depreciation allowances are such that all the investment costs
are expected to be amortized during a firm’s lifetime. If λF > λ, fiscal depre-
ciation allowance is more generous than economic depreciation (in this case
more than 100% of I is amortized). The converse is true if λF < λ.

Assumption 7 accounts for the fact that, in most cases, the tax burden
on capital income is relatively low or even close to zero. In this model, the
lender’s tax rate is equal to zero for simplicity. Note however that, after
default, the lender becomes shareholder and is thus subject to corporate
taxation. For simplicity, according to Assumption 8, the treatment of profit
and loss is symmetric.8

Given these assumptions we can write a company’s after-tax payoff as:

ΠN (Π;C) = (1− τ ) (Π− C) + τλF I. (2)

Let us next calculate the value of equity and debt, respectively. Using
dynamic programming, we can write the value of equity as the sum between
the after-tax payoff received in the interval dt, i.e., ΠN (Π;C) dt, and the

7For simplicity, we do not account for rules aimed at limiting the deductibility of interest
payments. Again, this topic is left for further research.

8Notice that Assumption 8 encourages the investment by loss-making firms. In princi-
ple, this tax system would undermine the quality of businesses and increase the probability
of default. From our point of view, Assumption 8 describes the most unfavorable scenario,
with higher financial instability.

5



value function after the time interval dt has passed:9

E (Π;C) =





0 after default,

ΠN (Π;C) dt+ (1− λdt) e−rdtE [E (Π + dΠ;C)] before default,
(3)

where E [·] is the expectation operator. As shown in (3), at any period dt,
there is a probability λdt that the project dies and that the value of equity
goes to zero. Following the same procedure, we can calculate the mark-to-
market value of debt:

D (Π;C) =





ΠN (Π; 0) dt+ (1− λdt) e−rdtE [D (Π + dΠ;C)] after default,

Cdt+ (1− λdt) e−rdtE [D (Π + dΠ;C)] before default.
(4)

As can be seen, the value of debt is contingent on the event of sudden death
of capital. Since there is a probability λdt that a company’s profit goes to
zero, in this case, the lender’s claim becomes worthless. This means that,
given Assumption 1, debt financing is in line with the expected lifetime of
investment.10 Note that, by assuming this fact, we depart from most of
the existing theoretical literature, which usually assumes that investment is
financed only with default-free short-term debt, irrespective of a project’s
expected lifetime and riskiness (e.g., Devereux and Griffith, 1999).

3 Debt finance

In this section we introduce two different kinds of debt: secured and unse-
cured.11 Using an EBIT-based model, we can say that:

Definition 1 Under secured debt finance, default occurs when Π falls to an

exogenously given threshold point �Πs.
9For further details on mathematical steps see Dixit and Pindyck (1994) and Panteghini

(2006, 2007a).
10Graham and Harvey (2001) show that more than 63% of the US firms surveyed state

that debt maturity is aimed at matching with assets’ lifetime. Therefore, our assumption
is realistic.

11For further details on debt covenants see Brennan and Schwartz (1977), Smith and
Warner (1979) and Leland (1994).
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Definition 2 Under unsecured debt finance, the threshold point, denoted as
�Πu, is chosen optimally by shareholders.

According to Definition 1, default may be triggered when a company’s
EBIT falls to the exogenously given threshold point �Πs. This definition refers
to secured debt, where default takes place when a company’s asset value falls
to the debt’s value.12

Under Definition 2, when a company’s net cash flow is negative, share-
holders can decide whether to inject further equity capital in order to meet
their company’s debt obligations or to default. As long as they issue new
capital and pay the coupon, they can exploit a future recovery in profitabil-
ity. Under unsecured debt finance, therefore, shareholders behave as if they
owned a put option, the exercise of which leads to default.

Let us next calculate the value of equity. Using (3), applying Itô’s Lemma
and rearranging gives the following non-arbitrage condition:

(r + λ)Ej (Π;C) = ΠN (Π;C)+αΠEΠ (Π;C)+
σ2

2
Π2EΠΠ (Π;C) for Π > �Πj ,

(5)

where EΠ (Π;C) ≡
∂E(Π;C)
∂Π

and EΠΠ (Π;C) ≡
∂E2(Π;C)
∂Π2

. As can be seen, in
equation (5) the relevant discount rate is r + λ instead of r. As explained
by Dixit and Pindyck (1994, p. 200), to deal with a stochastic decay of
capital "we can regard the project as infinite-live, but augment the rate at
which future profits are discounted by adding the Poisson death parameter".
Solving (5) we obtain (see Appendix A):

Ej (Π;C) =




0 Π < �Πj,
Ψ(Π;C)−Ψ

�
�Πj;C

��
Π
�Πj

�β2(λ)
Π > �Πj,

(6)

with j = s, u and Ψ(Π;C) ≡ (1− τ )
�
Π
δ+λ

− C
r+λ

�
+ τΩI, where Ω ≡ λF

r+λ

is the present value of fiscal depreciation allowances and β2 (λ) =
1
2
− α

σ2
−	�

α
σ2
− 1

2

�2
+ 2(r+λ)

σ2
< 0. The term Ψ(Π;C) accounts for a scenario where

no change occurs, apart from the future death of the project. As can be
seen, the relevant discount rate for Π is δ+λ, where δ is the so-called conve-
nience (or dividend) yield.13 The latter term measures the contingent value

12As pointed out by Smith and Warner (1979, p. 127) "[s]ecuring debt gives bondholders
title to pledged assets until the bonds are paid in full".

13If shareholders are risk neutral, in equilibrium we have δ = r−α > 0. If however they
are risk-averse, the dividend yield is δ > r−α (see McDonald and Siegel, 1984 and 1985).
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of default. In particular,
�
Π/�Πj

�β2(λ)
measures the present value of 1 Euro

contingent on the default event, and Ψ
�
�Πj ;C

�
is the expected present value

of the profit lost by shareholders after expropriation. As can be seen, an
increase in Π raises current inflows and reduces the probability of default.
This means that the value of equity is positively affected by the current value
of Π.

Given these results, we can now calculate the default threshold points
under secured and unsecured debt, respectively.

Secured debt According to Definition 1, full debt protection means

that the default threshold point �Πs must be such that we have ΠN
�
�Πs;C

�
=

0. Using (2) gives:
�Πs = C − τ

1− τ
λF I. (7)

As can be seen, the higher the tax depreciation rate λF , the lower the thresh-
old level �Πs. Of course, this leads to a delay of default.

Unsecured debt To calculate the threshold value under unsecured
debt we follow Leland (1994). Accordingly, �Πu is obtained by maximizing
the value of equity, i.e.,

max
�Πu
E (Π, C) . (8)

Solving problem (8) (see Appendix B), we obtain:

�Πu = β2 (λ)

β2 (λ)− 1

δ + λ

r + λ



C −

τ

1− τ
λF I

�
< �Πs. (9)

Like the secured-debt case, the higher the tax depreciation rate λF , the
lower the threshold level �Πs. Moreover, the inequality �Πu < �Πs holds. This
result can be explained as follows: under unsecured debt finance, a company
can inject equity in order to meet its debt obligations. This means that,
unlike the secured-debt finance case, a company can postpone default. This
means that contingent cost of default is higher under unsecured debt, i.e.,�
Π/�Πu

�β2(λ)
>
�
Π/�Πs

�β2(λ)
.14 Moreover, Appendix C shows that 0 > ∂�Πu

∂λF
>

14See Appendix C.
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∂�Πs

∂λF
. This means that the effect of λF on the contingent evaluation of future

events crucially depends on the characteristics of debt.
Following the same procedure, we can now calculate the value of debt.

As shown in Appendix D, we obtain:

Dj (Π;C) =





(1−τ)Π
δ+λ

+ τΩI Π < �Πj ,
C
r+λ

+
�
(1−τ)�Πj

δ+λ
+ τΩI − C

r+λ
− υC


�
Π
�Πj

�β2(λ)
Π > �Πj .

(10)
Function (10) shows that the value of debt depends not only on C but also

on the current value of Π. If Π > �Πj, the value of debt consists of two
terms: a perpetual rent and a term that is non-linear in Π. In this case, an
increase in Π reduces the probability of default and therefore raises the value
of debt. As can be seen, the lender’s relevant discount rate is r + λ: this
means that the expected lifetime of debt (until default) is in line with the
expected lifetime of investment. The second term measures the contingent
value of the net cost of default. After default (i.e., when Π has reached �Πj),
the lender becomes shareholder and the value of his/her company is equal to�
(1−τ)�Πj

δ+λ
+ τΩI



. In this case, the firm is fully equity-financed and its value

is positively affected by Π.
Using (6) and (10) we obtain the value of the levered firm:

V j(Π;C) = Ej (Π;C) +Dj (Π;C) . (11)

As can be seen, V j(Π;C) depends on both the tax rate and the default cost.
Of course, it also accounts for the fact that, in the event of default, the tax
benefit of interest deductibility is lost.

4 The option to invest

Let us next focus on investment timing. We let a representative firm decide
when to invest a given amount of resource I. According to Dixit and Pindyck
(1994), this means that our representative firm owns an investment option,
with the following functional form:

O (Π) = A1Π
β1 ,
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whereA1 is an unknown to be determined and β1 =
1
2
− α
σ2
+
	�

α
σ2
− 1

2

�2
+ 2r

σ2
>

1.15 In order to find the optimal investment timing, we also need to calculate
a business’ Net Present Value (NPV). Using (11), the NPV will be equal to:

NPV j(Π;C) = V j(Π;C)− I = VU(Π;C) +B
j (C)− I

=

�
(1− τ )Π

r + λ
− (1− Ωτ ) I

�
+

�
τ − [τ + (r + λ) υ]



Π

�Πj

�β2(λ)� C

r + λ
,

with j = s, u. Following Panteghini (2007b), a firm’s objective function will

then be equal to
�
Π
Π∗

�β1 times the NPV, i.e.,

W j =



Π

Π∗

�β1 ��(1− τ) Π∗
r + λ

− (1− Ωτ ) I

�
+

�
τ − [τ + (r + λ) υ]



Π∗

�Πj

�β2(λ)� C

r + λ

�
,

(12)

with j = s, u. Term
�
Π
Π∗

�β1 measures the contingent value of 1 Euro, when
Π < Π∗, which will be invested whenever Π = Π∗. Maximizing (12) with
respect to Π∗ gives the following first order condition

∂W j

∂Π∗
= −β1Π

∗
−1



Π

Π∗

�β1 ��(1− τ )Π∗
r + λ

− (1− Ωτ ) I

�
+ (13)

+

�
τ − [τ + (r + λ) υ]



Π∗

�Πj

�β2(λ)� C

r + λ

�
+

+



Π

Π∗

�β1 �(1− τ )
r + λ

− β2 (λ) [τ + (r + λ) υ] Π
∗
−1



Π∗

�Πj

�β2(λ) C

r + λ

�
= 0.

Remember that our firm can choose its capital structure. This means that
it can optimally set the value of C. Again, differentiating (12) with respect
to C gives the following first order condition:

∂W j

∂C
=



Π

Π∗

�β1 ��
τ − [τ + (r + λ) υ]



Π∗

�Πj

�β2(λ)� 1

r + λ

�
(14)

+



Π

Π∗

�β1 �
+β2 (λ) [τ + (r + λ) υ]



Π∗

�Πj

�β2(λ) C

r + λ
�Πj−1

�
= 0,

15Note that β
1
is unaffected by the Poisson process. This is due to the fact that invest-

ment timing does not affect the expected lifetime of a firm’s project.
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with j = s, u. The f.o.c. (13) and (14) cannot be solved explicitly. This is
due to the fact that both τ and λF affect not only a firm’s current payoff, but
also its contingent evaluation of future events (i.e., default and the project
death). Therefore, the joint analysis of real and financial choices requires a
numerical approach.16

5 A numerical analysis

Let us next focus on a numerical analysis aimed at studying the effects of
tax depreciation allowances. Table 1 shows the parameter values.

r 0.04
σ 0.20; 0.40
τ 0.20; 0.30
λ 0.03; 0.10
∆λ 0.01; 0.09
λf λ+∆λ
α 0.01
I 1.00
υ 0.05

Table 1: The parameter values.

According to Dixit and Pindyck (1994), for the benchmark case we assume
r = 0.04 and σ = 0.20: these values are consistent with the empirical evidence
(e.g., Jorion and Goetzman, 1999, and Dimson et al., 2002). Moreover, we
assume that the depreciation rate λ is either 0.03 or 0.10.17 We also assume
that the default cost υ is 5% of the firm’s value.18 Tax depreciation allowances

16The optimal coupons under both secured and unsecured, namely, Cu and Cs, are such
that the inequality Cu > Cs holds. This is due to the fact that, under unsecured debt
financing, a company can decide when to default. Given its higher financial flexibility,
therefore, a company can choose a higher leverage ratio (see Panteghini, 2007b).

17The economic depreciation rate λ usually ranges from 0 to 0.10. This range is in line
with the average depreciation rates reported in Fixed Reproducible Tangible Wealth in
the United States, 1925-1989 (10% for equipment and 5% for structures) and is applied,
for example, by Caballero and Engels (1999).

18It is worth noting that the value of υ may depend on several factors that make it
range from 5% to 20% (see Panteghini, 2007b). For this reason we ran simulations with
different values of υ. However, the quality never changed. For this reason we simply use
υ = 0.05 with no loss of generality.

11



are equal to λf ≡ λ + ∆λ, where ∆λ ∈ [0.01; 0.09] is the additional benefit
due to generous depreciation allowances. Below, we will also carry out some
sensitivity analyses regarding parameters σ and τ . So, σ will also be set
equal to 0.4 in order to study the effect of higher uncertainty. Finally, we
will run our numerical analysis setting τ equal to either 0.2 or 0.3. In doing
so, we account for recent tax cuts which have led many countries to apply a
statutory tax rate between 20% and 30%.

Tables 2 and 3 show the effects of an increase in ∆λ on C∗, Π∗ and the
expected time of default, E (T ), i.e., the time lag between investment and
default, for τ equal to 0.2 and 0.3, respectively.19 Under both secured and
unsecured debt finance, an increase in λF reduces both C∗ and Π∗. The
decrease in the threshold level Π∗ is not surprising: the more generous the
tax depreciation allowance, the earlier an investment is made. Our results
show that, due to the lower value of Π∗, it is optimal to reduce the optimal
coupon. Otherwise, the default risk would be excessive.20 Both Table 2 and
3 show that the expected default time is increasing in λF for λ = 0, 1 and
τ = 0.20, 0.30.

It is worth noting that, with λ = 0.1, the expected lifetime of the invest-
ment project is 10 periods. As shown in Tables 2 and 3 the expected time
of default E (T ) is almost always higher than 10. This means that, with a
physiological standard deviation (i.e. σ = 0.2), default is a negligible event
since the project is quite likely to die before.

19We calculate this by extending the model described in Dixit and Pindyck (1994) and
Dixit (1993).

20Coeteris paribus, the decrease in C∗ reduces the probability of default at any time t.
The converse is true when Π∗ drops: the gap between Π∗ and the default threshold point
is reduced and therefore default is more likely. If the former effect (on C∗) dominates the
latter (i.e., that on Π∗), default is delayed. According to Tables 2 and 3, this is the more
plausible case.
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Secured Debt Unsecured Debt E(T)
∆λ C

∗
Π
∗

C
∗

Π
∗ Secured Unsecured

0.01 0.136 0.197 0.164 0.183 9.9 11.9
0.02 0.136 0.192 0.163 0.180 10.0 12.0
0.03 0.135 0.188 0.162 0.176 10.1 12.2
0.04 0.134 0.184 0.160 0.172 10.3 12.3
0.05 0.134 0.180 0.159 0.168 10.4 12.4
0.06 0.133 0.176 0.158 0.164 10.6 12.5
0.07 0.133 0.172 0.157 0.160 10.7 12.7
0.08 0.132 0.168 0.155 0.156 10.9 12.8
0.09 0.132 0.163 0.154 0.153 11.0 13.0
Table 2. λ=0.1; τ=0.2; σ=0.2; I=1; r=0.04; α=0.01; υ=0.05; λf=λ+∆λ

Secured Debt Unsecured Debt E(T)
∆λ C

∗
Π
∗

C
∗

Π
∗ Secured Unsecured

0.01 0.140 0.178 0.160 0.159 10.8 12.8
0.02 0.139 0.170 0.158 0.153 11.0 13.1
0.03 0.138 0.163 0.156 0.146 11.4 13.3
0.04 0.137 0.155 0.154 0.139 11.7 13.7
0.05 0.136 0.147 0.151 0.132 12.1 14.0
0.06 0.135 0.140 0.149 0.126 12.5 14.4
0.07 0.134 0.132 0.147 0.119 12.9 14.8
0.08 0.133 0.124 0.146 0.112 13.4 15.2
0.09 0.132 0.116 0.144 0.105 13.9 15.7
Table 3. λ=0.1; τ=0.3; σ=0.2; I=1; r=0.04; α=0.01; υ=0.05; λf=λ+∆λ

Tables 4 and 5 (with τ equal to 0.2 and 0.3, respectively) show that similar
results are obtained with higher volatility (i.e., σ=0.4 instead of σ=0.2). This
means that, when volatility increases (as happened over the last decade), the
default risk still decreases as λF rises. As a consequence, a stimulus pack,
characterized by higher tax depreciation allowances, does not lead to higher
financial instability.
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Secured Debt Unsecured Debt E(T)
∆λ C

∗
Π
∗

C
∗

Π
∗ Secured Unsecured

0.01 0.156 0.300 0.182 0.269 7.0 11.2
0.02 0.155 0.294 0.180 0.263 7.1 11.3
0.03 0.153 0.288 0.177 0.258 7.2 11.4
0.04 0.152 0.282 0.174 0.253 7.3 11.6
0.05 0.150 0.276 0.171 0.247 7.5 11.7
0.06 0.148 0.270 0.169 0.242 7.6 11.8
0.07 0.147 0.264 0.166 0.237 7.7 12.0
0.08 0.145 0.258 0.163 0.232 7.9 12.2
0.09 0.143 0.251 0.161 0.226 8.0 12.4
Table 4. λ=0.1; τ=0.2; σ=0.4; I=1; r=0.04; α=0.01; υ=0.05; λf=λ+∆λ

Secured Debt Unsecured Debt E(T)
∆λ C

∗
Π
∗

C
∗

Π
∗ Secured Unsecured

0.01 0.160 0.283 0.170 0.239 7.7 12.1
0.02 0.157 0.272 0.166 0.230 7.9 12.4
0.03 0.153 0.261 0.161 0.221 8.2 12.8
0.04 0.150 0.250 0.156 0.212 8.5 13.2
0.05 0.147 0.239 0.151 0.203 8.9 13.6
0.06 0.143 0.227 0.147 0.194 9.3 14.2
0.07 0.139 0.215 0.142 0.185 9.8 14.8
0.08 0.136 0.203 0.137 0.175 10.4 15.6
0.09 0.132 0.191 0.132 0.166 11.1 16.6
Table 5. λ=0.1; τ=0.3; σ=0.4; I=1; r=0.04; α=0.01; υ=0.05; λf=λ+∆λ

Note that, with a higher value of σ (i.e., 0.4 rather than 0.2), the expected
default time is shorter and default may take place before the expected project
death, under secured debt finance (since E (T ) < 10). In any case however,
E (T ) is always increasing in λF .

Tables 6 to 9 provide the numerical results with λ = 0.03. In this case, the
expected lifetime of an investment project is much longer (i.e., 1/0.03 = 33.3).
Since the firm is expected to produce Π for longer time, the expected time
of default is also longer. As can be seen in Table 6, E (T ) is around 30
periods, under secured debt finance and is much higher than 33.3 when debt
is unsecured. In these cases, default is therefore a negligible event.

Similar findings are shown in Table 7, i.e., when τ = 0.30; in this case, the
inequality C∗ > Π∗ holds under unsecured debt finance. Of course, this result
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depends on the symmetric treatment of profits and losses. When C∗ > Π∗ a
firm is making losses and, due to the generous tax depreciation allowances, it
is highly subsidized. Though this is an unrealistic case, it is quite important
since it highlights the fact that, even if investment were undertaken with an
initial loss, tax depreciation allowances would still increase E (T ). We can
thus say that, even under a system that subsidizes loss-making firms, there
is no increase in both default and, above all, systemic risk.

Secured Debt Unsecured Debt E(T)
∆λ C

∗
Π
∗

C
∗

Π
∗ Secured Unsecured

0.01 0.078 0.131 0.098 0.118 26.2 36.7
0.02 0.077 0.126 0.096 0.113 26.9 37.3
0.03 0.076 0.121 0.094 0.109 27.6 38.0
0.04 0.075 0.116 0.092 0.104 28.4 38.8
0.05 0.074 0.111 0.090 0.100 29.2 39.5
0.06 0.072 0.106 0.088 0.095 30.1 40.4
0.07 0.071 0.101 0.085 0.091 31.2 41.3
0.08 0.070 0.096 0.083 0.086 32.4 42.5
0.09 0.069 0.090 0.081 0.081 33.7 43.7
Table 6. λ=0.03; τ=0.2; σ=0.2; I=1; r=0.04; α=0.01; υ=0.05; λf=λ+∆λ

Secured Debt Unsecured Debt E(T)
∆λ C

∗
Π
∗

C
∗

Π
∗ Secured Unsecured

0.01 0.081 0.128 0.095 0.108 27.8 38.4
0.02 0.079 0.119 0.091 0.100 29.1 39.7
0.03 0.077 0.109 0.088 0.092 30.6 41.3
0.04 0.074 0.100 0.084 0.085 32.5 43.2
0.05 0.072 0.090 0.081 0.077 34.9 45.5
0.06 0.070 0.081 0.077 0.069 37.9 48.3
0.07 0.068 0.071 0.074 0.061 41.8 52.1
0.08 0.066 0.060 0.071 0.052 47.1 57.1
0.09 0.064 0.049 0.068 0.044 54.9 64.2
Table 7. λ=0.03; τ=0.3; σ=0.2; I=1; r=0.04; α=0.01; υ=0.05; λf=λ+∆λ

In Tables 6 and 7 we have seen that the expected default time is in
line with the expected project lifetime. This implies that, at least with a
physiological standard deviation of 20%, default is almost a negligible event.
Let us next see what happens when σ rises from 20% to 40%. This case
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is useful to understand the effects of tax depreciation allowances in a more
volatile environment (e.g., during the Great Recession).

Secured Debt Unsecured Debt E(T)
∆λ C

∗
Π
∗

C
∗

Π
∗ Secured Unsecured

0.01 0.105 0.230 0.102 0.199 10.3 22.5
0.02 0.103 0.221 0.098 0.192 10.6 22.9
0.03 0.100 0.213 0.094 0.185 10.8 23.4
0.04 0.097 0.205 0.090 0.178 11.1 24.0
0.05 0.084 0.196 0.086 0.172 11.5 24.7
0.06 0.091 0.188 0.081 0.165 11.9 25.5
0.07 0.088 0.179 0.077 0.158 12.3 26.5
0.08 0.085 0.171 0.072 0.151 12.8 27.8
0.09 0.082 0.162 0.067 0.144 13.4 29.6
Table 8. λ=0.03; τ=0.2; σ=0.4; I=1; r=0.04; α=0.01; υ=0.05; λf=λ+∆λ

Secured Debt Unsecured Debt E(T)
∆λ C

∗
Π
∗

C
∗

Π
∗ Secured Unsecured

0.01 0.110 0.233 0.095 0.186 10.8 23.6
0.02 0.105 0.218 0.088 0.175 11.3 24.7
0.03 0.100 0.203 0.081 0.165 11.9 26.2
0.04 0.094 0.187 0.073 0.154 12.6 28.4
0.05 0.088 0.171 0.063 0.144 13.7 32.3
0.06 0.081 0.155 0.053 0.134 15.2 39.3
0.07 0.073 0.137 0.060 0.110 17.9 35.5
0.08 0.062 0.116 0.066 0.101 24.9 33.1
0.09 0.068 0.109 0.073 0.097 22.1 31.3
Table 9. λ=0.03; τ=0.3; σ=0.4; I=1; r=0.04; α=0.01; υ=0.05; λf=λ+∆λ

As shown in Tables 8 and 9, the expected default timing is shorter with
σ = 0.4 (compare these results with those contained in Tables 2 and 3).
This is not surprising since, with higher volatility, the probability that a
firm’s EBIT reaches the default threshold level is higher. This means that,
when the economic environment is more volatile, the probability of default
is higher. However, we can see that an increase in λF still delays default,
thereby offsetting the effects of higher aggregate volatility.

As a robustness check, we have finally analyzed the effects of tax depre-
ciation allowances when C is given: this exercise is necessary to see what
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happens when firms cannot choose the optimal leverage, for various reasons.
To sum up, if C is less than C∗,21 the expected time of default is longer: this
is due to the fact that a lower coupon entails a lower default threshold point
(either �Πu or �Πs). The converse is true when the inequality C > C∗.22 Our
results show that, in the cases examined (with C ≷ C∗), an increase in λF
always causes a rise in E(T ).

6 Conclusion

In this article, we have studied the effects of tax depreciation allowances on
a representative firm that can decide both when to invest and how much to
borrow. The firm is aware that, on the one hand, it can benefit from generous
depreciation allowances and, on the other hand, it may face default risk.

As expected, accelerated tax depreciation stimulates investment. Its ef-
fect on financial decision, however, is less easy to predict. This is due to the
fact that tax tools (i.e. τ and λF ) affect not only a firm’s current payoff, but
also its contingent evaluation of future events (i.e., default and the project
death). To analyze the impact of a stimulus pack on the capital structure
we have thus used a numerical approach. As we have shown, generous tax
depreciation allowances reduce the propensity to borrow and, in most cases,
reduces default risk. In other words, an increase in λF reduces both C∗ and
Π∗. This means that it is optimal to reduce the amount of debt and, at
the same time, to invest earlier. The former effect reduces the default risk,
while the converse is true for the latter. Our results show that the former
effect dominates the latter and hence the expected default time is increasing
in λF . Similar results are obtained assuming higher volatility (i.e., σ = 0.4
instead of σ = 0.2). This means that, even when volatility increases (as
happened during the Great Recession), the default risk is still decreasing in
λF . Therefore, we can state that a stimulus pack, characterized by higher
tax depreciation allowances, does not lead to higher financial instability.

21The inequality C < C∗ may hold because of liquidity constraints or a troubled access
to the credit market (i.e., small businesses may have difficulties in debt financing their
activity).

22The inequality C > C∗ may hold when there are no credit constraints; however share-
holders have no cash to raise equity. Of course, they could invite new shareholders to
invest in their representative firm. If however, the old shareholders feared this solution
(which might reduce the firm’s control), they would prefer a higher leverage.
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A The derivation of (6)

Solving (5) we obtain

Ej (Π;C) =





0 Π < �Πj ,
�
(1− τ )

�
Π
δ+λ

− C
r+λ

�
+ τΩI

�
+

2�

i=1

AiΠ
βi(λ) Π > �Πj ,

(15)

where Ω ≡ λF
r+λ
. Moreover, β1 (λ) =

1
2
− α

σ2
+
	�

α
σ2
− 1

2

�2
+ 2(r+λ)

σ2
> 1 and

β2 (λ) =
1
2
− α

σ2
−

	�
α
σ2
− 1

2

�2
+ 2(r+λ)

σ2
< 0 are the roots of the characteristic

equation Ψ(β) ≡ 1
2
σ2β(β−1)+αβ−(r + λ) = 0. As can be seen, the before-

default value of equity consists of two terms: the perpetual rent, in square

brackets, and
2�

i=1

AiΠ
βi(λ). Let us next calculate A1 and A2. In the absence

of any financial bubbles, A1 is nil (see Dixit and Pindyck, 1994). Therefore,
setting A1 = 0 we can rewrite (15) as

Ej (Π;C) =

�
0 after default,�
(1− τ)

�
Π
δ+λ

− C
r+λ

�
+ τΩI

�
+A2Π

βi(λ) before default.
(16)

To calculate A2, we must note that when default occurs (i.e., when Π drops

to �Πj), we have

E
�
�Πj ;C

�
= 0, (17)

with �Πj = �Πs, �Πu, since the firm is expropriated by the lender (and equity is
nil). Substituting (16) into (17) we find A. Rearranging then we obtain (6).

B The derivation of (9)

Using (6) and differentiating (8) gives the following f.o.c.

∂Eu(Π)

∂�Πu
= − (1−τ)

δ+λ

�
Π
�Πu

�β2(λ)

+β2 (λ)
�
(1− τ )

�
�Πu

δ+λ
− C

r+λ

�
+ τΩI


�
Π
�Πu

�β2(λ) ��Πu
�
−1

= 0.
(18)

Rearranging (18) gives (9).
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C An analysis of term
�
Π
�Πj

�β2(λ)
with j = s, u

Using (7) and (9), it is easy to see that the inequality �Πu < �Πs holds. Ap-

plying the negative exponent β2 (λ) to this inequality gives �Πuβ2(λ) > �Πsβ2(λ) .
This implies that, for any initial value of Π, the inequality always holds�
Π
�Πu

�β2(λ)
<
�
Π
�Πs

�β2(λ)
. Moreover, differentiating the threshold points with

respect to λF gives:

∂�Πs
∂λF

= −
τ

1− τ
I < 0,

∂�Πu
∂λF

= −
β2 (λ)

β2 (λ)− 1

δ + λ

r + λ

τ

1− τ
I < 0.

Given these results it is easy to see that
���∂�Πu∂λF

��� <
��� ∂�Πs∂λF

���.

D The derivation of (10)

Using (4), applying Itô’s Lemma and rearranging gives:

(r + λ)Dj (Π;C) =

�
[(1− τ )Π + τλF I] + αΠDΠ

(Π;C) + σ2

2
Π2D

ΠΠ
(Π;C) Π < �Πj,

C + αΠD
Π
(Π;C) + σ2

2
Π2D

ΠΠ
(Π;C) Π > �Πj.

(19)
Solving (19) one obtains:

Dj (Π;C) =





(1−τ)Π
δ+λ

+ τΩI +
2�

i=1

BiΠ
βi(λ) Π < �Πj ,

C
r+λ

+
2�

i=1

DiΠ
βi(λ) Π > �Πj ,

(20)

where terms
2�

i=1

BiΠ
βi(λ) and

2�

i=1

DiΠ
βi(λ) measure the contingent value of

future events after and before default, respectively. To calculate B2 we use
the boundary condition Dj (0;C) = 0, which means that, when Π falls to
zero, the lender’s post-default claim is nil, and so we have B2 = 0. In the
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absence of any financial bubble, we also have B1 = D1 = 0. To calculate D2
we let the pre-default branch of (20) meet with its after-default one, net of

the default cost υC, at point Π = �Πj, with j = s, u, i.e.,

C

r + λ
+D2�Πj

β2(λ) =

�
(1− τ ) �Πj
δ + λ

+ τΩI

�
− υC. (21)

Solving (21) for D2 gives

D2 =

�
(1− τ ) �Πj
δ + λ

+ τΩI −
C

r + λ
− υC

�
�Πj−β2(λ), with j = s, u,

and substituting this solution into (20) we obtain (10).
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