
Gelman, Andrew

Working Paper

Prior distributions for variance parameters in
hierarchical models

EERI Research Paper Series, No. 6/2004

Provided in Cooperation with:
Economics and Econometrics Research Institute (EERI), Brussels

Suggested Citation: Gelman, Andrew (2004) : Prior distributions for variance parameters in
hierarchical models, EERI Research Paper Series, No. 6/2004, Economics and Econometrics Research
Institute (EERI), Brussels

This Version is available at:
https://hdl.handle.net/10419/142500

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/142500
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


EERI
Economics and Econometrics Research Institute 

EERI Research Paper Series No 6/2004 

Copyright © 2004 by Andrew Gelman 

Prior Distributions for Variance Parameters in 
Hierarchical Models 

Andrew Gelman 

EERI
Economics and Econometrics Research Institute 
Avenue de Beaulieu 
1160 Brussels 
Belgium 

Tel: +322 299 3523 
Fax: +322 299 3523 
www.eeri.eu



Prior distributions for variance parameters in hierarchical

models∗

Andrew Gelman†

February 5, 2004

Abstract

Various noninformative prior distributions have been suggested for scale parameters in hi-
erarchical models. We construct a new folded-noncentral-t family of conditionally conjugate
priors for hierarchical standard deviation parameters, and then consider noninformative and
weakly informative priors in this family. We use an example to illustrate serious problems with
the inverse-gamma family of “noninformative” prior distributions. We suggest instead to use a
uniform prior on the hierarchical standard deviation, using the half-t family when the number
of groups is small and in other settings where a weakly informative prior is desired.

Keywords: Bayesian inference, conditional conjugacy, folded-noncentral-t distribution, half-
t distribution, hierarchical model, multilevel model, noninformative prior distribution, weakly
informative prior distribution

1 Introduction

Hierarchical (multilevel) models are central to modern Bayesian statistics for both conceptual and

practical reasons. On the theoretical side, hierarchical models allow a more “objective” approach to

inference by estimating the parameters of prior distributions from data rather than requiring them

to be specified using subjective information (see James and Stein, 1960, Efron and Morris, 1975, and

Morris, 1983). At a practical level, hierarchical models are flexible tools for combining information

and partial pooling of inferences (see, for example, Kreft and De Leeuw, 1998, Snijders and Bosker,

1999, Carlin and Louis, 2001, Raudenbush and Bryk, 2002, Gelman et al., 2003).

A hierarchical model requires hyperparameters, however, and these must be given their own prior

distribution. In this paper, we discuss the prior distribution for hierarchical variance parameters. We

consider some proposed noninformative prior distributions, including uniform and inverse-gamma

families, in the context of an expanded conditionally-conjugate family.
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Liu, Hal Stern, Francis Tuerlinckx, and Aki Vehtari for helpful suggestions, and the National Science Foundation for
financial support.
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1.1 The basic hierarchical model

We shall work with a simple two-level normal model of data yij with group-level effects αj :

yij ∼ N(μ + αj , σ
2
y), i = 1, . . . , nj , j = 1, . . . , J

αj ∼ N(0, σ2
α), j = 1, . . . , J. (1)

We briefly discuss other hierarchical models in Section 5.2.

Model (1) has three hyperparameters—μ, σy, and σα—but in this paper we concern ourselves

only with the last of these. Typically, enough data will be available to estimate μ and σy that one can

use any reasonable noninformative prior distribution—for example, p(μ, σy) ∝ 1 or p(μ, log σy) ∝ 1.

Various noninformative prior distributions have been suggested in Bayesian literature and soft-

ware, including an improper uniform density on σα (Gelman et al., 2003) and proper distributions

such as p(σ2
α) ∼ inv-gamma(0.001, 0.001) (Spiegelhalter et al., 1994, 2003). In this paper, we explore

and make recommendations for prior distributions for σα, beginning in Section 2 with conjugate fam-

ilies of proper prior distributions and then considering noninformative prior densities in Section 3.

As we illustrate in Section 4, some of these prior distributions can unduly affect inferences, especially

for problems where the number of groups J is small or the group-level variance σ2
α is close to zero.

We conclude with recommendations in Section 5.

2 Conditionally-conjugate families

2.1 Inverse-gamma prior distribution for σ2
α

The parameter σ2
α in model (1) does not have any simple family of conjugate prior distributions

because its marginal likelihood depends in a complex way on the data from all J groups (Hill, 1965,

Tiao and Tan, 1965). However, the inverse-gamma family is conditionally conjugate: that is, if σ2
α

has an inverse-gamma prior distribution, then the conditional posterior distribution p(σ2
α |α, μ, σy, y)

is also inverse-gamma. This conditional conjugacy allows σ2
α to be updated easily using the Gibbs

sampler (see Gelfand and Smith, 1990) and also allows the prior distribution to be interpreted in

terms of equivalent data (see, for example, Box and Tiao, 1973).

The inv-gamma(α, β) model for σ2
α can also be expressed as an inverse-χ2 distribution with scale

s2
α = β/α and degrees of freedom να = 2α (Gelman et al., 2003). The inverse-χ2 parameteri-

zation can be helpful in understanding the information underlying various choices of proper prior

distributions, as we discuss in Section 3.
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2.2 Folded-noncentral-t prior distribution for σα

We can expand the family of conditionally-conjugate prior distributions by applying a redundant

multiplicative reparameterization to model (1):

yij ∼ N(μ + ξηj , σ
2
y)

ηj ∼ N(0, σ2
η). (2)

The parameters αj in (1) correspond to the products ξηj in (2), and the hierarchical standard

deviation σα in (1) corresponds to |ξ|ση in (2). This “parameter expanded” model was originally

constructed to speed up EM and Gibbs sampler computations (Liu, Rubin, and Wu, 1998, Liu

and Wu, 1999, van Dyk and Meng, 2001, Gelman et al., 2004), and it is also been suggested that

the additional parameter can increase the flexibility of applied modeling, especially in hierarchical

regression models with several batches of varying coefficients (Gelman, 2004a). Here we merely note

that this expanded model form allows conditionally conjugate prior distributions for both ξ and ση,

and these parameters are independent in the conditional posterior distribution. There is thus an

implicit conditionally conjugate prior distribution for σα = |ξ|ση.

For simplicity we restrict ourselves to independent prior distributions on ξ and ση. In model (2),

the conditionally-conjugate prior family for ξ is normal—given the data and all the other parameters

in the model, the likelihood for ξ has the form of a normal distribution, derived from
∑J

j=1 nj factors

of the form (yij − μ)/ηj ∼ N(ξ, σ2
y/η2

j ). The conditionally-conjugate prior family for σ2
η is inverse-

gamma, as discussed in Section 2.1.

The implicit conditionally-conjugate family for σα is then the set of distributions corresponding

to the absolute value of a normal random variable, divided by the square root of a gamma random

variable. That is, σα has the distribution of the absolute value of a noncentral-t variate (see, for

example, Johnson and Kotz, 1972). We shall call this the folded noncentral t distribution, with the

“folding” corresponding to the absolute value operator. The noncentral t in this context has three

parameters, which can be identified with the mean of the normal distribution for ξ, and the scale

and degrees of freedom for σ2
η. (Without loss of generality, the scale of the normal distribution for

ξ can be set to 1 since it cannot be separated from the scale for ση.)

The folded noncentral t distribution is not commonly used in statistics, and we find it convenient

to understand it through various special and limiting cases. In the limit that the denominator is

specified exactly, we have a folded normal distribution; conversely, specifying the numerator exactly

yields the square-root-inverse-χ2 distribution for σα, as in Section 2.1.

An appealing two-parameter family of prior distributions is determined by restricting the prior

mean of the numerator to zero, so that the folded noncentral t distribution for σα becomes simply a
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half-t—that is, the absolute value of a Student-t distribution centered at zero. We can parameterize

this in terms of scale sα and degrees of freedom ν:

p(σα) ∝
(

1 +
1
ν

(
σα

sα

)2
)−(ν+1)/2

.

This family includes, as special cases, the improper uniform density (if ν = −1) and the proper

half-Cauchy, p(σα) ∝ (σ2
α + s2

α

)−1 (if ν = 1).

The half-t family is not itself conditionally-conjugate—starting with a half-t prior distribution,

you will still end up with a more general folded noncentral t conditional posterior—but it is a natural

subclass of prior densities in which the distribution of the multiplicative parameter ξ is symmetric

about zero.

3 Noninformative prior distributions

3.1 General considerations

Noninformative prior distributions are intended to allow Bayesian inference for parameters about

which not much is known beyond the data included in the analysis at hand. Various justifications

and interpretations of noninformative priors have been proposed over the years, including invariance

(Jeffreys, 1961), maximum entropy (Jaynes, 1983), and agreement with classical estimators (Box

and Tiao, 1973, Meng and Zaslavsky, 2002). In this paper, we follow the approach of Bernardo

(1979) and consider so-called noninformative priors as “reference models” to be used as a standard

of comparison or starting point in place of the proper, informative prior distributions that would be

appropriate for a full Bayesian analysis (see also Kass and Wasserman, 1996).

We view any noninformative prior distribution as inherently provisional—after the model has

been fit, one should look at the posterior distribution and see if it makes sense. If the posterior

distribution does not make sense, this implies that additional prior knowledge is available that has

not been included in the model, and it is appropriate to go back and include this in the form of an

informative prior distribution.

3.2 Uniform prior distributions

We first consider uniform prior distributions while recalling that we must be explicit about the

scale on which the distribution is defined. Various choices have been proposed for modeling variance

parameters. A uniform prior distribution on log σα would seem natural—working with the logarithm

of a parameter that must be positive—but it results in an improper posterior distribution. The

problem arises because the marginal likelihood, p(y|σα)—after integrating over α, μ, σy in (1)—

approaches a finite nonzero value as σα → 0. Thus, if the prior density for log σα is uniform, the
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posterior distribution will have infinite mass integrating to the limit log σα → −∞. To put it another

way, in a hierarchical model the data can never rule out a group-level variance of zero, and so the

prior distribution cannot put an infinite mass in this area.

Another option is a uniform prior distribution on σα itself, which has a finite integral near σα = 0

and thus avoids the above problem. We generally use this noninformative density in our applied

work (see Gelman et al., 2003), but it has a slightly disagreeable “bias” toward positive values, with

its infinite prior mass in the range σα → ∞. With J = 1 or 2 groups, this actually results in an

improper posterior density, essentially concluding σα = ∞ and doing no shrinkage (see Gelman et

al., 2003, Exercise 5.8). In a sense this is reasonable behavior, since it would seem difficult from the

data alone to decide how much, if any, shrinkage should be done with data from only one or two

groups—and in fact this would seem consistent with the work of Stein (1955) and James and Stein

(1960) that unshrunken estimators are admissible if J < 3. However, from a Bayesian perspective it

is awkward for the decision to be made ahead of time, as it were, with the data having no say in the

matter. In addition, for small J , such as 4 or 5, we worry that the heavy right tail of the posterior

distribution would tend to bias the estimates of σα and thus result in shrinkage that is less than

optimal for estimating the individual αj ’s.

We can interpret the various improper uniform prior densities as limits of conditionally-conjugate

priors. The uniform prior distribution on log σα is equivalent to p(σα) ∝ σ−1
α or p(σ2

α) ∝ σ−2
α , which

has the form of an inverse-χ2 density with 0 degrees of freedom and can be taken as a limit of proper

conditionally-conjugate inverse-gamma priors.

The uniform density on σα is equivalent to p(σ2
α) ∝ σ−1

α , an inverse-χ2 density with −1 degrees

of freedom. This density cannot easily be seen as a limit of proper inverse-χ2 densities (since these

must have positive degrees of freedom), but it can be interpreted as a limit of the half-t family on

σα, where the scale approaches ∞ (and any value of ν). Or, in the expanded notation of (2), one

could assign any prior distribution to ση and a normal to ξ, and let the prior variance for ξ approach

∞.

Another noninformative prior distribution sometimes proposed in the Bayesian literature is uni-

form on σ2
α. We do not recommend this, as it seems to have the positive bias described above, but

more so, and also requires J ≥ 4 groups for a proper posterior distribution.

3.3 Inverse-gamma(ε, ε) prior distributions

The inv-gamma(ε, ε) prior distribution is an attempt at noninformativeness within the conditionally

conjugate family, with ε set to a low value such as 1 or 0.01 or 0.001 (the latter value being used in

the examples in Bugs; see Spiegelhalter et al., 1994, 2003). A difficulty of this model is that in the
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8 schools:  posterior on σα  given
uniform prior on σα
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2

Figure 1: Histograms of posterior simulations of the between-school standard deviation, σα,
from models with three different prior distributions: (a) uniform prior distribution on σα, (b)
inverse-gamma(1, 1) prior distribution on σ2

α, (c) inverse-gamma(0.001, 0.001) prior distribution on
σ2

α. The histograms are not all on the same scales. Overlain on each is the corresponding prior
density function for σα. (For models (b) and (c), the density for σα is calculated using the gamma
density function multiplied by the Jacobian of the 1/σ2

α transformation.) In models (b) and (c),
posterior inferences are strongly constrained by the prior distribution. Adapted from Gelman et al.
(2003, Appendix C).

limit of ε → 0 it yields an improper posterior density, and thus ε must be set to a reasonable value.

Unfortunately, for datasets in which low values of σα are possible, inferences become very sensitive

to ε in this model, and the prior distribution hardly looks noninformative, as we illustrate next.

4 Application to the 8-schools example

We demonstrate the properties of some proposed noninformative prior densities with a simple exam-

ple of data from J = 8 educational testing experiments described in Gelman et al. (2003, Chapter

5 and Appendix C). Here, the parameters α1, . . . , α8 represent the relative effects of Scholastic

Aptitude Test coaching programs in eight different schools, and σα represents the between-school

standard deviations of these effects. The effects are measured as points on the test, which was scored

from 200 to 800; thus the largest possible range of effects could be 600 points, with a realistic upper

limit on σα of 100, say.

4.1 Noninformative prior distributions for the 8-schools problem

Figure 1 shows the posterior distributions for the 8-schools model resulting from three different

choices of prior distributions that are intended to be noninformative.

The leftmost histogram shows the posterior inference for σα (as represented by 6000 simulation

draws from a model fit using Bugs) for the model with uniform prior density. The data show support

for a range of values below σα = 20, with a slight tail after that, reflecting the possibility of larger

values, which are difficult to rule out given that the number of groups J is only 8—that is, not much

more than the J = 3 required to ensure a proper posterior density with finite mass in the right tail.
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In contrast, the middle histogram in Figure 1 shows the result with an inverse-gamma(1, 1)

prior distribution for σ2
α. This new prior distribution leads to changed inferences. In particular,

the posterior mean and median of σα are lower and shrinkage of the αj ’s is greater than in the

previously-fitted model with a uniform prior distribution on σα. To understand this, it helps to

graph the prior distribution in the range for which the posterior distribution is substantial. The

graph shows that the prior distribution is concentrated in the range [0.5, 5], a narrow zone in which

the likelihood is close to flat compared to this prior (as we can see because the distribution of the

posterior simulations of σα closely matches the prior distribution, p(σα)). By comparison, in the

left graph, the uniform prior distribution on σα seems closer to “noninformative” for this problem,

in the sense that it does not appear to be constraining the posterior inference.

Finally, the rightmost histogram in Figure 1 shows the corresponding result with an inverse-

gamma(0.001, 0.001) prior distribution for σ2
α. This prior distribution is even more sharply peaked

near zero and further distorts posterior inferences, with the problem arising because the marginal

likelihood for σα remains high near zero.

In this example, we do not consider a uniform prior density on log σα, which would yield an

improper posterior density with a spike at σα = 0, like the rightmost graph in Figure 1, but more so.

We also do not consider a uniform prior density on σ2
α, which would yield a posterior distribution

similar to the leftmost graph in Figure 1, but with a slightly higher right tail.

This example is a gratifying case in which the simplest approach—the uniform prior density on

σα—seems to perform well. As detailed in Gelman et al. (2003, Appendix C), this model is also

straightforward to program directly using the Gibbs sampler or in Bugs, using either the basic model

(1) or slightly faster using the expanded parameterization (2).

The appearance of the histograms and density plots in Figure 1 is crucially affected by the

choice to plot them on the scale of σα. If instead they were plotted on the scale of log σα,

the inv-gamma(0.001, 0.001) prior density would appear to be the flattest. However, the inverse-

gamma(ε, ε) prior is not at all “noninformative” for this problem since the resulting posterior dis-

tribution remains highly sensitive to the choice of ε. As explained in Section 3.2, the hierarchical

model likelihood does not constrain log σα in the limit log σα → −∞, and so a prior distribution

that is noninformative on the log scale will not work.

4.2 Weakly informative prior distribution for the 3-schools problem

The uniform prior distribution seems fine for the 8-school analysis, but problems arise if the number

of groups J is much smaller, in which case the data supply little information about the group-level

variance, and a noninformative prior distribution can lead to a posterior distribution that is improper
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σα
0 50 100 150 200

3 schools:  posterior on σα  given
uniform prior on σα

σα
0 20 40 60 80 100

3 schools:  posterior on σα  given
half−Cauchy (25) prior on σα

Figure 2: Histograms of posterior simulations of the between-school standard deviation, σα, from
models for the 3-schools data with two different prior distributions on σα: (a) uniform (0,∞), (b)
half-Cauchy with scale 25, set as a weakly informative prior distribution given that σα was expected
to be well below 100. The histograms are not on the same scales. Overlain on each histogram is the
corresponding prior density function. With only J = 3 groups, the noninformative uniform prior
distribution is too weak, and the proper Cauchy distribution works better, without appearing to
distort inferences in the area of high likelihood.

or is proper but unrealistically broad. We demonstrate by reanalyzing the 8-schools example using

just the data from the first 3 of the schools.

Figure 2 displays the inferences for σα from two different prior distributions. First we continue

with the default uniform distribution that worked well with J = 8 (as seen in Figure 1). Unfortu-

nately, as the left histogram of Figure 2 shows, the resulting posterior distribution for the 3-schools

dataset has an extremely long right tail, containing values of σα that are too high to be reasonable.

This heavy tail is expected since J is so low (if J were any lower, the right tail would have an

infinite integral), and using this as a posterior distribution will have the effect of undershrinking the

estimates of the school effects αj , as explained in Section 3.2.

The right histogram of Figure 2 shows the posterior inference for σα resulting from a half-Cauchy

prior distribution of the sort described at the end of Section 2.2, with scale parameter 25. As the line

on the graph shows, this prior distribution is close to flat over the plausible range of σα < 50, falling

off gradually beyond this point. We call this prior distribution “weakly informative” on this scale

because, even at its tail, it has a gentle slope (unlike, for example, a half-normal distribution) and

can let the data dominate if the likelihood is strong in that region. This prior distribution performs

well in this example, reflecting the marginal likelihood for σα at its low end but removing much of

the unrealistic upper tail.

This half-Cauchy prior distribution would also perform well in the 8-schools problem; however

it was unnecessary because the default uniform prior gave reasonable results. With only 3 schools,

we went to the trouble of using a weakly informative prior, a distribution that was not intended

to represent our actual prior state of knowledge about σα but rather to constrain the posterior

distribution, to an extent allowed by the data.
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5 Recommendations

5.1 Prior distributions for variance parameters

In fitting hierarchical models, we recommend starting with a noninformative uniform prior density

on standard deviation parameters σα. We expect this will generally work well unless the number of

groups J is low (below 5, say). If J is low, the uniform prior density tends to lead to high estimates

of σα, as discussed in Section 4.2. (This bias is an unavoidable consequence of the asymmetry in

the parameter space, with variance parameters restricted to be positive. Similarly, there are no

always-nonnegative classical unbiased estimators of σα or σ2
α in the hierarchical model.)

A user of a noninformative prior density might still like to use a proper distribution—reasons

could include Bayesian scruple, the desire to perform prior predictive checks (see Box, 1980, Gelman,

Meng, and Stern, 1996, and Bayarri and Berger, 2000) or Bayes factors (see Kass and Raftery, 1995,

and O’Hagan, 1995, and Pauler, Wakefield, and Kass, 1999), or because computation is performed

in Bugs, which requires proper distributions. For a noninformative but proper prior distribution, we

recommend approximating the uniform density on σα by a uniform on a wide range (for example,

U(0, 100) in the SAT coaching example) or a half-normal centered at 0 with standard deviation set

to a high value such as 100. The latter approach is particularly easy to program as a N(0, 1002)

prior distribution for ξ in (2).

When more prior information is desired, for instance to restrict σα away from very large values,

we recommend working within the half-t family of prior distributions, which are more flexible and

have better behavior near 0, compared to the inverse-gamma family. A reasonable starting point is

the half-Cauchy family, with scale set to a value that is high but not off the scale; for example, 25

in the example in Section 4.2.

Figure 1 illustrates the generally robust properties of the uniform prior density on σα. Many

Bayesians have preferred the inverse-gamma prior family, possibly because its conditional conjugacy

suggested clean mathematical properties. However, by writing the hierarchical model in the form

(2), we see conditional conjugacy in the wider class of half-t distributions on σα, which include the

uniform and half-Cauchy densities on σα (as well as inverse-gamma on σ2
α) as special cases. From

this perspective, the inverse-gamma family has nothing special to offer, and we prefer to work on

the scale of the standard deviation parameter σα, which is typically directly interpretable in the

original model.

5.2 Generalizations

The reasoning in this paper should apply to hierarchical regression models (including predictors at

the individual or group levels), hierarchical generalized linear models (as discussed by Christiansen
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and Morris, 1997, and Natarajan and Kass, 2000), and more complicated nonlinear models with

hierarchical structure. The key idea is that parameters αj—in general, group-level exchangeable

parameters—have a common distribution with some scale parameter which we label σα. Some of

the details will change—in particular, if the model is nonlinear, then the normal prior distribution

for the multiplicative parameter ξ in (2) will not be conditionally conjugate, however ξ can still be

updated using the Metropolis algorithm. In addition, when regression predictors must be estimated,

more than J = 3 groups may be necessary to estimate σα from a noninformative prior distribution,

thus requiring at least weakly informative prior distributions for the regression coefficients, the

variance parameters, or both.

There is also room to generalize these distributions to variance matrices in multivariate hierarchi-

cal models, going beyond the commonly-used inverse-Wishart family of prior distributions (Box and

Tiao, 1973), which has problems similar to the inverse-gamma for scalar variances. Noninformative

or weakly informative conditionally-conjugate priors could be applied to structured models such as

described by Barnard, McCulloch, and Meng (2000) and Daniels and Kass (1999, 2001), expanded

using multiplicative parameters as in Liu (2001) to give the models more flexibility.

Further work needs to be done in developing the next level of hierarchical models, in which

there are several batches of exchangeable parameters, each with their own variance parameter—

the Bayesian counterpart to the analysis of variance (Sargent and Hodges, 1997, Gelman, 2004b).

Specifying a prior distribution jointly on variance components at different levels of the model could

be seen as a generalization of priors on the shrinkage factor, which is a function of both σy and σα

(see Daniels, 1999, Natarajan and Kass, 2000, and Spiegelhalter, Abrams, and Myles, 2004, for an

overview). In a model with several levels, it would make sense to give the variance parameters a

parametric model with hyper-hyperparameters. This could be the ultimate solution to the difficulties

of estimating σα for batches of parameters αj where J is small, and we suppose that the folded-

noncentral-t family could be useful here.
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