

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Benassi, Corrado; Scrimitore, Marcella

Working Paper Income Distribution in Network Markets

EERI Research Paper Series, No. 05/2015

Provided in Cooperation with:

Economics and Econometrics Research Institute (EERI), Brussels

Suggested Citation: Benassi, Corrado; Scrimitore, Marcella (2015): Income Distribution in Network Markets, EERI Research Paper Series, No. 05/2015, Economics and Econometrics Research Institute (EERI), Brussels

This Version is available at: https://hdl.handle.net/10419/142679

${\bf Standard\text{-}Nutzungsbedingungen:}$

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Economics and Econometrics Research Institute

Income Distribution in Network Markets

Corrado Benassi and Marcella Scrimitore

EERI Research Paper Series No 05/2015

ISSN: 2031-4892

EERI Economics and Econometrics Research InstituteAvenue de Beaulieu
1160 Brussels

Tel: +322 298 8491 Fax: +322 298 8490 www.eeri.eu

Belgium

Income Distribution in Network Markets

Corrado Benassi a Marcella Scrimitore b

 a Alma Mater Studiorum - Università di Bologna, Piazza Scaravilli 2, I-40126 Bologna, Italy

The Rimini Centre for Economic Analysis, via Patara 3, I-47921 Rimini, Italy email: corrado.benassi@unibo.it

b Università del Salento, Ecotekne - via per Monteroni, I-73100 Lecce, Italy The Rimini Centre for Economic Analysis, via Patara 3, I-47921 Rimini, Italy email: marcella.scrimitore@unisalento.it

Abstract: We enquiry about the effects of first and second order stochastic dominance shifts of the distribution of the consumers' willingness to pay, within the standard model of a market with network externalities and hump-shaped demand curve. This issue is analyzed in the polar cases of perfect competition and monopoly. We find that, while under perfect competition both types of distributional changes result in higher output, provided marginal costs are low enough, in the monopoly case the final outcome depends on the way income distribution and the network externality interact in determining market demand elasticity.

Keywords: Network externalities, income distribution, stochastic dominance

JEL classification: D31, D40, L1

Corresponding author: Marcella Scrimitore, Dipartimento di Scienze dell'Economia, Università del Salento, Ecotekne - via per Monteroni, 73100 Lecce, Italy. Phone: +39 0832298772; Fax: +39 0832298757; e-mail: marcella.scrimitore@unisalento.it.

1 Introduction

Industries based on physical and non-physical networks have provided a significant boost to economic progress in recent decades. Among non-physical networks, information and telecommunication networks are characterized by positive consumption externalities, known as network externalities, which play an important role in defining the salient features of these markets. They occur when the benefit accruing to a consumer from a product depends positively on the number of the other users of the same product: the more consumers access a network, the more valuable the network becomes to each consumer.¹ These goods and services can confer either direct benefits associated to a larger installed base of compatible products or technologies (like the benefit from exchanging the good), or indirect benefits associated to a wider variety of the same product, a greater availability of complementary services, or a number of upgrades.² As is well known, beginning with the seminal work by Rohlfs (1974), network externalities have become crucial to a better understanding of many important issues, most notably technology adoption and firm strategic behavior in network markets, with relevant implications for technology diffusion and regulatory policy.³

¹Well known examples of network commodities include mobile phones, fax machines, game consoles, software industry, etc. General surveys on network economics are provided by Economides (1996a) and Shy (2011), while econometric evidence on network effects is provided in Gandal (2008).

²A further source of network (known as 'tariff-mediated') externalities is related to the pricing of network goods (Laffont *et al.*, 1998).

³Network externalities represent a key issue in the literature on technology adoption in which they are shown to affect consumers' adoption decisions via expectations (Suleymanova and Wey, 2012). By making previous outcomes relevant in the dynamics of new technogy adoption, they are shown to lead to technological path-dependency and potential lock-in to a socially inferior standard (Arthur, 1989; Farrell and Saloner, 1985), and to require a minimum market size (critical mass) to get a positive sale feedback and cause network success (Economides and Himmelberg, 1995). Compatibility and standardization issues have been raised within the Industrial Organization literature which shows how firms can benefit from the presence of nework externalities by making their products compatible (Katz and Shapiro,

In this paper we address the theoretical question of how income distribution affects market equilibrium in the presence of network externalities. In particular, we focus on the distribution of the consumers' willingness to pay and examine the output decisions of a network provider reacting to the demand changes which result from changes in that distribution. Indeed, for a number of industries, and particularly so for Internet provision and telecommunications, there appears to be considerable empirical evidence that income distribution should play an important role in accounting for the more or less widespread adoption of these typical network commodities and services – one of the main factors at work being accessibility, as a high number of low income consumers makes for too small a demand to trigger the positive network feedback required for output expansion.⁴ Thus, e.g., Chinn and Fairlie (2010) find that disparities in incomes are among the main factors accounting for low rates of technology penetration, which is consistent with similar findings in different contexts;⁵ while Bohman (2008), in a very detailed work using data for Brazil, finds that 'the effect

¹⁹⁸⁵⁾ or incompatible (Choi, 1994), or by undertaking strategies enabling them to attract a larger installed base in an introductory product stage: see Katz and Shapiro (1994, p.107) and Cabral et al. (1999) for penetration pricing, Yano and Dei (2006) for submarginal-cost pricing, Farrell and Saloner (1986) for product pre-announcements, Conner and Rumelt (1991) and Hahn (2004) respectively for piracy tolerance and downgrade-versioning strategies. Within this literature firm profitability and market structure are shown to be affected by network externalities to the extent the latter impact consumers' technology switching decisions (see Farrell and Klemperer (2007) for a survey on switching costs and network effects) and consumers are forward-looking (Cabral, 2011). The social efficiency due to the presence of network externalities is also investigated in this literature which shows on the one hand how they play a competitive effect improving welfare (e.g., network externalities can provide incentives for inviting rivals to enter the market (Economides, 1996b), for carrying out R&D investments (Kristiansen and Thum, 1997) or for vertical integration (Dogan, 2009)), on the other hand how they hurt market efficiency, e.g. reducing product variety (Farrell and Saloner, 1986) or leading to quality distortion (Lambertini and Orsini, 2001) and insufficient advertising investments (Alipranti and Petrakis, 2013).

⁴In this regard see also Aldebert *et al.* (2004) who find that income effects matter in the estimation of the telecommunications' demand by income classes, thus impacting on the network operators' pricing strategies.

 $^{^5}$ Many studies in this vein rely on cross-country analysis, with some works focusing on the correlation between technology diffusion and per capita income (e.g., Kiiski and Pohjola, 2002; Chinn and Fairlie, 2007), and more recent works emphasizing income distribution and indeed concurring in finding it relevant: e.g., Hyytinen and Toivanen (2011), Andrés et al. (2010), Mocnik and Širec (2010), Howard et al. (2010).

of income distribution can be described as non-linear. For poor regions, an uneven distribution may be beneficial since it implies that a small group of the population has enough means to be able to afford the services. On the other hand, with a more even distribution, nobody may have a sufficiently high income to afford them, and diffusion may therefore take longer. However, for richer regions the impact of distribution is reversed. An equal distribution implies that a larger middle class may get access to the service, whereas a more uneven income distribution may leave more people below the necessary income level and therefore the resulting penetration ratios are low' (p.609).

While the theoretical underpinnings of such enquiries are often based on diffusion models (see Bohman, 2008, pp. 601-602, for some references to theoretical works on technology diffusion, and Andres et al., 2010 for some empirical literature grounded on that theory), the implied microtheoretical question of how one should expect income distribution to affect, via demand, firm output choices is largely left unanswered.⁶ In the present paper we address this point by comparing monopolistic and perfectly competitive markets with network externalities. Firm output choices are examined in a context where demand changes are due to shifts in the distribution of the consumers' willingness to pay. This is modelled by assuming that market demand derives from the cumulative distribution of consumers' incomes under the hypothesis of unit demand, and by introducing network externalities into consumer preferences. In this sense, we interpret the consumers' heterogeneity in terms of a non-degenerate income distribution – accordingly, we focus on the relationship between the equilibrium network

 $^{^6}$ An exception is the work by Tangerås (2014), in which income effects are accounted for in the standard model of network competition.

size and the personal distribution of incomes.⁷ Following Rohlfs (1974) and Economides and Himmelberg (1995), we model consumer utility in the presence of demand-side externalities as a function of the expected network size that equals, under fulfilled expectations, the actual network size⁸ – which, as is well known, causes the demand curve to be hump-shaped. We examine the firms' reactions to distributive shocks in the two polar cases of a perfect competition and monopoly, and ask how changes in income distribution interact with the strength of network effects in determining the optimal firms' choices and hence market equilibria.⁹ These changes in income distribution are modeled as first and second order stochastic dominance shifts of the distribution itself (about which we make no a priori assumption): as is well known, the former entails an increase in aggregate (mean) income, while the latter allows considering purely distributive changes amounting to inequality shocks in a well defined sense.

Overall, we find that in the perfect competition case both kinds of income changes exert a positive effect on equilibrium output levels, provided constant marginal costs are sufficiently low. On the other hand, in the monopoly case

⁷Since we model the distribution of the consumers' willingness to pay as grounded on income heterogeneity, our approach might be seen as complementary to other works focusing on preference heterogeneity (e.g., Katz and Shapiro, 1985; Lambertini and Orsini, 2001).

⁸See Swann (2002) for an investigation of the functional form of network effects, and Kate and Niels (2006) for an analysis of the properties of fulfilled-expectations demand. Working with such a demand - as we do - amounts to assuming that firms are able to commit themselves to output levels which consumers may use to arrive at fulfilled expectations. This should be contrasted with the very general framework provided by Amir and Lazzati (2011) in the context of oligopoly, based on the notion of "Fulfilled Expectations Cournot Equilibrium" (Katz and Shapiro, 1985): in that case, firms do not try to affect the customers'expectations of market size, possibly because of their inability to make credible output commitments. As Amir and Lazzati observe, the issue of the more appropriate setup "is an empirical matter, and it may well be that the answer will vary according to industry characteristics, in particular those relating to firms' ability to credibly commit (observability conditions, firm reputation, government participation, marketing and public awareness of the product, etc.)" (p.2394)). Since we are mainly concerned with monopoly, our option is consistent with their observation that "the plausibility of the FECE concept increases with the number of firms present in the market" (p.2394).

⁹The way income inequality can affect the firm's optimal choices and equilibrium is studied, among others, by Foellmi and Zweimüller in a monopolistic competition model with product diversity (2004), and in a growth model with innovators (2006).

a crucial role is played by the interplay between the given cost level, and the way the network externality and income distribution contribute to determine the price elasticity of demand. Indeed, while in general a strong externality narrows the scope for monopoly power, one key insight we draw from our analysis is that the firm will react differently to a change in the same level of its demand elasticity, following the different ways in which income distribution and the externality may combine to deliver that elasticity level. As a result, if the distributional shock is of the first order type, a monopolist will expand equilibrium output when a sufficiently weak network externality is associated to sufficiently high marginal costs; whereas she may react to such a shock by restricting her output, when a strong network externality is associated to a low enough level of the marginal costs. By contrast, a purely distributive second order shock (decreasing dispersion for given average willingness to pay) leads to higher output for the monopolist, if the network externality is sufficiently weak and marginal costs lie within some interval which – depending on parameters – may include zero costs.

The paper is organized as follows. In Section 2 market demand is derived within a general discrete choice framework with network externalities, while in Section 3 we enquire about the way different (first or second order stochastic dominance) distributional shifts of the consumers' willingness to pay affect the hump-shaped demand curve. Sections 4 and 5 present our main results on how these distributional changes affect market equilibria, in the polar cases of perfect competition and monopoly, respectively. Finally, some concluding remarks are gathered in Section 6.

$\mathbf{2}$ Network externalities and market demand

In this section we set out our basic assumptions. Let s(y,x), s(y,0) = 0, be the (gross) surplus enjoyed by a consumer with income $y \in [y_m, y_M], 0 \le$ $y_m < y_M$, when she consumes one unit of the network commodity, where x denotes the network size. The standard in difference condition at price $p \geq 0$ identifies the marginal consumers by their income level y^* such that $s(y^*, x) = p$. Letting subscripts denote derivatives, by standard assumptions $y^* = y(p, x)$ satisfies $y_p(p,x) > 0$ and $y_x(p,x) < 0.10$ For any given pair (p,x), the condition $y \ge y(p, x)$ identifies the set of buyers.

Let now $F(y,\theta)$ be the distribution of income, so that $F:[y_m,y_M]\times\Theta\to$ [0,1], where $\theta \in \Theta$ is a parameter to be made precise below.¹¹ If the whole population is normalized to unity, market demand for given network size x is given by

$$D(p, x; \theta) = 1 - F(y(p, x), \theta) \tag{1}$$

clearly decreasing in p and increasing in x. By the standard condition of fulfilled expectations, $x = D(p, x; \theta)$, any consistent price-quantity pair has to satisfy

$$x = 1 - F(y^*, \theta) \tag{2}$$

from which the (inverse) demand function $p(x,\theta)$ is derived.

It is well known that the slope of $p(x,\theta)$ can in general be positive or negative,

Possible specifications are y(p,x)=p/v(x), with v(x) positive and increasing (Economides and Himmelberg, 1995), or y(p,x)=p-kx with k>0 (Katz and Shapiro, 1985).

11 In general it will be $\Theta\subseteq\mathbb{R}$, the boundaries of Θ depending on the specific model at hand.

depending on x: indeed, by (2) p=0 is consistent with both x=0 (demand price is zero when network size is zero), and x=1 (all consumer buy for free, and network size is at maximum width).¹² Letting $f(y,\theta) = F_y(y,\theta)$ denote the positive income density, this slope can easily be obtained as

$$p_x(x,\theta) = -\frac{1 + f(y^*, \theta)y_x(p, x)}{f(y^*, \theta)y_p(p, x)}$$
(3)

which, recalling that $y_x(p, x) < 0$, and defining the (positive) elasticities $\varepsilon^x(p, x) = -(y_x x/y^*) > 0$ and $\varepsilon^p(p, x) = y_p p/y^*$, amounts to

$$p_x(x,\theta) = -\frac{1 - \eta(y^*,\theta)\varepsilon^x(p,x)}{\eta(y^*,\theta)\varepsilon^p(p,x)} \frac{p}{x}$$
(4)

where $\eta(y,\theta) = yf(y,\theta)/[1 - F(y,\theta)]$ is the (non negative) elasticity of $1 - F(y,\theta)$. This distribution elasticity can be used to characterize the income distribution, and will play a major role in what follows.

Easy manipulations allow one to note some interesting relationship between elasticities. On the one hand, the elasticity of demand from definition (1) is simply given by

$$H(p,x;\theta) = -\frac{\partial D(p,x;\theta)}{\partial p} \frac{p}{D(p,x;\theta)} = \eta(y^*,\theta)\varepsilon^p(p,x)$$
 (5)

which can be taken as the no-externality demand elasticity; ¹³ on the other hand,

 $^{^{12}}$ Actually, one can have $p=p_m>0$ at x=1, whenever $y(p_m,1)=y_m$ solves for a positive price, that is, whenever the poorest consumer can afford to buy at p_m (see Examples 1 and 2 below). Most of the literature implicitly assumes $y_m=0$, which implies $p_m=0$.

below). Most of the literature implicitly assumes $y_m = 0$, which implies $p_m = 0$.

13 The demand function would then be $1 - F(y^*, \theta)$, which can be thought of as the 'base' demand, whose price elasticity amounts to the distribution elasticity weighted by the p-elasticity of y^* . With no network effects, the latter would be one for $s(y^*, \cdot) = y^*$ independently of x (e.g., Benassi $et \ al.$, 2002).

the price elasticity from Equation (4) obviously satisfies

$$\Gamma(p, x; \theta) = -\frac{dx}{dp} \frac{p}{x} = \frac{\eta(y^*, \theta)\varepsilon^p(p, x)}{1 - \eta(y^*, \theta)\varepsilon^x(p, x)}$$
(6)

such that, with no network effect (i.e., $y_x = 0 = \varepsilon^x(p, x)$), one would have $\Gamma = H$. Equations (5) and (6) may be specialized to well known formulation of y^* . If $y^* = p - kx$, we have, $H = \eta(y^*, \theta) + kf(y^*, \theta)$ and (6) reduces to

$$\Gamma_1(p, x; \theta) = \frac{\eta(y^*, \theta) + kf(y^*, \theta)}{1 - kf(y^*, \theta)} \tag{6'}$$

obviously yielding $\Gamma_1 = \eta$ whenever k = 0. On the other hand, if $y^* = p/v(x)$, we have $\varepsilon^p(p, x) = 1$ and $\varepsilon^x(p, x) = e(x)$, with e(x) the (positive) elasticity of $v(\cdot)$. Hence, $H = \eta(y^*, \theta)$ and (6) boils down to

$$\Gamma_2(p, x; \theta) = \frac{\eta(y^*, \theta)}{1 - \eta(y^*, \theta)e(x)} \tag{6"}$$

which again gives $\Gamma_2 = \eta$ for e(x) = 0.

We are now in the position to address the issue of the effects of distributional shocks on the demand curve.

3 Income distribution, network externalities, and the demand curve

In this section we enquire about the way shifts in the income distribution, modeled by changes in the parameter θ , affect the demand curve. To this end, we note preliminarily that, given (1), the following must hold

$$p_{\theta}(x,\theta) = -\frac{F_{\theta}(y^*,\theta)}{f(y^*,\theta)y_p(p,x)} \tag{7}$$

which of course has different meanings according to the kind of shock one is studying. Before going into the details of the latter, we note that in general the demand curve shifts upwards or downwards according as F_{θ} is negative or positive, that is, according as a change in θ shifts the distribution F down or up around income y^* .

3.1 Increasing aggregate income: First Order Stochastic Dominance

Let now θ be a parameter measuring first order Stochastic Dominance (FSD). This means that

$$F_{\theta}(y,\theta) \le 0 \tag{8}$$

for all $y \in [y_m, y_M]$ (the inequality holding strictly somewhere). As is well known, if θ is a FSD parameter, an increase thereof makes all income classes richer, in the sense that for any given y the probability decreases of having income below y: accordingly, aggregate (mean) income μ is increasing in θ .

Unsurprisingly, (7) implies that this distributional shock shifts up the demand curve, as $p_{\theta}(x,\theta) > 0$ for all $x \in (0,1)$, which in turn means that for a given p the critical mass is now lower: a richer market makes for the network externality to have a stronger effect. As an example, Figure 1 reports the case where $y(p,x) = p/\sqrt{x}$, and $f(y,\theta) = 1/\theta$, so that an increase in θ 'stretches'

rightwards a uniform distribution with support $[0,\theta]$: higher θ means higher demand at all prices, and hence lower critical mass for a given constant marginal cost c>0.14

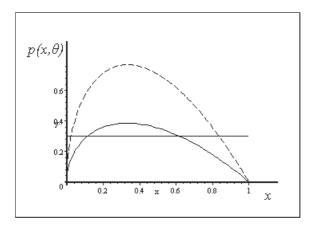


Fig. 1: Demand shift with FSD shock.

Rather obviously, if c = p is the supply curve of a perfectly competitive industry working at constant marginal costs, higher θ (dashed curve) means also higher equilibrium quantity: in a richer market, the network settles at a larger size.

3.2 Increasing concentration: Second Order Stochastic Dominance

A standard way to formalize income concentration is via the notion of Second Order stochastic dominance (SSD). The parameter θ shifts the distribution is

¹⁴Constant marginal costs are assumed throughout the paper, as common in this literature (e.g., Katz and Shapiro, 1985; Cabral *et al.*, 1999; Cabral, 2011). Such a cost structure allows us to focus on the demand side of the market and obtain tractable model solutions.

the SSD sense if

$$\int_{y_m}^{y} F_{\theta}(z, \theta) dz \le 0 \tag{9}$$

for all $y \in [y_m, y_M]$. It is well known that, under this definition, higher θ means a less unequal distribution – an inequality averse social planner would prefer it to a lower θ distribution; if the further restriction is added that $\int_{y_m}^{y_M} F_{\theta}(z, \theta) dz = 0$ (i.e., mean income is not altered by changes in θ), θ ranks equal mean distributions by their Lorenz curve.¹⁵ This we shall assume to be the case, which allows us to focus on purely distributive effects.

Now notice that the condition that different values of θ leave mean income unchanged, together with (9), implies that the function $F_{\theta}(y,\theta)$ crosses zero at least once, being negative around $F_{\theta}(y_m,\theta) = 0$. This immediately implies, from (7), that $p_{\theta} = 0$ for all points (p,x) on the demand curve, such that the income of the consumers who are marginal at (p,x), $y^* = y(p,x)$, solves $F_{\theta}(y^*,\theta) = 0$: following a change in θ the before-change and the after-change demand curves cross at least once. We can formalize this intuition in the following proposition:

Proposition 1 Let θ be an equal-mean SSD shift variable of the income distribution $F(y,\theta)$. Then, following a marginal change in θ the (inverse) demand functions cross at least once, the rightmost crossing being such that the lower concentration curve cuts from above the higher-concentration curve.

Proof. See the Appendix \blacksquare

A noteworthy case may be that of 'single crossing', in which case $F_{\theta}(\cdot, \theta) = 0$

 $^{^{15}}$ Atkinson (1970). See Lambert (2001 ch.3) for an overall assessment of the welfare-theoretic foundations of inequality measures.

is verified in the interior of $[y_m, y_M]$ only once: Proposition 1 and Equation (2) then imply that the demand curves cross only once, as can be seen in Figure 2.16

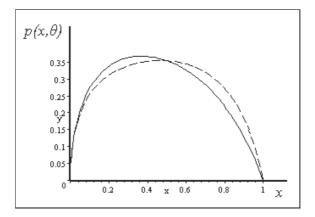


Fig. 2: Demand shift with single crossing SSD shock.

We are now ready to use our framework to enquire about the way market equilibrium is affected by a change in the distribution of income across consumers, which we model as a FSD (aggregate income) or a SSD (concentration) change in the parameter θ of $F(\cdot,\theta)$. We focus on the polar cases of perfect competition and monopoly, and assume throughout constant marginal costs, $c \geq 0$.

¹⁶ We use a Cauchy distribution $f(y,\theta) = 2\theta/\{[4\theta^2 + (2u-1)^2] \arctan((2\theta)^{-1})\}$, normalized over [0, 1], unimodal and symmetric around its mean $\mu = 1/2$; in this example $\theta > 0$ is an inverse single crossing ssd parameter, with higher θ associated to lower concentration. Using $y^* = p/\sqrt{x}$, we have $p(x,\theta) = \sqrt{x}\{\theta \tan[(1-2x)\arctan((2\theta)^{-1})] + 1/2\}$. Figure 2 compares p(x,1/2) (solid curve) with p(x,1/4) (dashed curve): since $f(y,\theta)$ is symmetric, crossing occurs at x = 1/2.

4 Income distribution and market equilibrium: perfect competition

Given a flat supply curve, the perfect competition case is in general quite simple, particularly so as far as a FSD shock is concerned: as already seen in Section 3.1, such a shock shifts upwards the demand curve: hence it lowers the critical mass, and (assuming equilibrium to be at the stable demand-supply intersection) it raises equilibrium output (see again Figure 1).

As to the SSD case, any given increase in income concentration as measured by a change in θ can in principle have different effects, depending on the position of the intersection of the (flat) supply curve with the after-shock demand curve: indeed, from Proposition 1 we know that multiple or single crossing of the demand curves may take place, according as the SSD shift of the distribution entails multiple or single crossing of the latter. However, if the marginal costs are sufficiently low, greater concentration always yields higher output: from the same Proposition 1, the demand curve shifts out for sufficiently high quantity levels. We can formalize this in the following:

Proposition 2 Let θ be an equal-mean SSD shift variable of the distribution $F(y,\theta)$: then there exists a level $\overline{c} > 0$ of the marginal cost, such that an increase in income concentration leads to higher output under perfect competition for all $c < \overline{c}$.

Proof. Let $p(x,\theta)=c$ identify the competitive (stable) equilibrium for some given marginal cost $c\geq 0$. By implicit differentiation, equilibrium output increases following an increase in θ if $dx/d\theta=-(dp/d\theta)/(dp/dx)>0$. Since dp/dx<0 at equilibrium, $dx/d\theta>0$ holds if $dp/d\theta>0$ which, by (7), occurs

whenever $F_{\theta}(y(c,x),\theta) < 0$. Let now $\overline{y} \in (y_m,y_M)$ be the lowest income value satisfying $F_{\theta}(\cdot,\theta) = 0$: then by Proposition 1 it must be $F_{\theta}(y,\theta) < 0$ for all $y < \overline{y}$. Also, let $\overline{c} > 0$ be defined by $y(\overline{c},x) = \overline{y}$: such \overline{c} certainly exists and is unique, since (a) $\lim_{p\to 0} y(p,x) = y_m$ and $\lim_{p\to \infty} y(p,x) = y_M$ (all consumers buy at nil price and none does for a sufficiently high price); (b) $y_p(p,x) > 0$ for any given positive $x \in (0,1)$. Then for any $c < \overline{c}$ we have $y(c,x) < \overline{y}$, and hence $F_{\theta}(y(c,x),\theta) < 0 = F_{\theta}(y(\overline{c},x),\theta)$, so that indeed $dp/d\theta > 0$.

The economics behind Proposition 2 is actually quite straightforward: a SSD shock lowers by definition the weight of 'low' income consumers on overall population. This accounts for two final remarks which can be made about the perfect competition case. First, the result is quite general, in the sense of being independent of there being single or multiple crossing of the distribution – in both cases 'poor' consumers weigh less. Secondly, the output expansion effect of greater income concentration is conditional on the level of marginal costs only, in the sense that \bar{c} is strictly positive: as c tends to zero, the level is reached at which higher demand is forthcoming, precisely because the lower weight of poor consumers becomes effective – equilibrium output is bound to increase independently of the strength of the externality effect as measured by the elasticity ε^x . As we shall see, this is not so in the monopoly case, to which we now turn.

5 Income distribution and market equilibrium: monopoly

In the standard monopoly model, the usual elasticity condition must hold at the profit-maximizing price-quantity pair (p^*, x^*) such that $p^* = p(x^*, \theta)$:

$$p(x^*, \theta) \left(1 - \frac{1}{\Gamma(p^*, x^*; \theta)} \right) = c \tag{10}$$

about which two general considerations stand out.

First, one can re-write (10) as

$$p(x^*, \theta) \left(1 - \frac{1}{H(p^*, x^*; \theta)} + \sigma(p^*, x^*) \right) = c$$
 (10')

where $0 \leq \sigma(p,x) = \varepsilon^x(p,x)/\varepsilon^p(p,x)$, and $H(p^*,x^*;\theta) = \eta(y^*,\theta)\varepsilon^p(p^*,x^*)$ is the no-externality price-elasticity of demand: indeed, the weaker the network externality effect measured by $\varepsilon^x(p,x)$, the closer is the monopoly solution to the standard case. Notice that (10') implies a Lerner index (and hence a price-cost margin) which is lower, the stronger the externality: in this sense the latter narrows the scope for monopoly power.

Secondly, the second-order conditions for a maximum (given constant marginal costs) impose that the left-hand side of (10) (the marginal revenue function) be downward sloping, while the profit-maximizing price must exceed marginal cost. All of which implies that the pair (p^*, x^*) has to lie on the downward sloping region of the demand curve. Letting y^* be the income of the marginal

consumer, this means that we can use (4) to obtain

$$\eta(y^*, \theta) \le \frac{1}{\varepsilon^x(p^*, x^*)} \tag{11}$$

with equality holding where the demand curve has a maximum. On the other hand, Equation (10) implies that the demand elasticity be not smaller than one, which gives

$$\eta(y^*, \theta) \ge \frac{1}{\varepsilon^x(p^*, x^*) + \varepsilon^p(p^*, x^*)} \tag{12}$$

where we use Equations (6) and (11), and equality holds when marginal revenue is zero.

Equations (11) and (12) characterize the profit maximizing equilibrium by upper and lower bounds on the position of the marginal consumer along the income scale, which depend on the strength of the externality and price effects at the individual level. In order to parametrize the model with respect to the externality, from now on we assume ε^x to be constant; if one also sets $\varepsilon^p = 1$, we have $\varepsilon^x(p^*, x^*) = \varepsilon^x = \sigma$, to be treated as a parameter.¹⁷ Under these assumptions, marginal revenue $M(x, \theta; \sigma)$ is

$$M(x,\theta;\sigma) = p(x,\theta) \left(1 - \frac{1}{\eta(y(p(x,\theta),x),\theta)} + \sigma \right)$$
(13)

where we substituted back into (10) for the definition (5) of H. Given con-

¹⁷This is often implicit in many utility functions used to model network externalities (e.g., Economides and Himmelberg, 1995). Actually, for our purposes σ could be treated as a parameter so long as the ratio $\varepsilon^x/\varepsilon^p$ was kept constant; on the other hand, ε^p has just a scale effect on the way a change in price affects the income of the marginal consumer: with ε^p constant, the relative change of the latter is independent of aggregate demand x (as well as of income level); in this sense, $\varepsilon^p = 1$ can be looked at as a normalization.

stant marginal costs $c \geq 0$, the issue whether equilibrium output reacts positively to a (FSD or SSD) change in θ boils down to studying the sign of the derivative $M_{\theta}(\cdot, \theta; \sigma)$ around $M(x^*, \theta; \sigma) = c$, crucial information in this respect coming from the income of the marginal consumer having to satisfy $1/(1+\sigma) \leq \eta(y^*, \theta) \leq 1/\sigma$.

We now take up in turn the first order and the second order stochastic dominance cases.

5.1 Increasing aggregate income: network externalities and monopoly equilibrium

In this section we enquire about the reaction of the monopolist firm to a demand increase driven by a FSD increase in mean income. Two preliminary remarks are in order.

First, we shall focus on a (very wide) subset of FSD shocks to F, which can be identified by means of the income share elasticity (Esteban, 1986). The latter is a function $\pi(y,\theta)$ which obeys the following definition

$$\pi(y,\theta) = \lim_{h \to 0} \frac{d\log\left(\frac{1}{\mu} \int_{y}^{y+h} x f(x,\theta) dx\right)}{d\log y} = 1 + \frac{y f_y(y,\theta)}{f(y,\theta)}$$

where μ is average income. This elasticity measures the relative marginal change in the share of income accruing to class y, brought about by a marginal increase in y. Esteban (1986) shows that the conventional density representation of the size distribution of income can be mapped one-to-one with π , and identifies restrictions on π which seem empirically well supported.¹⁸ Using this definition,

¹⁸ These restrictions are the weak-weak Pareto Law (i.e., π approaches some negative constant as y tends to infinity), the existence of at least one mode (i.e., $\pi(y, \theta) = 1$ has at least one

a noteworthy class of FSD shock to the income distribution is identified by the condition that an increase in θ shifts up the π function for all values of $y \in [y_m, y_M]$, that is

$$\pi_{\theta}(y,\theta) \ge 0 \tag{15}$$

This condition covers most applications, and obtains when the function $\lambda(y,\theta) = f_{\theta}(y,\theta)/f(y,\theta)$ is increasing in y – a case which is known in the contract theoretic literature as 'monotone likelihood property'.¹⁹

Secondly we shall assume throughout that the distribution elasticity $\eta(y,\theta)$ is increasing in y, which is equivalent to the condition

$$\eta(y,\theta) + \pi(y,\theta) > 0 \tag{16}$$

This restriction is satisfied by most currently used distributions,²⁰ and implies that the marginal revenue function is downward sloping when so is the demand function (which in turn is a necessary condition in equilibrium for maximum profit when marginal costs are constant).²¹

Given these assumptions, from the discussion of Section 3 we know that a FSD shift of the distribution raises the demand price at any quantity $x \in (0,1)$,

solution), and that π declines at a constant rate: a generalized Gamma distribution satisfies all of these. For an empirical application of Esteban's model, see Chakravarty and Majumder (1990). In several contexts the π this formulation can be analytically convenient, as "the Pareto, Gamma and Normal density functions correspond to constant, linear and quadratic elasticities, respectively" (Esteban, 1986, p.442).

 $^{^{19}}$ For a general assessment on the relationship between the behaviour of π and stochastic dominance, see Benassi and Chirco (2006).

 $^{^{20}}$ E.g., this property is shared by the Gamma, Lognormal, Exponential and Uniform distributions. The limit case is the standard Pareto distribution, for which $\eta = -\pi$ is constant, so that $n + \pi = 0$ for all x

that $\eta + \pi = 0$ for all x. ²¹ Using (13), we have $sign\{M_x(x,\theta)\} = -sign\{(1 - \eta\sigma)(1 - 1/\eta + \sigma) + (\pi + \eta)/\eta\}$, where constraints (11) and (12) ensure that $(1 - \eta\sigma)(1 - 1/\eta + \sigma) > 0$.

as consumers are richer on average. This is in principle consistent with both increasing and decreasing equilibrium quantity, as the before-change and after-change marginal revenue curves might cross – in which case the level of the marginal costs, vis à vis the level of marginal revenue at which the crossing occurs, is of course crucial. Indeed, a FSD increase in aggregate income and market demand may also deliver a decrease in output:

Proposition 3 Assume a change in θ is a FSD shock to F such that (15) applies, and let F satisfy (16). Then (a) there exist levels $\overline{\sigma} > 0$ of σ and $\overline{c} > 0$ of c such that, for all positive σ lower than $\overline{\sigma}$, equilibrium output increases following an increase in θ for all $c \in (\overline{c}, p_{\text{max}}]$; (b) if the income density satisfies $y_m f(y_m, \theta) > 0$ and $\pi(y_m, \theta)$ is finite, there exist levels $\widetilde{\sigma} \geq 0$ of σ and $\widetilde{c} > 0$ of c such that, for all σ greater than $\widetilde{\sigma}$, equilibrium output decreases following an increase in θ for all $c \in [0, \widetilde{c})$.

Proof. See the Appendix \blacksquare

Proposition 3 sets up sufficient conditions on costs and the strength of the network externality, for output to react (positively or negatively) to a demand increase driven by a FSD shock to the income distribution. The boundary assumptions relevant for case (b) amount to having a positive non-vertical density at the minimum income level.

As a premise to commenting on this result, notice first a general feature of the framework we are using: since by (6) overall elasticity Γ obeys $\Gamma = \eta/(1 - \eta \sigma)$, the same level of the price elasticity of demand is consistent with different combinations of η and σ ; however, the firm's reaction to a demand shock for given Γ will be sensitive to the specific combination at hand. Indeed, for any

given level of Γ , high η (low σ) implies the marginal consumer is 'rich' (i.e. only high-income consumers buy), while low η (high σ) implies the marginal consumer is 'poor' (i.e. both poor and rich consumer are served by the firm). Secondly, recall that in a standard monopoly model, equilibrium output will increase following an increase in demand, whenever the firm is led to exploit its extensive margin: i.e., to keep a 'low' price and take advantage of larger demand, which of course requires a high enough demand price elasticity.

By Proposition 3(a), if costs are sufficiently high, a low externality makes for output expansion. High costs mean that the price-quantity pair lies near the turning point of the (inverse U-shaped) demand curve, where price-elasticity is high – and is indeed infinite at the turning point itself. This high elasticity is given by a combination of η and σ such that the value of $1/\eta$ is near that of σ : indeed, at $p_x(x,\theta) = 0$ the externality-driven marginal increase in the willingness to pay is offset by the ordinary negative effect of quantity: if the externality is strong, so must be at that point the marginal negative effect of quantity on the consumers' willingness to pay. In elasticity terms, the latter is simply given by (the inverse of) the elasticity of demand, i.e. $1/\eta$ as the no-externality (direct) demand function is simply $1-F(y^*,\theta)$: thus a strong externality around $p_x(x,\theta) = 0$ is offset by a strong inverse elasticity, corresponding to a low-income marginal consumer and a low price. However, for marginal revenue to shift out, the change in income distribution should be such that the marginal consumer is one with (relatively) high income: indeed, high income density is the component of demand raised by an FSD shock; and since η is increasing in income, the relevant value of η is itself 'high', which in turn is consistent with an high level of overall price elasticity only when σ is sufficiently low. In other words, it is true

in general that the firm is led to expand its output when the increase in demand is associated to a high price elasticity; but since the increase in demand is due to a distributive shock which necessarily delivers a high income marginal consumer, this high price elasticity is bound to results from a combination of high η and low σ . In a sense, a high distribution elasticity is a substitute for a low externality: the incentive to output expansion is due more to the high willingness to pay of the marginal consumer than to the externality effect. While the former is a consequence of the shock being FSD, the latter is inevitable: if a high σ was coupled with a high η , overall price elasticity would be too strong, to the point of having a positively sloped demand curve and profit being unbounded.

By contrast, the firm's reaction to higher demand will be to decrease its output whenever it is convenient to exploit the intensive margin, which in general is the case when the demand increase is associated to a strong enough decrease in its price elasticity.²² By Proposition 3(b), on the one hand this happens when costs are low enough, as they have to lie beneath the level at which marginal revenue cross; on the other hand, this crossing does actually take place when the externality effect is strong enough: while it is true that higher σ means ceteris paribus higher Γ , it is also true that marginal revenue is zero when elasticity Γ is one, a lower bound to which equilibrium elasticity necessarily tends as costs tend to zero – and which yields marginal revenue crossing only if elasticity is high enough to begin with.²³ More precisely, since η is increasing in income, a high value of σ in the neighborhood of the point where $\eta = 1/(1 + \sigma)$ means a

²²That this is quite a possibility was already pointed out by J. Robinson (1969, p.70), who argued that in the monopoly case an increase in the consumers' income may decrease price elasticity so much as to deliver a lower equilibrium output (Benassi and Chirco, 2004).

 $^{^{23}}$ It should be noticed that if $\sigma=0$ (no network effect), for marginal revenues to cross following a marginal increase in θ a strong enough decreasing effect on η (and hence a strong effect on the income distribution) would be called for – something which Proposition 3 does not require.

low income of the consumer who is marginal at equilibrium: 'poor' consumers (whose density is lowered by an FSD shock) weigh relatively high on demand and marginal revenue shifts down, which makes it more convenient to exploit the intensive margin.

Thus overall the effect on output of a FSD shock to income will be positive or negative, depending on the trade-off between costs and externalities: high externality and low costs point to decreasing output, low externality and high cost point to increasing output. Here we report a simple example.

Example 1 Suppose $y(p,x) = px^{-\sigma}$ with $\sigma > 0$, and let the income distribution be exponential over the support $[1,\infty)$: hence, $f(y,\theta) = e^{(1-y)/\theta}/\theta$ and $\theta > 0$ is a FSD parameter – indeed, higher θ means higher mean as $\mu = 1 + \theta$, while $F(y,\theta) = 1 - e^{(1-y)/\theta}$ is clearly decreasing in θ for $y \in (1,\infty)$.²⁴ It is easily verified that the (inverse) demand curve obeys

$$p(x, \theta; \sigma) = (1 - \theta \ln x) x^{\sigma}$$

which has a turning point at $x_{\text{max}} = e^{(\sigma - \theta)/\sigma \theta}$. The corresponding marginal revenue function is

$$M(x, \theta; \sigma) = \{1 + \sigma - \theta \left[1 + (1 + \sigma) \ln x\right]\} x^{\sigma}$$

Following a marginal increase in θ , $M_{\theta}(x, \theta; \sigma)$ is positive (negative) as x is lower (higher) than $e^{-1/(1+\sigma)} = x'$: this places restrictions on σ , since the viable

²⁴The Esteban elasticity is $\pi(y,\theta) = 1 - y/\theta$, clearly obeying (15).

The External elasticity is $h(y, \sigma) = 1 - y/\sigma$, clearly obeying (15). ²⁵ For the problem to make sense, we must have $x_{\text{max}} \in (0, 1)$, which imposes $\theta > \sigma$. The income of the marginal consumer at $(x_{\text{max}}, p_{\text{max}})$ is $y_{\sigma} = \theta/\sigma > 1$, such that $\eta(y_{\sigma}, \theta) = y_{\sigma}/\theta = 1/\sigma$. Notice that $y(p, 1) = y_m = 1$ solves for $p = p_m = 1 > 0$: see f.note 12.

portion of the marginal revenue curve corresponds to the downward sloping region of the demand curve, so that output expansion requires $x' > x_{\text{max}}$. As a consequence, $M_{\theta}(x,\theta;\sigma) > 0$ requires $\sigma < \frac{1}{2} \left(\sqrt{1+4\theta} - 1 \right) = \overline{\sigma}$, strictly positive for all $\theta > 0$; on the other hand $M_{\theta}(\cdot,\theta;\sigma)$ is nil at x', where a marginal change in θ generates a crossing of the marginal revenue; hence, output increases for $c > M(x',\theta;\sigma) = (1+\sigma) \, e^{-\sigma/(1+\sigma)} = \overline{c}$, provided of course that $c < p_{\text{max}} = M(x_{\text{max}},\theta;\sigma) = \theta e^{(\sigma-\theta)/\theta}/\sigma$. By the same token, marginal revenue shifts down following a marginal change in θ for all $x \in (x',1]$: this means that $x_{1+\sigma}$, such that $M(x_{1+\sigma},\theta;\sigma) = 0$, has to satisfy $x' < x_{1+\sigma}$, i.e. $e^{-1/(1+\sigma)} < e^{-1/(1+\sigma)+1/\theta}$, which is satisfied for all positive values of σ :²⁶ in this simple example we have $\widetilde{\sigma} = 0$ and, clearly, $\widetilde{c} = \overline{c}$, as marginal revenues cross only once.

In the next section we concentrate on income dispersion.

5.2 Monopoly equilibrium, network externalities, and income dispersion

Here we interpret the parameter θ as an index of SSD: an increase in θ is an equal-mean distributional shift which lowers inequality. Our result is as follows.

Proposition 4 Let θ be an equal-mean SSD shift variable of the income distribution $F(y,\theta)$, and let F satisfy (16). If the income density satisfies $y_m f(y_m,\theta) > 0$ and $\pi(y_m,\theta)$ is finite, then there exist a level $\tilde{\sigma} > 0$ of σ and a positive interval (\tilde{c}, \bar{c}) , such that, for all positive σ lower than $\tilde{\sigma}$, equilibrium output increases following an increase in θ for all $c \in (\tilde{c}, \bar{c})$. If σ is lower than $\tilde{\sigma} - 1 > 0$, then

²⁶ Marginal revenue will cross the zero axis within (0,1) if $\sigma < \theta - 1$. This is equivalent to the income $y_{\sigma+1}$ of the marginal consumer at $x_{1+\sigma}$ (zero marginal revenue), such that $\eta(y_{\sigma+1},\theta) = y_{1+\sigma}/\theta = 1/(1+\sigma)$, obeying $y_{1+\sigma} > y_m = 1$.

 $\widetilde{c} = 0$ and output increases for any nonnegative cost level lower than \overline{c} .

Proof. See the Appendix

We recall that (16) is required to hold in equilibrium by the second order conditions for maximum profits. Also, as was the case for Proposition 3(b), the boundary assumptions rule out that the density be vertical at the minimum income level.

The result of Proposition 4 points to the fact that (contrary to the FSD case) a low enough externality delivers an expansive effect on output for sufficiently low costs. Generally speaking, an increase in income concentration makes for both a higher density of middle income consumers and a lower density in the tails of the distribution, while the firm expands its output to match increasing demand whenever marginal revenue shifts out. This will be unambiguously the case, if costs fall within some range – too high a cost would lead to price middle income consumers out of the market and leave the firm with only high income consumers, whose density is falling; and, by the same token, too low a cost would bring in 'too many' low income consumers, whose decreasing demand would add to that of high-income consumers to counterbalance marginal revenue from increasing middle-income demand.

All of which will happen if σ is not too large, as we know that the same pricecost margin is associated to a different distribution of demand by income classes, according to the strength of the externality effect measured by σ : too strong an externality would be inconsistent with pricing out low-income consumers.²⁷

²⁷Higher externality means lower maximum willingness to pay: at the turning point where $p_x(x,\theta)=0$, one has $\eta\left(y^*,\theta\right)=1/\sigma$; since $\eta_y(y,\theta)>0$, higher σ means lower y^* , with $y^*=y(p,x)$ and $y_p>0$, which for given x yields lower p. Indeed, at $p_x(x,\theta)=0$ the externality driven marginal increase in the willingness to pay is offset by the ordinary negative

Indeed, if the externality is very low, zero costs are consistent with the income of the marginal consumer being high enough, for the firm to capture the increase in the weight of middle income while pricing out low income consumers. Here follows an example.

Example 2 Suppose again $y(p,x) = px^{-\sigma}$ with $\sigma > 0$, and let income be distributed as a simple uniform distribution over $\left[\frac{1}{2} - \frac{1}{\theta}, \frac{1}{2} + \frac{1}{\theta}\right] \subset [0, 1]$, so that the mean is $\mu = 1/2$: we then have $F(y,\theta) = \frac{1}{2} \left(1 + \left(y - \frac{1}{2}\right)\theta\right)$, where $\theta \ge 2$ is a SSD parameter.²⁸ It is easily verified that the (inverse) demand curve obeys

$$p(x, \theta; \sigma) = \left(\frac{1}{2} + \frac{1}{\theta} (1 - 2x)\right) x^{\sigma}$$

having a turning point at $x_{\text{max}} = \frac{\sigma}{4} \frac{2+\theta}{1+\sigma}$; ²⁹ the corresponding marginal revenue function is

$$M(x,\theta;\sigma) = \frac{1}{2\theta} \left[(2+\theta) (1+\sigma) - (\sigma+2) 4x \right] x^{\sigma}$$

which cuts the x-axis at $x_{\sigma+1} = \frac{2+\theta}{4} \frac{1+\sigma}{2+\sigma}$. Following a marginal increase in θ , demand curves cross at x = 1/2 as the distribution is symmetric, while

effect of quantity: if the externality is strong, so must be at that point the marginal negative effect of quantity on the consumers' willingness to pay. In elasticity terms, the latter is simply given by (the inverse of) the elasticity of demand, i.e. $1/\eta$ as the no-externality (direct) demand function is simply $1 - F(y^*, \theta)$: a strong externality is offset by a strong (inverse) elasticity, hence at a low-income marginal consumer and a low price.

²⁸With $\theta = 2$ one ricovers the ordinary uniform distribution on [0, 1]. The corre-

with $\theta=2$ one fielders the ordinary uniform distribution on [0,1]. The corresponding density is $f(y,\theta)=\theta/2$; its Esteban elasticity is $\pi(y,\theta)=1$, while $\eta(y,\theta)=2\theta y/[2+\theta(1-2y)]$, so that $\pi(y,\theta)+\eta(y,\theta)=(2+\theta)/[2+\theta(1-2y)]>0$ for all $y< y_M$.

²⁹ As the lowest income is $y_m=\frac{1}{2}-\frac{1}{\theta}$, the market is fully covered for x such that $y_m=px^{-\sigma}$, that is $\frac{1}{2}-\frac{1}{\theta}=\frac{1}{2}+\frac{1}{\theta}(1-2x)$; hence, $p(1,\theta;\sigma)=\frac{1}{2}-\frac{1}{\theta}>0$ for $\theta>2$, as the poorest consumer is able to buy at a positive price (see again f.note 10); also, we require $\sigma<\frac{4}{\theta-2}$ for $x_{\text{max}} \in (0,1)$. The income of the marginal consumer at the pair $(x_{\text{max}}, p_{\text{max}})$ is $y_{\sigma} = (0,1)$

for $x_{\max} \in (0,1)$. The final $\frac{1}{2} \frac{\theta + 2}{\theta(1+\sigma)}$, obeying $\eta(y_{\sigma}, \theta) = 1/\sigma$.

30 At which point the income of the marginal consumer is $y_{\sigma+1} = \frac{1}{2} \frac{2+\theta}{(2+\sigma)\theta}$, obeying $\eta(y_{\sigma+1},\theta) = 1/(\sigma+1).$

 $M_{\theta}(x,\theta;\sigma)$ is positive (negative) as x is higher (lower) than $\frac{1}{2}\frac{1+\sigma}{2+\sigma}=\overline{x}$. Since $M(\overline{x},\theta;\sigma)=\frac{1+\sigma}{2}\left(\frac{1}{2}\frac{1+\sigma}{2+\sigma}\right)^{\sigma}>0$ and $\overline{x}<1/2$ for all $\sigma>0$, output increases for any low enough cost level: i.e., $\widetilde{\sigma}=\infty,\,\sigma<\widetilde{\sigma}-1$ is satisfied for all σ , and $\widetilde{c}=0$. The upper bound on cost is then $\overline{c}=\min\left\{M(\overline{x},\theta;\sigma),M(x_{\max},\theta;\sigma)\right\}=p(x_{\max},\theta;\sigma)=\frac{1}{2\theta}\left(\frac{\sigma}{4}\right)^{\sigma}\left(\frac{2+\theta}{1+\sigma}\right)^{\sigma+1}$. \square

6 Concluding remarks

Markets with network externalities are likely to exhibit specific features, taking which into account led to revisiting many results in Industrial Organization theory. As is well known, one way to model the relevant externality boils down to market demand taking a hump-shaped pattern. In this basic framework, in this paper we enquired about the way demand is affected by changes in the distribution of the consumers' willingness to pay, and the related effects on market equilibria in the two polar cases of perfect competition and monopoly. Overall, while in the former case both a (first order stochastic dominance) increase in aggregate income and a (second order stochastic dominance) increase in concentration deliver higher equilibrium output (provided costs are sufficiently low), in the latter case a key role is played by the way income distribution and the externality effect combine themselves to give equilibrium price elasticity.

Although our framework is obviously constrained by its simplifying assumption (in particular with respect to constant marginal costs and unit individual demand), it would seem to support for the monopoly case two broad conclusions, which may be relevant also in a regulatory perspective. On the one hand, different industries may react differently to similar demand shocks, depending on the relative weight of the externality effect and the cost levels: thus, e.g., 'high costs' are consistent with a positive output reaction to a (first order stochastic dominance) demand expansion, while 'low costs' may support an output contraction, depending on the strength of the externality effect. On the other hand, the same industry may react differently to a demand shock, according as the latter is due to a first order or a (purely distributive) second order shock on the distribution of the consumers' willingness to pay.

Acknowledgements We would like to thank the audiences at the annual conferences of the Italian Economic Association (SIE 2012, Matera, Italy) and the Association of Southern European Economic Theorists (ASSET 2012, Limassol, Cyprus). The usual caveat applies.

References

- Aldebert, M., Ivaldi, M., and Roucolle, C. (2004), Telecommunications Demand and Pricing Structure: an Econometric Analysis. *Telecommunication Systems* 25, 89–115.
- [2] Alipranti, M. and Petrakis, E. (2013), Comparative Advertising in Markets with Network Externalities, Working Papers No. 1306, Department of Economics, University of Crete.
- [3] Amir, R. and Lazzati, N. (2011), Network Effects, Market Structure and Industry Performance, *Journal of Economic Theory* 146, 2389–2419.
- [4] Andrés, L., Cuberes, D., Diouf, M., and Serebrisky, T. (2010), The Diffusion of the Internet: A Cross-Country Analysis, *Telecommunications Policy* 34, 323–340.
- [5] Arthur, B. W. (1989), Competing Technologies, Increasing Returns and Lock-in by Historical Events, *Economic Journal* 99, 116–131.
- [6] Atkinson, A.B. (1970), On the Measurement of Economic Inequality, Journal of Economic Theory 2, 244–263.
- [7] Benassi, C., Chirco, A., and Scrimitore, M. (2002), Income Concentration and Market Demand, Oxford Economic Papers 54, 584–596.
- [8] Benassi, C. and Chirco, A. (2004), Income Distribution, Price Elasticity and the 'Robinson Effect', Manchester School 72, 591–600.
- [9] Benassi, C. and Chirco, A. (2006), Income Share Elasticity and Stochastic Dominance, Social Choice and Welfare 26, 511–525.

- [10] Bohman, H. (2008), Income Distribution and the Diffusion of Networks: An Empirical Study of Brazilian Telecommunications, *Telecommunications* Policy 32, 600–614.
- [11] Cabral, L.M.B. (2011), Dynamic Price Competition with Network Effects, Review of Economic Studies 78, 83–111.
- [12] Cabral, L.M.B., Salant, D. J., and Woroch, G.A. (1999), Monopoly Pricing with Network Externalities, *International Journal of Industrial Organiza*tion 17, 199–214.
- [13] Chakravarty, S.R. and Majumder, A. (1990), Distribution of Personal Income: Development of a New Model and its Application to U.S. Income Data, *Journal of Applied Econometrics* 5, 189–196.
- [14] Chinn, M.D. and Fairlie, R.W. (2006), The Determinants of the Global Digital Divide: a Cross-Country Analysis of Computer and Internet Penetration, Oxford Economic Papers 59, 16–44.
- [15] Chinn, M.D. and Fairlie, R.W. (2010), ICT Use in the Developing World: An Analysis of Differences in Computer and Internet Penetration, *Review of International Economics* 18, 153–167.
- [16] Choi, J.P. (1994), Irreversible Choice of Uncertain Technologies with Network Externalities, *The RAND Journal of Economics* 25, 382–401.
- [17] Conner, K.R. and Rumelt, R.P. (1991), Software Piracy: An Analysis of Protection Strategies, *Management Science* 37, 125–139.
- [18] Dogan, P. (2009), Vertical Networks, Integration, and Connectivity, *Journal of Economics and Management Strategy* 18, 347–392.
- [19] Economides, E. and Himmelberg, C. (1995), Critical Mass and Network Size with Application to the US Fax Market, Discussion Paper EC-95-11, Stern School of Business, New York University.
- [20] Economides, N. (1996a), The Economics of Networks, *International Journal of Industrial Organization* 14, 673–699.
- [21] Economides, N. (1996b), Network Externalities, Complementarities, and Invitations to Enter, European Journal of Political Economy 12, 211–233.
- [22] Esteban, J. (1986), Income Share Elasticity and the Size Distribution of Income, *International Economic Review* 27, 439–44.
- [23] Farrell, J. and Klemperer, P. (2007), Coordination and Lock-in: Competition with Switching Costs and Network Effects, in M. Armstrong and R. Porter R (eds.). *Handbook of Industrial Organization*, vol. 3. Elsevier, New York.
- [24] Farrell, J. and Saloner, G. (1985), Standardization, Compatibility, and Innovation, *The RAND Journal of Economics* 16, 70–83.
- [25] Farrell, J. and Saloner, G. (1986), Installed Base and Compatibility: Innovation, Product Preannouncements, and Predation, American Economic Review 76, 940–955.

- [26] Foellmi, R. and Zweimüller, J. (2004), Inequality, Market Power, and Product Diversity, *Economics Letters* 82, 139–145.
- [27] Foellmi, R. and Zweimüller, J. (2006), Income Distribution and Demand-Induces Innovations, *Review of Economic Studies* 73, 941–960.
- [28] Gandal, N. (2008), Network Effects Empirical Studies, in L.E. Blume and S.N. Durlauf (eds.). The New Palgrave Dictionary of Economics, 2nd edn. Palgrave Macmillan, New York.
- [29] Hahn, J.-H. (2004), The Welfare Effect of Quality Degradation in the Presence of Network Externalities, Information Economics and Policy 16, 535–552.
- [30] Howard, P.N., Busch, L., and Sheets, P. (2010), Comparing Digital Divides: Internet Access and Social Inequality in Canada and the United States, Canadian Journal of Communication 35, 109–128.
- [31] Hyytinen, A. and Toivanen, O. (2011), Income Inequality and Technology Diffusion: Evidence from Developing Countries, *Scandinavian Journal of Economics* 113, 364–387.
- [32] Kate, A. T. and Niels, G. (2006), Fulfilled-Expectations Equilibria in Network Demand, *Review of Network Economics* 5, 320–36.
- [33] Katz, M.L. and Shapiro, C. (1985), Network Externalities, Competition, and Compatibility, *The American Economic Review* 75, 424–40.
- [34] Katz, M.L. and Shapiro, C. (1994), Systems Competition and Network Effects, *The Journal of Economic Perspectives* 8, 93–115.
- [35] Kiiski, S. and Pohjola, M. (2002), Cross-Country Diffusion of the Internet, Information Economics and Policy 14, 297–310.
- [36] Kristiansen, E. and Thum, M. (1997), R&D Incentives in Compatible Networks, *Journal of Economics* 65, 55–78.
- [37] Laffont, J.-J., Rey, P., and Tirole, J. (1997), Network Competition: II. Price Discrimination, *The RAND Journal of Economics* 29, 1–37.
- [38] Lambert, P. J. (2001), The Distribution and Redistribution of Income, Manchester University Press, Manchester and New York.
- [39] Lambertini, L. and Orsini, R. (2001), Network Externalities and the Overprovision of Quality by a Monopolist, Southern Economic Journal 67, 969– 82.
- [40] Mocnik, D. and Širec, K. (2010), The Determinants of Internet Use Controlling for Income Level: Cross-Country Empirical Evidence, *Information Economics and Policy* 22, 243–256.
- [41] Robinson, J. (1969), The Economics of Imperfect Competition, 2nd edn. MacMillan, London and New York.

- [42] Rohlfs, J.H. (1974), A Theory of Interdependent Demand for a Communication Service, *Bell Journal of Economics and Management Science* 5, 16–37.
- [43] Shy, O. (2011), A Short Survey of Network Economics, Review of Industrial Organization 38, 119–149.
- [44] Suleymanova, I. and Wey, C. (2012), On the Role of Consumer Expectations in Markets with Network Effects, *Journal of Economics* 105, 101–127.
- [45] Swann, P.G.M. (2002), The Functional Form of Network Effects, *Information Economics and Policy* 14, 417–429.
- [46] Tangerås, T. (2014), Network Competition with Income Effects, *The RAND Journal of Economics* 45, 645–673.
- [47] Yano, M. and Dei, F. (2006), Network Externalities, Discrete Demand Shifts, and Submarginal-cost Pricing, *Canadian Journal of Economics* 39, 455–476.

Appendix

Proof of Proposition 1

Let $p(x,\theta)$ be the implicit demand curve derived from (2). Proving the proposition amounts to proving that (a) there exists at least one value of x, \overline{x} say, ssuch that $\frac{\partial p(\overline{x},\theta)}{\partial \theta} = p_{\theta}(\overline{x},\theta) = 0$; and (b) that $\frac{\partial^2 p(\overline{x},\theta)}{\partial x \partial \theta} = p_{\theta x}(\overline{x},\theta) > 0$ if \overline{x} is the highest value of x where a crossing takes place.

(a) Observe that $\int_{y_m}^{y_M} F_{\theta}(y,\theta) dy = 0$ implies that $F_{\theta}(y,\theta)$ takes on both negative and positive values, while $\int_{y_m}^{y} F_{\theta}(z,\theta) dz \leq 0$ for all y implies the existence of some $\overline{y} \in (y_m, y_M)$ such that $F_{\theta}(y,\theta) < 0$ for all $y < \overline{y}$, $F_{\theta}(y,\theta) > 0$ for any y greater than and close enough to \overline{y} , and $F_{\theta}(\overline{y},\theta) = 0$. Take now any quantity $x \geq 0$ and let $y(p(x,\theta),x) = \widehat{y}(x,\theta)$ be the income of the corresponding marginal consumers: using (2) and (3), it is straightforward that $\partial \widehat{y}(x,\theta)/\partial x = -1/f(\widehat{y}(x,\theta),\theta) < 0$, $\lim_{x\to 0} \widehat{y}(x,\theta) = y_M$, and $\lim_{x\to 1} \widehat{y}(x,\theta) = y_m$. Since this amounts to monotonicity, one can uniquely associate to \overline{y} the quantity \overline{x} such that $\widehat{y}(\overline{x},\theta) = \overline{y}$: there follows that, using (7), $p_{\theta}(\overline{x},\theta) = 0$.

(b) Let $x' > \overline{x}$: the corresponding income value satisfies $\widehat{y}(x',\theta) = y' < \overline{y}$ so that the same argument as above can be invoked to yield $F_{\theta}(y',\theta) < 0$ and hence, by (7), $p_{\theta}(x',\theta) > 0$; on the other hand, the argument can be reversed for any $x'' < \overline{x}$ close enough to \overline{x} , to the effect that for $y'' > \overline{y}$ close enough to \overline{y} , $F_{\theta}(y'',\theta) > 0$ and hence $p_{\theta}(x'',\theta) < 0$. Since by construction $x'' < \overline{x} < x'$, while $p_{\theta}(x'',\theta) < 0 = p_{\theta}(\overline{x},\theta) < p_{\theta}(x',\theta)$, $p_{\theta}(x,\theta)$ is increasing in x around \overline{x} , and hence $p_{\theta x}(\overline{x},\theta) > 0$. Finally, since \overline{y} is the lowest value of y such that $F_{\theta}(\cdot,\theta) = 0$, and $\widehat{y}(x,\theta)$ is monotonically decreasing in x, \overline{x} is the highest (i.e. rightmost) value of x such that $p_{\theta}(\cdot,\theta) = 0$.

Proof of Proposition 3

Consider the marginal revenue defined in (13). Letting subscripts denote derivatives, differentiation wrt θ yields

$$M_{\theta}(x,\theta;\sigma) = p_{\theta}(x,\theta) \left(1 - \frac{1}{\eta(\widehat{y},\theta)} + \sigma\right) + \frac{p(x,\theta)}{\eta^{2}(\widehat{y},\theta)} [\eta_{y}(\widehat{y},\theta)y_{p}(p(x,\theta),x)p_{\theta}(x,\theta) + \eta_{\theta}(\widehat{y},\theta)]$$

where $\widehat{y} = \widehat{y}(x,\theta) = y(p(x,\theta),x)$. To ease notation, let $\lambda(y,\theta) = f_{\theta}(y,\theta)/f(y,\theta)$: we have $\eta_{\theta}(y,\theta) = \eta(y,\theta) \left(\lambda(y,\theta) + \frac{F_{\theta}(y,\theta)}{1-F(y,\theta)}\right)$, and using (7) it is immediate to verify that $sign\{M_{\theta}(x,\theta;\sigma)\} = sign\{L(x,\theta)\}$, with

$$L(x,\theta) = -\frac{F_{\theta}(\widehat{y},\theta)}{1 - F(\widehat{y},\theta)} \left(1 - \frac{1}{\eta(\widehat{y},\theta)} + \sigma + \frac{\pi(\widehat{y},\theta)}{\eta(\widehat{y},\theta)} \right) + \lambda(\widehat{y},\theta)$$

where $\pi(y,\theta)$ is Esteban's income share elasticity. By differentiation it is easily seen that $\pi_{\theta}(y,\theta) > 0$ is equivalent to $y\lambda_{y}(y,\theta) > 0$, so that the class of FSD shocks identified by (15) delivers a monotonically increasing $\lambda(y,\theta)$.

(a) Let $p_{\text{max}} = p(x_{\text{max}}, \theta)$ be such that $p_x(x_{\text{max}}, \theta) = 0$. Consider the income level y_{σ} , defined from (11) by the condition $\eta(y_{\sigma}, \theta) = 1/\sigma$, and the associated price-quantity pair (p_{σ}, x_{σ}) , such that $p_{\sigma} = p(x_{\sigma}, \theta)$ and $y_{\sigma} = \hat{y}(x_{\sigma}, \theta)$. Clearly, $p_{\sigma} = p_{\text{max}}$ and

$$L(x_{\sigma}, \theta) = -\frac{F_{\theta}(y_{\sigma}, \theta)}{1 - F(y_{\sigma}, \theta)} \left(1 + \frac{\pi(y_{\sigma}, \theta)}{\eta(y_{\sigma}, \theta)} \right) + \lambda(y_{\sigma}, \theta)$$

Now notice that

- (a) $F_{\theta}(y,\theta) \leq 0$ for all y, with at most equality at the endpoints of the support, by the definition of FSD;
 - (b) given (16), $1 + \pi(y, \theta) / \eta(y, \theta) \ge 0$ for all y;
- (c) given (15), $\lambda(y, \theta)$ is monotonically increasing: hence, $\lim_{y \to y_m} \lambda(y, \theta) < 0$ and $\lim_{y \to y_M} \lambda(y, \theta) > 0$, since by definition

$$F_{\theta}(y_M, \theta) = \int_{y_m}^{y_M} f(y, \theta) \lambda(y, \theta) dy = 0$$

and $f(y,\theta) > 0$ for $y \in (y_m, y_M)$. So there is a unique value $y_\theta \in (y_m, y_M)$ such that $\lambda(y_\theta, \theta) = 0$, with $\lambda(y, \theta) \leq 0$ as $y \leq y_\theta$.

From (a), (b) and (c) there follows that $L(x_{\sigma},\theta) > 0$ if $y_{\sigma} > y_{\theta}$, in which case there exists some $y' \in [y_{\theta}, y_{\sigma})$ such that $L(x,\theta) > 0$ for any x such that $y^*(p(x,\theta),x)$ lies in $[y',y_{\sigma}]$. Since y_{θ} depends only on the income distribution, while clearly y_{σ} is decreasing in σ and such that $\lim_{\sigma \to \infty} y_{\sigma} = y_{m}$ and $\lim_{\sigma \to 0} y_{\sigma} = y_{M}$, there exists a positive threshold value $\overline{\sigma}$ of σ (for which $y_{\overline{\sigma}} = y_{\theta}$), such that for all $\sigma \in (0,\overline{\sigma})$ it is indeed true that $y_{\sigma} > y_{\theta}$: hence, there is a corresponding value y' and an associated quantity $x' = 1 - F(y',\theta)$, such that $L(x,\theta) > 0$ for $x \in [x_{\sigma}, x']$. There follows that $M_{\theta}(x,\theta) > 0$ for x in

that interval, and hence output increases for all cost levels c such that $c > \overline{c} = M(x', \theta)$ (obviously, it must be $c < M(x_{\sigma}, \theta) = p_{\text{max}}$).

(b) Let $y_{1+\sigma}$ be defined by condition (12), i.e. $\eta(y_{1+\sigma},\theta) = 1/(1+\sigma)$: letting the associated price-quantity pair be $(p_{1+\sigma},x_{1+\sigma})$, such that $y(p_{1+\sigma},x_{1+\sigma}) = y_{1+\sigma}$ and $p_{1+\sigma} = p(x_{1+\sigma},\theta)$, it must be $M(x_{1+\sigma},\theta;\sigma) = 0$, to which there corresponds the income $y_{1+\sigma}$ of the marginal consumer, such that $y_{1+\sigma} = \widehat{y}(x_{1+\sigma},\theta)$, $\widehat{y}(x,\theta)$ monotonically decreasing in x. As before, $sign\{M_{\theta}(x,\theta;\sigma)\}$ = $sign\{L(x,\theta)\}$, while at $x = x_{1+\sigma}$ we have

$$L(x_{1+\sigma},\theta) = -\frac{F_{\theta}(y_{1+\sigma},\theta)}{1 - F(y_{1+\sigma},\theta)} \frac{\pi(y_{1+\sigma},\theta)}{\eta(y_{1+\sigma},\theta)} + \lambda(y_{1+\sigma},\theta)$$

To ease notation, let the RHS of the above be $\Lambda(y_{1+\sigma}, \theta)$, and observe that

$$\lim_{y \to y_m} \Lambda(y, \theta) \le 0$$

since by assumption $\eta(y_m, \theta) = y_m f(y_m, \theta) > 0$ and by definition $F_{\theta}(y_m, \theta) = F(y_m, \theta) = 0$, while $\pi(y_m, \theta)$ is finite by assumption and $\lim_{y \to y_m} \Lambda(y, \theta) = \lim_{y \to y_m} \lambda(y, \theta) < 0$.

Now notice that, using Hopital's rule,

$$\lim_{y \to y_M} \Lambda(y, \theta) = \lim_{y \to y_M} \lambda(y, \theta) \left(1 + \frac{\pi(y, \theta)}{\eta(y, \theta)} \right) > 0$$

as by (16) $\pi(y,\theta) + \eta(y,\theta) > 0$ for all $y \in [y_m, y_M]$, and $\lim_{y \to y_M} \lambda(y,\theta) > 0$. Hence, by continuity there exists some $\widetilde{y} \in (y_m, y_M)$ such that $\Lambda(\widetilde{y}, \theta) = 0$ and $\Lambda(y,\theta) < 0$ for all $y \in [y_m, \widetilde{y})$. Let now $\widetilde{\sigma} \ge 0$ be uniquely defined by $\eta(\widetilde{y},\theta) = \min\{1, 1/(1+\widetilde{\sigma})\} = \eta(y_{1+\widetilde{\sigma}}, \theta)$: since $\eta(y,\theta)$ is monotonically increasing in y, we have $y_{1+\sigma} < \widetilde{y}$ for any $\sigma > \widetilde{\sigma}$ and, by the monotonicity of $\widehat{y}(x,\theta)$, we can associate to \widetilde{y} the quantity $\widetilde{x} = x_{1+\widetilde{\sigma}}$ such that $\widetilde{y} = \widehat{y}(\widetilde{x},\theta)$: so we have that $L(x_{1+\sigma},\theta) < 0$, and hence $M_{\theta}(x_{1+\sigma},\theta;\sigma) < 0$, for any $\sigma > \widetilde{\sigma}$; there follows that, for any such σ , there exists an $x' < x_{1+\sigma}$, such that $M_{\theta}(x,\theta;\sigma) < 0$ for all $x \in (x',x_{1+\sigma}]$: output then decreases for all cost levels c such that $M(x_{1+\sigma},\theta;\sigma) = 0 \le c < \widetilde{c} = M(x',\theta;\sigma)$.

Proof of Proposition 4

We first need the following Lemma:

Lemma Assume θ is a SSD parameter of the distribution F, and let $\lambda(y,\theta) = f_{\theta}(y,\theta)/f(y,\theta)$. Then $\lim_{y\to y_m} \lambda(y,\theta) \leq 0$.

Proof. By definition (9) of SSD, we have that $\int_{y_m}^y F_{\theta}(x,\theta) dx \leq 0$ for all $y \in [y_m, y_M]$. Since $F_{\theta}(y_m, \theta) = 0$, $F_{\theta}(\cdot, \theta)$ cannot be positive around y_m , which also holds for its derivative $f_{\theta}(\cdot, \theta)$ as $F_{\theta}(\cdot, \theta)$ cannot point upwards there. Recall now that $f(y, \theta) > 0$ for all $y \in (y_m, y_M)$: the result then follows trivially, as $sign\{\lambda(y, \theta)\} = sign\{f_{\theta}(y, \theta)\}$.

Assume now that $\sigma > 0$, and recall from the proof of Proposition 3 above that $sign\{M_{\theta}(x,\theta;\sigma)\} = sign\{L(x,\theta)\}$, with

$$L(x,\theta) = -\frac{F_{\theta}(\widehat{y},\theta)}{1 - F(\widehat{y},\theta)} \left(1 - \frac{1}{\eta(\widehat{y},\theta)} + \sigma + \frac{\pi(\widehat{y},\theta)}{\eta(\widehat{y},\theta)} \right) + \lambda(\widehat{y},\theta)$$

where as before $\hat{y} = \hat{y}(x, \theta)$, monotonically decreasing in x.

Let the RHS be denoted as $\mathcal{L}(\widehat{y}, \theta)$. Clearly, $\lim_{x \to 1} L(x, \theta) = \lim_{y \to y_m} \mathcal{L}(y, \theta)$ = $\lim_{y \to y_m} \lambda(y, \theta) \leq 0$ by the Lemma above, since $F_{\theta}(y_m, \theta) = 0$, and the term in brackets tends to a finite value as y tends to y_m , which follows from $y_m f(y_m, \theta) > 0$ and $\pi(y_m, \theta)$ being finite. Moreover, by the definition of SSD, there exists an income level \overline{y} such that $F_{\theta}(y,\theta) < 0$ for all $y \in (y_m,\overline{y})$ and $F_{\theta}(\overline{y},\theta) = 0$. Indeed, from Proposition 2 we know that θ being SSD implies the existence of a quantity $\overline{x} \in (0,1)$ such that $p_{\theta}(\overline{x},\theta) = 0$ and $p_{\theta x}(\overline{x},\theta) > 0$: this is the rightmost point where the demand curves cross following a marginal increase in θ , and it satisfies $\overline{y} = \widehat{y}(\overline{x},\theta)$. Using (7), it is then immediate to verify that it must be $f_{\theta}(\overline{y},\theta) > 0$ and hence $\mathcal{L}(\overline{y},\theta) = \lambda(\overline{y},\theta) = f_{\theta}(\overline{y},\theta)/f(\overline{y},\theta) > 0$. All of which implies the existence of some $\widetilde{y} \in [y_m,\overline{y})$, such that $\mathcal{L}(\widetilde{y},\theta) = 0$ and $\mathcal{L}(y,\theta) > 0$ for all $y \in (\widetilde{y},\overline{y}]$, and hence $M_{\theta}(x,\theta;\sigma) > 0$ for all $x \in [\overline{x},\widetilde{x})$, where \widetilde{x} is uniquely identified by the condition $\widetilde{y} = \widehat{y}(\widetilde{x},\theta)$.

Let now $\tilde{\sigma} > 0$ be identified by the condition $\tilde{\sigma} = 1/\eta(\tilde{y},\theta)$. Clearly, this implies that for any σ such that $0 < \sigma < \tilde{\sigma}$ we have $y_{\sigma} > \tilde{y}$ and hence $\tilde{x} > x_{\max}$, as the latter satisfies $\sigma = 1/\eta(\hat{y}(x_{\max},\theta),\theta)$. For any such σ , this means that $M_{\theta}(x,\theta;\sigma) > 0$ in the downward sloping region of the demand curve, the only viable for the monopolist problem. Hence, output increases for all costs levels $c \in (\tilde{c},\bar{c})$, where $\tilde{c} = \max\{M(\tilde{x},\theta;\sigma),0\}$ and $\bar{c} = \min\{M(x_{\max},\theta;\sigma),M(\bar{x},\theta;\sigma)\}$. Take now some positive $\sigma < \tilde{\sigma}$, and consider the income level $y_{1+\sigma}$, defined by $\eta(y_{1+\sigma},\theta) = 1/(1+\sigma)$, so that at the corresponding quantity $x_{1+\sigma}$ marginal revenue is zero. We then have two possibilities: either $y_{1+\sigma} \geq \tilde{y}$, i.e. $x_{1+\sigma} \leq \tilde{x}$, in which case $M_{\theta}(x,\theta;\sigma) > 0$ for all $x \in [\bar{x},x_{1+\sigma}]$, $\max\{M(\tilde{x},\theta;\sigma),0\} = 0$, and output increases for all $c \in [0,\bar{c}]$; or $y_{1+\sigma} < \tilde{y}$, i.e. $x_{1+\sigma} > \tilde{x}$, in which case $\max\{M(\tilde{x},\theta;\sigma),0\} = M(\tilde{x},\theta;\sigma)$, and output increases for all $c \in [\bar{c},\bar{c}]$, $\tilde{c} = M(\tilde{x},\theta;\sigma) > 0$. The latter cannot apply if $\sigma < \tilde{\sigma} - 1$, since in that case $\bar{\sigma} = \tilde{\sigma} - 1$ satisfies $\eta(\tilde{y},\theta) = 1/(1+\bar{\sigma})$ and we always have $[\bar{x},x_{1+\sigma}] \subset [\bar{x},\tilde{x})$: hence, output increases for any cost level low enough, if $\tilde{\sigma} > 1$ and $\sigma \in (0,\tilde{\sigma}-1)$.