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Abstract

We address a number of comparative issues relating to the performance of failure prediction
models for small, private firms. We use two models provided by vendors, a model developed by the
National Bank of Belgium, and the Altman Z-score model to investigate model power, the extent of
disagreement between models in the ranking of firms, and the design of internal rating systems. We
also examine the potential gains from combining the output of multiple models. We find that the
power of all four models in predicting bankruptcies is very good at the one-year horizon, even
though not all of the models were developed using bankruptcy data and the models use different
statistical methodologies. Disagreements in firm rankings are nevertheless significant across
models, and model choice will have an impact on loan pricing and origination decisions. We find
that it is possible to realize important gains from combining models with similar power. In addition,
we show that it can also be beneficial to combine a weaker model with a stronger one if
disagreements across models with respect to failing firms are high enough. Finally, the number of
classes in an internal rating system appears to be more important than the distribution of borrowers
across classes.
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1. INTRODUCTION

Failure prediction models are defined as models that assign a probability of failure or a credit score to

firms over a given time horizon.1 The development of the Basel II framework has stimulated vendors to

offer such models to banks opting to use the internal ratings-based approach for calculating their

regulatory capital requirements. Indeed, one of the inputs that banks adopting the internal ratings-

based approach must provide is an estimate of the probability of default (PD). Failure prediction

models developed by vendors are often used by banks as an off-the-shelf product or, alternatively, as

a basis for development and benchmarking of their internal rating systems. While there exists a large

academic literature on failure prediction models (see, e.g., Balcaen and Ooghe, 2006, for a review),

much less is known about failure prediction models offered by vendors.

This paper explores empirically a number of comparative issues relating to failure prediction models

for small, private (i.e. non-listed) firms. It investigates whether some models are better at differentiating

defaulting and non-defaulting firms than others (the "performance" or "power" of models), the extent to

which different failure prediction models may yield significantly different rankings for the same firm

(i.e., the extent of "disagreement" between models), and the extent of gains that can be realized from

combining the predictions of multiple models. The paper also analyzes the design of bank internal

rating systems by looking at the performance of systems with differing numbers of classes and

distributions of borrowers across classes.

To investigate these issues, we make use of four models: two developed by vendors, a model of

financial health developed by the National Bank of Belgium (NBB), and the Altman Z-score model for

private firms.2 We estimate credit scores and PDs (depending on the output of the specific model)

using 2001 and 2004 balance sheet and non-balance sheet information for more than 36,000 Belgian

firms with total assets below € 50 million. We use Receiver Operating Characteristic (ROC) curves to

assess model power, in terms of the accuracy of prediction of one-year and five-year bankruptcy entry

rates.3

Banks adopting the internal ratings based approach of Basel II may choose between differing vendor

models to compute the PDs of their loans. However, little is known about the level of disagreements

between these models or about their respective degrees of power. It is also unclear whether banks

can benefit from working with several models to develop their own internal rating system and, if so, by

1  In this paper a failure is defined as a bankruptcy or a default.
2  The two vendor models were chosen among a set of vendor models in common use by banks. Information

about the NBB model can be found in Vivet (2004). The Altman Z-score model is detailed in Altman (2000).
3 We do not address the issue of model calibration; i.e., whether PDs produced by the models (or implied by the

credit scores) are in line with those observed in practice. In investigating model power, we use bankruptcies in
2002 and between 2002 and 2006 to assess the one-year and five-year predictions made on the basis of 2001
data, and bankruptcies in 2005 to assess the one-year predictions made on the basis of 2004 data.
Bankruptcy refers to the process of entering bankruptcy or filing for a "concordat" (a procedure similar to
Chapter 11 in the US, though much less frequently used in Belgium).
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how much. These issues are important not only for banks, but also for supervisors, who are

responsible for evaluating the banks' validation of their internal rating models.

In their internal rating systems banks have, furthermore, to assign each loan applicant to a class or

bucket. We also investigate how model performance changes as we vary the number of rating classes

and the distribution of borrowers across the classes. This is important, since very little is known about

how the granularity of a bank’s internal rating system affects the performance of the system, or about

the interaction of the system with the credit quality distribution within the portfolio.

The four models that we test were developed on different samples of obligors, based on different time

periods. However, all of the results we report in this paper are "out-of-sample".4 These models also

differ in their inputs and methodologies. Although each model uses balance sheet variables among its

inputs, some models also use non-balance sheet or qualitative variables (such as the number of

employees or the legal status of the firm). The methodologies used to calculate credit scores or PDs

involve a variety of statistical techniques, among the possibilities of: "pure" discriminant analysis,

discriminant analysis combined with mathematical techniques such as decision trees, "pure" probit

analysis, probit analysis with transformations, and a utility-based framework. Finally, the four models

under consideration were developed using a set of failing and non-failing firms, where failure may

represent default for some models and entry into bankruptcy for others.

Our principal results are as follows. First, the models perform relatively similarly, and the 1-year

prediction models very well, when performance is measured by the area under the ROC curve.5 This

result is interesting in light of the above-mentioned differences between the four models analyzed.

Nevertheless, there is some variation in the areas under the ROC curve obtained for each model. We

use a method presented by Stein (2005) to obtain an idea of the potential monetary impact of these

differences in areas. This technique illustrates how the area under an ROC curve for a particular

failure prediction model can be translated into basis points of return on loan originations. We show that

even relatively small differences in ROC areas across models can translate into significant differences

in monetary returns.

Second, although the models are relatively similar in terms of power, they frequently disagree on firm

rankings. The extent of disagreement can be considerable, both in terms of the percentages of firms

that are assigned to different classes by different models and the severity of disagreement; e.g., firms

4  Due to confidentiality reasons, we cannot be more specific about the vendor models. Note that the coefficients
of the original Z-score were first re-estimated using a sample of about 40,000 Belgian firms over the period
1995-1998.

5  An ROC curve is constructed by ranking a sample of firms from riskiest to least risky, then plotting the
percentage of non-defaulting firms which must be excluded from the sample in order to exclude a given
percentage of defaulting firms from the sample. The ROC curve can thus be used to identify the Type-1 and
Type-2 errors associated with the choice of any particular cut-off point for excluding firms from the sample.
See the appendix for more details.
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being classified by one model above the 96th percentile in risk but being classified by another model

at below the median level of risk. This implies that, if banks use the PD or credit score produced by a

failure prediction model for loan pricing or origination decisions, model choice can have a significant

impact. For example, we find that if banks were to reject all loan applicants classified above the 85th

percentile in risk, and if two banks were to use different failure prediction models, between sixteen and

twenty percent of applicants would find their loan applications rejected by one bank but accepted by

the other, depending upon the model pairs being considered.

A third result is that combining the assessments of different models can improve performance. This

result is in fact intuitive; the output of a failure prediction model represents a signal about the

creditworthiness of a firm and, given that the signals produced by different models are not perfectly

correlated, performance should be improved by making use of the combined information from multiple

signals. However, we also investigate whether there is a trade-off between combining the output of

more models versus using fewer models with higher power. We find that the trade-off exists, and it is

ultimately linked to the extent of disagreement between models. If the disagreements regarding failing

firms are significant enough, it is possible to combine two models, where the ROC curve of one model

lies strictly below the other, and achieve an improvement over the performance of the stronger model.

Finally, we consider the design of banks' internal rating systems. We find that increasing the number

of classes generally increases the performance of an internal rating system by more than varying the

distribution of borrowers across classes (holding the number of classes constant). This suggests that

the number of classes of an internal rating system is more important than the particular distribution of

borrowers across the classes.

The paper proceeds as follows. Section 2 discusses model power. Section 3 presents results relating

to model disagreement. Section 4 investigates the benefits of combining models. Section 5 examines

the design of internal rating systems. Section 6 concludes.

2. MODEL POWER

We are interested in knowing something about the power of the four models; i.e., whether the ability to

distinguish between failing and non-failing firms differs across the models. Analysing the power of a

model requires comparing its output (credit score or PD) with actual data on failure. We construct a

first measure of model performance by computing Receiver Operating Characteristic (ROC) curves

using bankruptcy data for our sample of firms (see Footnote 6 and the appendix for a description of

ROC curves).

For the purpose of this paper and because not all of the models under consideration produce the

same type of output, we re-scale credit scores and PDs in the following way. First, for each model, we

rank-order firms from lowest to highest credit risk based on their score or PD. Then, we allocate the

firms into a certain number of classes, or "buckets", according to a pre-defined distribution. It is then
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possible to compare the frequency of bankruptcy of the different classes, as well as the power of

models whose output is now based on the same number of classes.

In order to undertake this re-scaling, however, it is necessary to define the number of classes that will

be used. There are differing motivations for working with a higher versus a lower number of classes or,

given a number of classes, for choosing a particular distribution of firms across the classes. For

instance, whereas a greater number of classes allows finer distinctions to be made between firms, a

system with a high number of classes may lead to anomalies where the observed frequency of failure

for firms in higher-risk classes is lower than for firms in lower-risk classes.

For illustrative purposes, the risk distribution used in this and the following two sections consists of

seven classes and is based on the output of one of the vendor models.6 Note that seven is the

number of classes one would have with ratings data when working with whole-grade rating categories

(Aaa, Aa..., Caa and below). While we choose this number of classes in part to guarantee that, with

only a small number of exceptions, bankruptcy frequencies of higher-risk classes are higher than

frequencies for lower-risk classes,7 none of the paper's qualitative results regarding the differences

across models in power or rankings of firms depends upon the specific number of classes or the

"mapping" used for the distribution of classes.  In Section 5, we investigate the impact of alternative

numbers of classes and distributions of borrowers across classes on the power of a given model.

Table 1 reports the one-year and five-year bankruptcy frequencies for each of the seven classes for

each model. One-year frequencies are reported for the 2001 and 2004 data, while five-year

frequencies are reported for the 2001 data.8 For each model, class 1 contains roughly the 1.4 percent

of firms that are classified as the least risky; i.e., with the lowest PDs or highest credit scores. Class 7

contains roughly the 3.3 percent of firms that are classified as the riskiest; i.e., with the highest PDs or

lowest credit scores. Classes 2 to 5 represent intermediate levels of risk and contain around 20

percent of firms each, while class 6 contains around 10 percent of firms.

6   Because at least one of our vendor models produces credit scores, we group the multiple scores into seven
classes in such a way that for a given class, each model can have a similar percentage of firms in that class.
This same technique can be used to construct systems with different numbers of classes. For example, in
Section 5 we compare the performance of systems with seven, ten, and seventeen classes.

7  Hanson and Schuermann (2006) use ratings data from Standard and Poor's to test for monotonicity of
observed PDs with ratings. They find that with the notch-level scale (i.e., the scale with pluses and minuses
included), PDs are not monotonically increasing with lower ratings for the investment-grade rating categories.
When they reduce the number of classes to the whole-grade scale, much more monotonicity is observed.

8  The distribution of firms in the 2001 sample is slightly different for one-year and five-year bankruptcy
frequencies. This is because a number of firms have exited the database between 2002 and 2006 for reasons
other than bankruptcy (e.g. mergers, acquisitions etc.).
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Table 1 reveals that the one-year and five-year bankruptcy rates are generally increasing across

classes and comparable across the four models, both in the 2001 and 2004 samples, which suggests

that the seven classes reflect increasing degrees of credit risk. Table 1 also shows changing

bankruptcy frequency rates over time. Due to the cyclical downturn in 2001, the percentage of

bankruptcies in the entire sample in 2002 (0.79%) was higher than the percentage of bankruptcies in

2005 (0.56%). The percentage of bankruptcies occurring between 2002 and 2006 was 3.52% (0.70%

on annual basis).

Figures 1 and 2 present the ROC curves for the one-year and five-year predictions based,

respectively, on 2004 and 2001 data. Table 2 reports the area below each of the curves.9 Figures 1

and 2 reveal that all four models perform considerably better than would a random selection of firms,

which is depicted by the 45-degree line. Table 2 indicates that the performance of the NBB model and

the two vendor models is very good, and quite similar, for the 1-year ROC curves. The area under the

ROC curve for each of these models exceeds 0.8.10 Interestingly, the Z-score model, whose

coefficients have been re-estimated on Belgian data, has an area under the ROC curve of .78. Not

surprisingly, the four models perform less well at the five-year horizon, with areas ranging between .71

and .75 for the NBB and the two vendor models and .64 for the Z-score.

The similar performance of the four models, which were not developed on identical measures of failure

(bankruptcy versus default) and which use different statistical methodologies, is interesting in at least

two respects. First, it suggests that the definition of failure used for model development may not matter

as much as previously expected, at least for European firms.11 Second, it tends to confirm results of

previous studies which indicate that the power of different methodologies is often very similar (see

Ooghe et al., 2005, for a review).

Nevertheless, there are some differences across the models. Figure 1 shows, for instance, that the

one-year ROC curves for the two vendor models and the NBB model cross each other, and the curve

for the Z-score model crosses that of Model 2. When two ROC curves cross, comparison of the areas

underneath the curves is not sufficient to determine which model has greater power. Which model

would perform better depends upon the specific application for which the model is used. Observation

of the curves in Figures 1 and 2, however, suggests that in terms of identifying firms with high default

risk, Model 2 and the Z-score would appear to perform somewhat less well than would the NBB model

9  The area under the ROC curves varies very little (around .02) when using the actual output values of the
models (credit scores or PDs) instead of our seven classes (see Section 5).

10  Chi-square tests cannot reject the null hypothesis that the areas under the ROC curves of the NBB model and
Model 1 are equal, both at the 1-year and 5-year horizons (5% confidence level). The differences in areas
under the ROC curve of all other model pairs are statistically significant. According to Hosmer and Lemeshow
(2000) models with an area under the ROC curve between .7 and .8 are often regarded as having
"acceptable" discriminatory power, while models with an area between .8 and .9 can be considered as having
"excellent" discriminatory power. This classification, however, is not universally accepted. For example, Lingo
and Winkler (2007) argue that the value of the area under the ROC curve obtained by a given model will
depend upon the characteristics of the sample of borrowers to which the model is applied.

11  According to Korablev (2005), 80% of European firms that default also enter bankruptcy, whereas only 50% of
U.S. defaulters enter bankruptcy.
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or Model 1, both at the one-year and five-year horizons. For instance, with respect to the 1-year ROC

curves shown in Figure 1, we see that if the failure/non-failure cut-off were placed at the level of the

fifteen percent of non-failing firms with the lowest credit scores (or highest PDs), the NBB model and

Model 1 would exclude roughly 80 percent of all failing firms, compared with 70 percent for Model 2

and 60 percent for the Z-score.

It might also be of interest to translate the information from an ROC curve, and the differences across

the models in the area under the curve, into a monetary measure of the gain to a bank from using a

particular model for its loan origination decisions. We illustrate how this might be done, following a

methodology employed by Stein (2005).12 The idea is as follows. Suppose that a given cut-off class n

is chosen, such that loan applicants classified in class n or above are rejected (recall that higher

classes correspond to higher risk firms), and all applicants falling in a class below n are accepted.

Identifying the point on the ROC curve that corresponds to the cut-off class n will allow identification,

from the X-axis, of the percentage of non-defaulting applicants that will be excluded by use of the cut-

off (call this percentage 1 kn), and the Y-axis will allow identification of the percentage of defaulting

firms that will not be excluded (call this percentage 1 ROC(kn)). The Type-1 error (i.e., the risk of

rejecting a "good" borrower) in using this cut-off is thus equal to 1 kn and the Type-2 error (i.e., the

risk of accepting a "bad" borrower) is equal to 1 ROC(kn).

Type-1 and Type-2 errors may be costly for the bank. For example, Type-2 errors may involve

bankruptcy or workout costs, as well as loss given default (LGD). Type-1 errors can cause the bank to

forego some "relationship-based" income, above and beyond the interest spread on a loan to a firm. If

we can parameterize these costs, we can compute the expected total per-Euro benefits and costs per

loan applicant of using this cut-off. We can then compute the net benefits for every possible cut-off

point on the ROC curve and identify the optimal or benefit-maximizing cut-off.13

For illustrative purposes, we follow Stein (2005) and assume, for simplicity, that the cost to the bank of

a Type-1 error is zero. That is, there is no cost to the bank of rejecting a non-failing applicant, other

than the lost benefit of the interest rate spread on a loan to that applicant, which our benefit function

implicitly captures. Type-2 errors do impose a cost, composed of bankruptcy or workout fees and the

LGD. Following Stein, we assume that loans have a one-year maturity, with principal and interest due

at maturity and that failing firms default at maturity without paying accrued interest. The cost of the

Type-2 error will be given by:  (Underwriting fee) + Discounted present value(Workout fees + LGD).

The monetary benefit per-Euro of a loan to a non-defaulting loan applicant will be given by:

Underwriting fee + Discounted present value(Interest spread on loan).

12 Other authors have used different techniques to monetize model performance. See for example Zhou et al.
(2005) and Jankowitsch et al. (2007).

13  Stein (2005) presents a straightforward technique for identifying the profit-maximizing cut-off class. Blöchlinger
and Leippold (2006) also present a method for translating the information from the ROC curve into monetary
terms, not only through the use of cut-off points for accepting or rejecting loan applicants but also for loan
pricing.
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Table 3a shows the assumptions on parameter values for our benchmark case. Given these

benchmark values, the per-Euro cost of the Type-2 error equals

.02 + .35-.005 + = .3508
1.04

. The monetary benefit per-Euro of a loan to a non-defaulting loan

applicant equals . .0125005 + = .0170
1.04

. The expected net monetary return in the benchmark case,

then, of applying the cut-off class n for loan origination decisions is given by:

R = (1-PD)  (kn)  (.0170)  (PD)  (1 ROC(kn))  (.3508).

The first term on the right-hand side of this expression represents the expected benefit from extending

a loan to non-defaulting borrowers. For any given pool of loan applicants, the expected proportion of

this pool that will receive a loan and will not default is given by (1-PD)  (kn). The expected proportion

that will receive a loan but will default is given by (PD)  (1 ROC(kn)). Note that as the cut-off point is

moved to the left on the ROC curve, the proportion of non-defaulting loan applicants receiving a loan

increases, which generates a benefit; however, the proportion of borrowers defaulting also increases,

which increases costs. The optimal cut-off point balances these two effects.

Suppose that no model is used for screening borrowers and that the bank accepts all loan applications

(which would be equivalent to using a "cut-off" point at the extreme left-hand corner of the ROC

diagram for any given model). Suppose, also, that, as in our benchmark case, the one-year PD is 2%.

Then, the expected monetary return from this strategy would be equal to (.98) (.0170)  (.02) (.3508) =

96 basis points. Table 3b illustrates how changing the parameter assumptions can affect the costs and

benefits of the no-screening strategy. This table shows that the net return from using no screening is

sensitive to variations in the parameter values; the return across the various scenarios shown in the

table ranges from 26 to 167 basis points.

Table 2 reports, for the benchmark parameter assumptions, the expected per-Euro return that a bank

would enjoy with each of the different models, for a one-year loan and where the optimal cut-off class

has been determined separately for each model.14 The results indicate that for the one-year horizon,

there is a net expected per-Euro gain of between 17 and 30 basis points per Euro per loan applicant

from using any one of the four models to screen borrowers. The gain to the bank in moving from the Z-

score to the NBB model is 13 basis points, although there is only a two-basis point gain in moving

from Model 1 to the NBB model.

The fact that the monetary value of the no-screening strategy is sensitive to parameter assumptions

suggests that the monetary gains in moving between models will also depend upon the parameter

14 We do not calculate the expected profit for a five-year loan, as it would require considerably more
assumptions, such as the timing of defaults, than for a one-year loan. The results for the one-year loan are
already quite sensitive to parameter assumptions, and results for a five-year loan would exhibit even greater
sensitivity.
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assumptions underlying the calculation of the costs and benefits of using a particular cut-off point and

model. However, the benefits in moving from one model to another, or in moving from no screening to

a given model, are much less sensitive to changes in parameter values than is the net return to no

screening. For the scenarios illustrated in Table 3b, the gain in moving from the Z-score to the NBB

model ranges from 5 basis points (for the scenario with PD = 1%) to 20 basis points (for the scenario

with PD = 3%). For all of the other scenarios, the gain lies between these two values.

We might also be interested in translating the gains in basis points per loan to a monetary figure for

the entire loan portfolio of a bank. Stein (2005) presents data for small, medium-size, and large U.S.

banks. For a medium-size bank (with total assets between 10 and 50 billion USD), the estimated

amount of new loan originations per year in 2002 USD was 4,275 million USD. Using this figure, we

observe that the 13 basis point monetary gain to the bank from moving from the Z-score model to the

NBB model would generate an increase in revenues of 5.6 million USD.

3. MODEL DISAGREEMENT

To what extent do models differ in their "rankings" for the same firm? Is it common to observe strong

disagreement between models, for example, where one model classifies a firm as being of very high

risk but another classifies the firm as low risk? We investigate such questions in this section.

One potential indication of the degree of agreement across models is given by correlation values.

Blöchlinger and Leippold (2006) suggest, for example, that it is common for the credit scores assigned

by banks to be very highly correlated, given that differing failure prediction models make use of data

from firms' balance sheets and income statements. These authors assume a correlation value of 0.8.

We find significantly lower correlation values among our failure prediction models. In particular, while

the Spearman rank correlation coefficient between the NBB model and Model 1 is higher than 0.7, the

correlation coefficients for all other model pairs do not exceed 0.5. The correlations between the Z-

score and the other models are the lowest, and do not exceed 0.4.15

We are also interested in the severity of disagreement. We investigate this by comparing the ordinal

rankings of firms across the different models and identifying firms which are classified in very different

classes by pairs of models. Ideally, we would like to do so by looking at the percentage of firms for

which PDs of one model are above a certain cut off (say, 95th percentile) while the PDs assigned by

another model to the same firms are below another cut off (say, the median), and vice versa.

However, because not all of the models under consideration produce PDs, it is not possible to directly

compare model outputs by examining the PD estimates for each firm. Nevertheless, we can undertake

a similar type of comparison in the context of our seven-class system.

15 Some of our models use non-balance sheet variables in addition to balance sheet variables, which may
account for the lower correlations.
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Table 4a presents disagreement rates for high-risk firms (calculated as the percentage of class-7 firms

of a given model which are classified in the median risk class, i.e., class 4, or below by another

model). Table 4b shows disagreements for low-risk firms (calculated as the percentage of class-1

firms of a given model which are classified in the median risk-class or above by another model).

Results are illustrated for the year 2004 (1-year predictions); however, results for 2001 (1-year and 5-

year predictions) are quite similar.

Two interesting results emerge from the tables. First, disagreement rates are quite variable, but go up

to rather high numbers (40 to 50 percent), depending upon the model pair chosen.16 Second, the Z-

score model is the model which disagrees the most with the other models, especially for firms which

are classified as low-risk by the other models. These relatively high disagreement rates between

models suggest that if loan pricing and origination decisions are based on the class to which the firm is

assigned, model choice can have a significant impact.

As another way of investigating the issue of disagreement between models, we calculated the

percentage of firms that would be granted credit from one model but denied credit by another if class 6

were used as the cut-off class for loan approval; i.e., firms assigned to classes 6 and 7 by a model

would be denied credit and firms assigned to classes 1-5 would be granted credit.17 We undertook this

exercise (not reported in a table) using the four models at the 1-year horizon in 2004. We found that,

for each pair of models, an average of 16-20 percent of the total number of firms would be turned

down by one model but would be accepted by another (the remaining 80 percent of firms would either

be accepted or rejected by both models). That is, for any given model pair, roughly 8-10 percent of the

firms that would be denied credit by one model would be accepted by the other, and another 8-10

percent of the firms that would be accepted by the first model would be denied credit by the second.

16 We have computed disagreement rates in a similar manner for several systems with differing numbers of
classes and distributions (for example, the systems illustrated in Table 6 in Section 5). Although the particular
percentages of disagreements vary according to the number of classes and the distribution of firms across
classes, depending upon how different the percentiles are relative to our seven-class system, the qualitative
nature and general magnitude of the results on disagreements do not change.

17 The choice of class 6 is made for illustrative purposes. This class corresponds to the cut-off class which
maximizes the monetary benefits associated with the choice of the NBB model, given the benchmark
parameters (see Section 2).
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4. COMBINING MODELS

The high rates of disagreement observed among the four models, together with the good performance

of each, suggests that there may be some benefits for banks in combining the failure assessments of

different models. As mentioned in the introduction, the idea is that the output of a failure prediction

model represents a signal about the creditworthiness of a firm and, given that the signals produced by

different models are not perfectly correlated, performance should be improved by using multiple

signals. Consistent with this idea, a recent contribution by Löffler (2007) finds that combining failure

predictions (credit ratings and market-based measures of credit risk) improves the prediction of default

over the use of a single measure.18

One question of interest, however, is whether there is a trade-off between combining the output of

more models versus using fewer models with superior performance. It is intuitive that when the ROC

curves of two models cross, a combination of the two models may perform better than either model

separately. What is less obvious is whether it is possible to gain from combining two models when the

ROC curve of one lies entirely below the ROC curve of the other.

In this section, we consider a number of simple techniques that a bank might use to combine the

assessments of different failure prediction models. In particular, we examine the following combination

rules: the minimum class of the models under consideration, the maximum class, the median of the

classes and the average of the classes.19 Note that when a firm is assigned to different classes by

different models, taking the average of the classes may give a number which is in between two

classes; e.g., the average of 7 and 6 gives 6.5. If we do not round this number up or down, we have

effectively created a "new" class. In fact, starting with our seven-class system, taking the average of

firm classifications across different models yields a system based on 13 classes when 2 models are

combined, 19 classes when 3 models are combined and 25 classes when 4 models are combined.

Interestingly, this somewhat artificial increase in the number of classes can yield an area under the

ROC curve of the combined models that is greater than the area for the most powerful of the single

models, even when other simple combinations do not yield an increase in the area. In order to

maintain the number of classes constant when taking the average, we also present results for the

average "rounded up" (e.g., a 6.5 is rounded to 7) and "rounded down".20

18 Tabakis and Vinci (2002) investigate a related issue by assuming that credit ratings consist of a "core part"
drawing on publicly available information and an "analyst contribution". They find that it is possible to combine
credit ratings in such way that the variance of the analyst contribution and the influence of extreme signals are
reduced.

19 The standardized approach to credit risk of the Basel II framework specifies that banks working with two credit
ratings must use the highest risk (i.e., maximum) assessment; banks working with three credit ratings or more
must use the highest of the two lowest risk assessments (see Basel Committee, 2006).

20 We also do this for the median rounded up and down when combining four models.
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Tables 5a and 5b report the power (as measured by the area under the ROC curve) of each of the 7

combinations of models for 1-year and 5-year predictions respectively. Table 5a also reports the

associated returns in basis points for the 1-year combinations, using the benchmark parameter

assumptions from Table 3. Note that the median for two models is equivalent to the average;

therefore, the median of the two-model combinations is left blank in the tables.

Several results emerge from the tables. First, the area under the combined-model ROC curve

corresponding to the best performing model combination generally increases with the number of

models being combined.21 Table 5a indicates that the difference between the area under the ROC

curve of the most powerful single model and the most powerful combination of models for the 1-year

predictions is equal to .041 (between the NBB model and the average of the four models). The table

also shows that a bank would save close to 5 bps per annum per-Euro approved if it switched from the

NBB model to the average of the four models. Table 5b shows that for the 5-year predictions the

difference between the area under the ROC for the most powerful single model and the most powerful

combination of models is 0.036 (between Model 1 and the average of Model 1, Model 2, and the NBB

model).

Note, however, that the particular method chosen by a bank to combine the output of different models

seems to matter. For example, looking across the differing combination techniques at the 1-year

horizon for a given set of models, we observe that the area under the ROC curve of the most powerful

and least powerful combination of models differs by as much .05 for two-model combinations (for

Model 2 and the Z-score), by 0.061 for three-model combinations (Model 1, Model 2, and the Z-score)

and 0.065 for the four-model combinations. If we perform a similar exercise for the associated profits,

we find differences up to 11 bps for the two-model combination and 13 bps for the three and four-

model combinations.

A second result is that for every combination of models except one (Model 2 and the Z-score) at the 1-

year horizon, the average performs the best. As mentioned above, this is due at least in part to the

fact that taking the average without rounding increases the number of classes, which causes the area

of the ROC curve to increase relative to other model combinations that maintain the seven-class

system.22 As we show in Section 5, increasing the number of classes in an internal rating system

generally increases the area under the ROC curve. This effect is especially noticeable when working

with an initial system with seven classes. If we were to use the average to combine models when the

individual models already have a large number of classes, the gains would not be as large.

Interestingly, Löffler (2007) also finds that the average is the combination that improves the most the

prediction of defaults.

21  The main exceptions occur when the Z-score 5-year model is combined with other 5-year models.
22 Note that the model combinations which maintain the seven-class system nevertheless result in differing

percentages of firms in each class than for the original models.



12

Third, although the average is the combination of models that delivers the highest power in 1-year

models, it does not necessarily yield the greatest increase in monetary return relative to other model

combinations. Indeed, combinations such as the maximum, the median, or the average rounded down

often deliver equal and, in several cases, higher returns than does the average. Whereas the higher

power of the average is explained partly by the higher number of classes generated by this method,

the returns are determined by the optimal cut-off class. The changing distribution of firms across the

classes due to combining the models explains why the optimal cut-off class and/or the magnitude of

the costs and benefits associated with a given cut-off class will differ for the combined models relative

to a single model.

Fourth, we find instances where combining the Z-score model with other models whose ROC curves

lie strictly above the Z-score curve leads to a gain in power. For the 1-year models, a gain can be

achieved by combining the Z-score model with any of the other models, although for the NBB model

the only combination with the Z-score model which achieves a gain is the average, which increases

the number of classes. For the 5-year models, combining the Z-score with the other models does not

increase performance.

The intuition for the result that combining a stronger with a weaker model can lead to a gain in power

is related to the degree and type of disagreements between the two models. In order for the

performance of the stronger model to be improved by combining it with a weaker model, there must be

sufficient disagreement between the models relating to firms which ultimately default. In other words,

the weaker model must assign a minimum set of firms which ultimately fail to higher risk classes than

does the stronger model. If the weaker model never assigns to high-risk classes any defaulters that

the stronger model “misses” and if the weaker model is weaker only because it identifies fewer

defaulters in the high risk classes than does the stronger model, then there will be no gain from

combining the two models.

As an illustration of this idea, comparison (unreported) of the 1-year Z-score model and Model 1

reveals that 44% of the defaulting firms that the Z-score assigns into class 7 are assigned by Model 1

to a class lower than class 7. In addition, 28% of the defaulting firms that are assigned to class 6 by

the Z-score model are assigned to a lower class by Model 1. On the other hand, comparison of the Z-

score and the NBB models indicates that only 21% of the defaulting firms that the Z-score assigns to

class 7 are assigned to a lower class by the NBB model, and only 20% of the defaulting firms

assigned to class 6 by the Z-score model are assigned to a lower class by the NBB model. These

observations suggest that it is more likely that combining the Z-score model with Model 1 will lead to a

gain in power than will the combination of the Z-score model with the NBB model. This is indeed the

case, as is illustrated in Table 5a.

While it is necessary for the weaker and stronger model to disagree "enough" on defaulters in order for

a combination of the models to achieve a gain in power, this is not sufficient to achieve a gain. It is

also necessary for the models not to disagree “too much” with respect to non-defaulting firms. Much of

the gain from combining models comes from “adding” more defaulting firms to higher risk classes than
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when using only one model. If, in addition, too many non-defaulting firms are also added to the high-

risk classes, the ROC curve for the combined model will become flatter, rather than steeper, than the

ROC curve for the stronger model and will lie below the curve for the stronger model. This is what

appears to be occurring when the 5-year Z-score model is combined with the other 5-year models.

This discussion demonstrates that simple comparison of the areas under ROC curves or the shapes of

the curves (i.e., whether ROC curves of different models cross) is not sufficient to determine whether

gains can be achieved from combining models. Another way of saying this is that the relative sizes of

Type-1 and Type-2 errors do not provide sufficient information to draw conclusions regarding the gains

from combining models. Rather, the identities of the firms making up the Type-1 and Type-2 groups for

each model are important. The more defaulters that are "missing" from the highest-risk classes of one

model but that are "captured" in the highest-risk classes of another model, the more likely will it be that

a combination of the models will increase power relative to use of a single model. That being said, we

conjecture that if the difference in ROC curve areas is "too large", then combining a weaker and a

stronger model will result in a shift of too many non-defaulters relative to defaulters into higher risk

classes for the combination of models to achieve a gain in power.

5. DESIGN OF BANKS' INTERNAL RATING SYSTEMS

Whereas Basel II requires banks to have a minimum of seven buckets for non-defaulting borrowers

and one for defaulters, banks differ widely in the number of classes they use, and they may work with

internal rating systems based on more than twenty buckets. Ughetta (2006) reports for instance that

Italian banks use anywhere from 9 to 22 non-defaulting categories and from 1 to 4 defaulting

categories. Although internal rating systems with larger numbers of classes are more costly to

develop, they are generally seen as more valuable for pricing and for capital allocation. However, to

our knowledge, no paper has explicitly tested whether such systems are indeed better at

differentiating failures from non-failures.

In this section we use the NBB model to investigate the impact of the design of internal rating systems

on the power of a model. We examine nine rating systems based on three different numbers of

classes (seven, ten, and seventeen), where for each given number of classes, we use three different

distributions of firms across the classes. The NBB model is well suited for this exercise since it

produces a continuous score, which makes it amenable to varying the distribution of firms across

classes in any desired way.23

23  We have also repeated this exercise with two of our other models, and the results are similar to those reported
here for the NBB model.
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For each given number of classes, we examine three types of credit risk distributions. One is

constructed to resemble the distribution generated by one of our vendor models which produces a

finite number of credit scores. A second distribution mirrors the 1983-2005 distribution of Moody's

credit ratings (see Moody's, 2006), when the ratings are grouped so that the total number of ratings

equals our number of classes. The final distribution is an equal distribution of firms across classes. We

would expect the internal rating systems based on the vendor model and the Moody's distributions to

be more powerful and/or profitable than the internal rating systems based on the equal distribution.24

The results, which are shown in Table 6a, reveal somewhat more modest differences between internal

rating systems than those observed in Tables 5a and 5b for differing combinations of models. For

each given number of classes, the vendor model distribution appears to perform slightly better than

the other two distributions, with the exception of the ten-class system for the 5-year model, where the

Moody's distribution performs better. Also, increasing the number of classes for any given distribution

type generally increases the area under the ROC curve by more than modifying the distribution for a

system with a given number of classes. Indeed, Table 6b, which reports the results of significance

tests for differences in areas under the ROC curves for different system pairs, indicates that increasing

the number of classes results in significant increases in the area under ROC curves, whereas

modifying the distribution of borrowers across classes less frequently results in a significant change.

This table shows that for each distribution, the increase from seven to ten, then from ten to seventeen

classes, almost always produces significant increases in the ROC-curve area. This result is interesting

because, in the case of the vendor and Moody's distributions, the impact of an increase in the number

of classes on the ROC area was not clear a priori (for the equal distribution, it was clear that such an

increase would raise the ROC area given the concavity of the ROC curve).25 On the other hand, it is

only when moving from the equal distribution to either the vendor model or the Moody's distribution,

and this for the one-year horizon, that the increase in the ROC-curve area is significant. Differences in

the areas for the vendor model and the Moody's distributions are never significant.

Finally, the power and associated profit of all three distributions for the seventeen-class system is

close to the power and the profit of the model with the continuous distribution of credit scores. This

result indicates that the marginal gain of working with an internal rating system based on more than

seventeen classes would be negligible.

24 For the vendor model and Moody's distributions, we have also experimented with different ten-class systems
by imposing various degrees of granularity for the ten classes. Whereas Hanson and Schuermann (2006) find
that systems which are more granular at the higher-risk end of the spectrum are better from the viewpoint of
PD estimation, we do not find that such systems are significantly more powerful than the ten-class systems
that we use.

25 That is, when one works with a system where the distribution of borrowers across classes is not equal, it is
possible to show that increasing the number of classes does not always increase the area under the ROC
curve. We have even found examples where an increase in the number of classes decreases this area.
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6. CONCLUSION

This paper uses balance sheet and bankruptcy data on small and medium-size Belgian firms, together

with four failure prediction models, to investigate several questions relating to model performance,

model disagreement, combining model predictions, and internal rating system design. We find that

despite differences in statistical methodologies, model input, and model definition of failure, the four

models under consideration (which include two models offered by vendors, a model developed by the

National Bank of Belgium, and the Altman Z-score model for private firms) exhibit similar levels of

power, and all models perform very well at the one-year horizon. The similar performance of the

models suggests that the definition of failure (default versus bankruptcy) may matter less, at least for

European firms, than previously thought.

Nevertheless, the differences in performance across models are important. A switch from the least

powerful to the most powerful model could produce a significant monetary gain for a bank, as could

combining the output of multiple models. Disagreements across the models in the ranking of firms are

also considerable, implying that model choice can have a significant impact on loan pricing and

origination decisions. In addition, if disagreement in the ranking of defaulting firms between a weaker

and a stronger model is important enough, combining the output of the two models can lead to an

increase in power relative to the stronger model. This implies that comparing the size of Type-1 and

Type-2 errors for two models is not sufficient to determine whether gains can be obtained from

combining the models' predictions. The specific identities of the firms falling in the Type-1 and Type-2

categories in each model are also important. That is, the more defaulters that are "missing" from the

highest-risk classes of one model but that are "captured" in the highest-risk classes of another model,

the more likely will it be that a combination of the models will increase power relative to use of a single

model.

Finally, the number of classes appears to be more important in the design of internal ratings systems

than is the distribution of firms across the classes. For the models under consideration, the power

obtained with a seventeen-class rating system is already very close to the power associated with

using the continuous output of the model. Very little gain could be obtained from a further increase in

the number of classes.
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TABLES AND FIGURES

Table 1: 1-year and 5-year bankruptcy rates across classes for the four models

Bankruptcy rates (%)
Class % of firms

NBB Model 1 Model 2 Z-score

1-year bankruptcy rates (2001 sample)

1 1.3 0.00 0.00 0.00 0.00
2 21.8 0.05 0.01 0.18 0.14
3 21.1 0.11 0.07 0.19 0.47
4 18.6 0.30 0.26 0.33 0.46
5 21.8 0.75 0.76 0.91 0.67
6 11.9 1.78 2.82 2.00 1.76
7 3.5 9.22 6.48 6.07 6.23

Total 100.0 0.79 0.79 0.79 0.79

1-year bankruptcy rates (2004 sample)

1 1.4 0.00 0.00 0.00 0.00
2 21.5 0.00 0.01 0.06 0.05
3 21.5 0.09 0.06 0.11 0.25
4 18.8 0.22 0.16 0.20 0.45
5 22.0 0.34 0.43 0.57 0.40
6 11.6 1.44 2.00 1.13 1.28
7 3.3 7.85 5.52 6.85 5.26

Total 100.0 0.56 0.56 0.56 0.56

5-year bankruptcy rates (2001 sample)

1 1.5         0.96         0.00         1.20         0.48
2 21.8         0.75         0.50         1.17         1.71
3 22.8         1.37         1.42         1.60         2.80
4 19.4         2.93         2.65         3.04         3.29
5 19.9         4.72         5.77         4.47         4.14
6 11.3         8.26         8.43         6.81         5.66
7 3.2       18.05       14.42       19.43       12.30

Total 100.0         3.52         3.52         3.52         3.52

The table shows the distribution of firms and the 1-year and 5-year bankruptcy rates for the four
models in the 7-class rating system, which is based on the output of one of the two vendor
models.
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Table 2: Power of each model (area under the 1-year and 5-year ROC curves) and profit
associated with benchmark parameters (number of basis points, in parenthesis)

Model 1-year ROC curve (2004) 5-year ROC curve (2001)

NBB 0.876 0.743
(126)

Model 1 0.868 0.751
(124)

Model 2 0.833 0.713
(120)

Z-score 0.779 0.636
(113)

The profit for a five-year loan is not calculated, as it would require considerably more assumptions
than those made for the one-year horizon. Chi-square tests reject the null hypothesis that the
areas under any given pair of ROC curves are equal (5% level), except the areas under the ROC
curves of the NBB model and Model 1 at the 1-year and 5 -year horizons (test statistics = 0.42 and
1.20, with associated p-values of 0.52 and 0.28, respectively).

Table 3a: Benchmark parameter assumptions, used to convert ROC figures into basis points

Variable Baseline value

Interest spread (per annum) 01.25%
Underwriting fees (up front) 00.50%
Workout fees (on default) 02.00%
LGD (on default) 35.00%
1-year PD 02.00%
Risk-free rate 04.00%
Additional relationship benefit 00.00%

Table 3b: Profit of no screening for differing assumptions about 1-year PD, interest spread and
LGD (other variables kept at benchmark values)

1-year PD Interest spread LGD Profit of no screening

2% 1.25% 35.00% 096 bps
1% 1.25% 35.00% 133 bps
3% 1.25% 35.00% 060 bps
2% 0.50% 35.00% 026 bps
2% 2.00% 35.00% 167 bps
2% 1.25% 45.00% 077 bps
2% 1.25% 50.00% 168 bps
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Table 4a: Disagreement for high-risk firms (2004)
Percentage of class-7 firms of a given model classified as 1, 2, 3 or 4 by another model

Class 7 Class 1, 2, 3 or 4 % of class-7 firms

NBB Model 1 16.3
Model 2 14.5
Z-score 16.4

Model 1 NBB 8.7
Model 2 15.6
Z-score 33.2

Model 2 NBB 18.1
Model 1 19.0
Z-score 29.3

Z-score NBB 18.4
Model 1 26.6
Model 2 11.5

Table 4b: Disagreement for low-risk firms (2004)
Percentage of class-1 firms of a given model classified as 4, 5, 6 or 7 by another model

Class 1 Class 4, 5, 6 or 7 % of class-1 firms

NBB Model 1 1.4
Model 2 36.7
Z-score 54.2

Model 1 NBB 0.5
Model 2 18.9
Z-score 21.9

Model 2 NBB 34.3
Model 1 29.4
Z-score 42.3

Z-score NBB 7.5
Model 1 7.7
Model 2 44.2
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Table 5a: Power of different combinations of models (area under the 1-year ROC curve) and
profits associated with benchmark parameters (number of basis points, in parenthesis)

Combination Min. 1 Max. 1 Median
Median
rounded
down 2

Median
rounded

up 2
Average

Average
rounded
down 2

Average
rounded

up 2

1 model

NBB (N) 0.876
(126)

- - - - - - -

Model 1 (M1) 0.868
(124)

- - - - - - -

Model 2 (M2) 0.833
(120)

- - - - - - -

Z-score (Z) 0.779
(113)

- - - - - - -

2 models

N - M1 0.878
(128)

0.898
(130)

- - - 0.908
(132)

0.897
(132)

0.896
(127)

N - M2 0.861
(124)

0.892
(131)

- - - 0.898
(130)

0.891
(130)

0.886
(126)

N - Z 0.854
(123)

0.855
(125)

- - - 0.880
(126)

0.867
(126)

0.871
(125)

M1 - M2 0.862
(123)

0.880
(127)

- - - 0.894
(130)

0.886
(130)

0.880
(125)

M1 - Z 0.847
(120)

0.871
(122)

- - - 0.890
(127)

0.879
(123)

0.878
(127)

M2 - Z 0.808
(115)

0.858
(126)

- - - 0.855
(121)

0.844
(121)

0.848
(118)

3 models

N - M1 - M2 0.867
(122)

0.901
(134)

0.899
(127)

- - 0.916
(132)

0.901
(131)

0.908
(128)

N - M1 - Z 0.861
(120)

0.886
(130)

0.894
(127)

- - 0.911
(130)

0.901
(127)

0.895
(130)

N - M2 - Z 0.845
(118)

0.879
(131)

0.883
(131)

- - 0.899
(127)

0.892
(127)

0.885
(126)

M1 - M2 - Z 0.840
(118)

0.882
(130)

0.886
(131)

- - 0.901
(128)

0.892
(127)

0.883
(126)

4 models

N - M1 - M2 - Z 0.852
(119)

0.890
(133)

0.914
(132)

0.903
(131)

0.906
(132)

0.917
(131)

0.907
(128)

0.900
(130)

Notes:
1 Taking the minimum implies selecting the lowest number class (i.e., lower-risk class). Taking the
maximum implies selecting the highest number class (i.e., higher-risk class).
2 Rounding "up" implies rounding to the higher number class (i.e., higher-risk class). Rounding
"down" implies rounding to the lower number class (i.e., lower-risk class).
3 Profit of no screening is equal to 96 bps
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Table 5b: Power of different combinations of models (area under the 5-year ROC curve)

Combination Min. 1 Max. 1 Median
Median
rounded
down 2

Median
rounded

up 2
Average

Average
rounded
down 2

Average
rounded

up 2

1 model

NBB (N) 0.743 - - - - - - -

Model 1 (M1) 0.751 - - - - - - -

Model 2 (M2) 0.713 - - - - - - -

Z-score (Z) 0.636 - - - - - - -

2 models

N - M1 0.754 0.763 - - - 0.776 0.769 0.766

N - M2 0.734 0.758 - - - 0.767 0.760 0.758

N - Z 0.702 0.720 - - - 0.738 0.728 0.729

M1 - M2 0.745 0.756 - - - 0.772 0.761 0.766

M1 - Z 0.714 0.725 - - - 0.749 0.740 0.737

M2 - Z 0.685 0.699 - - - 0.709 0.701 0.705

3 models

N - M1 - M2 0.743 0.767 0.774 - - 0.787 0.776 0.776

N - M1 - Z 0.718 0.741 0.767 - - 0.777 0.766 0.763

N - M2 - Z 0.709 0735 0.741 - - 0.758 0.746 0.746

M1 - M2 - Z 0.718 0.738 0.744 - - 0.764 0.750 0.752

4 models

N - M1 - M2 - Z 0.719 0.748 0.779 0.767 0.773 0.783 0.767 0.772

Notes:
1 Taking the minimum implies selecting the lowest number class (i.e., lower-risk class). Taking the
maximum implies selecting the highest number class (i.e., higher-risk class).
2 Rounding "up" implies rounding to the higher number class (i.e., higher-risk class). Rounding
"down" implies rounding to the lower number class (i.e., lower-risk class).



22

Table 6a: Power of the NBB model (area under the 1-year and 5-year ROC curves) and
associated profits (number of basis points, in parenthesis)

Distribution of firms based on

Number of classes Vendor model
distribution 1 Moody's distribution 2 Equal distribution 3

1-year bankruptcy rates (2004 sample)

7 0.876 0.874 0.858
(126) (123) (125)

10 0.883 0.882 0.873
(130) (128) (130)

17 0.887 0.885 0.883
(130) (130) (130)

Continuous 0.889
(130)

5-year bankruptcy rates (2001 sample)

7 0.743 0.741 0.742

10 0.748 0.750 0.746

17 0.752 0.752 0.751

Continuous 0.753

Notes:
1 The vendor model distribution for the seven-class system is the distribution used in Tables 1 to 5.
It is based on the output of one of the vendor models (see Section 2).
2 The Moody's distribution is a distribution that mirrors the 1983-2005 distribution of Moody's credit
ratings (see Moody's, 2006), with the distribution of credit ratings across classes changing as the
number of classes varies.
In the 7-class system, credit ratings are grouped as follows: class 1 = Aaa, class 2 = Aa, class 3 =
A, class 4 = Baa, class 5 = Ba, class 6 = B, class 7 = Caa and below.
In the 10-class system, credit ratings are grouped as follows: class 1 = Aaa, class 2 = Aa1-Aa2,
class 3 = Aa3-A1, class 4 = A2-A3, class 5 = Baa1-Baa2, class 6 = Baa3-Ba1, class 7 = Ba2-Ba3,
class 8 = B1-B2, class 9= B3-Caa1, class 10 = Caa2 and below.
In the 17-class system, credit ratings are grouped as follows: class 1 = Aaa, class 2 = Aa1, class 3
= Aa2, class 4 = Aa3, class 5 = A1, class 6 = A2, class 7 = A3, class 8 = Baa1, class 9= Baa2,
class 10 = Baa3, class 11 = Ba1, class 12 = Ba2, class 13 = Ba3, class 14 = B1, class 15 = B2,
class 16 = B3, class 17= Caa1 and below.
3 The equal distribution is a distribution that allocates the same percentage of firms across
classes.
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Table 6b: Chi-square values associated with the tests comparing the areas under the ROC
curve of pairs of internal rating systems

Distribution of firms compared

Number of classes Vendor model vs.
Moody's

Vendor model vs.
equal

Moody's vs.
equal

1-year bankruptcy rates (2004 sample)

7              0.13             31.42 ***            21.06 ***

10              0.09             10.91 ***            11.85 ***

17              0.70               8.04 ***              5.94 **

5-year bankruptcy rates (2001 sample)

7              0.81               0.01              0.42

10              1.55               0.99              6.83 ***

17              0.00               0.25              0.37

Number of classes compared

Distribution of firms
7 vs. 10 10 vs. 17 7 vs.17

1-year bankruptcy rates (2004 sample)

          Vendor               3.16 *               5.90 **             20.98 ***

          Moody's               5.12 **               5.51 **             17.72 ***

          Equal             40.75 ***             29.81 ***             92.78 ***

5-year bankruptcy rates (2001 sample)

          Vendor             26.59 ***               2.05             52.25 ***

          Moody's               6.46 **             10.31 ***             39.25 ***

          Equal               6.65 ***             20.10 ***             36.23 ***

*** Significant at the 1% level, ** significant at the 5% level, * significant at the 10% level. See also
footnotes at the bottom of Table 6a.
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Fig.1: 1-year ROC of the four models based on the
7-class system (2004)
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Fig.2: 5-year ROC of the four models based on the
7-class system (2001)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Non-failing firms ordered by model score percentile

P
er

ce
nt

ag
e 

of
 fa

ili
ng

 fi
rm

s

NBB Model 1 Model 2

Z-score Random choice



25

APPENDIX: ROC curves

The ROC (Receiver Operating Characteristic) curve is frequently used when comparing the

accuracy of credit risk models. It is constructed by first ordering the non-failing firms from

worst (highest risk) to best (lowest risk) from left to right on the horizontal axis.  The vertical

axis represents the percentage of all failing firms that would be captured at each percentile of

non-failing firms on the horizontal axis. In other words,  if x p.c. of non-failing firms (starting

from the riskiest firm) were excluded from the sample, the vertical axis of the ROC curve

gives the percentage of failing firms that would also be excluded (because they are ranked

as equally risky or riskier than the least risky excluded non-failing firm).

ROC curves allow calculation of Type-1 and Type-2 errors at each point on the curve. The

Type-1 error, or the error of labelling a non-failing firm as failing, corresponds to the

percentage of non-failing firms excluded. The Type-2 error, or the error of labelling a failing

firm as non-failing, equals the percentage of failing firms that is not excluded from the

sample.

ROC curve illustration
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When the ROC curve of one model lies strictly above the ROC curve of another model (i.e.,

to the northwest), the former has unambiguously a lower Type-2 error rate for any given

Type-1 error rate. When the ROC curves for two models cross, neither strictly dominates the
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other. In this situation, which model would be preferred would depend on the specific

application one is interested in.

A convenient measure for summarizing the graph of the ROC curve is the area under the

curve, which is calculated as the proportion of the area below the curve relative to the total

area of the unit square. The area under the ROC curve may range from 0.5 (random model)

to 1.0 (model with perfect discrimination). The area may be interpreted as the probability that

a randomly chosen failing firm is classified in a riskier class than a randomly chosen non-

failing firm (Stein, 2002).
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