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Abstract

The German potable water supply industry is regarded highly fragmented,
thus preventing efficiency improvements that could happen through consol-
idation. Focusing on a hypothetical restructuring of the industry, we use a
cross-section sample of 364 German water utilities in 2006, applying Data
Envelopment Analysis (DEA), to analyze the potential efficiency gains from
hypothetical mergers between water utilities at the county level. A con-
ditional efficiency framework is applied to account for the water utilities’
operating environments. A conditional order-m approach is applied for the
detection of potential outlying observations. Merger gains are decomposed
into a technical efficiency effect, a harmony effect and a scale effect. The
greatest efficiency improvement potentials turn out to result from reducing
individual inefficiencies while pure merger gains are found to be low. The
results suggest improving incentives for efficient operations in water supply
and a consolidation of the smallest water utilities.
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1 Introduction

1.1 Motivation and industry background
Potable water supply in Germany is the subject of intense political debate. The de-
bate focuses on prices charged for potable water to the final customers and on how
to appropriately regulate the water industry (Hirschhausen et al, 2009). However,
the industry structure itself still lacks appropriate attention. Like other countries,
including Japan and Portugal, the German water industry is highly fragmented,
consisting of 6,211 water utilities in 2007, of which 5,972 deliver water to final
customers (Statistisches Bundesamt, 2009). In contrast, water industries in Eng-
land, Wales and the Netherlands are highly consolidated. In England and Wales,
22 companies, of which 10 are integrated water and sewerage companies, sup-
ply water to final customers (Bottasso and Conti, 2009). There are only 13 water
companies serving the Netherlands (De Witte and Marques, 2010a).

Water supply in West Germany was highly fragmented for political reasons.
By West German constitution, potable water provision was a municipal govern-
ment responsibility. Municipalities could either provide their own water services
or contract with a third party. Municipalities had wide latitude, including coop-
erating with other municipalities. These possibilities led to a variety of organi-
zational arrangements. Utilities in Germany will supply water as well as other
services, like electricity, natural gas, and other services. These other services
might include local public transport and telecommunications. These municipal
multi-product companies are usually known as ”Stadtwerke” that can either be
publicly or privately owned, and in some cases, partially privatized.

In contrast to West German structures, prior to reunification East Germany
had 15 water utilities supplying water to final customers, divided at the regional
level. In addition, there was one bulk water supply company (Statistisches Amt
der DDR, 1990). After reunification, the task of water supply was assigned to
municipal governments. The 16 water utilities were split into more than 550 utili-
ties, using the West German model (Bundesministerium für Wirtschaft und Arbeit,
2005). This was followed with some re-consolidation, such that water utilities in
the former East Germany are often organized as jointly held companies serving
several municipalities.

However, former West German water utilities usually provided water and other
services only to customers within its municipal territories. In its 2010 biannual
report, the German Monopolies Commission (Monopolkommission, 2010) rec-
ommends both incentive-based regulation and a substantial consolidation of the
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German water industry, since efficiency gains might result. Following the Mo-
nopolies Commission report, the German Federal Government (Bundesregierung,
2010) decided against regulating the water industry.1 Even though the federal gov-
ernment will not force consolidation, water utilities are encouraged to investigate
the potential for mergers with other companies. The issue of industry restructuring
and consolidation thus still is of great interest. It is arguable that larger companies
might be able to operate more efficiently, better handle the consequences of cli-
mate change, as well as find it easier to meet the increasing regulations on water
quality (Mosheim, 2006) and the sustainable use of raw water resources as op-
posed to smaller companies. Related to possible scale advantages, Zschille (2013)
analyzes the returns to scale characteristics of German water utilities. Account-
ing for the water utilities’ operating environments, the results of Zschille (2013)
indicate increasing returns to scale especially for smallest water utilities. Thus,
scale adjustments, e.g. through mergers, might improve the efficiency of water
supply. Potential merger gains may result from reduced management overhead in
the integrated companies as well as the possibility of further optimizations in raw
water abstraction and production.

Due to the high importance of water industry restructuring considerations in
Germany and other countries, this paper contributes to the literature by analyzing
the potential efficiency gains from mergers between water utilities using the Data
Envelopment Analysis (DEA) approach proposed by Bogetoft and Wang (2005).
In the water industry it is especially important to appropriately take the operating
environment into account for efficiency analysis. Thus we apply the conditional
efficiency framework proposed by Daraio and Simar (2005, 2007) in order to al-
low for the consideration of structural variables in DEA. Based on the conditional
DEA estimates, we then analyze hypothetical cases of horizontal integration be-
tween water utilities located within the same county. To validate the results, we
further calculate conditional efficiency scores and merger gains including bias cor-
rections according to Simar and Wilson (1998, 2008, 2011a). We contribute to the
literature on conditional efficiency approaches and their applications by analyzing
the potential efficiency gains from mergers in a conditional efficiency framework.
To our knowledge, this article is the first analysis of the potential gains from hori-
zontal integration in the water industry.

1Water utilities in Germany are natural monopolies in their service areas. Public water utilities
currently do not face an effective price control. Private water utilities face an ex-post price control
based on German cartel law. This price control however only is executed in the federal state of
Hesse. There is currently no effective regulation of German public and private water utilities.
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1.2 State of the literature
The existence of economies of scale can be used as a first indicator for poten-
tial efficiency gains from mergers. Extensive reviews of the empirical literature
on scale economies in water supply are provided by Saal et al (2013), Abbott
and Cohen (2009) and Walter et al (2009). Most experience in water industry re-
structuring and on the estimation of scale economies originate from England and
Wales, where significant structural and regulatory reforms started being imple-
mented in 1989. Saal et al (2007) find negative scale effects in the productivity
growth of water and sewerage companies (WaSCs) over the 1985-2000 period.
Short- and long-run diseconomies of scale for WaSCs are found in Ballance et al
(2004), while they find constant returns for water only companies (WoCs). The
results of Ashton (2003) indicate the existence of slight diseconomies of scale
for English and Welsh water companies using panel data for 1991-1996. This
result is confirmed by Saal et al (2011) for WoCs using an unbalanced panel of
234 observations for the years 1993-2009. In contrast, Bottasso and Conti (2009)
find small economies of scale for the English WoCs using panel data from 1995
to 2005. The results show that consolidation might be beneficial especially in
densely populated service areas.

Focusing on French water supply, Garcia and Thomas (2001) analyze a sample
of water utilities in Bordeaux for the years 1995-1997. For the majority of water
utilities in the sample, Garcia and Thomas find economies of scale greater than
one, suggesting that mergers between water utilities are beneficial. They further
show that merging up to 5 water utilities would be most beneficial in the Bordeaux
case.

Several studies focus on scale economies in Italian water supply, which, like
Germany, is highly fragmented with around 6,000 water utilities (Antonioli and
Filippini, 2001; Fabbri and Fraquelli, 2000). Fabbri and Fraquelli (2000) find
economies of scale for the majority of water utilities in the sample observed in
1991. Arguing that the sample average firm supplies water to about 160,000 in-
habitants and that the national average firm serves about 9,000 inhabitants, Fab-
bri and Fraquelli conclude that most Italian water utilities could benefit from an
increase in firm size. In contrast, Antonioli and Filippini (2001) find weak dis-
economies of scale for a panel of 32 water distribution companies over the 1991-
1995 period.

De Witte and Marques (2011) and Marques and De Witte (2011) analyze scale
economies of Portuguese water utilities observed in 2005. They find that the 2005
number of 300 water utilities should be reduced to 60 water utilities. Martins et al
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(2012) estimate a short-run total cost function for a sample of Portuguese water
utilities observed in 2002 and find economies of scale for all analyzed output
levels.

Japan is another example of a highly fragmented water industry. According
to Urakami and Parker (2011), in 2005 there were more than 17,000 water utili-
ties operating. Mizutani and Urakami (2001) find low diseconomies of scale and
significant economies of density for a sample of water utilities in 1994, whereas
Urakami (2006) and Urakami and Parker (2011) confirm the existence of scale
economies.

Kim and Clark (1988) analyze a sample of US water utilities in 1973. The
results indicate weak economies of scale for the smallest utilities, whereas for
the overall output level, Kim and Clark conclude that there are no significant
economies of scale. Torres and Morrison Paul (2006) analyze a sample of US
water utilities in 1996 and find economies of scale given that consolidation leads
to a higher output density. They argue that a consolidation of smaller utilities is
efficient given that economies from an increase in output volumes compensate for
diseconomies in the expansion of the distribution network. Garcia et al (2007)
focus on vertical integration in the Wisconsin water industry over the 1997-2000
period. They find evidence for scale economies in vertically integrated compa-
nies that both produce and distribute water, while they find no evidence for scale
economies in pure water production or water distribution companies.

Nauges and Berg (2010) analyze the scale characteristics of water utilities in
14 developing and transition countries and find economies of scale for 62% of the
water utilities. For a sample of Peruvian water utilities from 1996 through 2005,
Corton (2011) finds economies of scale for all water utilities considered.

Due to the varying evidence on economies of scale, no general conclusions on
optimal firm size can be drawn. Results heavily depend on the analyzed country,
on the characteristics of the operating environment and on firm characteristics like
the joint provision of water and sewerage services. As a general consensus, the
existence of scale economies usually is confirmed for small-scale water utilities
up to some threshold level for firm size where economies of scale turn into dis-
economies, as shown for example in Fabbri and Fraquelli (2000), Fraquelli and
Moiso (2005) or Garcia and Thomas (2001). For the case of Germany, Sauer
(2005) shows that the firm size optimum of rural water utilities lies around an out-
put level of 3.592 million cubic meters of water and a network length of 808.8 km
with 18,453 connections (Sauer, 2005). On average, optimal firm size is found to
be three times larger than under the current market structure. The optimal firm
size level derived by Sauer (2005) however is significantly smaller than in em-
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pirical analyses for other countries like, e.g., for Italy or Portugal. This might
be explained by the underlying data sample, which only contains information on
rural water utilities. Zschille (2013) analyzes the returns to scale characteristics
of a sample of German water utilities in a nonparametric framework. Increasing
returns to scale are confirmed especially for smallest water utilities and are found
to decrease with increasing firm size levels. Optimal firm size is found to be larger
than the sample median firm size.

In addition to the issue of economies of scale, scientific literature provides
little empirical evidence on the efficiency impact of horizontal integration in the
water industry. De Witte and Dijkgraaf (2010) provide a post-merger analysis of
the Dutch water sector and fail to confirm significant merger economies. They
find no significant economies of scale or increased incentives to reduce inefficien-
cies within the water companies. Ballance et al (2004) provide an analysis of
mergers in the English and Welsh water industry by comparing the cost functions
of merged firms and non-merger firms and fail to confirm significant differences
between both types. They find no evidence for a significant decline in costs after a
merger. Urakami and Parker (2011) analyze mergers in the Japanese water supply
industry and find some positive but small impact of consolidation on efficiency by
slowing down cost increases to a small extent.

However, the current literature provides no empirical evidence on the ex-ante
analysis of potential merger gains in the water industry. Bruno (2012) provides
an analysis of the potential efficiency gains from mergers between water regu-
latory authorities in Italy. Further empirical evidence on the potential efficiency
gains from hypothetical mergers so far is only known for other industries like e.g.
for electricity supply, hospital services and urban transit, see Bagdadioglu et al
(2007), Kristensen et al (2010) and Viton (1992), respectively.

The remainder of this paper is structured as follows: in Section 2 we describe
the methodological framework of our analysis, Section 3 presents the data sample
and results are shown in Section 4. Section 5 concludes.

2 Methodology

2.1 Data Envelopment Analysis and bias corrections
The analysis of the potential gains from mergers requires a frontier estimate of
the water utilities’ underlying production technology set. This can be accom-
plished, e.g., with Stochastic Frontier Analysis (SFA) or Data Envelopment Anal-
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ysis (DEA). We choose a DEA approach for our analysis. In contrast to parametric
approaches, strong a priori assumptions about the functional form of the technol-
ogy set can be avoided. We assume an input orientation to analyze the possible
proportional reduction of all inputs while outputs are assumed to remain constant.
This is a valid assumption because demand for water is, essentially, exogenous
and not directly influenced by the water utilities.

Different returns to scale technologies can be assumed for the construction of a
technology set. Following standard microeconomic theory, with a constant returns
to scale (CRS) assumption, it is always possible to scale firm sizes either up or
down. Scaling firm sizes up or down is not always possible with a variable returns
to scale (VRS) assumption. Thus, the VRS assumption restricts the possibilities
for analyzing merger gains by strictly bounding the DEA technology set. The
assumption of non-decreasing returns to scale (NDRS) implies that an up-scaling
of firm sizes is always possible, but down-scaling is not. Smaller water utilities
thus obtain higher efficiency scores than under the assumption of CRS. In the
first step of the merger analysis, we evaluate potential merger gains relative to the
VRS technology representing the observed industry structure of German water
supply. In a second step, we then expand the technology set to the NDRS case.
Given the small-scale structure of the water utilities in Germany and the existence
of larger water utilities in other countries like the UK (England and Wales) and
the Netherlands, an expansion of the technology set from VRS to NDRS appears
reasonable.

The DEA linear program for the determination of the Farrell (1957) efficiency
score for each observation i under the assumption of VRS is given by

θ̂ i
VRS(x,y) = in f{θ | yi ≤

K

∑
k=1

λ kyk;

θxi ≥
K

∑
k=1

λ kxk;

K

∑
k=1

λ k = 1, λ ∈ RK
+},

(1)

with x denoting a p-dimensional vector of inputs, y a q-dimensional vector of
outputs, λ a set of weights and k = {1, . . . ,K} the full set of observations. For
the assumption of NDRS, the returns to scale restriction ∑K

k=1 λ k = 1 in Eq. 1 is
replaced by ∑K

k=1 λ k ≥ 1.
DEA efficiency scores obtained from the linear program in Eq. 1 are upward
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biased by construction. Since the estimated technology can only represent a sub-
set of the true, unknown technology, estimated efficiency scores are thus higher
than the true efficiency scores (Simar and Wilson, 1998). Accordingly, merger
gain estimates might also be biased in the DEA framework. Following Simar and
Wilson (1998, 2008), the bias of the DEA efficiency scores is defined as

BIAS(θ̂vrs(x,y))≡ E(θ̂vrs(x,y))−θ(x,y), (2)
where θ̂vrs(x,y) represents the standard DEA efficiency score estimate and θ(x,y)
the true, unknown efficiency score of a decision making unit (DMU). Since θ(x,y)
is unknown, the bias estimate is unknown. However, a bias estimate can be ob-
tained from the bootstrap analogue of the bias definition. In order to obtain the
bootstrap DEA efficiency scores, Simar and Wilson (2008, 2011a) suggest using
subsampling or the m-bootstrap approach for the replication of the data generating
process (DGP) that yields the observed data.2 The basic idea of both approaches
is to generate pseudo samples χ∗

nm,B through drawing subsamples of size m = nκ

from the original data with κ ∈ (0,1) and e.g. B = 2000 bootstrap replications
(Simar and Wilson, 2008, 2011a). Bootstrap efficiency scores θ̂ ∗

vrs,b(x,y) are then
obtained relative to the reference sample χ∗

nm,B . Based on the set of bootstrap effi-
ciency scores, a bias estimate is obtained as

B̂IASB(θ̂vrs(x,y)) =
(m

n

) 2
p+q+1

∗ (B−1
B

∑
b=1

θ̂ ∗
vrs,b(x,y)− θ̂vrs(x,y)) (3)

with the correction factor (m
n )

2
p+q+1 accounting for the size m of the subsample

χ∗
nm,B compared to the full sample size n. Bias corrected DEA efficiency scores

are finally calculated as

ˆ̂θvrs(x,y) = θ̂vrs(x,y)− B̂IASB(θ̂vrs(x,y)). (4)

2.2 Detection of influential observations
Since DEA is sensitive to outliers or extreme observations in the data, a profound
validation of the data is necessary. Cazals et al (2002) propose the order-m esti-
mator as an alternative to DEA estimation. Unlike DEA, the order-m estimator

2Subsampling describes the generation of pseudo samples from the original data sample using
resampling without replacement whereas the m-bootstrap represents resampling with replacement
(Simar and Wilson, 2011a).

8



can be characterized as a partial frontier measure not enveloping all observations
and not relying on a convexity assumption. Furthermore, it reduces the influence
of outlying observations and of noise in the data.3

Following Daraio and Simar (2005), a technology set can be represented by
a probabilistic formulation and an input oriented full-frontier Farrell (1957) effi-
ciency score assuming free disposability is defined as

θ(x,y) = in f{θ |FX(θx|y)> 0}, (5)

with FX(x,y) = Prob(X ≤ x|Y ≥ y) describing the input levels of all observations
producing at least output level y (Simar and Wilson, 2008). An efficiency estima-
tor θ̂(x,y) can be obtained using an estimator of FX ,n(x|y) defined as

F̂X ,n(x,y) =
∑n

i=11(Xi ≤ x,Yi ≥ y)
∑n

i=11(Yi ≥ y)
, (6)

with 1(.) denoting an indicator function (Daraio and Simar, 2005).
Instead of estimating efficiency scores relative to a full frontier, the idea of

the order-m approach is to determine efficiency relative to subsamples of size m,
leading to an estimate of expected input efficiency θm(x,y). An estimator of the
order-m input efficiency score is defined as

θ̂m,n(x,y) = Ê(θ̃m(x,y)|Y ≥ y) =
∫ ∞

0
(1− F̂X ,n(ux|y))mdu. (7)

The integral in Eq. 7 can be solved by numerical methods (Simar and Wilson,
2008). The order-m efficiency score is obtained by comparing the observed input
usage of an observation with the expected minimum input usage of m observations
producing at least an output level of y. In contrast to DEA efficiency scores,
order-m efficiency scores thus are not bounded by 1. An input oriented order-m
efficiency score greater than one indicates that an observation is relatively more
efficient than the average of a random sample of size m.

Simar (2003) suggests using the order-m approach to detect potentially out-
lying observations in a data sample.4 An observation might be an outlier if the
order-m efficiency score remains greater than one even when m increases. Simar
(2003) suggests estimating leave-one-out order-m efficiency scores θ̂ (i)

m,n(xi,yi) for
each observation i = 1, ...,n where observation i is left out from the reference set.

3See Cazals et al (2002) for details on the order-m approach.
4See Coelli et al (2005), Thanassoulis et al (2008) or De Witte and Marques (2010b) for

overviews of alternative outlier detection procedures.
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Leave-one-out efficiency scores are calculated for several values of m. Under an
input orientation, values greater than one even when m increases indicate poten-
tially outlying observations. Determining a threshold level (1+α), an observation
might be an outlier if θ̂ (i)

m,n ≥ 1+α . Simar (2003) further suggests considering the
number Ninput(xi,yi) of observations with outputs being greater or equal to yi.

For a further analysis of potential outliers, Simar (2003) suggests a procedure
to flag potential outlying observations. For different values of α , the share of
observations lying above the threshold values depending on m is considered in a
graphical analysis. By construction, these shares are decreasing in m. A strong
negative slope of the curve indicates a potential outlier. A similar analysis can be
performed under an output orientation. Observations that are found to be extreme
both under an input and output orientation require further analysis and might be
deleted from the sample.

2.3 Accounting for the operating environment
Water operations depend on the operating environment and on service area char-
acteristics. Examples include the differences between rural and urban areas as
well as the availability and characteristics of the raw water resources. Thus it is a
fundamental to consider the operating environment when analyzing water utilities
to ensure that water utilities are only compared with those facing similar operating
environments. The literature provides different approaches to the consideration of
environmental variables in DEA. In most applications multi-stage approaches are
used, including the calculation of standard DEA efficiency scores in a first step,
a regression analysis of the efficiency scores on structural variables in a second
step and different approaches to account for the relevant structural variables in the
following steps.5 Daraio and Simar (2005, 2007) and Simar and Wilson (2007,
2011b) argue that typical multi-stage approaches rely on a separability condition
between the input and output space used in DEA and the space of environmental
variables z, i.e. that the DEA frontier is not influenced by the environmental vari-
ables. To overcome this separability condition, Daraio and Simar suggest estimat-
ing the DEA technology set by conditioning on the characteristics of the operating
environment of each individual observation. This approach requires the smooth-
ing of the z-variables through the estimation of appropriate bandwidths for each
z-variable to construct a Kernel function. Daraio and Simar (2005) recommend

5A short overview of possible approaches to incorporate the operating environment into DEA
is given in Coelli et al (2005).
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using a Kernel function with compact support, i.e. a Kernel function K(.) with
K(u) = 0 if |u| > 1 with u = |zi−zk|

h . Here, zi denotes the vector of environmental
variables of the decision making unit (DMU) under consideration, zk the envi-
ronmental variables of all other observations and h the selected bandwidth. We
apply an Epanechnikov Kernel for this purpose. This procedure guarantees that
only those observations are selected into the set of possible peer units of a DMU
that lie within the neighborhood around zi. Following Bădin et al (2010), we es-
timate optimal conditional bandwidths based on a least squares cross validation
approach.

Daraio and Simar (2005) introduce the concept of conditional efficiency mea-
sures for the order-m and Free Disposal Hull (FDH) estimators. The conditional
order-m efficiency estimator is defined as

θ̂m,n(x,y|z) = Ê(θ̃ z
m(x,y)|Y ≥ y,Z = z) =

∫ ∞

0
(1− F̂X ,n(ux|y,z))mdu. (8)

The conditional efficiency framework is extended to the DEA case by Daraio
and Simar (2007). The conditional DEA technology set under the assumption of
variable returns to scale is defined as

Ψ̂z
VRS = {(x,y) ∈ R

p+q
+ | y ≤ ∑

{k|zi−h≤zk≤zi+h}
λ kyk;

x ≥ ∑
{k|zi−h≤zk≤zi+h}

λ kxk;

∑
{k|zi−h≤zk≤zi+h}

λ k = 1, λ ∈ RK
+}.

(9)

As shown in Eq. 9, only those observations that lie within the chosen band-
width h around zi are used for the construction of the DEA frontier for DMU i.
Efficiency scores θ̂ i

VRS(x,y|z) for each observation i can then be derived from the
technology set in Eq. 9.

We further estimate bias corrected conditional DEA efficiency scores using
the m-bootstrap. For this purpose, for each observation i we restrict the reference
set to those observations k facing a similar operating environment like observation
i and resample from this subset of observations. Bias corrected conditional DEA
efficiency scores are then obtained as described in Section 2.1 for the standard
DEA case.
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2.4 Potential merger gains
Based on the estimated conditional DEA frontier, it is possible to analyze hy-
pothetical cases of horizontal integration between water utilities in more detail.
Considering a merger of J firms out of the full set of observations k = {1, . . . ,K}
into the integrated firm denoted by DMUJ , Bogetoft and Wang (2005) propose a
simple direct pooling of the inputs x and outputs y of the individual firms to be
merged. We thus obtain an integrated firm DMUJ that uses ∑ j∈J x j units of input
to produce ∑ j∈J y j units of output.

Following the notation of Bogetoft and Wang (2005), the input oriented Farrell
efficiency measure of the integrated company is then defined as

EJ = min{E ∈ R
p+q
+ |(E ∑

j∈J
x j,∑

j∈J
y j) ∈ Ψ̂∗, z

DEA}. (10)

The underlying DEA technology set is denoted by Ψ̂∗, z
DEA. For the analysis of

hypothetical cases of horizontal integration, we use the technology set estimated
before any merger as the reference set. As indicated by the superscript z, the
conditional pre-merger technology set from Eq. 9 is used for this purpose.6 The
efficiency of the merged entity, EJ , represents the potential overall gains from
merging. It is the efficiency evaluation of a hypothetical DMU using the sum of
inputs of the pre-merger firms to produce the sum of the pre-merger outputs. A
merger is assumed to be beneficial for EJ < 1. A value of EJ = 0.9 e.g. indicates
a potential for input savings of 10% by merging the companies in J. For EJ > 1,
a merger is assumed to have a negative impact on efficiency.7 Fig. 1 illustrates the
Bogetoft and Wang (2005) merger analysis approach for the two input and one
output case. We illustrate a hypothetical merger between the two companies A
and B, both producing output y = 1, that are individually compared to the input
set L(y = 1). Aggregating inputs and outputs of A and B yields the hypothetically
merged company (A+B) with output level y = 2 and the merged observation is

6In our analysis we focus on hypothetical mergers between water utilities located in the same
Landkreis, the German equivalent of a county. For the application of the conditional efficiency
approach, structural variables are re-calculated for the integrated companies.

7Under the assumption of NDRS and thus of additivity for the underlying technology set, the
overall merger gains EJ will always be less than or equal to one in a standard DEA framework.
Due to the application of the conditional efficiency framework in our analysis, the set of peer units
for a merged water utility is likely to be different as compared to the individual pre-merger com-
panies due to the re-calculation of environmental variables. It is thus possible that hypothetically
integrated companies lie outside the NDRS technology, i.e. it is possible to achieve overall merger
gains greater than one.
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thus compared to L(y = 2). Projecting (A+B) onto L(y = 2) yields the reference
point (A+B)′ and the overall potential gain from merging is defined as E(AB) =
[(A+B)′]/[(A+B)], i.e. it represents the efficiency score of (A+B) relative to
L(y = 2).

[Figure 1 about here.]

The potential overall gains from merging still include the inefficiencies of in-
dividual firms from before merging that cannot be attributed to a merger. Thus
we need to project the individual companies onto the efficient pre-merger DEA
frontier (θ̂ j

DEA(x,y|z)x
j,y j) using the conditional efficiency scores of the individ-

ual companies. The performance of the merged entity is then determined by the
sum of the efficient individual input quantities and the sum of the initial output
quantities:

E∗J = min{E ∈ R
p+q
+ |(E ∑

j∈J
θ̂ j

DEA(x,y|z)x
j,∑

j∈J
y j) ∈ Ψ̂∗, z

DEA}. (11)

The performance measure E∗J represents the corrected overall potential gains
from merging. As before, a merger is evaluated as being beneficial for E∗J < 1
and costly otherwise. With reference to Fig. 1, the correction for individual pre-
merger inefficiencies is illustrated for the case of point B. While A is located on
the frontier and is thus efficient, point B is not. Therefore, for the analysis of pure
merger gains, we focus on the aggregation of A and B∗, the projection of B onto
the efficient frontier. The aggregation yields the new point (A+B∗), which is
again compared to L(y = 2). The corrected overall gain from merging can thus be
represented by E∗(AB) = [(A+B∗)′]/[(A+B∗)].

The framework of Bogetoft and Wang (2005) allows for the decomposition of
the potential merger gains according to

EJ = LEJ ∗HAJ ∗SIJ (12)

with LEJ denoting a learning effect, HAJ a harmony effect and SIJ a size ef-
fect. The learning or technical efficiency effect in this decomposition represents
efficiency improvement potentials resulting from individual inefficiencies and is
calculated as

LEJ =
EJ

E∗J (13)

with 0 < LEJ ≤ 1 since EJ ≤ E∗J . Such efficiency improvements usually cannot
be attributed to a merger. Thus, it is more meaningful to represent the potential
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gains from horizontal integration by the corrected merger gains E∗J and the corre-
sponding decomposition into the harmony and the scale effect. With reference to
Fig. 1, the learning effect thus represents the movement from (A+B) to (A+B∗),
since (A+B∗) will usually lie on a different ray than (A+B) when at least one
pre-merger company is inefficient and when the pre-merger companies are not
located on the same ray.

The harmony effect, sometimes referred to as the scope or synergy effect, aims
to represent the potential efficiency gains from a reallocation in the mixture of
inputs and outputs within a merged firm as compared to the pre-merger firms. In-
dividual firms use different combinations of inputs and outputs, with reallocation
becoming possible in a merged company. Combining such different production
plans might enable to reach a higher output level with the given inputs or, vice
versa, to reduce the input quantities while holding the output level constant.

The harmony effect HAJ is defined as

HAJ = min{HA ∈ R
p+q
+ |(HA ∑

j∈J
αθ̂ j

DEA(x,y|z)x
j,∑

j∈J
αy j) ∈ Ψ̂∗, z

DEA}, (14)

where α denotes a vector of weights; in most applications, α = 1
J . In this case,

the harmony effect is determined by the arithmetic average of the efficient in-
put quantities within the merged unit and the arithmetic average of the output
quantities. Firm size after a merger is thus assumed to remain unchanged here
while only the change in the mixture of inputs and outputs is considered. This
assumption holds for the case of similar pre-merger firm sizes. In the case of
differing pre-merger firm sizes however, scale effects might to some extent be
captured by the harmony effect. Different weights α , e.g. based on a measure
of firm size, can be used to avoid the inclusion of scale effects in the harmony
measure. Efficiency gains resulting from the harmony effect might also be re-
alized without any merger through the cooperation of individual companies. In
Fig. 1, we assume α = 2 and rescale (A+B∗) to (A+B∗)/2. Due to the rescal-
ing, the new point is compared to L(y = 1) and the harmony effect is obtained as
HA(AB) = [((A+B∗)/2)′]/[(A+B∗)/2].

The third effect is the size or scale effect. Based on the idea of returns to scale
it is arguable that firms can produce outputs more efficiently at larger scale. It is
aimed to represent savings potentials from operating at the full scale of a merged
firm rather than at the average scale. The size effect SIJ is defined as

SIJ = min{SI ∈ R
p+q
+ |(SI ∗HAJ ∑

j∈J
θ̂ j

DEA(x,y|z)x
j,∑

j∈J
y j) ∈ Ψ̂∗, z

DEA}. (15)
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Even with a harmony effect equal to one, there might be potential for efficiency
improvements through operating at a larger scale. Considering again the merger
case illustrated in Fig. 1, we first correct (A+ B∗) for the harmony effect and
obtain HA(A+ B∗), which is again assumed to produce merged output y = 2.
Thus, the size effect is represented by the radial efficiency of HA(A+B∗) relative
to L(y = 2) obtained as SI(AB) = [(A+B∗)′]/[HA(A+B∗)].

As described in Section 2.1, standard DEA efficiency scores tend to overesti-
mate true, unknown efficiency scores by construction (Simar and Wilson, 1998).
Thus, the potential efficiency gains from mergers similarly tend to be biased. Fur-
thermore, as described in subsequent sections, the underlying data sample of the
presented analysis contains only a few large observations, thus restricting the pos-
sibilities for analyzing mergers. Bias corrected DEA efficiency scores can be used
to account for the sparsity of large observations in the merger analysis. With the
aim of obtaining bias corrected merger gain estimates, we first estimate bias cor-
rected conditional DEA efficiency scores for the full set of observations obtained
after outlier detection using the m-bootstrap. We then use the bias corrected con-
ditional DEA efficiency scores to project all observations onto the frontier, i.e.
we assume efficient input quantities for all observations after correcting for the
potential bias. The set of input-efficient observations then serves as the reference
set for the merger analysis.

3 Data description
The analysis is based on data from the Statistics of German Waterworks pub-
lished by Bundesverband der Energie- und Wasserwirtschaft (2008) and is a cross-
section sample for the year 2006.8 The original data sample includes 1,096 water
utilities. Due to missing or erroneous data, the sample reduces to a set of 651
observations, including pure water production companies, pure water distribution
companies and integrated utilities that both produce and distribute water.9 In our
analysis we focus only on vertically integrated water utilities that both produce
and distribute water; excluding all other types. The final sample includes 364

8As of 2014, Germany had made no major structural or regulatory changes to their water supply
since 2006.

9On average, the excluded observations are smaller than the remaining observations. We note
that the excluded observations might be relevant for the merger analysis since merger gains are
more likely to accrue for small water utilities. However, due to missing or erroneous data, it is
necessary to exclude these observations.
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companies. We allow for a low share of water input purchased from other water
utilities, e.g. to meet peak demands, of up to 20% of total water input to ensure
the comparability of the water utilities in our sample.10 The 364 water utilities in
our data sample deliver water to around 20.45 million inhabitants, as compared
to the total number of inhabitants in Germany of about 80 million. Final water
deliveries of the sampled companies is about 1.14 billion cubic meters; with final
water deliveries for all of Germany equaling about 4.54 billion cubic meters in
2007 (Statistisches Bundesamt, 2009). The sample contains both small and large
companies; including the largest German water utilities. The data sample can
thus be characterized as being representative. In addition to water supply, utilities
sometimes also provide other services like electricity or natural gas supply. In our
analysis, we only focus on the potable water services provided by the utilities.11

Table 1 shows the summary statistics of the sample of 364 observations. Sim-
ilar to other applications in the literature, e.g. De Witte and Marques (2010a),
we assume a simple production model where the length of the entire network in a
service area and the number of employees represent capital and labor inputs. As
the number of employees is not available in full-time equivalents, the impact of
part-time employment is thus captured in our model. Since the share of part-time
employment in Germany usually is low, we assume the number of employees in
the water utilities to be comparable. For the representation of the main activities
of water utilities, the output measures in our model are final water deliveries, de-
fined as the sum of water supplied to residential and non-residential customers,
and bulk water supplies, which is the water supplied to other water utilities.12

10The consideration of firms with different degrees of vertical integration would furthermore
complicate the analysis of horizontal integration gains through simultaneous changes in horizontal
and vertical firm characteristics.

11All variables used in our analysis only represent the potable water activities of the companies.
We are however aware of possible scope effects between the services provided by multi-utilities.
Given our model specification, this might only be the case for labor input, e.g. due to a shared man-
agement overhead. We assume this effect to be small. The sample of 364 observations contains
121 observations of water-only companies and 63 observations of water and sewerage compa-
nies. The remaining companies provide one or more services in addition to water supply. Such
integrated firm structures can impact potential merger benefits, which cannot be captured by our
model. Mühlenkamp (2012) and Rottmann (2010) provide some general overview over German
multi-utilities. Other studies, e.g. by Farsi et al (2008), Fraquelli et al (2004), and Piacenza and
Vannoni (2004), focus on the analysis of multi-utilities in other countries.

12With a median level of 1.15 million cubic meters of final water deliveries, the sampled wa-
ter utilities deliver more than the national average of 0.76 million cubic meters per water utility
(Statistisches Bundesamt, 2009). This might be explained by the poor data availability for smaller
companies, since they are often part of the municipal administration.
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Furthermore, we take the number of connections to final customers into account
to ensure that water companies supplying water in areas of low per-capita water
demand are not discriminated against.

Since we allow for a low share of purchased water input, the amount of own
water production could be included as an additional output to differentiate be-
tween utilities with complete own water production from those water utilities with
a share of purchased water input of up to 20%, as discussed earlier. The amount
of own water production is highly correlated with the amount of water delivered
to final customers (Pearson correlation coefficient of 0.9984), the variable would
thus not have any additional explanatory power in our model. With the aim of
reducing the dimensionality problem of DEA, we thus omit the amount of own
water production variable from our model.

[Table 1 about here.]

In addition to the input and output measures, several structural variables that
are assumed to have an influence on firm performance are included. We only
consider exogenous structural variables that are not influenceable by the firms’
management.13 The network length usually is an important variable to proxy the
capital input of a water utility. It can, however, also be regarded as an output
variable (Thanassoulis, 2000) in addition to water output and the number of con-
nections in order to control for the size of a service area and different densities of
supply. Since we include the network length on the input side rather than on the
output side, we define the variable output density to control for different service
area densities. It is calculated as the sum of water deliveries to final customers
and to other water utilities over the length of the entire distribution network. Fol-
lowing the empirical evidence in the literature, we presume a positive impact on
efficiency. Examples include, among others, Picazo-Tadeo et al (2009), Garcı́a-
Sánchez (2006) or Tupper and Resende (2004).

To control for network quality, we define the share of water losses as the dif-
ference between total water input and total water output over total water input.
It is arguable that the share of water losses is endogenous since water losses can
be influenced by investments into network infrastructure or better maintenance.
However, pipe bursts and water losses also depend on other factors like, for exam-
ple, the type of soil in a service area (Coelli and Walding, 2006). We thus assume

13We are aware of other potential factors and characteristics of the water utilities’ operating
environments with a possible influence on efficiency. However, given data availability, we can
only include three z-variables in our analysis.
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water losses to be exogenously given.14 At the mean, the share of water losses
for the water utilities in our sample is around 12%, whereas it is about 10% for
entire Germany based on aggregated statistical information for all German water
utilities (Statistisches Bundesamt, 2009).15

In addition to network quality, water quality could be important. However,
the sample data does not include measures for the quality of the delivered water.
Given Germanys strong regulations potable water quality, the need for a water
quality measure appears to be negligible. In order to control for differences in
the source of water, we take the share of groundwater input in total water input
into account. Groundwater usually is of good quality and requires less treatment
to meet the potable water quality standards than surface water does. However,
groundwater abstraction increases pumping needs versus the use of surface water
(Filippini et al, 2008), while capital costs for groundwater usage are lower than for
the use of storage water (Coelli and Walding, 2006). We presume a positive impact
of the share of groundwater usage on efficiency. With a mean level of around 83%,
the share of groundwater input of the utilities in our sample is significantly higher
than the national average of 62% (Statistisches Bundesamt, 2009).16

4 Results
We begin by illustrating the impact of the operating environment on order-m effi-
ciency scores.17 Unlike DEA, the efficiency impact of the operating environment
can be better illustrated in the order-m framework since, in contrast to full frontier
approaches like DEA, the z-variables not only influence the shape of the estimated
technology sets, but also alter the distribution of inefficiency scores (Bădin et al,

14A similar assumption on the exogeneity of water losses in the short run is made in Zschille
and Walter (2012).

15As indicated by the minimum value of the share of water losses, the sample includes observa-
tions with very low shares of water losses of below 1%, which is unrealistic from an engineering
perspective. Since we however can observe a continuum of water utilities with similarly low
losses, we do not remove such observations from the data sample.

16One explanation might be our focus on vertically integrated companies with own water pro-
duction and distribution. Such vertically integrated utilities usually use groundwater resources,
while surface water resources like e.g. reservoir or river water are usually used by larger bulk
water supply companies, which are not part of our final sample.

17All calculations are conducted using the statistical software R with the additional packages
”Benchmarking” version 0.18 by Bogetoft and Otto (2011), ”FEAR” version 1.13 by Wilson
(2008) and ”np” version 0.40-3 by Hayfield and Racine (2008).
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2012). We apply a nonparametric Kernel regression analysis to regress the ratio
of the conditional to the unconditional order-m efficiency scores against the set
of z-variables characterizing the water utilities’ operating environments: output
density, water losses and share of groundwater input. Efficiency impacts of each
variable are illustrated in the nonparametric Kernel regression plots in Fig. 2. Ta-
ble 2 summarizes the standard and the conditional order-m efficiency scores with
m = 75 and Table 3 summarizes the nonparametric regression results and reports
the corresponding significance levels from a Kernel regression significance test
(Racine, 1997; Daraio and Simar, 2014).

[Figure 2 about here.]

As indicated in Fig. 2, the regression line of the ratio between conditional and
standard order-m efficiency scores on the variable output density is decreasing.
For low output densities, the ratio of conditional to unconditional efficiencies is
higher than one and efficiency is thus higher when accounting for output density,
underlining that additional inputs are required in low-density areas, thus leading
to efficiency disadvantages. This result indicates significant returns to density for
water utilities supplying water in rural areas, which are decreasing with increas-
ing output density. As reported in Table 3, the efficiency impact of output density
is statistically significant at the 1% level. The nonparametric regression lines for
the share of water losses and the share of groundwater input are weakly decreas-
ing, though almost constant. Both variables only show a weak and, as shown in
Table 3, insignificant impact on order-m efficiency scores. However, since such
irrelevant variables are oversmoothed in the bandwidth selection approach (Bădin
et al, 2010), all three z-variables are used in the conditioning of the order-m ef-
ficiency scores and in the subsequent merger analysis. As shown in Table 2, ac-
counting for the operating environment in the order-m efficiency scores only leads
to weak changes in mean efficiency. However, we observe a strong increase in
minimum efficiency scores and a strong decrease in maximum efficiency. Thus,
the standard deviation of the order-m efficiency scores strongly decreases.

[Table 2 about here.]

For the detection of potential outliers in the sample data, we combine the
conditional efficiency approach proposed by Daraio and Simar (2005) with the
order-m approach to outlier detection proposed by Simar (2003). Following the
suggestions of Simar (2003), we analyze the variation of the order-m efficiency
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scores and the share of observations outside the leave-one-out order-m frontier
for different values of m with m = 25,50, ...,175,200. The results of the order-m
approach depend on the appropriate choice of m. Following the suggestions of
Simar (2003) for the optimal choice of m, we select m = 75. We find that 19 com-
panies in the sample are extreme and outlying observations.18 These observations
are characterized by extreme order-m efficiency scores both in the input and out-
put directions even under increasing values of m. The mean output levels of the
removed observations are found to be higher than the full sample averages. How-
ever, smaller or smallest water utilities are similarly removed from the sample.
The largest observations in the sample are endpoints either in the input or output
directions, but obtain non-extreme efficiency scores in the other direction and are
thus not deleted from the sample. Furthermore, it is beneficial to keep these large
observations in the sample to improve the firm size coverage of the technology set
for the subsequent merger analysis.19

[Table 3 about here.]

Table 2 reports the conditional efficiency scores obtained after the conditional
outlier detection procedure. Due to the deletion of outlying observations from the
sample, the number of observations is reduced to a total of 345. As compared to
the conditional order-m efficiency scores before outlier detection, on average we
find a weak decrease in the conditional order-m efficiency scores from 1.0017 to
0.9933. Similarly, we only observe weak changes in the minimum and maximum
order-m efficiency scores. The only weak changes in the order-m efficiency scores
underline the robustness of the order-m estimator against extreme or outlying ob-
servations.

In addition, Table 2 summarizes conditional DEA and bias corrected con-
ditional DEA efficiency scores for the sample of 345 observations after outlier
detection, each under the assumption of VRS and NDRS. Bias corrected DEA

18As a rule of thumb, Simar (2003) suggest
√

(n)/n as a reasonable upper bound for the share
of outliers in a data sample. In the case of the n = 364 observations, this rule of thumb suggests
an upper bound of 5.24% of outliers in the sample. The 19 deleted observations correspond to a
share of outlying observations of 5.22%.

19We note that the removed observations might represent extreme best practices even when
controlling for the operating environment. However, to ensure the validity of the results, we decide
to remove the detected potential outliers, thus leading to more conservative estimates of potential
merger gains. The application of robust methods, like the order-m approach, would be beneficial
in the subsequent merger analysis. However, by construction, the merger analysis approach relies
on full frontier measures like DEA.
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efficiency scores are estimated using the m-bootstrap with 2000 bootstrap replica-
tions. In line with the order-m analysis, we choose a subsample size of m = 75
for the bootstrap procedure. Under the assumption of VRS, we find mean effi-
ciency to lie around a level of 88.5% in the standard DEA case and of 87.4%
when including bias corrections. However, we observe low minimum efficiency
levels of 30.4% in the standard DEA case and of 27.6% when including bias cor-
rections. As expected, mean efficiency is weakly lower when assuming NDRS
with 85.8% in the standard DEA case and 84.7% when including bias corrections.
The results, both under VRS and NDRS, thus indicate strong inefficiencies of the
observed water utilities.

Turning to the analysis of hypothetical mergers between neighboring water
utilities, we focus on mergers between water utilities that are located within the
same Landkreis.20 Since the observed water utilities are usually organized munic-
ipally, the county level represents the next higher step of potential aggregation.21

We analyze cases of horizontal integration between all water utilities within one
county for which data is available. However, it is not possible to cover all water
utilities within one county. In total we consider mergers of 224 water utilities
into 83 hypothetical new companies. While the input and output measures for
the merged companies are obtained by direct pooling of the individual pre-merger
input and output quantities, we recalculate the structural variables for each of the
merged entities.22

The counties under consideration are spread across Germany. Most are, how-
ever, located in the federal states of Bavaria, Hesse, Lower Saxony and Rhineland-
Palatinate. We can only analyze few merger cases in the former East Germany
since the water utilities located in this area are already larger than water utilities
in the former West German territories, and already deliver water at a county level
in some cases. Table 4 provides the summary statistics for the potential merger
gains for the set of 83 cases of horizontal integration. Under the VRS assumption,
we only obtain merger gain estimates for 55 out of 83 hypothetical merger com-

20A Landkreis is the German equivalent of a county as defined by the NUTS 3 code of the
NUTS-classification (Nomenclature des unités territoriales statistiques).

21The idea of aggregating water utilities originates from observations of consolidated water
utilities on the county level especially in East Germany. We cannot guarantee that the simulated
mergers represent merger cases between really neighboring water utilities. However, due to the
usually low number of water utilities within a county, the merger simulation approach appears
reasonable.

22Environmental variables of hypothetically merged entities are re-calculated by aggregating
the underlying raw data used to calculate the environmental variables of the individual pre-merger
companies.
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panies. Thus, in 28 cases the merged company is larger than the maximum firm
size level observed in the data. In 40 out of the 55 cases, a merger between the
water utilities would be beneficial when looking at the potential overall gains EJ .
Since those results still include the individual inefficiencies within water utilities
before merging, we consider the projections of the individual water utilities and
calculate the corrected potential merger gains E∗J . The merger gains on average
decrease significantly after correcting for individual inefficiencies. In 36 merger
cases we find potential losses from a merger as indicated by values of E∗J being
greater than one. At the mean we find potential losses from the corrected merger
gain estimates of about 10%.

After calculating overall gains from merging, we provide the decomposition
into the learning effect, the harmony effect and the scale effect. At the mean,
about 14% of the overall merger gains EJ could be realized by improving effi-
ciency within the individual pre-merger water utilities. The learning effect thus
inhibits the greatest potential for efficiency increases versus harmonization and
scale effects. Such efficiency improvement potentials are usually not attributable
to a merger since efficiency could be improved by, for example, sharing best prac-
tices between individual water utilities.

Considering both harmony and scale effects, on average we find potential ef-
ficiency losses resulting from both effects. On average, the mergers would result
in an efficiency loss of 0.7% resulting from harmonization effects and efficiency
losses of almost 12% resulting from scale effects. Under the assumption of a
VRS technology, in most cases mergers would result in efficiency losses and are
thus not recommendable. Strong potentials for efficiency increases arising from a
harmonization in the individual production plans of the different water utilities, as
indicated by the harmony effect, are only found in a few cases. Due to the different
sizes of the firms prior to merging, scale effects might, to some extent, be captured
by the harmony effect, thus resulting in lower estimates for the scale effects shown
in Table 4. We therefore use the number of connections to customers as firm-size
related weights α when pooling the inputs and outputs for the considered merger
cases (cf. Eq. 14). Table 4 reports the weighted results for the harmony and scale
effects. Using weights, the harmony effect estimates on average increase, while
the scale effect estimates decrease. However, on average both the harmony and
scale effect indicate potential efficiency losses resulting from the mergers.

[Table 4 about here.]

As mentioned in Section 2, DEA efficiency scores are usually biased upwards
(Simar and Wilson, 1998), thus leading to biased merger gain estimates. Fur-
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ther, since the estimates of the merger gains are likely to be influenced by the low
number of observations of large companies, we account for this sparsity of obser-
vations of large companies by running a conditional DEA with bias corrections
based on a m-bootstrap approach with B = 2000. We maintain the assumption
of an underlying VRS technology. Results are reported in Table 4. Using bias
corrections, the overall merger gains EJ indicate high efficiency improvement po-
tentials of about 13% on average. Those effects diminish when accounting for in-
dividual pre-merger inefficiencies. Considering the mean of the corrected merger
gain measure, we find potential merger losses of almost 3%. In 22 cases, a merger
would result in potential efficiency losses. However, considering the median value
E∗J = 0.96, more than 50% of the merger cases would result in efficiency gains
even after correcting for individual pre-merger inefficiencies. The decomposition
again indicates that efficiency improvement potentials are merely based on learn-
ing effects rather than on pure merger gains. However, in contrast to the results
of the DEA approach without bias corrections, on average we find efficiency im-
provement potentials resulting from harmonization effects of about 8%. Scale
effects, however, are found to result in efficiency losses on average. The effi-
ciency losses resulting from the scale effects can be explained by the underlying
VRS technology.

Given the general small-scale structure of German water supply as compared
to other countries, hypothetical merger gains might be underestimated such that
real merger gains are likely to be greater. Furthermore, in places like England,
Wales, and the Netherlands, water utilities are found to be generally larger than
the German water utilities. Thus, it is arguable to not only consider merger gains
relative to the VRS frontier, but to extend the estimated technology set from a VRS
to a NDRS technology, thus favoring larger observations. We note that the addi-
tivity property of the NDRS technology allows for the analysis of all 83 merger
cases. We further note that the assumption of NDRS implies non-negative esti-
mates of the scale effect in the non-weighted merger gain decomposition. Assum-
ing NDRS, we find potential overall gains from merging in 80 merger cases. As
indicated by the potential overall gains EJ = 0.84, the mergers would, on average,
result in efficiency improvement potentials of 16%. Correcting for individual inef-
ficiencies of pre-merger companies however, these efficiency improvement poten-
tials diminish to less than 1% on average. However, in contrast to the VRS results
without bias corrections, on average the decomposition of the potential merger
gains indicates weak potential efficiency losses from harmonization effects but
weak efficiency gains based on scale effects. The results of the decomposition re-
main similar when using size-related weights in the decomposition of the harmony
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and scale effects.
As for the analysis in the VRS framework, we further analyze merger gains

relative to a bias corrected NDRS frontier. Compared to the NDRS results without
bias corrections, efficiency improvement potentials resulting from the mergers
on average increase to almost 27% as indicated by EJ = 0.73. With an average
corrected merger gain estimate of E∗J = 0.88, pure merger gains amount to about
12%. As indicated by an average learning effect of LE = 0.83, most efficiency
improvement potentials again result from the reduction of individual pre-merger
inefficiencies. However, the decomposition of real merger gains into harmony
and scale effects shows that, on average, both effects would result in efficiency
improvement potentials. We find efficiency improvement potentials resulting from
harmonization effects of about 10% on average and of about 2% resulting from
scale effects. Using alternative size-related weights, the efficiency improvement
potentials resulting from the harmony effects weakly decrease to less than 9%,
while efficiency improvement potentials resulting from the scale effects increase
to about 3%, on average.

Fig. 3 provides boxplot illustrations of the overall merger gains in the bias
corrected NDRS framework and the corresponding decomposition for different
groups of firm sizes. We divide the sample of 83 integrated companies into four
groups based upon the quartiles of the amount of water delivered.23 The two plots
in the left part of Fig. 3 indicate that there are strong overall gains from merging
based on strong learning effects. Considering group-specific median values, we
find potential efficiency gains resulting from harmonization effects for all groups
of utilities. We only find scale effects for the group of smallest utilities. Using
weights, at the median we find weak merger gains from the harmony effect and
from the scale effect for all groups.

[Figure 3 about here.]

In Fig. 4, we illustrate the relationship between the merger gain estimates
obtained from conditional bias corrected DEA assuming NDRS to those with-
out conditioning on the z-variables. Overall merger gain estimates are generally
higher in the conditional efficiency DEA framework and efficiency improvement
potentials resulting from the mergers are thus lower. We obtain a Spearman rank
correlation coefficient of 0.42 between the conditional and standard merger gain
estimates. The decomposition of the overall merger gains into learning, harmony

23Calculated as the sum of water delivered to final customers and the amount of bulk water
supplies.
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and scale effects however shows that this effect is primarily driven by individ-
ual inefficiencies before the merger. The learning effect estimates are higher in
the conditional efficiency DEA framework, illustrating the high influence of the
conditioning z-variables on individual pre-merger efficiency scores. We find a cor-
relation between conditional and standard learning effect estimates of 0.45. The
decomposition of the pure merger gains into harmony and scale effects indicates
that conditioning on the z-factors in some cases leads to higher estimates of har-
mony and scale effects and in some cases to lower estimates. We find a correlation
between the harmony effect estimates of 0.39 and of 0.31 between the scale effect
estimates. Thus, the results underline the relevance of accounting for the operating
environment in merger assessments.

[Figure 4 about here.]

5 Interpretation of results and concluding remarks
In this article we provide the first analysis of the potential gains from horizontal
integration in the German potable water sector. While merger gains in the water
industry have only been analyzed on an ex-post basis so far, we provide new in-
sights into a hypothetical restructuring of the industry. Similar to other network
industries, water supply heavily depends on the characteristics of the operating
environment. Applying a conditional efficiency approach, we take different vari-
ables characterizing the water utilities’ operating environments into account in our
analysis and contribute to the scientific literature by analyzing the potential gains
from mergers within a conditional efficiency framework. We detect outliers using
a conditional order-m approach.

Investigating the hypothetical consolidation of the German water industry at
the county level, we find substantial gains from horizontal integration in only
some of the analyzed cases. Results vary depending on the underlying RTS as-
sumption of the estimated technology set. The decomposition of the potential
overall gains from mergers shows that the technical efficiency effect turns out to
be the main source for efficiency gains. Thus, greatest efficiency improvement
potentials for the water utilities result from technically more efficient operations
rather than from mergers and corresponding changes in market structures. Having
corrected for individual inefficiencies, pure merger gains exist in the majority of
cases but are found to be low. The results indicate efficiency improvement po-
tentials resulting from harmonization effects. Scale effects are found to be weak
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or even negative. However, we observe scale effects to be the highest for the
group of smallest water utilities. This result is in line with the results of Zschille
(2013), indicating strong increasing returns to scale for smallest water utilities that
decrease with increasing firm size levels. Despite the application of a bootstrap
procedure for the calculation of bias corrected efficiency scores, the mostly low
merger gains and the correspondingly low harmony and scale effects might be
explained by the low number of sufficiently large observations in the data sam-
ple. Thus, the best practices of large firms in the sample are likely to cause the
underestimation of the true best practices across the entire industry. Regarding
the small-scale industry structure of German water supply, the sample might not
cover the full range of possible firm sizes when estimating the DEA technology
set. The empirical evidence in the literature on the existence of returns to scale in
water supply across different countries suggests that optimal firm size for water
utilities is usually reached at higher output levels. Our results however are in line
with the empirical evidence in the literature indicating low merger gains in water
supply across different countries based on post-merger analyses, see e.g. Urakami
and Parker (2011), De Witte and Dijkgraaf (2010) or Ballance et al (2004).

Since scale effects are found to be low or even negative in some cases, the
necessity of mergers is questionable. Major efficiency gains result from the tech-
nical efficiency effect and there might be possibilities to realize those efficiency
improvement potentials through arrangements other than a merger, e.g. through
sharing best practices between companies. However, if technical inefficiencies
in a water utility are a result of mismanagement, a merger could lead to better
management abilities and improved performance.24 In addition to reducing inef-
ficiencies in the individual water utilities, potential scope effects could result e.g.
from a simple cooperation between different companies.

We note that the estimated potential merger gains might not fully represent
the efficiency gains of real mergers. First, we assume a consolidation of water
supply at the county level. As water supply is usually municipally organized, the
county level represents the next higher level of potential aggregation. However,
we cannot model full-county mergers due to a lack of data. Given the existence
of county-based water utilities in some parts of Germany, the merger simulation
on a county level appears reasonable. However, we are aware that the simulated
merger cases might not represent merger that are likely to be realized. Second,
water supply is often organized within a multi-output utility providing other ser-
vices like electricity or natural gas supply in addition to water services. Since our

24The opposite case is also possible if an inefficient water utility takes over an efficient one.
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analysis only considers the water divisions of such multi-output utilities, potential
merger gains are likely to be overestimated in cases where a multi-output utility
is involved in the merger simulation. In such situations, mergers between entire
multi-output utilities might be of interest. However, given weak data availability
and the focus on water supply, such merger cases are beyond the scope of this
paper.

Further extensions of the model and a more detailed data set could improve
the quality of our results. First, more observations of large-scale water utilities
would be beneficial to ensure the appropriate definition of the DEA technology
set for larger units. Since there are few larger water utilities in Germany, with
the majority already in the data, considering water utilities from other countries
might be beneficial. The results presented here can only give an indication of the
potential efficiency gains from consolidation in the water industry. Second, the
consideration of additional variables to control e.g. for water treatment and water
or service quality could improve the results. Results might also change when re-
lying on a cost model rather than on a production model. Since consolidation at
the county level is found to increase efficiency in most cases, an analysis of con-
solidation at a regional level, as the water supply was structured in East Germany,
would be of interest. Such an approach, however, is restricted by data availability
and missing peer units since, even currently, the largest modern German water
utility is smaller than East German utilities were prior to 1990. Beyond horizontal
integration, an analysis of efficiency gains from vertical integration e.g. between
water production, distribution and retail services might be of interest.

Regarding the international evidence on scale economies in water supply and
the high fragmentation in Germany, as compared to water industries in other coun-
tries, consolidation in Germany is likely to result in increased efficiency. However,
mergers decisions are made by the firms involved, since merger effects also de-
pend on other characteristics of the water utilities that are not covered by our
model, like, for example, firm culture. One important factor is that political cir-
cumstances are a factor in water utility consolidation. Municipal governments
usually prefer to control local utilities and are likely to resist consolidation ef-
forts.

We have, so far, neglected the impact of mergers on market power. In compet-
itive industries, mergers lead to greater market power for the integrated company
and can thus result in negative welfare effects. In water supply, however, utilities
are de facto local monopolies with strong market power by definition. De Witte
and Dijkgraaf (2010) further point out that mergers lead to a reduced number of
companies that can be analyzed in benchmarking studies for regulatory purposes,
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thus meaning that the impact of best practices might be underestimated. Since
we analyze a hypothetical consolidation of the water industry at the level of the
more than 400 German counties, a sufficiently large number of companies for
benchmarking purposes would be maintained.

We show that there are substantial inefficiencies in the German water sector.
While mergers can contribute to a reduction of those inefficiencies, the greatest
improvement potentials rely on technical efficiency effects that do not necessar-
ily require a merger of different companies. Regarding policy recommendations,
more incentives are necessary to reduce the high inefficiencies in German water
supply in combination with a consolidation of the smallest utilities.
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Figure 3: Merger gains and decomposition with bias corrections for different firm
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Figure 4: Correlation between standard and conditional bias corrected merger gain
estimates under NDRS
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Table 1: Descriptive statistics
Min. Median Mean Max. Std. dev.

Input variables
Network length 21.00 164.50 329.68 7,858.00 600.80
net [km]

Employees 2.00 10.00 29.85 2,326.00 139.97
labor [number]

Output variables
Connections 911.00 5,437.50 10,837.61 262,000.00 22,751.33
con [number]

Final water deliveries 89.00 1,154.50 3,144.41 197,900.00 12,720.40
wdel [1000 m3]

Bulk water supplies 0.00 1.00 264.21 14,670.00 1,130.43
bws [1000 m3]

Water produced 99.00 1,344.00 3,697.09 217,890.00 14,337.20
wprod [1000 m3]

Environmental variables
Output density 1.70 6.98 8.14 29.93 4.63
dens [ratio]

Water losses 0.00∗ 0.11 0.12 0.40 0.06
losses [ratio]

Groundwater usage 0.00 1.00 0.83 1.00 0.31
ground [ratio]

∗ Zero due to rounding.
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Table 2: Summary of efficiency scores
Obs. Min. Median Mean Max. Std. dev.

full sample
standard order-m 364 0.3394 1.0071 1.0193 2.1474 0.2345
conditional order-m 364 0.4725 1.0001 1.0017 1.2401 0.0571
reduced sample after outlier detection
conditional order-m 345 0.4693 1.0000 0.9933 1.2408 0.0514
conditional DEA - vrs 345 0.3037 0.8727 0.8853 1.0000 0.1043
conditional DEA - ndrs 345 0.3037 0.8333 0.8575 1.0000 0.1048
bias corrected efficiency scores after outlier detection
conditional DEA - vrs 345 0.2764 0.8571 0.8737 1.0000 0.1108
conditional DEA - ndrs 345 0.2905 0.8208 0.8465 1.0000 0.1087
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Table 3: Kernel regression significance test
Variable efficiency impact p-value
dens positive 0.000∗∗∗
losses weakly positive 0.675
ground weakly positive 0.276
∗∗∗ denotes significance at 1% level.
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Table 4: Summary of potential merger gains and decomposition
Symbol Obs. Min. Median Mean Max. Std. dev. # > 1

DEA-VRS
Overall gains EJ 55 0.5065 0.8747 0.9409 2.2009 0.2501 15
Corrected gains E∗J 55 0.5880 1.0589 1.1004 2.4127 0.2536 36
Learning effect LEJ 55 0.3930 0.8613 0.8554 1.0000 0.0914 0
Harmony effect HAJ 83 0.5586 1.0009 1.0065 1.6838 0.1328 42

weighted HAJ
w 83 0.5051 1.0040 1.0300 1.7395 0.1414 45

Scale effect SIJ 55 0.8347 1.0526 1.1193 2.5366 0.2615 38
weighted SIJ

w 55 0.8413 1.0175 1.0940 2.4775 0.2506 34
DEA-VRS with bias corrections
Overall gains EJ

b 55 0.4524 0.8084 0.8696 2.2009 0.2686 10
Corrected gains E∗J

b 55 0.5740 0.9553 1.0292 2.4478 0.2746 22
Learning effect LEJ

b 55 0.3798 0.8512 0.8436 1.0000 0.0943 0
Harmony effect HAJ

b 83 0.4534 0.9149 0.9187 1.5258 0.1261 15
weighted HAJ

b,w 83 0.4589 0.9369 0.9411 1.5717 0.1332 15
Scale effect SIJ

b 55 0.8279 1.0827 1.1505 2.5515 0.2838 43
weighted SIJ

b,w 55 0.8435 1.0532 1.1244 2.5027 0.2697 39

DEA-NDRS
Overall gains EJ 83 0.3847 0.8376 0.8355 1.0901 0.1017 3
Corrected gains E∗J 83 0.7985 0.9923 0.9907 1.1888 0.0884 39
Learning effect LEJ 83 0.3832 0.8418 0.8456 1.0000 0.0947 0
Harmony effect HAJ 83 0.8062 1.0065 1.0068 1.2190 0.0903 45

weighted HAJ
w 83 0.7398 1.0135 1.0212 1.2754 0.0941 53

Scale effect SIJ 83 0.8343 0.9999 0.9846 1.0000 0.0328 0
weighted SIJ

w 83 0.8369 0.9840 0.9719 1.1256 0.0539 22
DEA-NDRS with bias corrections
Overall gains EJ

b 83 0.3797 0.7236 0.7309 1.0435 0.1083 2
Corrected gains E∗J

b 83 0.7105 0.8818 0.8765 1.0789 0.0844 5
Learning effect LEJ

b 83 0.3817 0.8293 0.8345 1.0000 0.0958 0
Harmony effect HAJ

b 83 0.7105 0.8937 0.8982 1.0998 0.0894 15
weighted HAJ

b,w 83 0.7087 0.8913 0.9107 1.1458 0.0924 12
Scale effect SIJ

b 83 0.8324 0.9949 0.9770 1.0000 0.0397 0
weighted SIJ

b,w 83 0.8274 0.9749 0.9646 1.1531 0.0576 19
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