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1 Introduction

In many industries, minority shareholdings are prevalent in the form of cross-shareholding

agreements among �rms or common ownership by investment funds. The tendency of such

arrangements to reduce price competition has been documented in the airline and banking

industries (Azar et al. 2015, 2016), and it has raised antitrust concerns. However, cross-

ownership arrangements (COAs) may have a bene�cial e¤ect on investment provided

there are positive spillovers across �rms. The reason is that COAs help to internalize the

spillover externality, which is especially important for highly innovative industries. To

what extent, and by what means, should antitrust authorities limit the �partial�mergers

that result from cross-ownership in innovative industries? In this paper we provide a wel-

fare analysis of COAs� when �rms compete in quantities and invest in cost reduction� in

the presence of spillovers; we also derive some implications for competition policy. The

analysis may help elucidate whether the documented increase in cross-ownership arrange-

ments has outrun its social value.

We consider a general symmetric model of cross-ownership; this model allows for

a range of corporate control and for distinguishing between stock acquisitions made by

investors and those made by other �rms. In our benchmark model, we consider simultane-

ous R&D and output decisions. That approach aids tractability while helping to capture

the imperfect observability of �rms�R&D investment levels.1 We test the robustness of

results by way of a two-stage speci�cation. The model subsumes earlier contributions to

the literature that were based on linear or constant elasticity of demand and on spe-

ci�c innovation functions (Dasgupta and Stiglitz 1980; Spence 1984; d�Aspremont and

Jacquemin 1988; Kamien et al. 1992). Perhaps the work closest to ours in spirit is the

paper by Leahy and Neary (1997).

Our paper seeks to answer the following questions: How do R&D and output levels

vary with minority shareholdings? What are the key determinants of the socially optimal

extent of cross-ownership? How is that optimal level a¤ected by structural parameters

(demand and cost conditions, industry technological opportunity, extent of spillovers) and

by the competition authority�s objective (to maximize total or rather consumer surplus)?

The main results can be summarized as follows. If demand is not too convex, then

1Simultaneous models� in the presence or absence of R&D spillovers� are analyzed by, among others,
Dasgupta and Stiglitz (1980), Levin and Reiss (1988), Ziss (1994), Leahy and Neary (1997), Cabral
(2000), and Vives (2008).
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increasing the partial ownership interest in rivals will increase (resp. decrease) both R&D

and output when spillovers are high (resp. low); for intermediate levels of spillovers,

an increase in such ownership interest will increase R&D but reduce output. These are

testable predictions. We identify the key determinants of a welfare-optimal degree of

cross-ownership: the curvature of demand, the degree of market concentration, and the

extent of spillovers. A su¢ cient (but not necessary) condition for the absence of minority

shareholdings to be optimal� from either the total surplus (TS) or consumer surplus (CS)

perspective, and for any extent of spillover� is that the relative degree of convexity of

demand be greater than the inverse of the Her�ndahl�Hirschman index (HHI). Otherwise,

the range of spillovers is typically partitioned into three regions: one optimally with no

cross-ownership for low levels of spillovers; one optimally with positive cross-ownership

(by TS and CS standards) for high levels of spillovers; and one optimally with positive

cross-ownership (by the TS standard only) in an intermediate region. We remark that the

consumer surplus standard is always more stringent than the total surplus standard. We

also �nd that, if the e¤ectiveness of R&D is independent of the degree of cross-ownership,

then under the CS standard there is a �bang bang� solution: either independent own-

ership or cartelization is optimal. Numerical results reveal that the (TS-based) socially

optimal extent of cross-ownership is increasing in the number of �rms, in the elasticity of

demand and of the innovation function, and in the level of spillover e¤ects. Qualitatively

similar results hold for the CS-based optimal extent, except that the scope for minority

shareholdings is much reduced.

The context analyzed here is of more than theoretical interest. Minority sharehold-

ings are widespread in many industries (e.g., automobiles, airlines, �nancial, energy, and

steel) and have attracted increasing antitrust attention (see EC 2013). There is grow-

ing interest among competition authorities in assessing the competitive e¤ects of partial

stock acquisitions. This increased attention stems mainly from two factors: (i) the rapid

growth of private equity investment �rms, which often hold partial ownership interests

in competing �rms (Wilkinson and White 2007); and (ii) some notorious cases, such as

Ryanair�s acquisition of Aer Lingus�s stock and the Renault�Nissan alliance (under which

Renault owns 44.3% of Nissan even as Nissan owns 15% of Renault).2 These factors have

2As Gilo (2000) delineates, four other cases that have attracted considerable interest are as follows:
(i) a $150 million investment by Microsoft in the nonvoting stock of Apple in 1997; (ii) the purchase by
Northwest Airlines (fourth-largest US airline) of 14% of the common stock of Continental Airlines (the
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triggered a debate in Europe over the possibly anticompetitive e¤ects of partial owner-

ship. Yet the European Commission (EC) is not authorized to examine the acquisition of

minority shareholdings,3 and it has proposed extending the scope of its merger regulations

so that it can intervene in cases involving minority shareholdings among competitors or

in a vertical relationship (EC 2014).4 In Canada and the United States, cross-ownership

is scrutinized under prevailing merger control rules. More speci�cally, minority share-

holdings in the latter country are often examined with reference to the Clayton Act and

the Hart�Scott�Rodino Act.5 However, there is an exception to antitrust scrutiny if the

participation is �solely for investment� purposes, although it is subject to interpreta-

tion whether institutional investors can hold as much as 15% without needing to notify.

These US provisions are important because common ownership by investment funds is

widespread in many sectors.6

The extant literature, most of which focuses on the potential bene�ts of cooperative

R&D or on how innovation is a¤ected by mergers, has largely ignored the topic of how

innovation is a¤ected by minority shareholdings� despite clear evidence that antitrust

policy attends closely to innovation. During the period 2008�2014, 36% of the mergers

challenged by the US Department of Justice or the US Federal Trade Commission were

characterized as harmful to innovation; of the challenged mergers, 76% were in high�

R&D intensity industries. The anticompetitive e¤ects of minority shareholdings tend to

be weaker than those of a merger; at the same time, minority shareholdings seldom

yield the e¢ ciencies (e.g., rationalization, fewer duplicated costs) that may arise from a

�fth-largest) while agreeing to limit its voting power (however, an antitrust suit forced Northwest to sell
back nearly half of its purchased stake); (iii) the purchase by TCI (largest US cable operator) of a 9%
stake in Time Warner (the second-largest); (iv) the acquisition by Gillette of more than a �fth of the
nonvoting stock (and more than a tenth of the debt) of Wilkinson Sword, one of its main competitors.

3In some European countries (e.g., Austria, Germany, the United Kingdom), national merger control
rules give competition authorities the scope to examine minority shareholdings. Currently, the EC can
consider the e¤ects on competition only of (pre-existing) minority shareholdings in the context of a
noti�ed merger (and in which the merging �rms each have stakes in a third �rm).

4The European Commission (EC 2014) has proposed a �targeted transparency�system under which
the EC and its member states must be noti�ed of potentially harmful acquisitions. Included in this cat-
egory would be acquisitions of a minority shareholding� in a competitor or vertically related company�
when either the acquired shareholding amounts to 20% or ranges between 5% and 20% but allows the
acquirer �a de-facto blocking minority, a seat on the board of directors, or access to commercially sensitive
information of the target" (p. 13).

5Section 7 of the Clayton Act prohibits acquisitions (of any part) of a company�s stock that �may�
substantially lessen competition either by (a) enabling the acquirer to manipulate, directly or indirectly,
prices or output or by (b) reducing its own incentives to compete. Although there is no clearly established
threshold, acquisitions of less than 25%� but of at least 15%� have been adjudged to be in violation
(Salop and O�Brien 2000).

6See Azar et al. (2015, 2016).
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merger. The commonly held view is that, overall, minority shareholdings tend to lessen

competition. Nonetheless, the evidence of spillover-induced underinvestment in R&D

suggests that cross-ownership could be bene�cial.7

The paper proceeds as follows. We review the literature in Section 2. In Section 3, we

describe the di¤erent types of minority shareholdings that can be analyzed via our model,

which is presented in Section 4. That section characterizes the equilibrium responses of

output and R&D in response to a change in the degree of cross-ownership. In Section 5, we

examine the socially optimal degree of cross-ownership and then illustrate the results with

three leading speci�cations from the literature: the d�Aspremont�Jacquemin and Kamien�

Muller�Zang models, and a constant elasticity model as in Dasgupta and Stiglitz (1980).

Section 6 extends our model to allow for strategic R&D commitments in a two-stage

game. Section 7 explores an alternative interpretation of our model when cooperation in

R&D extends to the product market; with regard to this case there is empirical evidence,

antitrust case study evidence, and also experimental evidence. We conclude in Section 8.

Unless noted otherwise, all proofs are given in Appendix A. Appendix B provides details

on our analysis of the three model speci�cations considered. Note that we o¤er application

software (available on the Web), which the reader can use to conduct simulations with

the models.

2 Review of the literature

Previous literature has analyzed the anticompetitive e¤ects of cross-ownership (Bresna-

han and Salop 1986; Reynolds and Snapp 1986). These researchers show that the pres-

ence of partial ownership interests in a Cournot industry may result in less output and

higher prices (even if those interests are relatively small). This is because the compet-

itive decisions of one �rm� with stakes in a competitor�s pro�t� will take those stakes

into account by reducing output (or raising the price) so as to increase that competitor�s

pro�t and hence its own �nancial pro�t. Azar et al. (2015) document the substantial

common ownership interests of institutional investors (e.g., BlackRock, Vanguard, State

Street, Fidelity) in competing technology �rms (Apple, Microsoft), pharmacies (CVS,

7For example, Bloom et al. (2013) report underinvestment in R&D (because of spillovers) in a panel
of US �rms from 1981 to 2001. These authors �nd that (i) the e¤ects of technology spillovers are much
greater than those of product market spillovers and (ii) the socially optimal level of R&D is 2�3 times
as high as the observed level of R&D.
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Walgreens), and banks (JP Morgan Chase, Bank of America, Citigroup). In that study

of how passive investments by institutional investors a¤ect market outcomes in the US

airline industry, the authors �nd that ticket prices are about 10% higher on the average

route than they would be with no cross-ownership (or if strategy decisions were made

without regard to the investors�minority shareholdings). Similar results are obtained for

the banking industry (Azar et al. 2016).

There is an extensive literature on the e¤ects of cooperation and competition in R&D

with spillovers, starting from the seminal articles of Brander and Spencer (1984), Spence

(1984), Katz (1986), and d�Aspremont and Jacquemin (1988, 1990). Leahy and Neary

(1997) present a general analysis of the e¤ects of strategic behavior and cooperative R&D

in the presence of price and output competition; they also study optimal public policy

toward R&D in the form of subsidies.8 One of this literature�s primary objectives is to

examine underprovision of R&D and the welfare e¤ects of moving from a noncooperative

to a cooperative regime in R&D. For example, d�Aspremont and Jacquemin (1988, 1990)

show that, when spillovers are high enough, R&D cooperation (with subsequent competi-

tion at the output stage) leads to increased output, innovation, and welfare. Cooperative

R&D enables �rms to internalize their externalities and thus preserves the incentives to

invest in R&D.

We shall identify the conditions under which minority shareholdings may increase total

surplus, and even consumer surplus, in industries where R&D investment is important

and spillovers are signi�cant. Farrell and Shapiro (1990) show that passive �nancial

stakes may be welfare increasing in asymmetric oligopolies; here we demonstrate the

possibility in a symmetric oligopoly. There is some evidence that common ownership

improves e¢ ciency. He and Huang (2014), using data on US public �rms from 1980 to

2010, estimate the e¤ect of common ownership on market performance and report that

�rms increase their market share (up to 3.2%) through common ownership.9

The results that we derive complement those in the extant literature. For instance,

Leahy and Neary (1997) �nd that R&D cooperation leads both to more output and

8Suzumura (1992) extends the analysis to multiple �rms and general demand and cost functions
in Cournot competition. Ziss (1994) does likewise but also considers product di¤erentiation and price
competition. Kamien et al. (1992) analyze the e¤ects of R&D cartelization and joint research ventures.
For a survey, see Gilbert (2006).

9This result is consistent with Giannetti and Laeven (2009), who show that stock acquisitions by
pension funds enhance �rm valuation.
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to more R&D when spillovers are positive. Yet we show that, when there are minority

shareholdings, this result holds only when spillovers are high enough. We also identify

conditions under which a cartelized Research Joint Venture (RJV) is optimal, generalizing

Kamien et al. (1992) and �nding that this result depends on the innovation function

having little curvature.

3 Minority shareholdings

We may consider two types of acquisitions: when investors acquire �rms�shares, called

common ownership or (partial) cross-ownership by investors; and when �rms acquire

other �rms� shares, called cross-ownership by �rms. We discuss two cases of cross-

ownership by investors (common ownership) and one case of cross-ownership by �rms. In

each case we show that, when the stakes are symmetric, the �rm-i manager�s problem is

to maximize

�i = �i + �
X
k 6=i

�k; (1)

where the value of � depends on the type of ownership and corresponds to what Edge-

worth (1881) termed the coe¢ cient of �e¤ective sympathy�among �rms. The analysis is

developed in Appendix A.

3.1 Cross-ownership by investors (common ownership)

In this situation, �rms�stakes are held only by investors� for example, large institutional

investors such as pension or mutual funds, which now have stakes in nearly three fourths

of all publicly traded US �rms. Consider an industry with n �rms and n investors;10 we let

i and j index (respectively) investors and �rms. The share of �rm j owned by investor i

is �ij, and the parameter � ij captures the extent of i�s control over �rm j (Salop and

O�Brien 2000). The total (portfolio) pro�t of owner i is �i =
P

k �ik�k, where �k are

the pro�ts of portfolio �rm k. The manager of �rm j takes into account shareholders�

10We make this assumption solely to simplify notation. In fact, we need only that the total number
of investors, say I, be no less than the total number of �rms (n). Then the expressions that follow for
�SFI and �PC hold if we replace n with I. However, this assumption also has the bene�t of facilitating
comparisons with the case of cross-ownership by �rms.
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incentives (through the control weights � ij) and maximizes

�j = �j +
nX
k 6=j

�jk�k;

where

�jk �
Pn

i=1 � ij�ikPn
i=1 � ij�ij

:

We next discuss two important cases: silent �nancial interests (a.k.a. passive invest-

ments) and proportional control.11

Silent Financial Interest (SFI). In this case, each owner (i.e., the majority or domi-

nant shareholder) i retains full control of the acquiring �rm and is entitled to a share of

the acquired �rm�s pro�ts� but exerts no in�uence over the latter�s decisions. If i owns j,

then (i) � ij = 1 and � ik = 0 for k 6= j and (ii) �rm i maximizes
Pn

k=1 �ik�k. We consider

the symmetric case, in which each investor i receives a share � in the acquired �rms;

hence �ij = 1� (n�1)� and �ik = � for k 6= j. Then �SFI � �=(1� (n�1)�). The upper

bound of cross-ownership is � = 1=n, in which case �SFI = 1 and n identical �rms will

maximize total joint pro�t.

Proportional Control (PC). Under proportional control, the �rm�s manager accounts

for shareholders�own-�rm interests in other �rms in proportion to their respective stakes.

Suppose that each investor acquires a share � of those other �rms. Then, to compute

�jk for a given k 6= j, we �rst note that if i is the majority shareholder of j then

� ij = 1� (n � 1)� and �ik = �. Yet if instead i + 1 were the majority shareholder of k,

then that investor has control over j equal to �(i+1)j = � and receives an own-�rm pro�t

share of �(i+1)k = 1 � (n � 1)�. Finally, there are n � 2 investors who are minority

shareholders of j and k; for these investors, the combination of their pro�t shares (and

control) is equal to �. Thus we obtain

�PC � 2[1� (n� 1)�]�+ (n� 2)�2
[1� (n� 1)�]2 + (n� 1)�2 :

As with any silent �nancial interest, here �PC = 1 when � = 1=n. If � < 1=n, then � is

increasing in both n and �.

11Other governance structures are total control, partial control, �duciary obligation, Coasian joint
control, and one-way control. For a discussion of these structures, see Salop and O�Brien (2000).
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3.2 Cross-ownership by �rms

In this situation, �rms may acquire their rivals�stock in the form of passive investments

with no control rights (e.g., nonvoting shares; see Gilo et al. 2006). This setting features

a complex, chain-e¤ect interaction between the pro�ts of �rms. Here �jk denotes �rm j�s

ownership stake in �rm k, and the strategy decisions are made by the controlling share-

holder; thus the pro�t of �rm j is given by �j = �j +
P

k 6=j �jk�k. We can derive the

pro�t of each �rm by solving for a �xed point of a matrix equation. In the symmetric

case, �jk = �kj = � for all j 6= k and �jj = 0 for all j. It can be shown that �rm j will

maximize �j + �
P

k 6=j �k, where �
PCO � �=[1� (n� 2)�] (we use PCO to index partial

cross-ownership). It follows that the upper bound of cross-ownership is � = 1=(n� 1), in

which case �PCO tends to 1 as � approaches 1=(n� 1). Just as in the two previous cases,

� is increasing in the number of �rms and in the �rms�stakes.

3.3 Comparative statics on the degree of cross-ownership (�)

Table 1 summarizes the value of � according to the type of cross-ownership. We can see

that more �rms and higher investment stakes are both positively associated with �. In

addition, it is straightforward to show that �PC > �SFI > �PCO. The implication is that,

in order to attain the same degree of cross-ownership (and for a given number of �rms),

the symmetric investment stake with proportional control must be lower than with silent

�nancial interests, which in turn must be lower than with partial cross-ownership by

�rms: �PC < �SFI < �PCO.

Table 1: Comparative Statics on �

Common Ownership,
Silent Financial Interests

Common Ownership,
Proportional Control

Cross-ownership
(by �rms)

� �
1�(n�1)�

2�[1�(n�1)�]+(n�2)�2
[1�(n�1)�]2+(n�1)�2

�
1�(n�2)�

@�=@n + + +
@�=@� + + +
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4 Framework and equilibrium

We consider an industry consisting of n � 2 identical �rms, where each �rm i = 1; : : : ; n

chooses simultaneously their R&D intensity (xi) and production quantity (qi). Firms

produce a homogeneous good characterized by a smooth inverse demand function f(Q),

where Q =
P

i qi. We make the following three assumptions.

A.1. f(Q) is twice continuously di¤erentiable, where (i) f 0(Q) < 0 for all Q � 0 such

that f(Q) > 0 and (ii) the elasticity of the slope of the inverse demand function,

�(Q) � Qf 00(Q)

f 0(Q)
;

is constant and equal to �.

The parameter � is the curvature (relative degree of concavity) of the inverse demand

function, so demand is concave for � > 0 and is convex for � < 0. Furthermore, demand

is log-concave for 1 + � > 0 and is log-convex for 1 + � < 0. If 1 + � = 0, then demand is

both log-concave and log-convex.12 Assumption A.1 is always satis�ed by inverse demand

functions that are linear or constantly elastic. In particular, the family of inverse demand

functions for which �(Q) is constant can be represented as

f(Q) =

8><>:a� bQ�+1 if � 6= �1;

a� b logQ if � = �1;

here a is a nonnegative constant and b > 0 (resp., b < 0) if � � �1 (resp., � < �1).

A.2. The marginal production cost or innovation function of �rm i, or ci, is independent

of output and is decreasing in both own and rivals�R&D as follows: ci = c(xi+�
P

j 6=i xj),

where c0 < 0, c00 � 0, and 0 � � � 1 for i 6= j.

A.3. The cost of investment is given by the function �(xi), where �(0) = 0, �0 > 0, and

�00 � 0.
12We remark that � is also related to the marginal consumer surplus from increasing output� that is,

to MS = �f 0(Q)Q. After setting �MS as the elasticity of the inverse marginal consumer surplus function
(so that �MS = MS=(MS

0Q)), Weyl and Fabinger (2013) argue that �MS measures the curvature of the
logarithm of demand. Under A.1, we can write 1=�MS = 1 + �.
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The parameter � represents the spillover level of the R&D activity. Since we focus on

symmetric �rms, we assume symmetric spillover levels; moreover, R&D outcomes are

imperfectly appropriable to an extent that varies between 0 and 1.13

Firm i�s pro�t is given by

�i = f(Q)qi � c

�
xi + �

X
j 6=i

xj

�
qi � �(xi);

and the objective function for �rm i is �i = �i+�
P

k 6=i �k (i.e., equation (1)). The model

represents distinct scenarios depending on the values of � and �. When � 2 (0; 1) and

� 2 [0; 1), �rms compete in the presence of partial ownership interests and the R&D

outcomes are again imperfectly appropriable. When � 2 (0; 1) and � = 1, �rms form

a Research Joint Venture under which all R&D outcomes are fully shared among RJV

members and the duplication of R&D e¤orts is avoided. When � = � = 1, �rms form a

�cartelized�RJV. If � = 0 then there are no minority interests.

For markets with cross-shareholdings, a modi�ed HHI is proposed by Bresnahan and

Salop (1986). This index corresponds to the market share�weighted Lerner index in a

Cournot market, and we writeMHHI =
�P

i siLi
�
�. Here si and Li are (respectively) the

market share and Lerner index of �rm i; the term � denotes the demand price elasticity).14

In our case it is easy to see that, for a given common marginal cost, (p� c)=p = MHHI=�

at a symmetric Cournot equilibrium; here MHHI = �=n for � = 1 + �(n � 1), which is

monotone in �. When � = 0 we have the standard HHI for a symmetric solution, 1=n,

and if � = 1 then the modi�ed HHI is equal to 1.

Now we consider symmetric solutions. Let B = 1+�(n�1); then Bx is the �e¤ective�

investment that lowers costs for a �rm. Let � = 1 + �(n � 1)�. Then �c0(Bx)q� is

the marginal e¤ect of investment by a �rm on its internalized pro�t �i. A symmetric

interior equilibrium (Q� = nq�; x�) must solve the �rst-order necessary conditions for the

13The intensity of the spillover e¤ects is heterogeneous across industries, which could be due to a
negative relationship between spillovers and patent protection levels. That is, industries with low patent
protection tend to have higher spillover levels than do industries with high patent protection (Griliches
1990).
14Azar et al. (2015) use the MHHI (in terms of control and share rights) to measure anticompetitive

incentives stemming from �nancial interests in the US airline industry. These authors �nd that, in year
2013, the market concentration generated by such �nancial interests was more than 10 times greater
than the HHI changes above which mergers are likely to generate antitrust concerns.
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maximization of �i:

f(Q�)� c(Bx�)

f(Q�)
=
MHHI
�(Q�)

; (2)

�c0(Bx�)Q
��

n
= �0(x�): (3)

Here �(Q�) = �f(Q�)=(Q�f 0(Q�)) is the elasticity of demand. Equation (2) is the mod-

i�ed Cournot�Lerner pricing formula; expression (3) equates the marginal bene�t and

marginal cost of investment by a �rm with its internalized pro�t �i. Note that both

MHHI and � are increasing in � and therefore respectively exert pressure to reduce out-

put (or increase prices and margins) and to increase investment.

Let second-order derivatives and cross-derivatives be de�ned, at symmetric solutions,

by @zz�i � @2�i=@z
2
i , @zi;j�i � @2�i=@zi@zj, @hz�i � @2�i=@h@zi (with h = �, �, and

z = q; x), and @xq�i � @2�i=@xi@qi (i 6= j; i; j = 1; 2; : : : ; n).15 We assume that the

following stability conditions hold:

�q � @qq�i + (n� 1)@qi;j�i < 0;

�x � @xx�i + (n� 1)@xi;j�i < 0;

and

� � �q�x � (@xq�i)2�B > 0: (4)

Together these conditions imply that (2) and (3) both have a unique solution. It is note-

worthy that �x < 0 requires that at least one of c00 and �00 be positive (see Table 7 in

Appendix A). If �(Q�; x�) > 0 then we say that the equilibrium is regular ; the ratio-

nale for this terminology will become clear in the comparative statics analysis to follow.

In particular, we assume that there is a unique regular symmetric interior equilibrium

(Q�; x�). The focus of our paper is on characterizing that equilibrium.

4.1 Model speci�cation examples

We will consider the well-known R&D model speci�cations� with linear (and there-

fore log-concave) demand� of d�Aspremont�Jacquemin (AJ) and Kamien�Muller�Zang

(KMZ); we also consider a constant elasticity (CE) model with log-convex demand that

15See Table 7 in Appendix A for the full expressions of these variables.
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Table 2: Model Speci�cations

AJ KMZ CE
Demand f(Q) = a� bQ f(Q) = a� bQ f(Q) = �Q�"

� = 0; a; b > 0 � = 0; a; b > 0 � = �(1 + "); a = 0, b = �� < 0
c(�) �c� xi � �

P
j 6=i xj �c�

��
2=)(xi + �

P
j 6=i xj

��1=2
�
�
xi + �

P
j 6=i xj

���
�(x) (=2)x2 x x

is similar to the Dasgupta and Stiglitz (1980) model but with spillover e¤ects. Table 2

summarizes these model speci�cations, and Table 8 (in Appendix B) gives su¢ cient

second-order conditions and also the regularity condition for each model speci�cation.

Table 9 (in Appendix B) presents the equilibrium values of output and R&D that are

obtained by solving equations (2) and (3).

4.2 Comparative statics on the degree of cross-ownership (�)

We are interested in how output and R&D respond, in equilibrium, to a change in �.

The sign of the derivatives @q�

@�
and @x�

@�
can be ambiguous. For a given x, the extent

of cross-ownership � has a negative e¤ect on output: @�q�i = f 0(Q)q(n � 1) < 0. This

is the well-known e¤ect of reducing output so as to increase price when the pro�t of

rivals is being taken into account. For a given q, however, � has a positive e¤ect on

investment: @�x�i = ��q(n � 1)c0(xB) > 0. This is the internalizing e¤ect of spillovers

with a higher �, and its strength depends directly on the size (�) of those spillovers. The

total impact of � on the equilibrium values of per-�rm output and R&D will depend on

which of the two previous e¤ects dominates. What is clear is that, if @x�=@� � 0, then

@q�=@� < 0 because @xq�i > 0. That is, an increase in R&D investment is necessary (but

not su¢ cient) for output to rise with increasing �. When � is small, the positive e¤ect

on investment is small and so the negative e¤ect on output dominates. Then q� decreases

with � and, as a result, �rms invest less also when � increases� given that the bene�t to

�rms from investing in R&D decreases proportionally with output.

We shall use RI to denote the region in which @q�=@� < 0 and @x�=@� � 0. If � is

su¢ ciently high, then the positive e¤ect on R&D reduces signi�cantly the unit cost of

production, which in turn stimulates output. Two e¤ects are present in this case. On the

one hand, �rms want to reduce output in order to increase competitors�pro�t and hence

their own �nancial pro�t. On the other hand, �rms now have incentives to produce

13



more because they are more e¢ cient. If the �rst e¤ect dominates, then @q�=@� < 0

and @x�=@� > 0 (we label this region RII). But if the second e¤ect dominates, then

@q�=@� > 0 and @x�=@� > 0 (region RIII). Which of these two cases arises in equilibrium

will depend on the extent of the spillovers. We �nd that, whereas RI always exists, regions

RII and RIII might not exist.

We next derive the conditions and threshold values (in terms of �) that de�ne the

boundaries of the regions characterizing the signs of @x�=@� (Lemma 1) and @q�=@�

(Lemma 2).

LEMMA 1 At equilibrium,

sign

�
@x�

@�

�
= signf�(1 + n+ ��)� 1g:

COROLLARY 1 For any �xed � and for any � 2 [0; 1]; only RI exists (with @x�=@� � 0)

if and only if demand is convex enough� that is, i¤ � � �n=�.16 This statement holds

for any � in the interval [0; 1] provided that � � �n.

We can interpret the critical spillover threshold for � in terms of the cost pass-through

coe¢ cient (i.e., the rate at which the price changes with marginal cost). This threshold is

equal to the industry-wide per-�rm cost pass-through coe¢ cient (P 0(c)=n) multiplied by

the internalized cost-reducing e¤ect of a unit increase in R&D expenditures by a �rm (�);

formally, we have sign
�
@x�

@�

	
= signf��P 0(c)�=ng. Note that the threshold is decreasing

in the pass-through coe¢ cient because �rms are less interested in reducing costs when

doing so translates, in e¤ect, into lower prices.17

A consequence of Lemma 1 is that the threshold for spillovers to induce @x�=@� � 0 is

decreasing (resp. increasing) in � when demand is concave (resp. convex)� that is, when

� > 0 (resp. � < 0). So for � > 0, if @x�=@� > 0 for some � then that inequality must

hold also for larger values of �. Analogously: for � < 0, if @x�=@� < 0 for some � then

that inequality holds also for larger values of �.

If demand is extremely convex, then increases in cross-ownership are so restrictive

of output that they induce @x�=@� < 0, in which case only RI exists for any �. And

16When � > �(n+1)=�, there exists a positive threshold of spillover above which @x�=@� > 0; however,
that threshold exceeds unity unless � > �n=�.
17Let P (c) � f(nq�(c)); then P 0(c) = f 0(nq�)n

�
dq�

dc

�
= n

�(1+�)+n . Since the stability condition �q < 0
holds when �(1 + �) + n > 0, it follows that P 0(c) > 0. Furthermore, the pass-through increases with
the number of �rms when demand is log-concave (� > �1). See, for example, Weyl and Fabinger (2013).
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since MHHI = �=n, the applicable condition is that � � �(MHHI)�1. Corollary 1

implies that the degree of demand convexity required for only RI to exist is decreasing

in the concentration measured by MHHI; in other words, the condition is less restrictive

in markets that are more concentrated. The corollary implies also that RII can exist

only when quantities are strategic substitutes. Indeed, if quantities are instead strategic

complements (i.e.., if @qi;j�i > 0, which holds when � < �n(1+�)=�), then the condition

� < �n=� also holds and only RI exists. When � is such that �n(1 + �)=� < � < �n=�,

quantities are strategic substitutes (as e.g. when demand is log-concave) but again only

RI exists. If � > �n=�, then quantities are strategic substitutes and so RII exists (see

Figure 8 in Appendix A).

As regards the comparative statics on output, totally di¤erentiating the �rst-order

condition (FOC) with respect to � yields

sign

�
@q�

@�

�
= sign

�
@�q�i + (@xq�i)B

@x�

@�

�
; (5)

here B = 1+�(n� 1) captures the e¤ect, on each �rm�s marginal cost, of a unit increase

in R&D by all �rms. At equilibrium, the impact on output of a higher degree of cross-

ownership depends directly on its e¤ect on marginal pro�t with respect to output (@�q�i)

and indirectly through its e¤ect on the R&D e¤ort of each �rm at equilibrium. Recall

that, since @xq�i > 0, it follows that if @x
�=@� � 0 then @q�=@� < 0 (RI). By Lemma 1

we know that, if spillovers are su¢ ciently high, then @x�=@� > 0; however, the sign of

@q�=@� can be negative (RII) or positive (RIII).

We derive an inverse measure of R&D e¤ectiveness in terms of the model�s basic

elasticities. This measure H is a function of � and provides the appropriate threshold

for the positive e¤ect of minority shareholdings on R&D investments to dominate its

negative e¤ect on output. Let �(Bx�) � �c00(Bx�)Bx�=c0(Bx�) � 0 be the elasticity of

the slope of the innovation function (i.e., the relative convexity of c(�)) evaluated at the

e¤ective R&D, Bx�; and let y(x�) � �00(x�)x�=�0(x�) � 0 be the elasticity of the slope

of the investment cost function. Our regularity assumptions imply that either c00 > 0

or �00 > 0 (or both). If �00(x�) > 0, let �(Q�; x�) � ��(c0(Bx�))2=(f 0(Q�)�00(x�)) > 0

measure the relative e¤ectiveness of R&D,18 weighted by �. Then H can be written as

18As de�ned by Leahy and Neary (1997, Sec. V, p. 654).
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H =
1

�(Q�; x�)

�
1 +

�(Bx�)

y(x�)

�
;

evaluated at the equilibrium (Q�; x�) for � > 0. Note that lim�!0H =1.

LEMMA 2 Let B = 1 + �(n� 1). At equilibrium,

sign

�
@q�

@�

�
= signfB �Hg: (6)

Just as it does for �, the term H provides the appropriate threshold for B, or the

e¤ect (on each �rm�s marginal cost) of a unit increase in R&D by all �rms. Therefore, if

B > H then the positive e¤ect of minority shareholdings on R&D investments dominates

its negative e¤ect on output. At equilibrium, a higher degree of cross-ownership increases

output. The values of H, �, and y for each model speci�cation are presented in Table 3.

Note that H is independent of � under the AJ and KMZ models but is strictly increasing

in � under the CE model. As we shall discuss later, the relationship between H and �

has important consequences for the optimal welfare policy.19

Table 3: H, �,and y

AJ KMZ CE

H b
�

bB
�

B
�

�
�+1
�

�
"

n�"��

� 0 1
2

�+ 1

y 1 0 0

We introduce the following mild assumption on H : (0; 1] ! R+ (considered as a

function of �).

A.4. The slope of H(�) is less than n� 1.

Under Assumption A.4, the equation B = H(�) has a unique positive solution (since

lim�!0H = 1). Denote that solution by �0; then, for � > �0 we have that @q�=@� > 0.

Assumption A.4 seems not to be restrictive in light of the model speci�cations typically

used in the literature. In AJ, KMZ, and CE, for example, an even stronger condition

19The sign of the e¤ect of changes in the degree of cross-ownership on equilibrium values can be
computed explicitly (see Lemma 10 in Appendix B).
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holds� namely, that H(�)=B is strictly decreasing in �. Assumption A.4 does not guar-

antee that �0 < 1, so RIII may fail to exist. We have that �
0 < 1 if n > H(1). Our next

corollary states the results formally.

COROLLARY 2 Under A.4, if n > H(1) then region RIII exists when � > �0 with �0 < 1

(where �0 is the unique positive solution to B �H(�) = 0).

Using Lemmas 1 and 2� and observing that � > �n=� implies that 1+n+�� > 0� we

obtain the following result.

PROPOSITION 1 Let � = 1 + �(n � 1). Under assumptions A.1�A.3, if demand is

su¢ ciently convex (� � �n=�) then only region RI exists. Otherwise, assume A.4 and

let �0 be the unique positive solution of B = H(�). Then the following statements hold :

(i) if � � 1=(1 + n+ ��); then @x�

@�
� 0 and @q�

@�
< 0 (RI);

(ii) if 1=(1 + n+ ��) < � � �0; then @q�

@�
� 0 and @x�

@�
> 0 (RII);

(iii) if � > �0; then @q�

@�
> 0 and @x�

@�
> 0 (RIII).

This proposition implies that, for demand that is convex enough, the equilibrium is

always in RI. Otherwise, the equilibrium is in RI for only a low level of spillovers. It

is instructive to compare these results with those reported by Leahy and Neary (1997,

Prop. 3), in which there are no minority shareholdings and where R&D cooperation leads

to more R&D and output (as in our RIII) whenever spillovers are positive. Yet in our case,

RIII obtains only when spillovers are su¢ ciently high. Thus the �output cooperation�

induced by minority shareholdings requires su¢ ciently high spillovers in order to increase

R&D and output.

Finally, we are interested in analyzing the e¤ect of � on each �rm�s pro�t. We have

that

signf��0(�)g = sign
�
� �c0(Bx�)

@x�

@�
+ f 0(Q�)

@q�

@�

�
: (7)

Given that @x�=@� > 0 and @q�=@� < 0 in RII, we can use (7) to show that� in this

region� ��0(�) > 0. The sign of the e¤ect of � on �� is less clear in RI (since in that

region, @x�=@� < 0 and @q�=@� < 0) and in RIII (where @x�=@� > 0 and @q�=@� > 0).

Nevertheless, in Appendix B we prove the following result.
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PROPOSITION 2 At the symmetric equilibrium, the pro�t per �rm (��) increases with �.

According to this proposition, the positive e¤ect on price dominates the negative e¤ect

on R&D in RI, and conversely in RIII, so that pro�ts in both regions rise with the extent

of cross-ownership. Hence �rms are incentivized to acquire (minority) shareholdings in

the industry� provided the agreements they enter are binding ones, because that feature

allows them to increase pro�ts.20 Before proceeding with the welfare analysis, we examine

the e¤ect of � on equilibrium values.

4.3 Comparative statics on spillovers (�)

A su¢ cient (but not necessary) condition for increases in � to raise per-�rm R&D and

output is that @�x�i > 0. It is not di¢ cult to see that signf@�x�ig = signf�B=���(Bx�)g;

here � is the elasticity of the slope of the innovation function, which is nonnegative. For

a positive �, we have @�x�i > 0 when the curvature (relative convexity) of the innovation

function is su¢ ciently low. The term �B=� increases with �, so it su¢ ces that � < �

(since B=� = 1 for � = 0). Our next proposition follows.

PROPOSITION 3 If the curvature � of the innovation function is su¢ ciently low (� <

� would be low enough); then @q�=@� > 0 and @x�=@� > 0.

We can view the following results as corollaries. In AJ (where � = 0), stronger spillover

e¤ects raise the equilibrium values of output and R&D; in KMZ (where � = 1=2), the

same dynamic is observed when cross-ownership induces a high enough � (� > 1=2) and

always in the case of a cartel (for which � = 1). In the CE model, � = � + 1 > 1.

In this case, some tedious algebra shows that, for any positive �, (i) @q�=@� > 0 (with

@q�=@� = 0 when � = 0) and (ii) x� increases (resp. decreases) with � for high (resp.

low) values of �.

20Farrell and Shapiro (1990), Flath (1991), and Reitman (1994) show that unilateral incentives to
implement passive ownership structures may be lacking in Cournot competition with constant marginal
costs. However, Gilo et al. (2006) show that cross-ownership arrangements facilitate tacit collusion (in
the symmetric case) when the stakes are su¢ ciently high. For a di¤erentiated product market with two
�rms, Karle et al. (2011) analyze the incentives of an investor to acquire a controlling or noncontrolling
stake in a competitor.
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5 Welfare analysis

Welfare in equilibrium is given by the sum of consumer surplus and industry pro�ts:

W (�) =

Z Q�

0

f(Q) dQ� c(Bx�)Q� � n�(x�):

We are interested in studying the e¤ect of � on welfare. Using the equilibrium condi-

tions (2) and (3), we can write

W 0(�) =

�
� �f 0(Q�)@q

�

@�
� (1� �)�(n� 1)c0(Bx�)@x

�

@�

�
Q�: (8)

An increase in cross-ownership alters equilibrium values of quantities and R&D invest-

ments, and each additional unit of output and R&D has social value equal to (respectively)

�(�f 0(Q�))Q� and (1� �)�(n� 1)(�c0(Bx�))Q�. Here Proposition 1 is useful. In RI we

have that W 0(�) < 0 because @x�=@� � 0 and @q�=@� < 0; in RIII, W 0(�) > 0 because

@x�=@� > 0 and @q�=@� > 0. In RII, however, the e¤ect of � on welfare is positive or

negative according as whether the positive e¤ect of minority shareholdings on R&D does

or does not dominate its negative e¤ect on output level. Moreover, from

signfCS0(�)g = sign
�
@q�

@�

�
(9)

it follows that the e¤ect of � on consumer surplus is positive (i.e., CS0(�) > 0) only in

RIII. So even as consumers su¤er from a higher degree of cross-ownership in RI and RII,

it bene�ts them in RIII. One consequence is that optimal antitrust policy will tend to be

stricter under the CS standard.

5.1 Socially optimal degree of cross-ownership

Let �oCS and �
o
TS denote the optimal degree of cross-ownership under the (respectively)

consumer surplus and total surplus standard. Let �0(�) denote the dependence of �0

on �. Then it is easy to see that H is increasing in � if and only if �0(�) is also increasing

in �. Recall that H is weakly increasing in � under the all three model speci�cations:

in AJ and KMZ, H is independent of �; in the CE model, H is strictly increasing in �.
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Furthermore, in these three speci�cationsW (�) is single peaked:21 a mild additional con-

dition is required in KMZ (as we discuss later). In the CE model, numerical simulations

show that� for the parameter range in which the second-order condition (SOC) and the

regularity condition are satis�ed�W (�) is strictly concave.

We know from Proposition 1 that if demand is convex enough then only RI exists, in

which case no cross-ownership is optimal regardless of spillover levels. Otherwise (and

under some mild assumptions): if spillovers � are low enough then cross-ownership is

also not optimal; and if spillovers are high enough then the degree of cross-ownership

should be positive in terms of both total surplus and consumer surplus (i.e., �oTS > 0 and

�oCS > 0). For intermediate values of � we have that �
o
TS > �oCS = 0. It follows that more

cross-ownership should be allowed under the total surplus standard (i.e., �oTS � �oCS).

These results are stated formally in our next proposition.

PROPOSITION 4 Suppose that Assumptions A.1�A.4 hold. Then we have the following

statements.

(i) If � � �n (convex enough demand); then �oTS = �oCS = 0.

(ii) Otherwise, if H is weakly increasing in � and W (�) is single peaked, then there are

threshold values �� and �0(0) (with �� < �0(0)) such that

� �oTS = �oCS = 0 if � � ��;

� �oTS > �oCS = 0 if � 2 (��; �0(0)); and

� �oTS � �oCS > 0 if � > �0(0).

(iii) In all cases, �oTS � �oCS.

Figure 1 depicts the critical spillover threshold values stated in Proposition 4.

Fig. 1. Critical spillover threshold values when
� > �n.

21In other words, W (�) is a function of one variable with only one stationary point that is a maximum
(and hence a global maximum).
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Remark 1. We have that �� < 1 if n+(n�1)(�+n) > H(1) (see Lemma 6 in Appendix A).

If �� � 1 then �oTS = �oCS = 0 for all � � 1.

Remark 2. Our single-peakedness assumption on W (�) ensures that �� is the minimum

threshold above which total surplus increases with � (i.e., for which � � �� implies

�oTS = 0).

Remark 3. The assumption that H is weakly increasing in � ensures that � < �0(0)

implies �oCS = 0 and that �
o
TS � �oCS. In the particular case where � = �0(0) we have that

�oTS � �oCS � 0 (see the proof of Proposition 4 in Appendix A).

If we relax the assumptions that W (�) be single peaked and that H be monotonic in �,

then we can provide a weaker characterization of the regions where cross-ownership is

socially optimal (Proposition 5) and can also characterize the extreme solution regions

where �oCS = 0 or �
o
CS = �oTS = 1 (Proposition 6).

PROPOSITION 5 Let A.1�A.4 hold. If � > �(1+n)=n; then there exist threshold values

� < �� < �0(0) (where � = inff1=(1 + n + ��) : � 2 [0; 1]g) such that : (i) �oCS = �oTS = 0

for � � �; (ii) �oTS > 0 for � > ��; and (iii) �oCS > 0 for � > �0(0).

Here is a sketch of the argument behind the proposition. From Proposition 1 it now

follows that, when � � �, onlyRI exists because � > �(1+n)=n implies that 1+n+�� > 0

and � > �n. The threshold � depends on the sign of �. If demand is concave (� > 0),

then � = 1=(1 + n(1 + �)); if demand is convex (� < 0), then � = 1=(1 + n + �). In

both cases, � decreases with n (and tends to 0 with n).22 Parts (ii) and (iii) follow as in

Proposition 4: part (ii) because if � > �� then W 0(0) > 0 and so �oTS > 0; and part (iii)

because if � > �0(0) then @q�=@�j�=0 > 0 and �oCS > 0. (See Appendix B for details.)

PROPOSITION 6 Under A.1�A.4, the following statements hold :

(i) � � �0min implies �
o
CS = 0; and

(ii) � > �0max implies �
o
CS = �oTS = 1 provided that �

0
max � 1.

22In AJ and KMZ, demand is linear; hence � = 1=(1 + n). Under CE, � < 0 when " > �1 and so
� = 1=(n� "); in contrast, � = 1=(1� n") when " < �1.
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This proposition is proved by noting that �0(�) is a continuous function on [0; 1] and

so achieves a maximum (�0max) and a minimum (�0min) within that interval. If � � �0min,

then @q�=@� < 0 for all � > 0 and so �oCS = 0; if � > �0max, then @q
�=@� > 0 for all �.

Since @q�=@� > 0 implies @x�=@� > 0 by equation (5), it follows that W 0(�) > 0 for all

� by equation (8). Therefore, �oCS = �oTS = 1 provided that �
0
max � 1.

We can now make the following claims. (a) If H is strictly decreasing in �, then �0(�)

also is: �0min = �0(1) and �0max = �0(0). (b) If H is strictly increasing in �, then �0(�)

also is: �0min = �0(0) and �0max = �0(1). (c) If H is independent of �, then �0 also is:

�0min = �0max = �0.

Proposition 6 determines when the monopoly outcome (� = 1) is optimal in terms of

both consumer and total surplus (in those cases, we are in RIII and welfare is increasing

in �). In AJ and KMZ, the term H is independent of �; thus case (c) applies and, as a

result, the consumer surplus solution is bang-bang under either model speci�cation. In

both speci�cations it is clear that if �oCS > 0 then necessarily �oTS = �oCS = 1. In the

CE model, however, H and �0 are strictly increasing in � and so case (b) applies; hence

solutions of the form �oTS > �oCS > 0 are possible.
23

The scope for a Research Joint Venture.

An RJV can be understood as a situation where spillovers are fully internalized (i.e.,

� = 1). If the RJV is �cartelized� then also � = 1. This arrangement can be optimal

only if RIII exists for � large (with �
0
max � 1) and if @q�=@� > 0 and @x�=@� > 0 (which,

by Proposition 3, requires that � < 1). Our next corollary states the result.

COROLLARY 3 Again assume that A.1�A.4 hold. If �0max � 1 and if the innovation

function�s curvature is not too large (� < 1); then a cartelized RJV (� = � = 1) is optimal

in terms of consumer surplus and welfare.

The assumptions of the corollary are ful�lled in the AJ and KMZ models, where

b < n and b < 1 are needed (respectively) to ensure that �0AJ and �0KMZ are less

than unity; recall that � = 0 in AJ and � = 1=2 in KMZ. In CE, � = 1 is never socially

optimal because �0CE(1) < 1 only if " < �=(1+2�)� which would contradict the regularity

condition (see Table 8 in Appendix B).

23In the proof of Proposition 4 we show that, in the CE case, CS is globally concave in � when
B > H(�)j�=0. Letting �� denote the unique value for � such that @q�=@� = 0, we have that ��CS = 1
when �� > 1; hence ��CS = minf��; 1g, which yields ��TS > ��CS > 0.
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Under some di¤erent conditions, an RJV with no cross-ownership (� = 0 and � =

1) can be socially optimal in all three models (see Proposition 7 in Appendix B). To

determine when an RJV with no cross-ownership is socially optimal, we use that� when

W (�) is single peaked� �� is the minimum threshold above which allowing some cross-

ownership increases welfare (Proposition 4), so no cross-ownership is optimal if �� � 1.

Satisfying that inequality requires b � n2 in AJ, b � n in KMZ, and a more involved

condition in CE. In contrast with the AJ model, in both KMZ and CE we �nd that if

� = 0 then greater R&D spillovers reduce R&D expenditures (@x�=@� < 0) while having

no e¤ect on output (@q�=@� = 0). Although R&D expenditures are lower with higher �,

the production costs of all �rms are also lower. In both cases, the greater R&D spillover�s

negative e¤ect on R&D expenditures is dominated by its positive e¤ect on the innovation

function; as a result, � = 1 is also socially optimal.

5.2 Comparative statics by model

We are interested in the comparative statics of the regions determining the scope for

cross-ownership as described in Proposition 4. We are also interested in the comparative

statics on �oCS and �
o
TS in the speci�ed models.

Comparative statics on �0. Table 4 summarizes the comparative static results on

�0(0) in the models with respect to basic parameters. The threshold �0(0) is weakly

decreasing in n and is strictly decreasing in demand elasticity; however, the e¤ect of the

innovation function�s elasticity is ambiguous. In terms of consumer surplus, in AJ it is

optimal to suppress minority shareholdings for any level of spillovers when �rm entry is

insu¢ cient� that is, when n < b (since then �0AJ > 1); in CE, suppression is optimal

when n < "(2�+ 1)=� (since �0CE > 1 for n < "(2�+ 1)�=�).24

Table 10 (in Appendix B) reports the spillover thresholds for AJ, KMZ and CE

models. To obtain some further insights into the comparative statics on the spillover

threshold �� and on the socially optimal degree of cross-ownership, we conducted some

numerical simulations.25 The results are described next.
24In AJ, @H=@n = 0 and so increasing the number of �rms reduces the �0 threshold (@�0AJ=@n < 0);

in KMZ, however, �rm entry has no e¤ect on �0 (@�0KMZ=@n = 0). In the CE model, the direction of
the e¤ect of entry on the �0 threshold depends on the value of �. In particular, �0CE decreases (resp.
increases) with n when � is low (resp. high).
25Values for parameters are chosen so that the regularity condition and the SOCs are satis�ed.
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Table 4: Comparative Statics on �0(0)

AJ KMZ CE
Number of �rms (n) � 0 �
Elasticity of demand (b�1; "�1) � � �
Elasticity of innovation function (�1; �) � + i¤ " > 1
Slope of investment cost function () +

Results I: Comparative statics on ��. First, �� decreases with n in AJ and KMZ,

and it also decreases in the CE model (according to numerical simulations). Second,

for those models the simulations also reveal that �� increases with the slope of demand

and with the investment cost� and that �� may take values greater than 1 when there

are only a few �rms in the market.26 Third, in the CE model we �nd that �� decreases

with the (curvature) elasticity of the innovation function, �, and with the elasticity (and

curvature) of demand, "�1. In this model, too, �� may take values greater than 1 when

there are few �rms in the market. (See Appendix B.2 for more details.)

Therefore, for highly concentrated markets, no cross-ownership should be allowed for

a wide range of spillovers. The reason is that the incentives for �rms to �free ride�are

stronger when the number of �rms increases because each �rm can then appropriate the

R&D e¤orts of a greater number of participants.

Results II: Comparative statics on the socially optimal degree of cross-ownership.

Our simulations generate three main �ndings. First, the socially optimal level of cross-

ownership increases with the size of the spillovers, with the number of �rms, and with

the elasticity of demand and of the innovation function. Second, if the objective is to

maximize consumer surplus, then the comparative statics are qualitatively similar but the

scope for minority shareholdings is much lower. Third, increasing the number of �rms

may not in itself be su¢ cient for consumers to bene�t from cross-ownership; in fact, this

is the case in KMZ.

Table 5 summarizes the comparative statics results from our numerical simulations.

Please note that we have made available an application program for readers to perform

their own simulations.27

26In particular, from Table 10 (in Appendix B) it is straightforward to show that, in a duopoly, �� > 1
when b > 4 in AJ, when b > 2 in KMZ, and when � > 2"=("2 � 7"+ 6) in CE.
27www.angelluislopez.net
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Table 5: E¤ect of Parameters on ��, �oTS, and �
o
CS

�� �oTS �oCS
AJ KMZ CE AJ KMZ CE AJ KMZ CE

Number of �rms (n) � � � + + + h+i 0 (+)
Elasticity of demand (b�1; "�1) � � � + + + h+i h+i [+]
Elasticity of innovation function (�1; �) � � + + h+i [+]
Slope of investment cost function () + � h�i
Degree of spillover (�) + + + (+) (+)� [+]

Key: h+i, the parameter enlarges the region where �oCS = 1; h+i, the parameter reduces the region
where �oCS = 1; (+), the e¤ect is positive only if both � and n are su¢ ciently large (otherwise there is

no e¤ect); (+)�, the e¤ect is positive only if the parameter is su¢ ciently large and b is su¢ ciently small

(otherwise there is no e¤ect); [+], the e¤ect is positive when n is su¢ ciently large (otherwise there is no

e¤ect).

We next provide graphical descriptions of the simulation results, �rst in the CE model

and then in the AJ and KMZ models.

Constant elasticity model (Figure 2). When the number of �rms is small (less than

�ve, in our example), it is never optimal to allow minority ownership interests (since

then the equilibrium is in RI). As the spillover e¤ects and the number of �rms increase,

�oTS also increases; however, any increase in �
o
CS is considerably smaller. The equilibrium

is then in RII, where �rms bene�t and consumers su¤er from a higher degree of cross-

ownership (because output is lower). Even so, the overall e¤ect on welfare of increasing �

is positive because the positive e¤ect on x� dominates the negative impact on q�. Finally,

we discover that raising � slightly may be optimal from the consumer�s standpoint when

the number of �rms in the market is su¢ ciently large (since then the equilibrium is

in RIII).

Table 6 gives the socially optimal value for �oTS in AJ and KMZ.
28

28See Appendix B for a proof that welfare is single peaked and for the derivation of the value for ��TS
in AJ� and also in KMZ if a mild condition (which, as compared with the regularity condition, is slightly
stricter in duopoly and looser in an oligopoly of three or more �rms) holds. In particular, b > 0:62
ensures that welfare is single peaked for any number of �rms under the KMZ model speci�cation.
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Table 6: Optimal Degree of Cross-ownership in AJ and KMZ

�oTS

AJ min
n
max

n
0; [(n+2)(n�1)��(n�2)]��b

(n�1)[2(��1)�+b]

o
; 1
o

KMZ min
n
max

n
0; [(n+2)(n�1)��b(n�1)�(n�2)]��b

(n�1)f[2�+b(n�1)�2]�+bg

o
; 1
o

Optimal degree of cross-ownership in terms of total surplus and consumer surplus

Fig. 2a. Constant elasticity model.

(� = 0:1, " = 0:8, � = � = 1, n = 8)

Fig. 2b. Constant elasticity model.

(� = 0:1, " = 0:8, � = � = 1, � = 0:8)

AJ model (Figure 3). Figure 3a is a snapshot of the application program. We see how,

in the simulation considered (with � = 0:5 and n = 6), price increases whereas cost

decreases with �� and, correspondingly, how output per �rm decreases while R&D per

�rm increases (two lower panels of the �gure). The welfare translation of the increase

in � is given in the upper right panel, with decreasing consumer surplus and increasing

per-�rm pro�t that results in an interior solution for welfare of �oTS > 0. The upper left

panel plots �oTS increasing smoothly with � and �
o
CS increasing in a bang-bang fashion

to reach � > 0:82, where �oTS = �oCS = 1. Figure 3b shows that �oTS increases with

the number of �rms, although �oCS does so weakly and only if n is su¢ ciently large (our

example, where � = 0:8, requires n > 6). We have �oTS = �oCS = 1.
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Optimal degree of cross-ownership in terms of total surplus and consumer surplus

Fig. 3a. AJ model speci�cation. Snapshot of

the Application. ( = 8:5, � = 0:5, b = 0:6.)

Fig. 3b. AJ model speci�cation.

( = 7, � = 0:8, b = 0:6.)

KMZ model (Figure 4). Figure 4a plots the socially optimal degree of cross-ownership

for di¤erent values of � when b = 0:9 (so that b < 1 and the assumptions of Corollary 3

are ful�lled); in this case, �oTS = 1 when � > �0KMZ = 0:9. Considering values of b that

are greater than 1, we �nd that �oTS still increases with �; yet as expected, �
o
CS = 0

even when � = 1. Figure 4b considers the e¤ect of increasing n when � = 0:8. In

KMZ, increasing the number of �rms a¤ects neither �0 nor (as a result) signfCS0(�)g.

Therefore, consumer surplus in KMZ is constantly decreasing in the degree of cross-

ownership whenever � < �0KMZ.
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Optimal degree of cross-ownership in terms of total surplus and consumer surplus

Fig. 4a. KMZ model speci�cation.

( = 3, n = 6 and b = 0:3.)

Fig. 4b. KMZ model speci�cation.

( = 3, � = 0:8, b = 0:3.)

6 Two-stage model

In this section we consider two-stage competition. In the �rst stage, every �rm i commits

to investing an amount xi into R&D. In the second stage� and for given observable level

of R&D expenditures� �rms compete in the product market. In each stage we solve for

the model�s subgame-perfect equilibrium in terms of �, or the degree of cross-ownership.

6.1 Equilibrium and strategic e¤ects

Let x = [x1; x2; : : : ; xn] be the �rst-stage R&D pro�le and let q = [q1; q2; : : : ; qn] be the

second-stage output pro�le. Let q�i (x) denote �rm i�s (interior) output equilibrium value

of the second-stage game associated with the R&D pro�le x. Then, for all i, we have

@

@qi
�i(q

�(x);x; �) = 0: (10)

In the �rst stage, the �rst-order necessary conditions for an interior equilibrium are (for

i 6= j and i; j = 1; 2; : : : ; n)

@

@xi
�i(q

�(x);x; �) +
X
j 6=i

@

@qj
�i(q

�(x);x; �)
@

@xi
q�j (x) = 0: (11)
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The equilibrium R&D pro�le x� is characterized by the system of equations (10) and

(11)� provided the second-order conditions hold. Let q� = q�(x�); then fx�;q�g is

the subgame-perfect equilibrium path of the two-stage game. The second term in equa-

tion (11) is the strategic e¤ect on pro�ts of investment. Building on Suzumura (1992)

and Leahy and Neary (1997), we can show (using A.1) that @q�j=@xi� when evaluated at

a symmetric equilibrium, where q�i = q� and x�i = x� for all i� is given (for � < 1) by

@q�j
@xi

=
�c0(Bx�)
f 0(Q�)

�
1

n(1� �)

��
2n+ ��

n+ �(� + 1)

�
(~�(�)� �); (12)

here

~�(�) =
n(1 + �) + ��

2n+ ��
:

Note that the threshold ~� depends only on �, n, and �. The inequality ~�(�) > 0 holds

only if production decisions are strategic substitutes (i.e., only if @qi;j�i < 0).
29 Note that

~�(�) < 1 for � < 1 and that ~�(�)! 1 as �! 1.

Evaluating @�i=@qj at a symmetric equilibrium, we can rewrite the strategic e¤ect of

investment as follows:

 � @�i
@qj

�
@q�j
@xi

�
= (�c0(Bx�))q�!(�)(~�(�)� �); (13)

where30

!(�) =
�

n

�
2n+ ��

n+ �(1 + �)

�
> 0:

Hence we may write the FOC (11) for � 2 [0; 1) as

�c0(Bx�)
�
� + (n� 1)!(�)(~�(�)� �)

�Q�
n
� �0(x�) = 0: (14)

When the stability condition in output is satis�ed (�q < 0), we have @q�i =@xi > 0. So if

a �rm increases its investment in R&D in the �rst stage, then it will increase its output

29This is so when � > �(1 + �)n=� (see Table 7 in Appendix A), which holds for all � and n when
� > �2� in other words, the convexity of inverse demand must not be too high, which in turn implies
that marginal revenue is strictly decreasing in output. It is worth noting that, in order for the concavity
of �i with respect to qi (@qq�i < 0) at a symmetric equilibrium to be guaranteed for all �, we need the
condition � > �2 (which guarantees strategic substitutability for all � and n). The concavity condition
is � > �2n=�, and it is strictest for � = 1 (in which case it reduces to � > �2).
30The SOC, @qq�i < 0, requires that 2n + �� > 0; the stability condition, �q < 0, requires that

n+ �(1 + �) > 0. Therefore, !(�) > 0.
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in the second stage. At the same time, by equation (12) we have that

sign

�
@q�j
@xi

�
= signf� � ~�(�)g

and that @q�j=@xi > 0 when quantities are strategic complements (since then ~� < 0). In

the case of strategic substitutes, @q�j=@xi > 0 only if � > ~�(�). When a �rm increases the

amount invested in R&D, it exerts two opposite e¤ects on the output decision of rival

�rms. There is a positive e¤ect because rival �rms become more e¢ cient owing to the

presence of spillovers. Yet there is also a negative e¤ect because the reaction of rivals

to �rm i�s higher quantity is to reduce their own output via competing in the market

for strategic substitutes. If spillover e¤ects are strong enough that � > ~�(�), then the

positive e¤ect outweighs the negative e¤ect; this outcome implies that @q�j=@xi > 0.

We can also conduct comparative statics on the threshold value ~�(�). Under Assump-

tion A.1 and from the expression for ~�, it is straightforward to show the following result.

This lemma highlights the crucial role played by demand curvature.

LEMMA 3 For � < 1; the threshold ~�: decreases (resp. increases) with the number of

�rms if demand is concave (resp. convex); increases with the degree of cross-ownership

(@~�=@� > 0) if � > �2; and increases with the curvature of the inverse demand function �

(i.e., @~�=@� > 0).

Since @�i=@qj < 0, it follows that the sign of the strategic e¤ect is opposite to the

sign of @q�j=@xi; that is,

signf g = �sign
�
@q�j
@xi

�
= signf~�(�)� �g:

Thus the strategic e¤ect is positive if production decisions are substitutes and if � is

below the threshold ~�. In this case, there are incentives to overinvest because increasing

investment reduces the rival�s output. Then, as shown by Leahy and Neary (1997, Prop. 1)

for � = 0, equations (10) and (14) together imply that output and R&D are higher in

the two-stage model than in the static model.31 It is intuitive that, if � < ~�, then each

31This result is derived under assumptions yielding a unique equilibrium and such that the two models�
respective pro�t functions satisfy the Seade stability condition with respect to R&D� namely, that the
marginal pro�t of each �rm with respect to R&D must decrease with a uniform increase in R&D by all
�rms.
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�rm expects a higher �rst-stage investment in R&D to reduce the second-stage output of

rival �rms. The implication is that  � (@�i=@qj)(@q�j=@xi) > 0 and so each �rm is led

to increase their �rst-stage R&D investments, which in turn boosts output in the second

stage (@q�i =@xi > 0). Observe that ~�(1) = 1: if there is no RJV (� < 1) then, for high

levels of cross-ownership, the strategic e¤ect is always positive (� < ~�). In contrast, if �

exceeds ~� then the strategic e¤ect is negative; hence both output and R&D are lower in

the two-stage model than in the static model.

6.2 Comparative statics on cross-ownership

Next we analyze how the degree of cross-ownership a¤ects the decisions on output and

R&D that are made in equilibrium. By using (13) and by totally di¤erentiating the system

formed by (10) and (11) before evaluating it at a symmetric equilibrium, we can solve

both for @q�=@� and for @x�=@� under regularity conditions. Let s(�) = !(�)
�
~�(�)� �

�
.

We obtain the following result.

LEMMA 4 In the two-stage model :

sign

�
@x�

@�

�
= sign

�
(� + s0(�))P 0(c)�1n� [� + (n� 1)s(�)]

	
; (15)

sign

�
@q�

@�

�
= sign

�
(� + s0(�))B � �H(�)

	
: (16)

Moreover, if @x�=@� � 0 then @q�=@� < 0.

So once again we �nd that allowing for some additional degree of cross-ownership

will increase output only if it also boosts R&D. In particular, from (15) we obtain that

@x�=@� > 0 if and only if � > �2S (see the proof of this lemma for more on �2S).

We are now in a position to derive the threshold values of spillovers that determine the

sign of the e¤ect, at equilibrium, of � on R&D and output. In this we assume that there

is a unique positive �, denoted �2S0, that solves the equation (� + s0(�))B = �H(�).32

32To streamline the discussion, here we shall refer simply to the left-hand side (LHS, (� + s0(�))B)
and the right-hand side (RHS, �H(�)) of this equation. RHS is a constant in AJ (see Table 3), but it
increases with � in KMZ and CE. Numerical simulations show that LHS is also increasing in � and that
it takes a lower value (than RHS) at � = 0. In AJ there exists a unique �2S

0
< 1 when n is su¢ ciently

large� or when  and b are su¢ ciently low� and � is su¢ ciently large. In KMZ, RHS increases more
slowly than LHS when  and b are smaller whereas LHS increases more rapidly for higher values of �.
It follows that, for high � and su¢ ciently low  and b, there exists a unique �2S

0
that is nearly (but still

less than) 1. In CE, RHS increases faster than LHS and there seems to be no solution, in which case
region RIII does not exist.
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Then we have @q�=@� � 0 for � 2 [0; �2S0] and @q�=@� > 0 for � 2 (�2S0; 1]. Therefore:

RI (where @x�=@� � 0 and @q�=@� < 0) occurs when � � �2S; RII (where @q�=@� � 0

and @x�=@� > 0) occurs for � 2 (�2S; �2S0]; and RIII (where @q�=@� > 0 and @x�=@� > 0)

occurs when � > �2S0.

These results extend Proposition 1 to the two-stage model. A direct application of

(15) and (16) allows us to derive the threshold values for each of the model speci�cations

considered in the paper (see Appendix B.2).

Our �ndings are comparable to those of Leahy and Neary (1997, Prop. 3). Those

authors show that if cooperation does not extend to output (i.e, with collusion only at

the R&D level) then the result is reduced output and R&D� unless spillovers are high

enough, in which case �rms increase both output and R&D. These two results correspond

to regions RI and RIII, respectively. In addition, we identify region RII: where cooperation

driven by minority shareholdings leads to less output and more R&D. Another di¤erence

is that, in Leahy and Neary�s model, the spillover threshold above which cooperation

leads to more output and R&D lies strictly between 0 and 1. In contrast, here (as in

the simultaneous choice case) there is no guarantee that RIII exists; that is, �
2S0 may lie

above 1.

In the proof of Lemma 7 (see Appendix B.1) we show that, in the two-stage model,

W 0(�) =

�
� �f 0(Q�)@q

�

@�

�
�
(1� �)� � !(�)(~�(�)� �)

�
(n� 1)c0(Bx�)@x

�

@�

�
Q�:

Hence the strategic e¤ect of investment, !(�)(~�(�) � �), plays an important role in de-

termining the impact of cross-ownership on welfare. When the strategic e¤ect is negative

(� > ~�(�)), the two-stage model behaves like the simultaneous model: W 0(�) < 0 in RI,

W 0(�) > 0 in RIII, and W 0(�) either positive or negative (depending on the extent of

spillovers) in RII. Yet when the strategic e¤ect is positive and spillovers are su¢ ciently

low (though not necessarily close to zero), W 0(�) < 0 in RII and W 0(�) can be positive

or negative in RI and in RIII. A consequence of some interest is that, in RIII� where

@x�=@� > 0 and @q�=@� > 0, so consumer surplus increases with � (indeed, � = 1 is
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optimal for consumers)� total surplus can be decreasing in � for su¢ ciently high �.33

Then, in stark contrast to the simultaneous model and owing to the strategic e¤ect of

investment, for some spillover values it may be that �oCS = 1 > �oTS > 0. We illustrate

this case under the AJ and KMZ model speci�cations in the simulations that follow (see

Figure 6a and Figure 7).34 Similarly as in the simultaneous case, there is a threshold

value ��2S for which �oTS > 0 if � > ��
2S; the condition under which ��2S < 1 is given

by Lemma 7 (in Appendix A). If the condition holds then W 0(0)j�=1 > 0, in which case

there exists a su¢ ciently large spillover value for which some degree of cross-ownership

is welfare enhancing. (In Appendix B.2 we compute ��2S for the model speci�cations

considered in this paper.)

6.3 Simulations

This section presents our simulations of the three considered models.35 These simulations

con�rm the qualitative results obtained in the static model, but with two caveats: (i) in

the two-stage model, the socially optimal level of cross-ownership tends to be higher

when spillovers are high; and (ii) in some cases the consumer surplus standard may

call for more cooperation than does the total surplus standard (i.e., �oCS > �oTS > 0).

Result (i) indicates that the strictness of antitrust policy (in terms of limiting cross-

ownership) should be moderated in the two-stage model when spillovers are high. The

reason underlying both results is the strategic e¤ect. When � is high, the strategic e¤ect

is negative and so there are incentives to underinvest; then it pays to increase � in order

to stimulate investment and output (result (i)). We have already observed that result (ii)

may obtain when the strategic e¤ect is positive (which happens for intermediate levels of �

when � is large, since ~�(�)! 1 as �! 1 and so ~�(�) > �); the resulting overinvestment

increases output (and is good for consumer surplus) but comes at the cost of reducing

�rms�pro�ts, reducing total surplus, and �overshooting�marginal cost reductions.

Constant elasticity model. As in the simultaneous case, we observe here that if n

is small then the equilibrium is in RI, which implies that no cross-ownership is socially

optimal. Yet as � and n increase, �oTS also increases. This result is consistent with the

33For � < 1, we have (1� �)� � !(�)(~�(�)� �)j�=1 = �(1� �) < 0.
34In CE, as in the simultaneous model, ��CS is usually zero or very close to zero.
35Appendix B.2 provides complementary results, explanations, and �gures.
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literature.36 Note that �oTS in the two-stage game is above the static level in a large

region of spillovers. For low values of � and �, the strategic e¤ect is positive. Then, as

stated previously, the two-stage model behaves di¤erently than the static model in that

welfare can increase with the degree of cross-ownership (in RI). This case is illustrated

in Figure 5, where� for low �� �oTS in the two-stage model is larger than in the static

model. For intermediate values of spillovers, the strategic e¤ect becomes negative (but

remains close to zero); for higher spillover values, �oTS increases with � more rapidly (i.e.,

convexly) when the strategic e¤ect is strong.

Comparative static results with respect to � and "�1 are similar to those in the static

model. In the CE model, however, �oCS is independent of the number of �rms and may

be positive if spillovers are extensive enough.

Optimal degree of cross-ownership in terms of total surplus and consumer surplus

Fig. 5a. Constant elasticity model.

(� = 0:1, " = 0:8, � = � = 1, n = 8.)

AJ model. Figure 6a plots welfare, consumer surplus, pro�t, price, cost, q�, and x� as

functions of � (for � = 0:65 and n = 6). In contrast with the static model, the simulations

indicate that prices may be hump-shaped when cost decreases with �; correspondingly,

this �gure shows how output per �rm is U-shaped when R&D per �rm increases (two

lower panels). The welfare translation of the increase in � is given in the upper right panel;

36For example, in a model with no cross-ownership Spence (1984) used numerical simulations to demon-
strate that an increase in � reduces x� and that, for a given � and n � 2, the incentives for cost reduction
relative to the social optimum decline with n (see Spence 1984, Table I).
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it shows U-shaped consumer surplus and increasing pro�t per �rm, with the result of an

interior solution for welfare that features a large value of �oTS > 0. The upper left panel

shows how, for an intermediate range of spillovers, �oCS = 1 > �oTS > 0. This relation is

corroborated in Figure 6b, which also con�rms that in the two-stage model it is socially

desirable to induce more cooperation that in the static model under the TS standard and

also under the CS standard.

Optimal degree of cross-ownership in terms of total surplus and consumer surplus

Fig. 6a. AJ model speci�cation. Snapshot of

the Application. (a = 700, c = 500,  = 7,

n = 6 and b = 0:6.)

Fig 6b. AJ model speci�cation.

(a = 700, c = 500,  = 7, n = 6 and

b = 0:6.)

Satisfying the expression �oCS = 1 > �oTS > 0 becomes possible when the strategic

e¤ect is positive and strong enough. Then there is overinvestment in R&D during the

�rst stage, which boosts output in the second stage. The strategic e¤ect becomes positive

for intermediate values of � when � is su¢ ciently high. For an intermediate level of

spillovers, total surplus is not maximized with full cooperation because that would entail

too much production (reducing �rms�pro�ts). In Figure 6a we see that output increases

with increasing � and also how fast R&D per �rm increases with �. Only when the
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spillover is large enough (� > 0:75 in our example) are �rms e¢ cient enough to bene�t

from such high production quantities.

More precisely, since �2S0 decreases with �, it follows that� for a given � and a

su¢ ciently high �� we have � > �2S0 and so the equilibrium is then in RIII, where CS

increases with �.37 In particular: for � = 0:62, the equilibrium is in RIII when � > 0:41

(see Figure 6a). Here the strategic e¤ect is positive since ~�(�) > 0:62 for � > 0:24.

Furthermore, if � > 0:69 then the strategic e¤ect is strong enough to reverse the sign of

the e¤ect of @x�=@� on W 0(�) (i.e., to make it negative); as a result, in a neighborhood

of � = 0:62 there is a global maximum for W (�): even if the equilibrium is in RIII we

have that W 0(�) < 0 for high values of �, which implies �oTS 2 (0; 1).

KMZ model. Finally, the optimal degree of cross-ownership in terms of total surplus is

increasing in � also under the KMZmodel speci�cation. With regard to consumer surplus,

numerical simulations suggest that normally no cross-ownership is optimal; however,

�oCS = 1 can be optimal for low n, b, and  (see Figure 7). As in AJ, we can have

�oCS > �oTS for intermediate spillover values (because of the strategic e¤ect).

Optimal degree of cross-ownership in terms of total surplus and consumer surplus

Fig. 7. KMZ model speci�cation.

(a = 700, c = 500,  = 5:5, n = 2 and

b = 0:2.)

The pattern of results in our comparative statics analysis of the other parameters in

37That is, CS is strictly convex in � and so ��CS = 1 when CS(1) > CS(0).
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AJ, KMZ, and CE is similar to that for the one-stage game (see Table 5). The only

exceptions we have found are as follow. In AJ: although decreasing b enlarges the region

where �oCS = 1 is optimal (as in the static case), �
o
CS can be lower than 1 (for a su¢ ciently

low b) when spillovers are su¢ ciently high. In KMZ: although �oCS is independent of n in

the static case, in the two-stage game it can decrease with n when there are few �rms in

the market.

7 Alternative interpretation: R&D cooperation ex-

tending to the product market

The �sympathy coe¢ cient�� can be viewed also as a measure of the intensity of com-

petition; for example, a low � may be the result of �rms� limited scope for collusion

owing to a low discount factor. Note that this parameter has an empirical counterpart

in the estimation of market power because it corresponds to a constant elasticity of con-

jectural variation, which can be used to estimate the degree of industry cooperation.38

Intermediate degrees of cooperation may arise from the strictness of antitrust policy: in

terms of limiting not only cross-shareholdings but also collusion in the product market.

The latter scenario is relevant given the long-standing suspicion that R&D cooperation

facilitates coordination in the product market. This outcome may re�ect the existence

of ancillary restraints (or of other channels through which cooperative R&D may lead to

coordination in the product market)39 or the existence of multimarket contacts.40 There

is also growing evidence that R&D cooperation facilitates product market cooperation

from empirical studies (Duso et al. 2014; Goeree and Helland 2010), from experiments

38Michel (2016) estimates the degree of pro�t internalization after ownership changes in di¤erentiated
product industries. He allows each �rm�s objective function to depend on other �rms�pro�ts by incor-
porating the parameter �ij , which is the extent to which brand i accounts for brand j�s pro�ts when
setting the optimal brand-i price.
39As when, for example, an RJV stipulates downstream market division for any patents that may

result from the venture or when there are collateral agreements that impose cross-licensing of old patents
(or a per-unit output royalty for using new patents)� since these circumstances reduce the incentives
of �rms to increase their output (Grossman and Shapiro 1986; Brodley 1990). The various channels
through which cooperative R&D may facilitate coordination in the product market are analyzed by
Martin (1995), van Wegberg (1995), Greenlee and Cassiman (1999), Cabral (2000), Lambertini et al.
(2002), and Miyagiwa (2009). Rey and Tirole (2013) examine how both independent marketing and joint
marketing alliances (e.g., patent pools) can lead to tacit collusion.
40See the related evidence in Parker and Röller (1997) for mobile telephony and in Vonortas (2000)

for US RJVs.
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(Suetens 2008),41 and from antitrust cases.42

Our analysis therefore extends the traditional framework in two directions: no sep-

aration between coordination in R&D and output, whether because of cross-ownership

or because R&D cooperation naturally extends to product market cooperation; and the

presence of intermediate degrees of cooperation in response to the strictness of competi-

tion policy. Antitrust authorities a¤ect the parameter � by limiting cross-shareholdings;

we can also interpret � as a measure of the intensity with which collusion is scrutinized.43

From a policy perspective, our results highlight the tension between a CS standard as

proclaimed by many competition authorities and the fact that R&D cooperation is widely

allowed (and even encouraged) by those same public authorities. Whenever cooperation

in R&D extends to competition in the product market, policy must in general be much

stricter if the aim is to increase consumer surplus.

8 Concluding remarks

In the context of a general symmetric oligopoly Cournot model with cost-reducing R&D

investment, spillovers, and symmetric partial ownership interests, we have identi�ed tight

conditions� in terms of the curvature of demand, market concentration, and the extent

of spillovers� under which cross-ownership is welfare enhancing. We also �nd that the

socially optimal degree of cross-ownership is positively associated with the number of

�rms, with the elasticity of demand and of the innovation function, and with the extent

of spillovers. Yet if the objective is to maximize consumer surplus then (i) the scope for

partial ownership interests is greatly reduced and (ii) �rm entry need not induce, at the

welfare optimum, a higher degree of cross-ownership. We say that an antitrust policy

is strict to the extent that it limits minority shareholdings, and (alternatively) when it

is increasingly activated as cooperation in R&D extends to cooperation in output. The

41Suetens (2008) uses a two-stage duopoly model to con�rm that cooperation in reducing R&D costs
facilitates price collusion. Agents engage in cooperative R&D projects more than once, and they interact
repeatedly in the product market. For both small and large spillovers this author �nds that cooperative-
ness in the pricing stage is generally higher when subjects can make binding R&D agreements than in
the baseline treatments without the possibility of such agreements.
42Goeree and Helland (2010) gather a number of cases in the petroleum industry, the computer indus-

try, the market for semiconductor memory, and the telecommunications sector.
43Besanko and Spulber (1989) show that, if collusive behavior is unobservable and if production costs

are private information, then the antitrust authority may optimally induce some intermediate degree of
collusion among �rms.
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competition-reducing e¤ect of cross-ownership justi�es policy intervention, as forcefully

underscored by the empirical work of Azar et al. (2015, 2016). However, some degree

of cross-ownership may actually be welfare enhancing, and may even increase consumer

surplus, for an industry that exhibits su¢ ciently large R&D spillovers. In the extreme, it

may be socially optimal to form a cartelized RJV when the curvature of the innovation

function is not too large. This paper stipulates precise conditions that can be checked to

see� in industries with signi�cant R&D spillovers� whether cross-ownership is (or is not)

still improving social welfare.

We extend the �simultaneous action�(static) model of R&D investment to a strategic

commitment (two-stage) model and �nd that our results are (with some caveats) robust

to this extension. It turns out that, when spillovers are above a given threshold, �rms

invest less in R&D and produce less in the two-stage than in the static model; hence the

strategic e¤ect of investment becomes negative. In this case, the social gains� from a

higher degree of cross-ownership that induces �rms to invest and approach more nearly

the socially optimal production levels� are even greater. We also characterize how these

gains are a¤ected by the number of �rms, the extent of cross-ownership, and the curvature

of the inverse demand function. Numerical simulations corroborate that, when spillovers

are high, an antitrust policy should be less strict in the two-stage model than in the static

model. In this case, it need no longer be true that the consumer surplus standard calls for

reduced cross-ownership: cooperation may be needed to induce the investment required

for high output, despite that level of investment possibly being excessive from the total

surplus standpoint.

9 Appendix A

9.1 Minority shareholdings

9.1.1 Common-ownership

Letting �ij be the ownership share of �rm j owned by owner/investor i, the total (portfo-

lio) pro�t of owner i is: �i =
P

k �ik�k, where �k are the pro�ts of portfolio �rm k. Since

each �rm takes into account its shareholders�incentives through the control weights � ij,

�rm j maximizes a weighted average of its shareholders�portfolio pro�ts:
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Table 7: Summary of Basic Expressions

@qq�i = (@2�i=@q
2
i )jq�;x� = f 0(Q�)(2 + ��=n)

@qi;j�i = (@2�i=@qi@qj)jq�;x� = f 0(Q�)(1 + �+ ��=n)

@xx�i = (@2�i=@x
2
i )jq�;x� = �(c00(Bx�)~�q� + �00(x�))

@xi;j�i = (@2�i=@xi@xj)jq�;x� = �c00(Bx�)�q�f1 + �[1 + (n� 2)�]g

@xq�i = (@2�i=@xi@qi)jq�;x� = �c0(Bx�)

@�q�i = (@2�i=@�@qi)jq�;x� = f 0(Q�)(n� 1)q�

@�x�i = (@2�i=@�@xi)jq�;x� = ��(n� 1)c0(Bx�)q�

(@qq�i) (@xx�i)� (@xq�i)
2 = f 0(Q�)(2 + ��=n)[c00(Bx�)(Q�=n)~�+ �00(x�)]� c0(Bx�)2

�q = @qq�i + @qi;j�i(n� 1) = f 0(Q�) [n+ �(� + 1)]

�x = @xx�i + @xi;j�i(n� 1) = �(c00(Bx�)B�q� + �00(x�))

�(Q�; x�) = � [c00(Bx�)B�(Q�=n) + �00(x�)] ff 0(Q�) [�(1 + �) + n]g � c0(Bx�)2�B

 q = �c0(Bx�)s(�)

 x = �c00(Bx�)Bs(�)q�

 � = �c0(Bx�)s0(�)q�

~�(Q�; x�) = � (c00(Bx�)Bq��+ �00) f 0(Q�) [�(1 + �) + n]� c0(Bx�)2�B

H = �[f 0(Q�)=(�c0(Bx�)2)](�c00(Bx�)B�0(x�)=c0(Bx�) + �00(x�))

(one-stage) @x�=@� = [(n� 1)(Q�=n)f 0(Q�)c0(Bx�)=�] f� [�(1 + �) + n]� �g

(one-stage) @q�=@� = [(n� 1)(Q�=n)=�] fc0(Bx�)2�B + f 0(Q�) [c00(Bx�)(Q�=n)B� + �00(x�)]g

= [(n� 1)(Q�=n)=�] c0(Bx�)2� (B �H(�))

(two-stage) @x�=@� = �f 0(Q�)c0(Bx�) f(� + s0(�)) [�(1 + �) + n]� [� + (n� 1)s(�)]g

(two-stage) @q�=@� = � ((� + s0(�))c0(Bx�)2B + f 0(Q�) fc00(Bx�)(Q�=n)B [� + (n� 1)s(�)] + �00(x�)g)

with B = 1 + �(n� 1), � = 1 + �(n� 1), � = 1 + �(n� 1)�, ~� = 1 + �(n� 1)�2, � � � + s(�)(n� 1)

and � � (n� 1)(Q�=n)= ~�.
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nX
i=1

� ij�
i =

nX
i=1

� ij

nX
k=1

�ik�k:

A variety of governance structures may be considered by assigning di¤erent values to the

control rights. Note that the above expression is equivalent to

nX
i=1

� ij�ij�j +

nX
i=1

� ij

nX
k 6=j

�ik�k;

and dividing by
Pn

i=1 � ij�ij we obtain �j +
Pn

i=1 � ij
Pn

k 6=j �ik�k=
Pn

i=1 � ij�ij, or, equiva-

lently,

�j +

nX
k 6=j

Pn
i=1 � ij�ikPn
i=1 � ij�ij

�k:

Thus, the model of common-ownership with control weights can be re-written in the form

of maximizing �j = �j +
Pn

k 6=j �jk�k, where �jk �
Pn

i=1 � ij�ik=
Pn

i=1 � ij�ij.

9.1.2 Cross-ownership by �rms

The pro�t of �rm j is given by �j = �j+
P

k 6=j �jk�k, where �jk is the �rm j�s ownership

stake in �rm k. One can derive the pro�t for each �rm by denoting � = (�1; :::; �n)
0 and

� = (�1; :::; �n)
0, and solving the equation: � = � +A�, where A is the n � n matrix

with the ownership stakes with 0�s in the diagonal and �jk o¤-diagonal. Thus, � = ��,

where � = (I �A)�1 is the inverse of the Leontief matrix; its coe¢ cients �jk represent

the e¤ective or imputed stake in �rm k�s pro�ts received by a "real" equity holder with

a 1% direct stake in �rm j.44 We examine the symmetric case: �jk = �kj = � for all

j 6= k, and �jj = 0 for all j. The general formula for the coe¢ cients of matrix � when

stakes are symmetric is, for � < 1=(n � 1), �jj = 1�(n�2)�
[1�(n�1)�](�+1) and �jk =

�
[1�(n�1)�](�+1)

for all j and all j 6= k (see Lemma 8 in Appendix B.1).

Hence, the pro�t of �rm j with symmetric stakes is given by

�j =
1� (n� 2)�

[1� (n� 1)�] (�+ 1)�j +
�

[1� (n� 1)�] (�+ 1)
X
k 6=j

�k:

Maximizing the above expression is equivalent to maximizing �j + �
P

k 6=j �k, where

44Gilo et al. (2006, Lemma 1, p.85) also show that �jj � 1 for all j, and 0 � �jk < �jj for all j and
all k 6= j.
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� = �PCO � �= [1� (n� 2)�].

9.2 Simultaneous model

Proof of Lemma 1. If we totally di¤erentiate the two �rst-order necessary conditions,

then after some manipulations we get

@q�

@�
=
1

�
[(@�x�i) (@xq�i)B � (@�q�i)�x] (17)

@x�

@�
=
1

�
[(@�q�i) (@xq�i) � � (@�x�i)�q]: (18)

Using equation (18) and Table 7 we obtain

@x�

@�
=
c0(Bx�)f 0(Q�)(n� 1)q�

�
f� [�(1 + �) + n]� �g :

Since � > 0 and �q < 0 (so �(1 + �) + n > 0):

sign

�
@x�

@�

�
= sign f� [� (1 + �) + n]� �g

= sign

�
� � �

� (1 + �) + n

�
= sign

n
� � P 0(c)

�

n

o
;

where P 0(c) = n=[�(1 + �) + n]. Finally, by substituting

sign f� [� (1 + �) + n]� �g = sign f�(1 + �� + n)� 1g :�

Proof of Corollary 1. From Lemma 1 we have that if � � �(1+n)=�, so n+1+�� �

0, then @x�=@� < 0, which, using equation (5), in turn implies that @q�=@� < 0: for all

� only RI exists. If � > �(n + 1)=�, then in addition to RI, region RII exists only if

� > �n=� also holds. The reason is that when 1 + n + �� > 0, then, from Lemma 1,

@x�=@� > 0 requires that � > 1=(1 + n + ��). However, 1=(1 + n + ��) < 1 only if

� > �n=�, in which case there exists some region of feasible spillover values for which

@x�=@� > 0. Note that for a given n, the condition � > �n=� is stricter than the

condition � > �(n+1)=�. Thus, for � � �n=� only RI exists, and since �n=� increases

with �, the result holds for any � if � � �n.�
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Fig. 8a. n = 2. Fig. 8b. n = 3.

Fig. 8. Existence of regions RI and RII with second-order, stability and strategic
complements/substitutes output competition conditions.

Proof of Lemma 2. If we totally di¤erentiate the two-�rst order conditions and

solve for @q�=@�, we obtain

@q�

@�
=
(n� 1)(Q�=n)

�
� (c0(Bx�))

2

�
B +

f 0(Q�)

�c0(Bx�)2
[c00(Bx�)(Q�=n)B� + �00(x�)]

�
:

Let H � @�q�i
@�x�i

�x
@xq�i

= �[f 0(Q�)=(� (c0(Bx�))2)] [c00(Bx�)(Q�=n)B� + �00(x�)], evaluated at

the equilibrium (Q�; x�) for � > 0. From the requirement that either c00 > 0 or �00 > 0

(or both) we obtain that lim�!0H =1. The above expression can be rewritten as

@q�

@�
=
(n� 1)(Q�=n)

�
� (c0(Bx�))

2
(B �H) :�

Proof of Corollary 2. Under A.4, @q�=@� > 0 (so RIII exists) if � > �0. We now

show that the condition n > H(1) guarantees that �0 < 1. First, note that lim�!0H =1

(when c00 > 0 or �00 > 0), while B = 1 at � = 0. Since H(�) has slope less than n� 1 and

dB=d� = n�1, by continuity there exists only one value for �(= �0) at which H(�) = B.

If the condition H(�) � B < 0 holds at � = 1 (which is equivalent to the condition

n > H(1)), then necessarily H intersects B at some � less than 1, thus �0 < 1.�

Proof of Proposition 3. By totally di¤erentiating the two FOCs with respect to �,

43



we obtain
@q�

@�
=
1

�
[(@�x�i) (@xq�i)B � (@�q�i)�x] (19)

@x�

@�
=
1

�
[(@�q�i) (@xq�i) � � (@�x�i)�q]: (20)

Since @xq�i > 0 and @�q�i > 0, � > 0; �x < 0 and �q < 0, the sign of the impact of �

on output and R&D in equilibrium depends on the sign of @�x�i. It can be shown that

@�x�i = �c0(Bx�)
(n� 1)q�

B
�

�
�B

�
� �(Bx�)

�
(21)

and the result follows.�

Proof of Proposition 4. To prove Proposition 4 a few preliminary lemmata (as-

suming A.1-A.4) are useful.

LEMMA 5 Suppose that � > �n, then W 0(�) > 0 if � > �̂ (�) where �̂ is the unique

positive solution to the equation

H(�)�B = [(n� �)=�] [(n+ 1 + ��)� � 1]. (22)

Proof. We �rst derive the condition that determines the spillover threshold value �̂

above which welfare is increasing in the degree of cross-ownership. By inserting @q�=@�

and @x�=@� (given in Table 7) into (8) we obtain:

W 0(�) = ��f 0(Q�)(n� 1)q
�

�
c0(Bx�)2�(B �H(�))Q�

�(1� �)�(n� 1)c0(Bx�)(n� 1)q
�

�
f 0(Q�)c0(Bx�) f� [�(1 + �) + n]� �gQ�;

which can be rewritten as:

W 0(�) = #w (� (B �H(�)) + (1� �)(n� 1) f� [�(1 + �) + n]� �g) ;

where #w � [(n� 1)q�=�]c0(Bx�)2(�f 0(Q�))�Q� is positive. Note that (1� �)(n� 1) =

n� �, thus for � > 0, W 0(�) > 0 if

H(�)�B <
n� �
�

[(n+ 1 + ��)� � 1] : (23)
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Note that lim�!0H =1 and (by Assumption A.4) the left-hand side of (23) is decreasing

in �. The right-hand side of (23) is increasing in � (since n+ 1+ �� > 0 holds when RII

and RIII exist) and �nite at � = 0. Thus, there exists a unique positive threshold �̂ that

solves the equation (22), and for any � > �̂ condition (23) holds, that is, W 0(�) > 0.�

LEMMA 6 We have that �̂(�) < �0(�) for all �, which implies that �� < �0(0) where

�� = �̂(0). Furthermore, �� < 1 if

n+ (n� 1)(� + n)�H(1) > 0: (24)

Proof. We �rst show that �0(�) > �̂(�) for any �, and as a result �0(0) > �� = �̂(0).

Suppose that for a given �, �̂ > �0, then from (6) we have that for � 2 (�0; �̂) it holds

that @q�=@� > 0. Thus, from equation (5) it also holds that @x�=@� > 0, which implies

from equation (8) that W 0(�) > 0. However, from equation (22) we have that W 0(�) < 0

for � < �̂, a contradiction. Suppose now that �̂ = �0, then we can pick � such that

� = �̂ = �0, and as a result H �Bj�=�0 = 0, thus from equation (22) we have that

�̂ = �0 = 1=(n+1+��), which implies that @x�=@� = 0 (see Table 7), and from equation

(5) this in turn implies that @q�=@� < 0. However, at � = �0, B �H = 0, so @q�=@� = 0

(see Table 7), a contradiction.

The proof of Lemma 5 shows thatW 0(�) > 0 for some � if the spillover is larger than

the threshold value �̂ (�), where �̂ is the unique positive solution to the equation (22).

Furthermore, �̂ < 1 if condition (23) evaluated at � = 1 holds since lim�!0H(�) = 1

and H(�) � B decreases with � (by Assumption A.4), while the right-hand side of (23)

increases with � (for � < 1) and takes �nite value at � = 0. Therefore, by evaluating (23)

also at � = 0 we obtain the condition that ensures that �� < 1, n+(n�1)(�+n)�H(1) >

0.�

We turn now to prove successively each of the statements of Proposition 4.

i) The result follows from Proposition 1: if �� �HHI�1, then only RI exists, where

@x�=@� < 0 and @q�=@� < 0, and thus CS 0(�) < 0 and W 0(�) < 0 for all �.

ii) Next we consider the case in which �� < n:

ii.1) �oTS = �oCS = 0 if � � ��. First, we have to show that there does not exist � < ��

such that W 0(�) > 0 for some positive �. However, this follows trivially from
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the assumption that W (�) is single peaked: since for any � < ��, W 0(0) < 0,

we have that W 0(�) < 0 for all positive �, otherwise there would exist another

stationary point that is a (local) minimum, a contradiction. Similarly, if � = ��,

then W 0(0) = 0, and the assumption that W (�) is single peaked guarantees that

W 0(�) < 0 for any positive �. In addition, if � � ��, then �oCS = 0: from Lemma 6

we know that �0(�) > �� = �̂(0) for all �; since � is assumed to be equal to or lower

than ��, it follows that CS 0(�) < 0 for all �, thus �oCS = 0.

ii.2) �oTS > �oCS = 0 if � 2
�
��; �0 (0)

�
. Noting again that �� = �̂(0), the result that

�oTS > 0 when � > �� follows immediately from Lemma 5. In addition, � < �0(0)

yields �oCS = 0: when H is weakly increasing in �, �0(�) also is, and consequently if

� < �0(0), then � < �0(�) for all �, i.e., @q�=@� < 0 for all �, thus �oCS = 0.

ii.3) We �rst show that �oTS > 0 and �oCS > 0 if � > �0 (0). From Lemma 6 it follows

that � > �0(0) > ��, which yields �oTS > 0. From Lemma 2 we know that if for some

given �, � > �0(�), then @q�=@� > 0. Hence if � > �0(0), we have that @q�=@� > 0

at � = 0, which using (9) implies that CS 0(0) > 0, and therefore �oCS > 0

Next we show that �oTS � �oCS when H is weakly increasing in �. Note that B > H

(since @q�=@� > 0) at � = 0. When H is weakly increasing in �, we may face the

following three cases:

� There does not exist some � < 1 at which H = B; as a result @q�=@� > 0 and, by

(5), @x�=@� > 0 for all �, which from equation (8) yields W 0(�) > 0 for all �; thus

�oTS = �oCS = 1.

� There exists an interval subset L of the continuum of values of � in (0; 1] at which

H = B but (a) H never crosses B, so there is no � at which H > B, or (b)

there exists some � above which H > B. In both cases, in the region of values

for � where H = B we have @q�=@� = 0 (or, equivalently, CS 0(�) = 0), while

@x�=@� > 0, consequently W 0(�) > 0. It follows that if H never crosses B or does

it for some � > 1, then �oTS = 1, while any � 2 L is optimal in terms of CS (even

if L is a singleton) since @q�=@� > 0 for any � lower than the lower bound of L,

thus �oTS � �oCS; by the same token, if H > B for some � < 1, then any � 2 L is

optimal in terms of CS (even if L is a singleton), while �oTS is larger or equal than

the upper bound of L, thus �oTS � �oCS.
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iii) In ii.1) �oTS = �oCS = 0, in ii.2) �oTS > �oCS = 0, and in ii.3) �oTS � �oCS > 0.

Therefore, in the three cases �oTS � �oCS.

For the sake of completeness, next we consider the particular case where � = �0(0).

� Case � = �0(0). If H (as a function of �) is increasing at some value of �, then �0

also is. Thus, for any larger value of �, � < �0(�), which implies that @q�=@� < 0;

as a result, any smaller value of �, where � = �0, and therefore @q�=@� = 0, is

optimal in terms of consumer surplus. Similarly, when H (and therefore �0) is

independent of � for all �, we have that @q�=@� = 0 for all � since � = �0. Hence

CS is independent of �, and any � is optimal in terms of CS. In both cases, for

all � where H = B we have @x�=@� > 0, since @q�=@� = 0, which implies that

W 0(�) > 0. Therefore, �oTS � �oCS � 0.�

9.3 Two-stage model

Proof of Lemma 4. Using (13), by totally di¤erentiating the system formed by (10;

11) in a symmetric equilibrium, and solving for @q�=@� and @x�=@�, we obtain

@q�

@�
=
1
~�
f[@�x�i + (n� 1) �] (@xq�i)B � @�q�i [�x +  x(n� 1)]g (25)

@x�

@�
=
1
~�

�
@�q�i

�
@xq�i� + (n� 1) q

�
� [@�x�i + (n� 1) �] �q

	
; (26)

where  z � @ =@z with z = q; x; �, and

~�(Q�; x�) = �q [�x +  x(n� 1)]� @xq�i
�
@xq�i� +  q(n� 1)

�
B;

which is assumed to be strictly positive.45 By rewriting equation (26) as follows

@x�

@�
= �f 0(Q�)c0(Bx�) f(� + s0(�)) [�(1 + �) + n]� [� + (n� 1)s(�)]g ; (27)

where � � (n � 1)(Q�=n)= ~� and s(�) = !(�)(~�(�) � �), we get that sign f@x�=@�g is

given by (15). Let us now turn to the impact of � on output in equilibrium. Equation

45We show in Appendix B.2.2 that ~�(Q�; x�) > 0 is also a necessary condition for having a positive
output at equilibrium in AJ.
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(25) can be rewritten as follows

@q�

@�
= �

�
(� + s0(�))c0(Bx�)2B + f 0(Q�) fc00(Bx�)(Q�=n)B [� + (n� 1)s(�)] + �00(x�)g

�
:

(28)

By inserting the �rst-order necessary condition (11) evaluated at the symmetric equi-

librium into the above expression, after some manipulations we get that sign f@q�=@�g

is given by (16). Finally, note that the �rst-order condition with respect to output is

identical to the one associated to the static case. Therefore, by totally di¤erentiating the

FOC with respect to output and solving for @q�=@�, we obtain again equation (5), which

implies that if @x�=@� � 0, then @q�=@� < 0. From (15), we obtain that @x�=@� > 0 if

and only if

� > �2S � 1� (!0(�)~�(�) + !(�)~�
0
(�))P 0(c)�1n+ !(�)(n� 1)~�(�)

(1 + n+ ��) + (n� 1)!(�)� P 0(c)�1n!0(�)
:�

LEMMA 7 Under assumptions A.1.-A.4, in the two-stage model, there is a su¢ ciently

large spillover value (��2S < 1) for which allowing some cross-ownership is socially optimal

(�oTS > 0) if

(1+s0(0))n+(1�s(0))(n�1)((1+s0(0))(1+ �+n)� [1 + (n� 1)s(0)]�H(1) > 0: (29)

Proof. See Appendix B.1.�
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Appendix B to Cross-ownership, R&D Spillovers and Antitrust

Policy

Ángel L. López and Xavier Vives

May 2016

In this Appendix we provide some proofs of results in the paper in Section B.1 and analysis

and results for the three model speci�cations in Section B.2

B.1 General model: proofs

In this Section we state Lemma 8 and provide proofs for Proposition 2 and 5, and Lemmata 3

and 7.

LEMMA 8 The coe¢ cients of matrix � with symmetric stakes are given by

�jj =
1� (n� 2)�

[1� (n� 1)�] (�+ 1) and �jk =
�

[1� (n� 1)�] (�+ 1)

for all j and all j 6= k.

Proof. To obtain the coe¢ cients of matrix � with symmetric stakes we need to compute

the inverse of

I�A =

0BBBBBB@
1 �� � � � ��

�� 1 � � � ��
...

...
. . .

�� �� � � � 1

1CCCCCCA
n�n

.

The problem is the same as that of deriving the direct demand system from the inverse de-

mand system of n di¤erentiated products with quadratic utility function (see Vives, 1999,

pp. 145-147). By de�nition (I�A)� = I. Thus, (I � A) multiplies the �rst column of

� (call that �1) to give the �rst column of I (call that e1). For n � 2 �rms, we have

(I�A)�1 = ( 1 0 � � � 0 )1�n. Let us denote the diagonal entries of � by �d, and the

1



o¤-diagonal entries by ��d. Then, the system of equations (I�A)�1 reduces to the following

system of two equations: f�d � �(n� 1)��d = 1;���d + [1� (n� 2)�] ��d = 0g. Solving the

system for coe¢ cients �d and ��d yields

�d =
1� (n� 2)�

[1� (n� 1)�] (�+ 1) and ��d =
�

[1� (n� 1)�] (�+ 1) :�

Proof of Proposition 2. Pro�t per �rm as a function of � at equilibrium is given by

��(�) = (f(Q�)� c(Bx�)) q� � �(x�).

By di¤erentiating �� with respect to �, we obtain

��0(�) = f 0(Q�)n
@q�

@�
q� � c0(Bx�)B@x

�

@�
q� + (f(Q�)� c(Bx�)) @q

�

@�
� �0(x�)@x

�

@�
.

Using that in equilibrium f(Q�) � c(Bx�) = �f 0(Q�)�q� and �0(x�) = �c0(Bx�)q�� , we can

rewrite the above expression as

��0(�) = f 0(Q�)n
@q�

@�
q� � c0(Bx�)B@x

�

@�
q� � f 0(Q�)�q�@q

�

@�
+ c0(Bx�)q��

@x�

@�

= f 0(Q�)(n� �)q�@q
�

@�
+ c0(Bx�)(� �B)q�@x

�

@�

= f 0(Q�)(n� 1)(1� �)q�@q
�

@�
� c0(Bx�)�(n� 1)(1� �)q�@x

�

@�
,

or

��0(�) = (n� 1)(1� �)q�
�
f 0(Q�)

@q�

@�
� �c0(Bx�)@x

�

@�

�
.

In RII, we have that @x�=@� > 0 and @q�=@� < 0. Hence from the above expression it is clear

that ��0(�) > 0. Note also that when � = 0, the equilibrium is in RI, and therefore ��0(�) > 0

since @q�=@� < 0. To determine signf��0(�)g in RI and RIII for � > 0, we replace @q�=@�

and @x�=@� with the expressions given in Table 7:

��0(�) = (n� 1)(1� �)q�
�
f 0(Q�)

(n� 1)q�
�

c0(Bx�)2� (B �H(�))

��c0(Bx�)(n� 1)q
�

�
f 0(Q�)c0(Bx�) f� [�(1 + �) + n]� �g

�
.

After some manipulations we obtain:

��0(�) = #� f� [�(1 + �) + n]� � +H(�)�Bg ,
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where #� � (n� 1)(1� �)q� [(n� 1)q�=�] c0(Bx�)2�(�f 0(Q�)) is positive. Therefore,

sign
�
��0(�)

	
= sign f(n+ 1 + ��)� � 1 +H(�)�Bg , (30)

so it follows that ��0(�) > 0 if

1� (n+ 1 + ��)� < H(�)�B, (31)

or, equivalently, if

2(1� �)� ��� < H(�). (32)

From Table 7 and using that in equilibrium �q� = ��0(x�)=c0(Bx�), the regularity condition

can be written as

�
�
�c00(Bx�)B �0(x�)

c0(Bx�)
+ �00(x�)

�
f 0(Q�)

c0(Bx�)2
[� (1 + �) + n]� �B > 0.

Noting that (see Table 7)

�H(�) =
�f 0(Q�)
c0(Bx�)2

�
�c

00(Bx�)

c0(Bx�)
B�0(x�) + �00(x�)

�
,

we can rewrite the regularity condition in terms of H as follows: [�(1 + �) + n]�H(�)��B > 0,

with �(1 + �) + n > 0 since �q < 0. Thus, if the equilibrium is regular:

H(�) >
�B

[�(1 + �) + n]�
.

Then, we only have to show that: �B= f[�(1 + �) + n]�g > 2(1 � �) � ���, or, equivalently,

that

~g(�) � �B > ~h(�) � [2(1� �)� ���][�(1 + �) + n]�

holds. Note that ~g(0) = 1, ~g0(�) > 0, ~g00(�) > 0 for � > 0 and ~g00(0) = 0. On the other hand,

~h(0) = 0 and

~h0(�) = 2[�(1 + �) + n][1� (2 + ��)�].

Furthermore, it can be shown that solving the equation ~g(�) = ~h(�) for � yields the following

two roots:

�1 =
1

�� + n+ 1
and �2 =

1

�(� + 1) + 1
.
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Consider RI. If the smallest (positive) root in this region is larger or equal than the spillover

threshold that determines RI, then ~g(�) > ~h(�) in RI, and consequently, ��0(�) > 0. First,

note that when �� + n+ 1 > 0 holds, �1 is indeed the threshold value that determines RI, i.e.

for � < �1, @x
�=@� < 0 (if ��+n+1 < 0, then @x�=@� < 0 for all �). Depending on the values

of �, � and n, one of the following cases may apply:

� If 2 + �� > 0, i.e., � > �2=�, then �� + n + 1 > 0 and �(� + 1) + 1 > 0: �1 > 0 and

�2 > 0. Furthermore, �1 < �2 (for � < 1) and ~h00(�) < 0. Therefore, ~g(�) > ~h(�) for

0 < � < �1.

� If 2 + �� < 0 and �(� + 1) + 1 > 0, i.e., �(1 + �)=� < � < �2=� (so �� + n + 1 > 0

also holds), then �1 > 0, �2 > 0, �1 < �2 (for � < 1) and ~h00(�) > 0: ~g(�) > ~h(�) for

0 < � < �1.

� If �(� + 1) + 1 < 0 and �� + n+ 1 > 0, i.e., �(n+ 1)=� < � < �(1 + �)=�, then �1 > 0,

�2 < 0 and ~h
00(�) > 0: ~g(�) > ~h(�) for 0 < � < �1.

� If �� + n + 1 < 0, i.e., � < �(n + 1)=�, then �1 < 0, �2 < 0, �1 > �2 (for � < 1) and

~h00(�) > 0: ~g(�) > ~h(�) for all �.

� If � = �1, so � = 1=(1+n+��), then @x
�=@� = 0, so signf��0(�)g = signff 0(Q�)@q�=@�g,

which is positive in RI since in this region: @q�=@� < 0.

Consider RIII. Note that RIII may exist only if � > �n=�, in which case � > �(n+1)=�,

so �1 > 0. Furthermore, �0 � �1.
46 Next we show that for any � > �0, ~g(�) > ~h(�), and

consequently, ��0(�) > 0. Again, depending on the values of �; � and n, we may face one of the

following cases:

� If � > �2=�, then �1 > 0, �2 > 0, �1 < �2 (for � < 1) and ~h
00(�) < 0. Hence, ~g(�) > ~h(�)

for 0 < � < �1, ~g(�) < ~h(�) for �1 < � < �2, and ~g(�) > ~h(�) for � > �2. Thus, we only

have to show that �0 > �2, so that ~g(�) > ~h(�) for any � � �0. Note that if �0(�) > 0

for � = �0, then necessarily �0 > �2 since �
0 > �1 and �

0(�) < 0 for � 2 (�1; �2). Since

condition (31) holds at � = �0: H(�0)�
�
1 + �0(n� 1)

�
= 0 > 1� (n+ 1+ ��)�, we thus

have �0 > �2, and as a result ~g(�) > ~h(�) for any � > �0.

� If � < �2=�, when �n=� > �(� + 1)=� (i.e., � > n � 1), the feasible range is �n=� <

� < �2=�, where �1 > 0, �2 > 0, �1 < �2 (for � < 1) and ~h
00(�) > 0. As in the previous

case, we can conclude that �0 > �2: for any � > �0, ~g(�) > ~h(�).
46Suppose that �0 < �1, then from Lemma 2 we have that @q�=@� > 0 for � > �0. However, from Lemma 1

we have that @x�=@� < 0 for � < �1. Furthermore, if @x
�=@� < 0, then @q�=@� < 0. Thus, @q�=@� < 0 for

�0 < � < �1, a contradiction.
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� If � < �2=� but �n=� < �(� + 1)=�, we can distinguish between two cases: (i) when

�(� + 1)=� < � < �2=�, then again we have �1 > 0, �2 > 0, �1 < �2 (for � < 1) and

~h00(�) > 0, so �0 > �2: for any � > �0, ~g(�) > ~h(�); (ii) when �n=� < � < �(� + 1)=�,

in which case RIII does not exist. To see this note that in this case �1 > 0, �2 < 0, and

~h00(�) > 0: ~g(�) > ~h(�) only for � < �1. If �
0 < 1, then condition (31) holds at �0, i.e.,

~g(�) > ~h(�) for � � �0. Therefore, �0 < �1, a contradiction:�

Proof of Proposition 5. If � > �(1 + n)=n, then 1 + n + �� > 0 for all �. From

Lemma 1 we know that when � � 1=(1 + n + ��): @x�=@� � 0. From Lemma 5 we have that

W 0(�) > 0 if � > �̂ (�) where �̂ is the unique positive solution to the equation (22). Necessarily,

�̂ > 1=(1 + n+ ��), otherwise for any � 2 (�̂; 1=(1 + n+ ��)], we have that @x�=@� � 0, which

from equation (5) implies that @q�=@� < 0, which using equation (8) yields W 0(�) < 0, a

contradiction. Since �̂(�) > 1=(1 + n + ��) for any �, then �̂(0) = �� > �. From Lemma 6 we

also know that �� < �0(0). Thus, the relationship � < �� < �0(0) is established. Next we prove

each of the statements. (i) When � > �(1 + n)=n not only RI but also RII may exist since

� > �n. If �(1 + n)=n < � < 0, then inff1=(1 + n + ��) : � 2 [0; 1]g = 1=(1 + n + �) > 0,

whereas if � � 0, inff1=(1+n+��) : � 2 [0; 1]g = 1= [1 + n(1 + �)] > 0. In both cases, if � � �,

it follows from Proposition 1 that only RI can exist. (ii) Lemma 5 ensures that for some given

�, if � > �̂(�), then W 0(�) > 0. As a result, if � > �� = �̂(0), then W 0(0) > 0, thus �oTS > 0;

(iii) From Lemma 2 we have that if � > �0(0), then @q�=@�j�=0 > 0, which using (9) implies

that CS0(0) > 0: �oCS > 0. �

Proof of Lemma 3. We have

~�(�) =
n(1 + �) + ��

2n+ ��
.

Then, by di¤erentiating ~� with respect to n we obtain:

@~�

@n
= � � (1� �)2

(2n+ ��)2
.

Thus, for � < 1 and convex demand (� < 0), @~�=@n > 0, if demand is concave (� > 0),

@~�=@n < 0. Let us now di¤erentiate ~� with respect to �:

@~�

@�
=

n2(� + 2)

(2n+ ��)2
,
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then, @~�=@� > 0 if � > �2. Finally, we di¤erentiate ~� with respect to �:

@~�

@�
=
�n (1� �)
(2n+ ��)2

.

Thus, @~�=@� > 0 if � < 1.�

Proof of Lemma 7. By di¤erentiating W (�) we have

W 0(�) = [f(Q�)� c(Bx�)]n@q
�

@�
� c0(Bx�)BQ�@x

�

@�
� n�0(x�)@x

�

@�
.

Using the �rst-order conditions, f(Q�) � c(Bx�) = �f 0(Q�)Q��=n and (14) in the above ex-

pression, and simplifying, we obtain:

W 0(�) =

�
��f 0(Q�)@q

�

@�
� [(1� �)� � s(�)] (n� 1)c0(Bx�)@x

�

@�

�
Q�. (33)

If we insert (27) and (28) into (33), after some manipulations we get

W 0(�) = �Q�(�f 0(Q�))
�
�
�
c0(Bx�)2(� + s0(�))B (34)

+f 0(Q�)
�
c00(Bx�)(Q�=n)B [� + (n� 1)s(�)] + �00(x�)

	�
+c0(Bx�)2 [(1� �)� � s(�)] (n� 1)

�
(� + s0(�)) [�(1 + �) + n]

� [� + (n� 1)s(�)]g] ,

where � � (n� 1)(Q�=n)= ~�. Then W 0(0)j�=1 > 0 if and only if

0 < (c0(nx�))2
�
(1 + s0(0)

��
�=1

)n+ (1� s(0)j�=1)(n� 1)
n
(1 + s0(0)

��
�=1

)(1 + � + n) (35)

�
h
1 + (n� 1) s(0)j�=1

io�
+ f 0(Q�)

n
c00(nx�)Q�

h
1 + (n� 1) s(0)j�=1

i
+ �00(x�)

o
.

From equation (14) we have that in equilibrium and for � = 0 and � = 1:

Q�j�=0;�=1 = �
n�0(x�)

c0(nx�)
h
1 + (n� 1) s(0)j�=1

i .
Substituting Q�j�=0;�=1 into (35) and using the de�nitions for �(Bx�) and �(Q�; x�), we obtain

the condition for the two-period model:

(1+s0(0)
��
�=1

)n+(1�s(0)j�=1)(n�1)
n
(1 + s0(0)

��
�=1

)(1 + � + n)�
h
1 + (n� 1) s(0)j�=1

io
�H(1) > 0,
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Table 2: Model Speci�cations.

AJ KMZ CE

Demand f(Q) = a� bQ f(Q) = a� bQ f(Q) = �Q�"

� = 0; a; b > 0 � = 0; a; b > 0 � = �(1 + "); a = 0; b = �� < 0
c(�) �c� xi � �

P
j 6=i xj �c� [(2=)(xi + �

P
j 6=i xj)]

1=2 �(xi + �
P
j 6=i xj)

��

�(x) (=2)x2 x x

where

s(0) =
(2n+ �)[(n+ �)=(2n+ �)� �]

n(n+ 1 + �)

and

s0(0) = �
�
2n2 + �(2n+ 1) + �2

�
(n� 1)� � �2(n� 1)� �(2n2 � 1)� n(n2 + 1)

(n+ 1 + �)2n
.

Thus, s0(0)j�=1 = [1 + � � n(n� 2)] =(n + 1 + �)2. Note that by setting s = s0 = 0, we obtain

the condition for the simultaneous case, that is, condition (24).�

B.2 Examples

In this Section we characterize each of the model speci�cations considered in the paper: �rst in

the simultaneous and then in the two-stage model. Before characterizing AJ, KMZ and CE, we

describe brie�y the main assumptions of each model speci�cation.

Model speci�cations: main assumptions. As shown in Amir (2000) the AJ and the

KMZ model speci�cations are not equivalent for large spillover values (the critical value depends

on the innovation function or unit cost of production function and on the number of �rms).

The di¤erence between the two models lies on the unit cost of production function and the

autonomous R&D expenditures. Under the KMZ speci�cation, the e¤ective R&D investment

for each �rm is the sum of its own expenditure xi and a �xed fraction (�) of the sum of the

expenditures of the rest of �rms, i.e., Xi = xi+ �
P
j 6=i xj . Instead, under the AJ speci�cation,

Xi is the e¤ective cost reduction for each �rm, so c(�) is a linear function. Thus, in AJ decision

variables are unit-cost reductions, whereas in KMZ decision variables are the autonomous R&D

expenditures.47 In particular, in KMZ the unit cost of �rm i is �c�h(xi+�
P
j 6=i xj), where for

given xi � 0 (i = 1; :::; n) the e¤ective cost reductions to �rm i, h(�), is a twice di¤erentiable
47Furthermore, while in AJ the joint returns to scale (in R&D expenditure and number of �rms) are decreasing,

constant or increasing when spillover e¤ects are less than, equal to, or greater than 1=(n+ 1), in KMZ the joint
returns to scale are always nonincreasing (Proposition 4.1 in Amir (2000)).
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Table 8: Second-order conditions and regularity condition.

AJ KMZ CE

S:O:C b > 1=2 b > �=(2~�) n > �(1+")
2 and "(1+�)

� > n(n�"�)
~�(2n+��)

Regularity Condition b > �B=(� + n) b > �=(� + n) "� �(1� ") > 0
with ~� � 1 + �(n� 1)�2.

and concave function with h(0) = 0, h(�) � �c, and (@=@xi)h(�) > 0. As in Amir (2000), to

allow for a direct comparison between AJ and KMZ, we consider a particular case of the KMZ

model: h = [(2=)(xi + �
P
j 6=i xj)]

1=2 with  > 0. The CE model considers constant elasticity

demand and costs with �; � > 0 (see Table 2); � is the unit cost of production (or innovation

function) elasticity with respect to the investment in R&D (and no spillover e¤ects). Finally,

�(x) is quadratic in AJ but linear in KMZ and CE.

B.2.1 Simultaneous model

We �rst derive Table 8, which provides the second-order and regularity conditions for the three

model speci�cations (we also explore the feasible region for the constant elasticity model in

Lemma 9). Second, we establish Lemma 10, which determines signf@q�=@�g and signf@x�=@�g

for each model speci�cation. Third, we derive the spillover threshold value �� (Table 10). After

that, we conduct a comparative statics analysis on ��. Finally, we examine welfare in AJ and

KMZ, derive Table 6 and state Proposition 7.

Table 9: Equilibrium Values.

AJ KMZ CE

q� (a��c)
b(�+n)�B�

(a��c)
b(�+n)��

1
���

�
� (��=n)" �"�1 (1� "�=n)

�(1+�)=["��(1�")]
x� �(a��c)

b(�+n)�B�
�2(a��c)2

2B[b(�+n)�� ]2
1
B

�
� (��=n)" �"�1 (1� "�=n)

�1=["��(1�")]

It is worth noting that in AJ and KMZ the R&D expenditure x� and output q� per �rm

increase with the size of the market (a) and decrease with the level of ine¢ ciency of the tech-

nology employed, �c, the slope of inverse demand, b, and the parameter  (which is the slope of

the marginal R&D costs in AJ). In the CE model x� and q� also increase with the size of the

market, �. In addition, the costlier the technology employed, �, the lower is total output, Q�.

However, x� decreases (respectively, increases) with � if demand is elastic (inelastic). The last

two results hold for any value of � and �.48

48The same result is obtained in Dasgupta and Stiglitz (1980) for � = � = 0 and free entry.
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Table 10 provides the spillover thresholds in the examples.

Table 10: Spillover Thresholds �� and �0(0).

�� �0(0)

AJ
(n� 2) +

p
(n� 2)2 + 4b(n+ 2)(n� 1)
2(n+ 2)(n� 1) [�1 +

p
1 + 4b(n� 1)]=[2(n� 1)]

KMZ
(n� 2) + b(n� 1) +

p
(n� 2)2 + b(n� 1) [b(n� 1) + 6n+ 4]
2(n+ 2)(n� 1) b

CE is the value above which:
(n� ")�� fB + (n� 1) [�(n� ")� 1]g � "(�+ 1)B > 0 "(�+ 1)=[�(n� ")]

Second-order and regularity conditions. To start with, let us rewrite the regularity

condition as follows

�(Q�; x�) = �
�
c00(Bx�)B�(Q�=n) + �00(x�)

� �
f 0(Q�)(�(1 + �) + n)

�
� (c0(Bx�))2�B > 0. (36)

In particular, for � > 0 the above condition can be rewritten as�(Q�; x�) = [�(1 + �) + n]�H(�)�

�B > 0. Second-order conditions are: (i) @qq�i = 2f
0(Q)+�(Q=n)f 00(Q) = f 0(Q)(2+��=n) < 0,

so @qq�i < 0 if � > �2n=�; (ii) @xx�i < 0, which is trivially satis�ed by Assumptions A.2 and

A.3; and (iii) @qq�i (@xx�i)�
�
'qx
�2
> 0, which is equivalent to

c0(Bx�)2 + f 0(Q�)(2 + ��=n)
h
c00(Bx�)(Q�=n)~�+ �00(x�)

i
< 0, (37)

where ~� = 1+�(n�1)�2. Noting that @qi;j�i = f 0(Q�)(1+�)+f 00(Q�)�q� = f 0(Q�)(1+�+��=n),

we have that

@qq�i + @qi;j�i(n� 1) = f 0(Q�) [n+ �(� + 1)] < 0,

which is satis�ed if � > �(n+�)=�. Similarly, noting that @xx�i = �c00(Bx�)~�q���00(x�) and

@xi;j�i = �c00(Bx�)�q� f1 + � [1 + (n� 2)�]g, it is straightforward to show that

@xx�i + @xi;j�i(n� 1) = �
�
c00(Bx�)B�q� + �00(x�)

�
< 0,

which is satis�ed by Assumptions A.2 and A.3.

In AJ and KMZ it is immediate that @qq�i = �2b < 0. Furthermore, in AJ: @qq�i (@xx�i)�

('qx)
2 = 2b� 1, since c00(�) = 0 and �00(x) = , so @xx�i = � and 'qx = �c0(�) = 1. In KMZ,

condition (37) can be written as

"
1

2

�
2


(Bx�)

��1#
� 2b

"
1

2

�
2


(Bx�)

��3=2#
q�~� < 0. (38)
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From �rst-order condition (3) we have that in equilibrium

q� =
�0(x�)

�c0(Bx�)� =
1

(1=) [(2(Bx�)=]�1=2 �
. (39)

Inserting the above equation into condition (38), after some manipulations, it reduces to 1 �

2b~�=� < 0. (Note that if b > �=2 holds, then the condition b > �=(2~�) is satis�ed.) In AJ

and from (36), it is immediate that � = b(� + n) � �B since c00(�) = � = 0; f 0(Q) = �b and

�0(x) = x. In KMZ we have:

� = �
"
1

2

�
2


Bx�

��3=2
B�

1

(1=)(2Bx�=)�1=2�

#
[�b (� + n)]� 1

2

�
2


Bx�

��1
�B.

Inserting (39) into the above equation, after some manipulations, we obtain

� =
1



�
2


Bx�

��1 �
Bb(� + n)� �B



�
.

Therefore, in KMZ � > 0 if b > �=(� + n). Regarding the constant elasticity model we have:

LEMMA 9 (Constant elasticity model) At the equilibrium, for a given n � 2 and � � 0,

second-order conditions together with the condition of non-negative pro�ts require that

(i) maxf"�;�(1 + ")=2g < n � "�(B + ��)=(��),

(ii) "(1 + �)=� > n(n� "�)=
h
~�(2n+ ��)

i
, with ~� � 1 + �(n� 1)�2.

Furthermore, the equilibrium is regular if and only if (1 + �)=� > 1=".

Proof. From the �rst-order condition (2) we need that

n > "�, (40)

otherwise the system (2; 3) will not have a solution. This condition also guarantees that Q�

and x� are both positive. Notice that @qq�i < 0 if (f
0(Q�)=n)(2n+��) < 0. Since � = �(1+ "),

@qq�i < 0 if

n > �(1 + ")=2. (41)

Since � 2 [1; n], we have that the latter condition is always satis�ed for " < 1. By construction

@xx�i < 0. Furthermore, second-order condition @qq�i (@xx�i) �
�
qx
�2
> 0, which is given by

(37), reduces to

�"�
n
Q��("+1)(2n+ ��)

h
�(�+ 1)�(Bx�)�(�+2)(Q�=n)~�

i
+ (��)2(Bx�)�2(�+1) < 0. (42)
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From the �rst-order condition (2) we have that at the symmetric equilibrium

Q� = [�(n� "�)=(n�)]1=" (Bx�)�=". (43)

By substituting (43) into (42), after some manipulations, we obtain

(Bx�)�2(�+1)��2
n
� ["=(n� "�)] (2n+ ��)(�+ 1)~�=n+ �

o
< 0.

The above condition is satis�ed if "(�+1)=� > n(n�"�)=[(2n+��)~�], which proves statement

(ii) of the Proposition.

From (36) we have that � > 0 if

0 < ��(�+ 1)�(Bx�)�(�+2)(Q�=n)�B
h
"(1 + ")�Q��("+2)�Q� � "�Q��("+1)(� + n)

i
�(��)2(Bx�)�2(�+1)�B,

or,

0 < Q��("+1)
h
��(�+ 1)�(Bx�)�(�+2)(Q�=n)�B

i
["(1 + ")��� "�(� + n)]

�(��)2(Bx�)�2(�+1)�B.

Substituting (43) in the above expression, we obtain

0 < �
�
�(n� "�)

n�

��("+1)="
(Bx�)�("+1)�="�(�+ 1)�(Bx�)�(�+2)

�
�(n� "�)

n�

�1="
(Bx�)�="

�B

n
["(1 + ")��� "�(� + n)]� (��)2(Bx�)�2(�+1)�B,

rearranging terms yields

0 < (Bx�)�2(�+1)
�

n�

�(n� "�)

�
��(�+ 1)��B

n

��
�"�n+ "2��

�
� (��)2�B

�
,

or, equivalently,

0 < (Bx�)�2(�+1)��2�B ["(�+ 1)� �] .

Therefore, � > 0 holds if (1 + �)=� > 1=", or, equivalently, "� �(1� ") > 0.

We turn now to deriving the condition under which pro�ts in equilibrium are nonnegative. At

the symmetric equilibrium, each �rm�s pro�t is given by �(Q�=n; x�) = [f(Q�)� c(Bx�)] (Q�=n)�
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x�. Then, �(Q�=n; x�) � 0 if �� � [f(Q�)� c(Bx�)]Q�=(x�n) � 1. Write

 � �
���
n

�"
�"�1

�
n� "�
n

�
.

Then Q� = [n=(���)] (1+�)=["��(1�")], x� = (1=B) 1=["��(1�")], and condition �� � 1 can be

expressed as

h
�(

n

���
)�" �"(1+�)=["��(1�")] � � ��=["��(1�")]

i 1

���
 (1+�)=["��(1�")]B �1=["��(1�")] � 1.

Rearranging terms, and replacing  into the above expression, we get ["�=(n� "�)] [B=(��)] �

1. It follows that �� � 1 if �
"�

��

�
(B + ��) � n. (44)

Combining conditions (40), (41) and (44) yields statement (i).�

Fig. 9. Feasible region for the CE model

with n = 7.

Feasible region for the constant elasticity model with � = 0. From Lemma 9 we have that

� > 0 if (1+�)=� > 1=". When � = 0, the LHS of condition (i) is trivially satis�ed for any n � 2,

moreover the RHS of condition (i) can be rewritten as follows n � �(�) = "(1+���)=(��"�).

Since �0 > 0 (as we are also imposing that � > 0), condition n � �(�) will hold for all � if

n � "(1 +�)=�. Last, condition (ii) with � = 0 writes as "(1 +�)=� > n(n� ")= [2n� (1 + ")].

Therefore, at � = 0 we only have to consider the RHS of condition (i) and condition (ii). These

two conditions are depicted in Fig. 9 for n = 7; the grey area are combinations (�; ") for which
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the two conditions are satis�ed (these combinations of parameters also satisfy the two conditions

for n � 7).

Determination of signf@q�=@�g and signf@x�=@�g in AJ, KMZ and CE. Note that

@q�=@� can be written in the following manner

@q�

@�
=
(n� 1)(Q�=n)

�

n�
c0(Bx�)

�2
�B + f 0(Q�)

�
c00(Bx�)(Q�=n)B� + �00(x�)

�o
, (45)

then after some calculations, it is simple to verify that in the simultaneous model:

LEMMA 10 (i) In AJ: signf@q
�

@�
g = signf�(1+�(n�1))� bg and signf@x

�

@�
g = signf�(n+

1)� 1g;

(ii) In KMZ: signf@q
�

@�
g = signf� � bg and signf@x

�

@�
g = signf�(n+ 1)� 1g;

(iii) In the CE model: signf@q
�

@�
g = signf� [�(n� "�)� �(n� 1)"(�+ 1)]� "(�+1)g and

signf@x
�

@�
g = signf� [(n� ")� �(n� 1)(1 + ")]� 1g.

Derivation of �� (Table 10). Note that @x�=@� can be written as

@x�

@�
=
(n� 1)(Q�=n)f 0(Q�)c0(Bx�)

�
[�(�(1 + �) + n)� � ] (46)

If we insert equations (45) and (46) into equation (8), after some manipulations we obtain

W 0(�) =
�
(n� 1)(Q�)2=(n�)

�
(�f 0(Q�))z, where

z = �f
�
c0(Bx�)

�2
�B + f 0(Q�)[c00(Bx�)(Q�=n)B� + �00(x�)]g

+
�
c0(Bx�)

�2
(1� �)�(n� 1) f� [�(1 + �) + n]� �g .

By noting that in AJ: f 0 = �b, � = 0, c0 = �1, c00 = 0 and �00 = , it then follows that

zAJ = zj�=0 = �B � b + �(n� 1) [�(1 + n)� 1]

= (n� 1)(n+ 2)�2 � (n� 2)� � b.

By solving zAJ = 0 for � we obtain the expression for ��AJ . Notice that ��AJ < 1 if

(n� 2) +
p
(n� 2)2 + 4b(n+ 2)(n� 1) < 2(n+ 2)(n� 1),

or

(n� 2)2 + 4b(n+ 2)(n� 1) < [2(n+ 2)(n� 1)� (n� 2)]2 ,
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which can be rewritten as 4b(n+2)(n� 1) < 4n2(n+2)(n� 1). Thus, ��AJ < 1 if b < n2. In

KMZ we have c = �c�
q
(2=)(xi + �

P
j 6=i xj), f

0 = �b, � = 0 and �00 = 0, then

zKMZ = zj�=0 =
�

2x�
+

�bq�B
2 (2Bx�=)3=2

+
�(n� 1) [�(1 + n)� 1]

2Bx�

=
1

B

 
�bq�B1=2

2 (2x�=)3=2
+

�

2x�
fB + (n� 1) [�(1 + n)� 1]g

!
.

By replacing q� and x� into the above expression, after some calculations we get

zKMZ =
[b(1 + n)� 1]2

(a� �c)2

�
�bB + �


fB + (n� 1) [�(1 + n)� 1]g

�
.

It is then immediate that: zKMZ > 0 , � > ��
KMZ . Notice that ��KMZ

< 1 if

�
(n� 2)2 + b(n� 1) [b(n� 1) + 2(3n+ 2)]

	1=2
< 2(n+ 2)(n� 1)� n+ 2� b(n� 1),

which can be rewritten as 4n(n + 2)(n � 1)(�n + b) < 0. In the constant elasticity model

f = �Q�", c = �(xi + �
P
j 6=i xj)

�� and �(x) = x, then

zCE = zj�=0 = (��)
2(Bx�)�2(�+1)�B � "�(Q�)�"�1�(�+ 1)�(Bx�)�(�+2)q�B

+(��)2(Bx�)�2(�+1)�(n� 1) [�(�"+ n)� 1] .

By replacing q� and x� into the above expression, we obtain

zCE = �2�2z�2(1+�)�B � "� [n=(��)]�(1+") z�(1+�)(1+")(�+ 1)z�(�+2)z�+1B (47)

+�2�2z�2(1+�)�(n� 1) [�(�"+ n)� 1] ,

where

z �
h
�
���
n

�"
�"�1 (1� "=n)

i1=["��(1�")]
.

By noting that z�(�+1)(1+")�(�+2)+(�+1) = z�"+�(1�")z�2(1+�) we can re-write equation (47) as

follows

zCE = z�2(1+�)��2 f��B + ��(n� 1) [�(�"+ n)� 1]� "(�+ 1)B=(n� ")g .

Hence zCE > 0 if and only if

(n� ")�� fB + (n� 1) [�(n� ")� 1]g � "(�+ 1)B > 0.�

14



Threshold values ��, above which some partial ownership interests are socially optimal

Fig. 10a. AJ model speci�cation. Fig. 10b. KMZ model speci�cation.

Threshold values ��, above which some partial ownership interests are socially optimal

Figure 11a. Constant elasticity model. Figure 11b. Constant elasticity model.

Comparative statics on ��. Fig. 10a (respectively Fig. 10b) shows the value for �� under

the AJ (KMZ) model speci�cation as a function of the number of �rms and for di¤erent values

of b. As the �gure makes clear, ��AJ and ��KMZ decrease with n: when there are more �rms in

the market, there is more need for minority shareholdings in order to internalize the additional

externalities. We also have that ��AJ and ��KMZ decrease with b, although �� is lower than 1

15



for lower values of b in the KMZ model than in the AJ model.

Fig. 11a and Fig. 11b depict ��CE as a function of n and for di¤erent values for � and ". A

glance at these �gures shows that ��CE decreases again with n (for given " and �). In addition,

Fig. 11a tells us that for given n and ", ��CE decreases with the elasticity of the innovation

function, �, whereas Fig. 11b shows that for given n and �, ��CE increases with ", so it decreases

with the elasticity of demand. We also have that for the (feasible) combination of parameters

(�; ") considered here, ��CE � 1 when there are two or three �rms in the market.

Optimal degree of cross-ownership in terms of total surplus and consumer surplus

Fig. 12a. Constant elasticity model.

(� = 0:1, � = � = 1, n = 8, � = 0:8.)

Fig. 12b. Constant elasticity model.

(" = 0:8, � = � = 1, n = 8, � = 0:8.)

Fig. 12a and 12b show that the greater is the elasticity of demand, "�1, or the elasticity

of the innovation function, �, the greater should be the degree of cross-ownership if the social

planner seeks to maximize total surplus; however, if the objective is to maximize consumer

surplus, then for the same parameter range, �oCS = 0.

Welfare in AJ and KMZ, and derivation of Table 6. Here, we show that welfare is a

single-peaked function in AJ and KMZ; we also derive �oTS under these two model speci�cations.

Case AJ: By inserting equilibrium values into the welfare function we get

W =
1

2
n(a� �c)2 (2� + n)b� �

2

[(� + n)b�B� ]2
.

If we di¤erentiate W with respect to � we obtain:

dW

d�
= �(n� 1)(a� �c)b f�b+ � [2� (B � n) + n� 2� �(n+ 2)(n� 1)]g

[(� + n) b �B� ]2
Q.
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Note that solving dW=d� = 0 for � yields a unique stationary point, given by �̂AJ . By taking

the second-order derivative with respect to �, evaluating it at � = �̂AJ , and simplifying, we

obtain
d2W

d�2

����
�=�̂AJ

= � (n� 1)2(a� �c)b [2 (� � 1)� + b]3�
�(n+ 2)(n� 1)2�4 � 6(n� 1)�3 + Z1 + 2Z2 � Z3

�2Q,
where Z1 �

��
n2 + 4n� 1

�
b+ 3 (n� 2)

�
�2, Z2 � 2 [b(1� 2n) + 1]� and Z3 � b(1 � bn).

The second-order condition requires that b > 1=2 (see Table 8), then 2(� � 1)� + b > 0 for

any � 2 [0; 1], and as a result: d2W=d�2
��
�=�̂AJ

< 0. Since �̂AJ is the unique stationary point

of W , it follows that �̂AJ is a global maximum. This is the desired �oTS :

Case KMZ: By inserting equilibrium values into the welfare function we get

W =
1

2
n(a� �c)2 (2� + n)Bb� �

2

[(� + n)b� � ]2B
.

By di¤erentiating W with respect to � we obtain:

dW

d�
= �(n� 1)(a� �c)b f�Bb+ � [2� (B � n) + n� 2� �(n+ 2)(n� 1)]g

B [(� + n) b � � ]2
Q,

and by solving dW=d� = 0 for � we get a unique stationary point, given by �̂KMZ . The

second-order derivative with respect to � evaluated at � = �̂KMZ yields

d2W

d�2

����
�=�̂KMZ

=
b(n� 1)2(a� �c)
B [(� + n)b� � ]3

ZQ,

where Z � � [�n+ (1� �)]n(b)2 +
�
4�(1� �)n+ (1� �)2 � �2n2

�
b + �B [�(n+ 2)� 2].

The regulatory condition requires that b > �=(�+n) (see Table 8), thus d2W=d�2
��
�=�̂KMZ

< 0

whenever Z < 0. Since �̂KMZ is the unique stationary point of W , it follows that �̂KMZ is

a global maximum whenever Z < 0. This is the desired �oTS :It is straightforward to show

that the regularity condition is stricter than the second-order condition under the KMZ model

speci�cation (see Table 8). In addition, the regularity condition becomes stricter as the degree

of cross-ownership and the number of �rms increase. For � = 1, the maximum value of the

right-hand side of the regularity condition is
p
n(n� 1)= [4(n�

p
n)], which for example equals

0:60 for n = 2 and 0:68 for n = 3. Numerical simulations show that assuming b > 0:62

guarantees that Z < 0 holds for any n; thus, Z < 0 is a mild condition: it is slightly stricter

than the regularity condition in duopoly but softer for oligopoly of three or more �rms.�

PROPOSITION 7 A Research Joint Venture with no cross-ownership (� = 0 and � = 1) is

socially optimal in AJ when b � n2, in KMZ when b � n, and in CE (provided that W (�)
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is single peaked) when � � "n=[(n� 1)"2 + (�1 + n� 2n2)"+ n(n2 + 1� n)].

Proof. When W (�) is single peaked, �� is the minimum threshold above which allowing

some positive � is welfare enhancing (Proposition 4). Consequently, �oTS = 0 for any � 2 [0; 1]

if �� � 1. From Table 10 we have that ��AJ � 1 if b � n2 and ��KMZ � 1 if b � n;

in both cases W (�) is single peaked (see above). Also, from Table 10 we obtain ��CE , and

solving ��CE = 1 for �, yields the threshold value in terms of n and ": ��CE � 1 if � �

"n=[(n � 1)"2 + (�1 + n � 2n2)" + n(n2 + 1 � n)]. Next we show that for � = 0, W 0(�) > 0

under AJ, KMZ and CE model speci�cations, and therefore it is socially optimal to set � = 1

in the three cases. Using (8) we can write

@W

@�
= (f(Q�)n� nc(Bx�)) @q

�

@�
� nc0(Bx�)(n� 1)x�q� � nc0(Bx�)B@x

�

@�
q� (48)

�n�0(x�)@x
�

@�

=

�
��f 0(Q�)@q

�

@�
� (1� �)�(n� 1)c0(Bx�)@x

�

@�
� c0(Bx�)(n� 1)x�

�
Q�.

In AJ and for � = 0, @q�=@� > 0 and @x�=@� > 0 (see Table 9), thus from (48) it is clear that

@W=@� > 0. In KMZ and for � = 0, @q�=@� = 0 and @x�=@� < 0. Higher R&D spillovers

reduce R&D expenditures but also the unit cost of production of all �rms. The latter dominates

the former:
@W

@�

����
�=0

=
1

2

n(a� �c)2(n� 1)
[b(n+ 1)� 1]2B2

> 0.

In CE and for � = 0, @q�=@� = 0 and @x�=@� < 0. As in KMZ, welfare is increasing in �:

@W

@�

����
�=0

=
n
�
�
�
�
n

�"
�"�1

�
1� "

n

�� 1
"��(1�") (n� 1)

B2
> 0.�

B.2.2 Two-stage model

Next we present equilibrium values of output and R&D together with signf@q�=@�g and

signf@x�=@�g for each model speci�cation. Then, we conduct a comparative statics analy-

sis on ��.

AJ model. First-order necessary conditions (10; 14) yields

�b�q� + a� bnq� � �c+Bx� = 0

�
� +

�

n+ �
(n� 1) (1 + �� 2�)

�
q� � x� = 0.
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Solving the system for equilibrium values gives

q� =
(a� �c)

~�
and x� =

h
(n� 1)( �

n+�)(1 + �� 2�) + �
i
(a� �c)

~�

where

~� =
b(� + n)2 �B [(n� 1)�(1 + �� 2�) + (n+ �)� ]

� + n
.

In this case, as in the static model, H(�) = b=�, then using (16) we obtain

sign

�
@q�

@�

�
= sign

�
(B� � b) (n+ �) +B

�
1 + �� 2�
n+ �

(n� 1)n+ �
��

and using (15) we get

sign

�
@x�

@�

�
= signf� [� + n+ (n� 1)(!(�)� �)] (49)

+

�
1 + �� 2�
n+ �

(n� 1)n+ �
�
� 1� (n� 1)!(�)~�(�)g,

where we have used that

h
!0(�)(~�(�)� �) + !(�)~�0(�)

i
(� + n) =

1 + �� 2�
n+ �

(n� 1)n+ �.

KMZ model. The output and R&D values in equilibrium are given by (10; 14):

�b�q� + a� bnq� � �c+
��
2



�
Bx�

�1=2
= 0

1



��
2



�
Bx�

��1=2 �
� + (n� 1) �

n+ �
(1 + �� 2�)

�
q� � 1 = 0.

Solving the system for equilibrium values gives

q� =
(a� �c)

b(� + n)� � and x
� =

1

2

(a� �c)2�2
B [b(� + n)� �]2

with

� � � + s(�)(n� 1) = (n� 1) �

n+ �
(1 + �� 2�) + � ,

where s(�) = !(�)(~�(�)� �).

In this case, as in the static model, H(�) = bB=�, then from (16) we have

sign

�
@q�

@�

�
= sign

�
(� � b)(n+ �) +

�
1 + �� 2�
n+ �

(n� 1)n+ �
��
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and signf@x�@� g is again given by (49).

CE model. The output and R&D values in equilibrium are obtained from (10; 14):

�Q��"
�
1� "�

n

�
� �(Bx�)�� = 0

�(Bx�)���1
h
� + (n� 1)!(�)(~�(�)� �)

i Q�
n
= 1.

Solving the system for Q� and x�, after some manipulations, we get

Q� =
n

�� [(n� 1)s(�) + � ]

�
�

�
[(n� 1)s(�) + � ]�

n

�"
�"�1

�
1� "�

n

��(1+�)=["��(1�")]
and

x� =
1

B

�
�

�
[(n� 1)s(�) + � ]�

n

�"
�"�1

�
1� "�

n

��1=["��(1�")]
,

where s(�) = !(�)(~�(�)� �) with

!(�) =
� [2n� �(1 + ")]

n(n� "�) and ~�(�) =
n(1 + �)� �(1 + ")
2n� �(1 + ") .

It can be shown that in the constant elasticity model:

H(�) =
B

�

�
�+ 1

�

�
"

n� "� [(n� 1)s(�) + � ] .

Hence, we have

sign

�
@q�

@�

�
= sign

��
� + s0(�)

�
� �+ 1

�

"

n� "� [(n� 1)s(�) + � ]
�
.

And, one can obtain signf@x�=@�g by inserting values into (15) with � = �(1 + ").
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Threshold values ��, above which some partial ownership interests are socially optimal

Fig. 13a. AJ model speci�cation. Fig. 13b. KMZ model speci�cation.

Threshold values ��, above which some partial ownership interests are socially optimal

Fig. 14a. Constant elasticity model. Fig. 14b. Constant elasticity model.

Comparative statics on ��. Fig. 13a and 13b depict, respectively, the threshold ��2S under

the AJ and KMZ model speci�cations. Fig. 13b reveals that in KMZ, ��2S tends to be above

1 if we consider the same values as in AJ. In particular, only if b is low enough, we have that

��
2S
< 1 (this result is in line with the simultaneous model). Also, we observe that under the

AJ and KMZ model speci�cations, ��2S decreases with the number of �rms and increases with
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b. Figures 14a (respectively 14b) depict the threshold ��2S for the CE model and for a given

" (�) and di¤erent values of n and � ("). As in the simultaneous model, the threshold value

decreases with n, the elasticity of the innovation function, �, and the elasticity of demand "�1.

Comparative statics on �oTS and �
o
CS . Fig. 5b, 6c and 7b show, respectively, optimal

lambdas in CE, AJ, and KMZ as functions of the number of �rms. We see that under the

three model speci�cations, �oTS increases with n when n is su¢ ciently large, whereas �
o
CS only

increases with n (and when n is su¢ ciently large) in AJ.

Fig. 5b. Constant elasticity model.

(� = 0:1, " = 0:8, � = � = 1, � = 0:8.)

Fig. 6c. AJ model speci�cation.

(a = 700, c = 500,  = 7, � = 0:8 and

b = 0:6.)
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Fig. 7b. KMZ model speci�cation.

(a = 700, c = 500,  = 5, � = 0:8 and

b = 0:3.)
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