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Abstract 
 
In many spatial resource models it is assumed that the agent is able to determine the harvesting 
activity over the complete spatial domain. However, agents frequently have only access to a 
resource at particular locations at which the moving biomass, such as fish or game, may be 
caught or hunted. To analyse this problem, we set up a simple optimal control model of 
boundary harvesting. Using the Pontryagin’s Maximum Principle we derive the associated 
canonical system, and numerically compute canonical steady states and optimal time dependent 
paths, and characterise the optimal control and the associated stock of the resource. Finally, we 
extend our model to a predator-prey model of the Lotka-Volterra type, and show how the 
presence of two species enriches the results of our basic model. For both models we illustrate 
the dependence of the optimal steady states and the optimal paths on the cost parameters. 
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1 Introduction

Optimal control theory is an important tool to design optimal harvesting strategies in the

management of natural resources. While the early work only considers the temporal dimen-

sion, see, e. g., the familiar monographs of Conrad and Clark (1987), Conrad (2010) and

Clark (2010), more recent work captures the spatial dimension as well. The early models in

spatial resource economics feature discrete patches, where at each location of the resource the

stock evolves according to an ordinary differential equation (ODE). Migration of the biomass

is then modelled as entry and exit of the biomass from one location to the other. Notably,

Sanchirico and Wilen (1999) set up a bioeconomic model with a finite number of patches

with migration of the biomass and reallocation of effort between patches, and demonstrate

how biological and economic features jointly determine the equilibrium distribution of the

biomass and the harvesting effort over space and time.

However, in many cases the continuous process of migration is more adequately described

by partial differential equations (PDEs) characterising the spread or diffusion of the resource

in the domain.1 Thus, a branch of spatial resource economics has developed, which origi-

nates from theoretical biology and applied mathematics and makes use of PDEs to model the

migration of biomass, such as fish or wildlife, and which becomes increasingly popular. For

example, Bai and Wang (2005) consider a spatially distributed species with movement, char-

acterised by a spatially non-homogeneous Gilpin-Ayala diffusive equation (with Neumann

boundary condition), and investigate the optimal harvesting policy with spatially variable

harvesting effort. In this way they are able to generalise the spatially homogeneous approach

(see, e. g., Fan and Wang, 1998; Clark, 2010). Similarly, characterisations of optimal controls

are established for many models so that control theory can now readily applied in these cases

when the state variables (stocks of resources) are governed by PDEs. For example, neces-

sary conditions of the maximum principle for infinite horizon intertemporal optimization

problems with diffusion can be found in Brock and Xepapadeas (2008). Recently, Bressan

et al. (2013) consider a resource problem where harvesting activity must be allocated over

a bounded connected domain, while at each time total harvesting activity is bounded by

a capacity constraint; assuming that profit is linear in the harvesting rate, these authors

demonstrate the existence of a constant profit-maximizing harvesting rate.

In parallel with this, comparative statics, that is analyses of the effects of parameter

values on state variables, optimal controls and the maximised objective function, have made

a substantial progress in recent years. For example, Montero (2001), utilizing the optimal

harvesting model previously studied by Cañada et al. (1998) and Montero (2000),2 inves-

tigates the effects of an increase in the spatial domain on the maximised payoff. Montero

shows that the effect of the domain depends on the type of the boundary condition: for

a Dirichlet boundary conditions—which models a lethal frontier or hostile shore—the opti-

mal benefit increases as the domain becomes larger. However, under a Neumann boundary

1A presentation of population models with diffusion can be found, for example, in Aniţa (2000, sec. 1.2),

Okubo and Levin (2001), Murray (2003) and the references therein.
2Similar control problem can be found in Delgado et al. (2003); and in Arino and Montero-Sánchez (2000)

and Cañada et al. (2001) for the case of two interacting subpopulations of the same species.
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condition—which models that the species cannot pass the boundary—this conclusion does

not necessarily hold. It is therefore crucial which type of a boundary condition applies to

appropriately describe the bioeconomic situation.

A major field of application of control theory in this context are the benefits and costs

of marine reserves (regions of no-harvest) in the management of fisheries. For example,

in a discrete space model Sanchirico and Wilen (2005) demonstrate that the creation of

marine reserves may constitute an economically optimal policy. Analogously, Neubert (2003)

considers a resource (with logistic growth) on a continuous, finite one-dimensional spatial

domain with continuous diffusion. Assuming Dirichlet boundary conditions, he solves for the

spatial distribution of fishing effort that maximizes the steady state yield, and shows that

the establishment of marine reserves is always part of an optimal harvesting policy, with the

size of the reserve depending on the size of the spatial domain. Ding and Lenhart (2009)

extend Neubert’s model to a multidimensional spatial domain, and show that also in this

case marine reserves may continue to be part of the optimal strategy of the management

of fisheries. Joshi et al. (2009) extend the work of Neubert (2003) and Ding and Lenhart

(2009) and characterize the spatio-temporal distribution of harvest effort which maximizes

the present value of harvest (in the absence of harvesting cost).

Spatial bioeconomic models are also suitable to describe the behaviour of interacting

species such as inhibitor-activator or predator-prey systems which allow for movement (dif-

fusion) of the species. For instance, Leung (1995) investigates spatially distributed profit-

maximizing harvesting policies in a predator-prey model with Lotka–Volterra type of inter-

action and diffusion.3 Subsequently, optimal control problems in a diffusive predator-prey

system are studied by Fister (1997, 2001), Fister and Lenhart (2006) and Chang and Wei

(2012).4 While Fister (1997) considers harvesting of both the prey and the predator pop-

ulation (on the full spatial domain), the economic agent in Fister (2001) is interested in

harvesting the predator only and merely appreciates the existing stock of the prey. In the

latter model the author introduces a boundary control which allows for controlling the mi-

gration of the populations across the boundary (e. g., a fence, mesh size of a net, filter).5

Brock and Xepapadeas (2005, 2008) examine conditions for the emergence of spatial het-

erogeneity of the resource and (harvesting) effort concentration. Based on the linearisation

around homogeneous states, they find a mechanism capable of creating spatial heterogeneity,

which they call optimal diffusion induced instability, and which is similar to the so-called Tur-

ing mechanism in uncontrolled systems (Turing, 1952; Murray, 2003). Subsequently, Xepa-

padeas (2010) explores this instability in a model where optimizing agents generate optimal

agglomerations, and Brock and Xepapadeas (2010) study interacting economic-ecological

systems with diffusion of two interacting resources with inhibitor-activator characteristics

3The standard predator-prey model with Lotka–Volterra type of interaction can be found, for example,

in Clark (2010, Section 8.2). For a brief survey of single and multi-species population models with diffusion

see Okubo and Levin (2001) and Murray (2003).
4The corresponding simpler case of only one species and one control is studied by Stojanovic (1991);

Leung and Stojanovic (1993); He et al. (1994, 1995).
5Belyakov and Veliov (2014) also investigate an optimal harvesting problem with an age-structured pop-

ulation of fish (but without spatial dimension) and selective fishing where only fish of prescribed size is

harvested; a similar problem is dealt with by Quaas et al. (2013).

2



(reaction-diffusion system). This work has been extended by Grass and Uecker (2015) and

Uecker (2016) by following the linear instabilities to compute numerical bifurcation dia-

grams of heterogeneous steady states, identifying potentially optimal ones, and, moreover,

computing the optimal controls leading to such patterned optimal states. Both, Brock and

Xepapadeas (2010) and Uecker (2016), also compare the competitive equilibrium, where a

myopic economic agent is located at each point in space, with the social optimum, where a

foresighted social planner has control over all economic activities, find that the social opti-

mum may be significantly higher than the competitive equilibrium, and identify the co-states

(or shadow prices) of the social optimum as optimal taxes in the competitive model.

Here we set up and analyse yet another class of diffusive optimal control problems: the

case where the agent only has access to a resource at particular locations at which the

moving biomass, such as fish, may be caught or harvested. This limited access may be the

consequence of geographic or physical constraints that render a widely spread harvesting

activity utterly impossible, or may result from legal restrictions, such as the presence of

reserve areas or of external property rights, that prohibit harvesting outside designated

areas. (For example, fishing may be restricted to certain places at the shore of a lake.)

We begin our analysis of this type of a problem by setting up a simple one-species infinite-

time-horizon optimal control problem for a fishery model with diffusion and boundary catch,

and then extend it to a two species predator-prey model. Due to boundary harvesting in

our approach, the no-flux or Neumann boundary conditions of previous models need to be

modified to take into account the take-out of fish precisely at the boundary, i. e., at the

coast; this renders the boundary condition at the point of take out of the Robin type.

For the scalar model in a one dimensional space, some first conclusions about candidates

for optimal steady states, i. e., optimal steady harvesting rates at the boundary and corre-

sponding distributions of fish in the domain, can be obtained from a phase plane analysis

of the state equation. However, to study optimal time-dependent paths, and to extend the

analysis to predator-prey models or other generalizations, we need to resort to numerical

methods. Thus, we use the Pontryagin maximum principle to derive the so called canonical

systems for both models, i. e., the necessary first order optimality conditions. The associated

stationary problems are systems of non-linear elliptic PDEs where the controls determine the

boundary conditions, and in order to compute their solutions, i. e., the so called canonical

steady states, we use the continuation and bifurcation software pde2path (see Uecker et al.,

2014). In a second step, using the add-on package p2poc (see Uecker, 2015) we identify the

optimal steady states and compute their canonical paths, similar to the applications in Grass

and Uecker (2015) and Uecker (2016).

The method can easily be generalized to more complicated boundary control problems,

and as an example we also consider a two-species reaction-diffusion system of Lotka–Volterra

type. It turns out that for both classes of models, i. e., the scalar one and the interacting

species model, a “moderate harvesting policy” is optimal, see sections 3 and 4 for the precise

results. This is quite intuitive as excessive fishing leads to a drastic diminution of the stock

and thus impairs the conditions for future yield; while a moderate fishing activity forgoes

present profits, but saves some of the stock for later catch and growth. Thus, in both the

one-species and the two-species case a balanced fishing path is optimal. We complement
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our analyses by computing the evolution of the respective shadow prices and their spatial

distributions in order to enhance the understanding for our findings. Finally, we show how

our results depend on the cost of fishing effort: while the qualitative results are quite robust

over a large domain of parameter values, polar specifications may seriously, though still in

an intuitive way, affect the qualitative features.

Beyond the specific insights into optimal boundary harvesting achieved here, our analysis

also makes a methodological contribution: while, according to our knowledge, problems of

optimal boundary control with PDE constraints have not yet been utilised in the economic

literature, our analysis demonstrates that economic problems of this type actually exist—

and may be solved. While the presence of boundary control problems in resource and

environmental economics is apparent from this paper, formally similar problems arise in other

areas of economics. Possible examples are the control of the proliferation of an infectious

disease (epidemic) as a public health protection policy; the control of the flow of information

in problems of advertising, information management or crowd motion and herding; the launch

of new products when demand depends on consumer (the diffusion of) experience etc. Thus,

this paper should also help advance the consideration of boundary control methods in other

areas of economics.

The rest of the paper is organized as follows. In Section 2 we set up our basic one-species

fishery model with boundary catch, provide a phase plane analysis of the constraints for

the stationary case and derive the canonical system. In Section 3 we describe our numerical

method, and present our results for the one species model; while the results of the two-species

model are presented in Section 4. Finally, in Section 5 we conclude by discussing our results

and indicating possible directions for future research.

2 A Basic Model

Consider a fishery problem where harvesting (fishing) can be done on the boundary of an

area populated by some species of fish. For example, think of a fisherman catching fish from

the shore. For ease of tractability, we consider a one-dimensional space represented by the

interval Ω := (0, lx). Fishing can be done at location x = 0—the position of the fisherman—

only. Let v = v(x, t) be the biomass of fish at location x ∈ Ω at time t ∈ T ≡ [0,∞).

The catch depends on the available biomass of fish v and on the harvesting effort k of the

fisherman. We specify the catch (or harvest) as a standard Cobb–Douglas function,

h = h(v, k) = vαk1−α (1)

with 0 < α < 1.

The fisher is interested in maximizing the profit from his fishing activity. Let p > 0 denote

the market price of one unit of fish, and c > 0 the (constant) per unit cost of harvesting

effort. Since fish is a non-durable good, the catch is offered at the market immediately when

it is realised. Thus, we model the instantaneous profit from harvesting as

Jc(v, k) = ph(v, k)− ck.
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The total growth of the stock at a given location x is governed by net growth of the

biomass and movement of fish. The growth of the biomass (net of mortality) is assumed to

follow bistable growth,

f(v) = −v(v − β)(v − 1). (2)

f is initially convex and then concave with β > 0 representing the minimum viable popu-

lation; thus, the growth function exhibits critical depensation (see Conrad and Clark 1987,

p. 63 and Da Lara and Doyen 2008, p. 18f). The movement of fish is modelled as diffusion,

i. e., by a term proportional to ∆v, where ∆ denotes the Laplace operator with respect to x.6

Thus, the biomass of fish evolves according to the following system of differential equations

and boundary conditions (BC)

∂tv = −G1(v) := D∆v + f(v) in Ω× T , (3a)

D∂nv(0, t)+g(v(0, t), k(t))=0 in T (control-dependent flux at the left boundary), (3b)

∂nv(lx, t) = 0 in T (zero flux at the right boundary), (3c)

v(x, 0) = v0(x) in Ω, (3d)

where D is the diffusion coefficient, n denotes the exterior normal to the boundary ∂Ω,

and the normal derivative on the left-hand side of equations (3b) and (3c) is defined as

∂nv(x) = ∇v(x) · n(x), where ∇ denotes the nabla (or gradient) operator. Thus, in the

one-dimensional case we have ∂nv = −∂xv at x = 0 and ∂nv = ∂xv at x = lx.

Equation (3a) describes the total change in biomass resulting from autonomous growth

and diffusion. It states that the rate of change of the state variable, i. e., the concentration

of the resource, at a given point in space, is determined by the growth function f , which

represents the biological growth process of the resource when left unimpaired, and by the

movement (or dispersion) of the stock described by the term D∆v, which reflects the stan-

dard assumption that the flux of the stock is supposed to be proportional to the gradient of

the size of the stock, with the movement of the stock taking place from places of high towards

those of low concentration. In the one-dimensional case considered here we may assume that

D = 1,7 but for conceptual clarity and generalizations we keep D, for the moment. The fact

that harvesting takes place at the left boundary of Ω motivates equation (3b), which repre-

sents the flux boundary condition at the left. It captures the fact that there is a negative

input at x = 0: the negative of the value of the spatial derivative of the stock at x = 0, e. g.,

g > 0 amounts to less fish at x = 0 than at some x > 0 close to x = 0. Since this spatial

differential is induced by the harvest h, we specify g as

g(v, k) = γh(v, k), (3e)

6As already said, in the following we focus on the one dimensional case Ω = (0, lx), where ∆v = ∂2xv,

but for possible generalization we shall use dimension-independent notation where suitable. See also Aniţa

(2000, sec. 1.2) and the references therein for a presentation of population models with diffusion.
7The diffusion coefficient D should be understood as relative to the size of the domain Ω, and thus by

rescaling the domain we may set D = 1.
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for some γ > 0. Hence, equation (3b) represents the idea that a larger harvest at x = 0,

i. e., a larger take out of fish at the left, increases the differential in stocks between x = 0

and its (right) neighbourhood x > 0. Correspondingly, equation (3c) captures the idea that

there is no fishing at the right boundary, and it thus represents the zero-flux (or Neumann)

boundary condition at the right.

In equation (3e), γ can be thought of as the inverse of the replacement flux of fish: when

γ is high (low) a given amount of fishing leads to a large (small) differential in stocks near

to the location of the fisher, and this differential is due to a slow (fast) replacement of fish

due to diffusion. Thus, in a simple setting γ could be chosen proportional to 1/D, but we

keep it as an independent parameter, essentially to possibly model special conditions for the

replacement fluxes at the boundary.

Finally, given the instantaneous profit Jc, the agent seeks to maximize the total dis-

counted profits

V (v0) = max
k∈C([0,∞),R+)

J(v0, k), where J(v0, k) :=

∫ ∞
0

e−ρtJc(v(0, t), k(t)) dt. (3f)

We thus have an optimal control (OC) problem with the partial differential equation (PDE)

constraints (3a)–(3e) and the boundary control k.

2.1 Phase plane analysis of the constraint for the stationary case

To get an intuition for the constraints in (3), we first briefly sketch a phase plane analysis

of the constraint in the stationary case, i. e., for

v′′ + f(v) = 0, (4)

where we set D = 1, and as a shorthand notation write v′ ≡ ∂xv and v′′ ≡ ∂2
xv. This is a

Hamiltonian system with conserved energy

E(v, v′) =
1

2
v′2 + F (v), with F ′ = f, (5)

because d
dx
E(v(x), v′(x)) = v′(x)(v′′(x) + f(x)) = 0, and hence the orbits are level lines

of E, see Figure 1(a). In particular, E has a saddle-point at V = (v, v′) = (1, 0) = Vs with

associated homoclinic orbit Vhom for the spatial dynamics system(
v1

v2

)′
=

(
v2

−f(v1)

)
with

(
v1

v2

)
≡
(
v

v′

)
(6)

i. e., limx→−∞ V (x) = limx→+∞ V (x) = (1, 0), see the outermost curve in Figure 1(b). This

homoclinic decomposes the phase plane into an inner region containing the minimum Vm =

(β, 0) of E and periodic orbits Vper, and an outer region, which does not contain bounded

solutions. The linearisation of (6) at Vm is(
v1

v2

)′
=

(
0 1

−f ′(β) 0

)(
v1

v2

)
=

(
0 1

(β − 1)β 0

)(
v1

v2

)
, (7)
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which yields the eigenvalues λ1,2 = ±
√

(β − 1)β = ±i
√
β − β2. For example, for β = 0.6 this

yields Pmin = 2π/ Im(λ1) ≈ 12.83 as the infimum period of the periodic solutions. Moreover,

the period P (Vper) grows with the amplitude of Vper and P (Vper) → ∞ as Vper → Vhom. In

Figure 1(b) and (c) we plot a number of initial conditions (v(0), v′(0)) that yield admissible

orbits, i. e., orbits with v′(lx) = 0. Since we are later interested in the case of harvesting at

x = 0 we restrict our attention to v′(0) > 0. For lx = 20 these orbits come in two continuous

families S1 (black) and S2 (blue). The orbits from S1 are monotonous in v and are close to

the stable manifold of (1, 0), i. e., the homoclinic Vhom, while those from S2 make a “loop”

around V = (β, 0).

(a) (b) (c)

Figure 1: Phase plane analysis for (6), with β = 0.6. (a) surface plot of the conserved energy E;

the orbits of (6) are the level lines of E. (b) Initial conditions leading to orbits fulfilling the right

BC v′(lx) = 0, lx = 20, and associated orbits; the black dots yield monotonous v(·), while the blue

dots give orbits with a loop around v = β. These initial conditions were obtained from integrating

(6) backward in “time” x from x = lx to x = 0 with initial conditions (v(lx), v′(Lx)) = (η, 0) for

different η. (c) selected orbits from (b) as functions of x.

Thus we have found two families S1,2 of steady states fulfilling (3a) and (3c), and for

reasonable choices of parameters p, c and γ we may expect that for all v ∈ S := S1 ∪ S2

there exists an effort level k > 0 such that the boundary condition (3b) on the control is

also fulfilled. Now, the crucial question is: which of these steady states are optimal, i. e.,

maximize Jc in S? Moreover, we are interested in the solution of the intertemporal OC

problem (3). In order to characterise the optimal fishing effort, we next derive the necessary

first order optimality conditions, known as the canonical system.

2.2 Derivation and discussion of the canonical system

The so called canonical system (CS) formalism, also known as Pontryagin’s Maximum Prin-

ciple,8 yields first order necessary optimality conditions. For our case where harvesting effort

8See Pontryagin et al. (1962), Raymond and Zidani (1999), Aseev and Kryazhimskii (2007) and Grass

et al. (2008).
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k is a boundary control, we follow Tröltzsch (2010, Section 3.1) and consider the Lagrangian

L(v, λ, k) :=

∫ ∞
0

e−ρt
{
Jc −

∫
Ω

λ(∂tv +G1(v)) dx

}
dt (8)

where λ : Ω×T → R is the Lagrange multiplier for the PDE constraint, also called co-state,

which may be interpreted as the shadow price of the biomass at location x at time t. Using

integration by parts in x we have∫
Ω

λD∆v dx = −
∫
〈∇λ,D∇v〉 dx+

∫
∂Ω

λD∂nv ds

=

∫
(D∆λ)v dx+

∫
∂Ω

λ(D∂nv)− (D∂nλ)v ds, (9)

and integration by parts in t yields

−
∫ ∞

0

e−ρt
∫

Ω

λ∂tv dx dt =

∫
Ω

λ(x, 0)v(x, 0) dx+

∫ ∞
0

e−ρt
∫

Ω

(∂tλ)v dx dt, (10)

where, since we may restrict our analysis to bounded state and co-state variables v and λ,

we used the so-called transversality condition9

lim
t→∞

e−ρt
∫

Ω

λ(x, t)v(x, t) dx = 0. (11)

Evaluating the stock of fish by its shadow price λ, equation (11) specifies that the present

value of the existing biomass living in Ω converges to zero as we consider the very distant

future. Thus, using the BCs (3b) and (3c), i. e., D∂nv|x=0 = −g and D∂nv|x=lx = 0, we

obtain

L(v, λ, k) =

∫
Ω

v(x, 0)λ(x, 0) dx

+

∫ ∞
0

e−ρt
{

(Jc−λg−(D∂nλ)v)|x=0−(D∂nλ)v|x=lx

−
∫

Ω

(ρλ−∂tλ−∆λ)v−λf(v) dx

}
dt. (12)

The first variation of L with respect to v, applied to a test-function φ ∈ C∞(Q) with

φ(·, 0) = 0, yields

∂vLφ =

∫ ∞
0

e−ρt
{

((∂vJc − λ∂vg −D∂nλ)φ)|x=0 − (D∂nλ)φ|x=lx

−
∫

Ω

(ρλ− ∂tλ−∆λ− ∂vf(v))φ dx

}
dt.

9See also, e. g., Brock and Xepapadeas (2008, eq. (8)) for further discussion of this type of transversality

conditions in PDE problems.
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Therefore, by density of C∞0 (Q) in L2(Q), Q = Ω×T , and by density of ∂nC
∞(Ω) in L2(∂Ω),

the condition ∂vLφ = 0 yields ρλ − ∂tλ − ∆λ − ∂vf(v) = 0 and the boundary conditions

D∂nλ− ∂vJc + λ∂vg = 0 and D∂nλ|x=lx = 0. Thus, the CS is

∂tv = D∆v + f(v), v(x, 0) = v0(x), (13a)

∂tλ = ρλ−D∆λ− ∂vf(v)λ, (13b)

D∂nv + γh = 0 at x = 0, ∂nv = 0 at x = lx, (13c)

D∂nλ− (p− γλ)∂vh = 0 at x = 0, ∂nλ = 0 at x = lx, (13d)

where k is obtained from k(t) = argmaxk L(v(·, t), λ(·, t), k). In the absence of control

constraints,10 the condition ∂kL = 0 yields

0 = ∂kJc − γλ∂kh− v∂k(p− γλ)∂vh

= p∂kh− c− λγ∂kh− v(p− γλ)∂v∂kh

= (p− γλ)∂kh− (p− γλ)α∂kh− c

and thus

(p− γλ)(1− α)∂kh = c ⇔ k =

(
(1− α)2(p− γλ)

c

)1/α

v. (13e)

System (13) summarizes the necessary first order optimality conditions for the optimal

control problem (3). In particular, by equation (13e) the optimal effort is determined so

that the value of the marginal product of effort equals its cost. This is because the term

∂kh = (1−α) (v/k)α represents the marginal product of effort in harvesting, with 1−α being

the productivity of effort (or more precisely, the elasticity of the marginal product of effort

in harvesting), and p − γλ represents the total value of one unit of biomass (fish) caught.

In the first place, this value equals its market price p, however since each unit can only be

caught once, future opportunities are impaired by any take out. More precisely, the extent

to which a take out affects future catch depends on the influx or the replacement of fish at

the coast (at the boundary), measured by γ. If γ is large, the replacement flux of fish is low,

so that the recovery of the stock takes time; on the contrary, if γ is low (and possibly zero

in the limit) the replacement rate is high, so that the stock recovers quickly (and possibly

instantaneously). Since λ equals the shadow price of fish, the term γλ represents the future

reduction in the benefit of the catch due to today’s take out of one unit of the biomass—and

this value must be subtracted from the market price of fish.

We want to solve system (13) for k on the infinite time horizon t ∈ [0,∞), and thus

at first might want to think of (13) as an initial value problem. However, equation (13a)

provides initial data for only half the variables, while equation (13b) represents backward

diffusion, implying that (13) is not an initial value problem. Instead, we proceed similar to

Grass et al. (2008, Chapter 7), Grass and Uecker (2015) and Uecker (2015, 2016): 11 Letting

10For instance, the natural constraint k ≥ 0 can be checked a posteriori to be fulfilled.
11See also Kunkel and von dem Hagen (2000) who, in §4.2, consider optimal harvesting in a predator-prey

ODE problem as an example.
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u ≡ (v, λ), we write (13) as

∂tu = −G(u), u1(x, 0) = v0(x), B(u) = 0, (14)

where B(u) = (B1(u), B2(u)) = 0 encodes the boundary conditions at the left and right

boundaries, respectively, and where we generally suppress the dependence on parameters.

Next we restrict condition (11) further to limt→∞ u(t) = û, where û is a canonical steady

state (CSS), i. e., a steady state of the canonical system, and thus a solution of

G(u) = 0, B(u) = 0. (15)

In a first step we then numerically compute the CSSs. Some first hints for candidates of

an CSS can be obtained from the phase plane analysis of the stationary state, equation

(4) in section 2.1. However, this did not take into account the optimization problem, and

hence neither the co-state λ nor the left boundary condition B1(u) = 0, which involves the

control k, which via condition (13e) is a function of u. As (14) is a non-linear elliptic system,

at a given set of parameters (ρ, α, p, c, γ, β) we may expect multiple CSSs, û = (v̂, λ̂), with

(generically) different values Jc(v̂), or J(v̂) = 1
ρ
Jc(v̂), for different CSSs; and the question

arises which of these CSSs maximizes Jc amongst the CSSs. In a second step, we want to

find optimal steady states (OSSs), and their associated optimal paths. That is, given some

initial state v0, we want to compute canonical paths (CPs) connecting v0 to some CSS û,

and then compare their respective values.

3 Numerical method and results

3.1 Canonical steady states

A standard method to get numerical insight into the (possibly non-unique) solutions u of

a non-linear equation such as (15), and their dependence on parameters ψ, is as follows:

one first seeks a solution u0(ψ0) at some parameters values ψ0. This first step is sometimes

easy, for instance if there is a trivial solution u = 0, at least for some particular parameter

values, and sometimes hard. In the latter case, one typically uses a guess u0(ψ0), and then

tries to improve this guess iteratively to a solution u(ψ0), for instance by the so called

Newton method. Then, given a first solution u(ψ0), there are standard methods of so

called numerical continuation (see Keller, 1977 and Doedel, 2007) to continue the solution

in one or more parameters, i. e., to find a nearby solution u(ψ0 + δ), where δ is a small

change of parameters. This can be repeated to obtain continuous branches of solutions. On

these branches there may be bifurcation points, at which other branches of (qualitatively

different) solutions bifurcate, and there are numerical methods to detect these bifurcations

and compute the bifurcating branches.

pde2path is a Matlab package to do such a numerical continuation and bifurcation anal-

ysis for PDEs of type (14) (and also for more general PDEs) over one-, two- and three-

dimensional domains. Moreover, in the package p2poc (see Uecker, 2015) it has been linked

with the boundary-value-problem solver TOM (see Mazzia and Sgura, 2002) to compute
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time-dependent canonical paths; and, for instance, Uecker (2016) applies this to a vegetation

system with distributed controls, which leads to a four component reaction diffusion system

with many different solution branches and associated bifurcations. The situation here turns

out to be more simple though, and in particular we do not find bifurcations. Nevertheless,

it is still useful to study the parameter dependence of the solutions, i. e., the continuation

of the solutions of system (14) (and of the generalization (26) below) in parameters.

In our numerical simulations of (14) we set D = 1 and lx = 20 as in section 2.1, and hence

a priori know that for a CSS û = (v̂, λ̂), v̂ must belong to either the family S1 of monotonous

steady states, or the family S2 of steady states with “loops”. Thus, given parameter values

of (ρ, α, p, c, β, γ), the steady-state of the canonical system (15) selects a discrete set of CSSs,

some corresponding to the family S1, and some to S2. In addition to D = 1 and lx = 20, we

now fix

(ρ, α, p, β, γ) = (0.01, 0.3, 1, 0.6, 0.5), (16)

as a base parameter set for the canonical system (13), and take the costs of fishing effort

c ∈ (0, 2), which is the economically the most significant variable, as our primary continuation

parameter.

Figure 2(a) shows two (obtained by different initial guesses for (v, λ)) branches of CSSs as

functions of the effort cost c, i. e., so called bifurcation diagrams (or here rather continuation

diagrams). We display the instantaneous profit Jc, the biomass of fish v, the co-state variable

λ, harvesting effort k and the resulting harvest h along these branches. Figure 2(b) displays

example plots of v and λ at the specific parameter values c = 0.1 and c = 2, together with

the corresponding numbers for k, h and Jc.
12

We begin with the discussion of the monotone solution, the black graphs in Figure 2(a)

and the plots in Figure 2(b1). Figure 2(a) shows that an increase in the harvesting cost

c renders harvesting effort more and more unattractive: with an increase in c effort k is

reduced implying a reduction in harvest h, and thus an increase in the stock v; in parallel,

higher cost reduce the value of the stock λ. Thus, as expected, the resulting profit falls with

higher values of c. Focusing on the cases c = 0.1 and c = 2, Figure 2(b1) depicts the spatial

distribution of v and λ. If c is small (here c = 0.1), harvesting effort is high (h = 0.1285);

and since harvesting can only be done at the left boundary, the value of the resource is

highest at x = 0 and is monotonously decreasing to zero for more remote populations. For

high harvesting cost, harvesting becomes almost unprofitable implying that the value of the

resource is close to zero even at the boundary x = 0. Since harvesting effort is low, the take

out is marginal, and thus the stock is distributed almost equally on the domain Ω = (0, 20).

The blue branches in (a) and the associated solutions in (b2) show different behaviour.

Here, an increase in c induces a (slight) increase in the harvesting effort k and thus a higher

catch h. Clearly, this behaviour fosters the reduction in profit resulting from higher cost.13

Clearly, such an solution is economically implausible and thus irrelevant. This can also be

12The point labelling in the bifurcation diagram and the example plots follows the pde2path style

branch/pointnumber.
13Note that for constant harvesting effort profit is affine in c. For this reason, with k slightly increasing

with c profit Jc becomes (slightly) convex.
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(a)

(b1) (b2)

Figure 2: (a) Continuation diagrams in c for two branches of a CSS of (13); the black branch

(called b1) contains monotone solutions similar to those in Figure 1, while solutions on the blue

branch (b2) have 1.5 “loops” in v. See the example plots in (b), at c = 0.1 and c = 2, respectively.

seen by inspection of the co-state variable λ(x), which even becomes negative in parts of the

domain, and is yet negative at x = 0 for c = 2, see right part of Figure 2 (b2); moreover,

λ(x) no longer approaches zero for large values of x. For these reasons, the second branch

of a CSS in clearly not optimal.

3.2 The saddle point property, and canonical paths

In Section 3.1 we identified CSSs of system (3), i. e., branches of solutions of the canonical

system (15). Now, given an initial state v0 we want to determine whether or not there exist

canonical paths (CPs) connecting v0 to some CSS û. That is, we are interested in time

dependent solutions t 7→ u(t) of (14) such that

u1(x, 0) = v0(x) and lim
t→∞

u(t) = û. (17)

This is a connecting orbits problem, not an initial value problem, as only the first component

u1|t=0=v0 is fixed, while u2 = λ|t=0 and hence the control k(0) is free. Thus, different

situations may arise:

1. There is a unique CP connecting v0 to one CSS û.

2. There is a unique CSS û which can be reached from v0, but different CPs to do so.

3. Different CSSs û(1), û(2), . . . can be reached from v0, and for each target there may be

more than one CP;
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4. There is no CSS û which can be reached from v0.

If, given v0, there is more than one CP, we can compare the respective values of J for those

paths, and decide which one is optimal. Put differently, we can also consider a given CSS

û and ask from which v0 it can be reached by a suitably chosen CP. In particular, a CSS û

that can be reached from all n̆earby v0 and such that the associated CP maximizes J(v0, ·)
is called a locally stable optimal steady state (OSS), while a CSS which can be reached from

all v0 that are admissible, i. e., here all v0 ≥ 0 (pointwise), and such that the CPs maximize

J(v0, ·), is called a globally stable OSS.

In general, all of the alternatives 1.–4. above can occur in a given system, and the domains

of attraction of different locally stable OSSs are separated by so called Skiba manifolds; see,

for example, Grass et al. (2008) for various ODE applications; and Grass and Uecker (2015)

and Uecker (2016) for some PDE examples. However, here the situation turns out to be much

more straightforward. Numerically, we proceed as follows. Given the spatial discretization

of G(u) = 0 with 2n degrees of freedom, i. e., u ∈ R2n, (14) becomes a coupled system of 2n

ODEs, which with a slight abuse of notation, we again write as

M
d

dt
u = −G(u), u1(x, 0) = v0(x), B(u) = 0. (18a)

Here M ∈ R2n×2n is the mass matrix of FEM (finite element method) approximation. We

choose a truncation time T and approximate (17) by

u(T ) ∈ Es(û) and ‖u(T )− û‖ small (in an appropriate norm), (18b)

where Es(û) is the stable eigenspace of û for the linearisation M d
dt
ũ = −∂uG(û)ũ of (18).

At t = 0 we already have the boundary conditions vt=0 = v0 for the states. Then, in order

to obtain a well-defined two point boundary value problem in time we need

dimEs(û) = n. (19)

Since the eigenvalues of the linearisation are always symmetric around ρ/2 (see Grass and

Uecker, 2015, Appendix A) we always have dimEs(û) ≤ n. The number d(û) = n−dimEs(û)

is called the defect of û, a CSS û with d(û) > 0 is called defective, and if d(û) = 0, then û

has the so called saddle point property (SPP). Clearly, these are the only CSSs such that for

general v0 close to û we may expect a solution for the connecting orbits problem (18a), (18b).

See Grass and Uecker (2015) for further comments on the significance of the SPP (19) on

the discrete level, and its (mesh-independent) meaning for the canonical system as a PDE;

and Uecker (2015) for algorithmic details how to implement (18b), and how to find CPs

connecting some v0 to û by a continuation process in the initial states.

The CSSs from branch b1 are the only CSSs with the SPP, and hence are globally stable

OSSs, while all other CSSs û have a defect d(û) > 0. Figure 3(a) exemplarily shows a

CP starting from v0, as given in b2/pt0, connecting to b1/pt0; and Figure 3(b) shows the

control k and the instantaneous profit Jc(t) along this path, together with the control and

profit of the initial CSS. Of course, we could as well start with any v0, but the idea of the

simulations in Figure 3 is that for some reason, e. g., historic, the fisherman starts in some
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(a) (b) (c) (d)

Figure 3: (a) The CP (v component) from b2 to b1 at c = 0.1. (b) diagnostics: J0, J, J1 are the

values of the starting CSS, the CP, and the target OSS, respectively; and k0, Jc,0 are the control

and the current values of the starting CSS. (c,d) Going from v ≡ 1 (no harvesting at all) to b1/pt0.

(suboptimal) CSS at t = 0. The CPs then show exactly how to control the system to govern

it to the OSS in an optimal way.

The strategy to go from b2/pt0 to b1/pt0 is as follows: initially the effort k is reduced

substantially below k0, leading to a drastic decrease in instantaneous profit Jc. The initially

low harvesting activity allows the population v to grow, first near the boundary x = 0,

and eventually for all x. This policy allows the stock to recover and then the fisherman to

increase effort above k0 of the CSS b1/pt0. For t > 50 we have essentially reached the target

CSS b1/pt0, and as a consequence of controlling the system from the starting CSS to the

target CSS the total discounted profit increases by about 8.6%.

Another natural situation is depicted in Figure 3(c,d), where we start from the homoge-

neous steady state v ≡ 1 of the uncontrolled system (with zero flux BC), which corresponds

to the case where before t = 0 there is no fishing at all, and the stock of the biomass has

thus reached its maximum. Here the optimal strategy is to begin with intense harvesting

and then to monotonously decrease harvesting effort to reach the target value. Due to the

fact that the initially unimpaired resource provides excellent conditions for harvesting, this

state allows to begin with a harvesting rate exceeding the CSS b1/pt0, and total discounted

profit surpasses the profit of the CSS (J = 4.596 compared with J1 = 4.056).

As already indicated in section 3.1, also in other parameter regimes the CSSs û∗ with

monotonous v are the only CSSs with the SPP and maximize Jc amongst the CSSs. Similarly,

it turns out that û∗ always is the unique globally stable CSS, and the CPs to reach û∗ from

some v0 are quite similar to the examples in Figure 3.

4 A predator-prey system

The scalar model of Section 2 can be greatly generalized. Here we consider a standard

Lotka–Volterra system for two species: the prey (v1) and the predator (v2) in the form

∂tv1 = d1∆v1 + (1− βv1 − v2)v1,

∂tv2 = d2∆v2 + (v1 − 1)v2,
(20)
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with diffusion constants dj, and self damping parameter of the prey β > 0. This system can

more compactly be written as ∂tv = −G1(v) = D∆v+f(v), with D =

(
d1 0

0 d2

)
and growth

function f(v) =

(
(1− βv1 − v2)v1

v2 + (v1 − 1)v2

)
. Using the Liapunov function

φ(v1, v2) = v1 + v2 − ln v1 − (1− β) ln v2 (21)

it follows that

V ∗ = (v1, v2) = (1, 1− β) (22)

is the unique steady state of the ODE system d
dt
v = f(v) in the first quadrant, and is globally

stable. Similarly, using the functional

Φ(t) =

∫
Ω

φ(v1(t, x), v2(t, x)) dx (23)

it follows that for d1,2 sufficiently large, V ∗ is the unique steady state of (20) with zero flux

BC, and is globally stable, see, e. g., Hastings (1978).

Analogous to (3) we consider a boundary fishing problem for the Lotka–Volterra sys-

tem (20), and introduce J and controls via

Jc =
2∑
j=1

pjhj − cjkj, hj = hj(vj, kj) = v
αj

j k
1−αj

j , (24)

dj∂nvj = −gj := −γjhj as left BC. (25)

To apply Pontryagin’s Maximum Principle we introduce the co-states λ1,2 and the Lagrangian

L(v, λ, k) =

∫ ∞
0

e−ρt
{
Jc −

∫
Ω

〈λ, ∂tv +G1(v)〉 dx

}
dt,

where 〈u, v〉 =
∑2

i=1 uivi is the standard inner product in R2. Integration by parts in x and

t now yields, similar to section 2.2,

L(v, λ, k) =

∫
Ω

〈λ(0, ·), v(0, ·)〉 dx

+

∫ ∞
0

e−ρt
{

[Jc − 〈λ, g〉 − 〈D∂nλ, v〉]|x=0 − 〈D∂nλ, v〉 |x=lx

−
∫

Ω

〈ρλ− ∂tλ−D∆λ, v〉 − 〈λ, f(v)〉 dx

}
dt.

Then ∂vL = 0 yields the evolution and the BCs of the co-states (combining with (20), to

have it all together)

∂tv = D∆v + f(v),

∂tλ = ρλ−D∆λ− (∂vf(v))Tλ,

D∂nv + g = 0,

D∂nλ+ ∂vg(v)λ− ∂vJc = 0,

(26)

15



and ∂kL = 0 yields

kj =

(
(1− αj)2(pj − γjλj)

cj

)1/αj

vj, j = 1, 2. (27)

As above, we first compute canonical steady states, i. e., we start with the stationary version

G(u) = 0, u = (v, λ) of system (26), again on the domain Ω = (0, 20). We choose the base

parameter set

(β, d1, d2, γ1, γ2, ρ, α1, α2, p1, p2) = (0.6, 1, 10, 0.1, 0.1, 0.03, 0.4, 0.4, 20, 10), (28)

and consider the costs (c1, c2) as our continuation parameters, starting with c1 = c2 = 0.1.

According to specification (28), we assume that the predator species moves faster than the

prey, d2 = 10 > 1 = d1, and that the market price of the prey exceeds the price of the

predator, p1 = 20 > 10 = p2, so that, disregarding the interaction of both species, the fisher

is interested in catching the prey rather than the predator. Yet in view of the interaction of

the species, the fisher may consider catching the predator as well in order to “protect” the

prey from being eaten by the former.

To find a CSS we use initial guesses of the form

v1 = 1, v2 = δ(1− β), λ1 = 50 + (1− sx/lx), λ2 = 10 + (1− sx/lx), (29)

with parameters δ ∈ (0, 1) and s close to 1, and some variations of (29). But if such an

initial guess of this form yields convergence to a CSS, then (for the base parameters (28))

this convergence always leads to the same CSS. Note that a complete graphical phase plane

analysis similar to Section 2.1 is no longer possible, and thus it is not clear how many CSSs

may exist for (26). However, given that for d1,2 sufficiently large and zero flux BCs V ∗ is

the unique steady state of the Lotka–Volterra system (20), it appears reasonable to expect

that CSSs of system (26) are unique for the given parameter regime. (Note that we actually

assumed rather large values for the diffusion parameters, (d1, d2) = (1, 10), relative to the

size of the domain.)

Figure 4 depicts the CSSs for the parameter specification (28), and their dependence on

the cost parameters (c1, c2).14 Parts (a) and (b) show relevant quantities at the left boundary

as functions of c1 and c2, respectively, while part (c) shows the spatial shape of the CSSs

for selected values of (c1, c2). As expected, an increase in ci (i = 1, 2) leads to a reduction

in effort ki and the associated harvest hi, and thus brings forth a recovery of the stock

vi. In addition, an increase in ci also imposes an indirect effect on v3−i resulting from the

interaction between both species. Consider an increase in the effort cost c1. Clearly, there is

no direct effect of c1 on the fishing effort k2 as the cost of this activity as well as the market

price p2 are unaffected. However, since an increase in c1 results in less fishing effort k1 and

thus in a higher stock v1, the living conditions of the predator species improve. Accordingly,

the stock v2 tends to increase, but since v2 and k2 are complements in the fishing technology,

effort k2 can be reduced with the catch h2 still going up. Naturally, with higher cost c1 the

14We can extend our analysis in any parameter of the model, but as explained above we confine ourselves

to an analysis of the economically most immediate parameters c1 and c2.
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(a) cont. in c1, J, v, λ, k, h at x = 0

(b) cont. in c2, J, v, λ, k, h at x = 0

(c) CSS at c = (0.1, 0.1), c = (10, 0.1) and c = (0.1, 10)

Figure 4: (a,b) continuation diagrams in c1 (costs for prey fishing) and c2 (costs for predator

fishing); Jj = pjhj − cjkj , J = J1 + J2. For graphical reasons we restrict to cj ∈ [0.1, 10] (except

for the plots of J) but all quantities continue as expected for cj ∈ [10, 20]. (c) example CSS plots.

value of the the prey λ1 falls, but the indirect effect, just explained, renders the value of

the predator λ2 to go up. The direct and the indirect effect of an increase in c1 are also

reflected in the profit terms. As expected, J1 is a decreasing function of c1, but the induced

interaction effects between both species make J2 to increase with c1. Since the direct effect

dominates, total profit J falls with higher cost.

Due to the biologically asymmetric situation of both species, the effect of an increase in c2

has somewhat different indirect effects. In this case, higher effort cost c2 lead to a reduction in

effort k2 and thus to increase in the stock v2. But with an increase in the predator population

the prey population becomes more threatened—rendering its population to decline; and for

that reason the fishing activity k1 is reduced. In this way, since the increase in the harvesting

cost c2 acts as a protection of the predator against being fished, the growth of that population

exerts a negative effect on the prospects of fishing for the fisherman. Accordingly, with the
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population of the predator becoming sufficiently large, the value of a unit of this species

becomes negative. This explains why λ2 is decreasing in c2 and why it becomes (quickly)

negative as the stock v2 rises.

The qualitative structure of the spatial distribution of both species (and of the associated

shadow prices) is quite robust with respect to changes in the costs c1, c2. Inspecting Fig-

ures 4(c1), (c2) and (c3), we infer that by catching the predator species the fisherman makes

sure that its stock is kept low at the coast (left boundary) so as to safeguard the prey there.

In fact, the stock of the prey reaches its maximum close to the coast, but harvesting at the

coast causes the stock to decrease drastically there (unless c1 is very high, see Figure 4(c2)).

In any case, fish located close to the coast is more worthy than at more distant locations,

where it is inaccessible for the fisherman, i. e., λ1 and λ2 are both decreasing in x. There

is one exception, though: when, as explained above, c2 is sufficiently large, such that it is

very expensive to catch the predator species, this stock may swell until it interferes with

the prospects of the fisherman to catch the prey. In this case, the value of the predator is

negative, λ2 < 0, and because the damage caused by the predator species is the larger the

closer it gets to the shore, λ2 has its minimum directly at the shore.

In Figure 5 we illustrate the transition dynamics from the unique steady state (22) (with

no fishing) to the CSS. Setting (c1, c2) = (0.1, 0.1) in Figure 5(a) and (c1, c2) = (20, 0.1)

in Figure 5(b), these figures can directly be compared with Figure 4(c1) and Figure 4(c2),

respectively. When the fishing cost of both species are low, (c1, c2) = (0.1, 0.1), the transition

to the CSS is accomplished by extensive fishing of both species at an initial phase, with

fishing intensities decreasing from high towards low values. Thus, there is a some initial

overfishing (because immediate profits are more desirable than those in the future due to the

discounting), followed by a recovery phase during which the stocks of the CSS are reached

from below, and during which the fisher increases the fishing intensity to that of the CSS.15

If fishing the prey is very costly, (c1, c2) = (10, 0.1), the CSS is characterised by a low effort

level k1 and hence by a high stock of the prey, cf. Fig. 4(c2) and 5(b). Similarly, along the

CP leading to the CSS the main harvest is on the predator, with fishing effort being reduced

over time, leading to the gradual increase of the prey at the left boundary—and then on the

complete domain. However, some harvesting activity on the prey still takes place. Finally,

for (c1, c2) = (0.1, 10), the roles are basically reversed, subject to the indirect effects resulting

from the implicit protection of the predator species by a high effort cost c2, as explained

above.

5 Discussion and extensions

To the best of our knowledge, in the context of economics this is the first detailed numer-

ical analysis of infinite time horizon optimal control problems with PDE constraints and a

boundary control. We set up a one-species and a two-species fishery model, compute the

respective canonical steady states, single out the optimal steady states and explore canonical

15The initial transition is rather fast, and thus we use logarithmic scales in the time-series of the values

at the left boundary.
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(a) CP from V ∗ to the CSS at (c1, c2) = (0.1, 0.1)

(b) CP from V ∗ to the CSS at (c1, c2) = (10, 0.1)

(c) CP from V ∗ to the CSS at (c1, c2) = (0.1, 10)

Figure 5: CPs starting from the spatially homogeneous steady state V ∗ of (20). Note the loga-

rithmic scales in the time-series of the values at the left boundary.

paths connecting some arbitrary initial state to the optimal steady state. In both cases, the

results appear natural and intuitive, and they are remarkably robust with respect to changes

in the cost parameters in both optimal control problems.

In particular, we illustrate how the optimal fishing strategy acknowledges the dynamics

of growth and movement of fish in a bounded domain (e. g., a lake). It is a crucial feature

of our model that fishing is restricted to take place at the boundary of the domain (e. g.,

the shore) only. The optimal policy then compromises between immediate and future yield

taking into account that a higher stock left in the sea may favour future growth of the

resource, while a larger take out of fish may initiate the influx of new fish, due to movement

taking place from highly to sparsely populated areas.

Things become slightly more intricate in a two-species Lotka–Volterra model. In this

case, the interaction between both species, the prey and the predator, has to be taken into

account as well. This interaction provides an additional incentive to catch the predator
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species in order to protect the prey for the purpose of own take out. In particular, we

illustrate how this policy depends on the relative effort cost of fishing either species. Also,

for both models we diagrammatically explore the optimal policy paths starting from some

suboptimal state and connecting to the optimal steady state (canonical paths).

Our approach may be extended to more complicated and realistic models, presumably

yielding more complicated and less intuitive results. One obvious generalization would be to

generalise the one-dimensional problem by, for instance, considering either spatially depen-

dent (PDE) coefficients, or more complicated multi-species fishery models. A second class

of generalizations would be to extend the spatial domain to two dimensions. The spatial

domain could either take the form of a shallow lake (modelled as a two-dimensional domain),

or of the transversal positions in a shallow river (with two horizontal directions), or of the

depth dependence of fishing at a fixed position in a river with one horizontal dimension. In

all of these cases, we then have a boundary control function defined on a given part of the

boundary, rather than a scalar control. Additionally we may consider advection modelling

the transport of fish by flow.

Finally, the model (either with one or multiple species) could be used to model competi-

tion between two or more agents (fishermen). Even in the basic model of a one-dimensional

spatial space, the introduction of a second agent positioned, for example, at the other end

of the one-dimensional lake would allow formulating an interesting non-cooperative dynamic

harvesting game (viz. a differential game) in fishing activities. Such a model features sim-

ilarities with, and thus presumably an applicability to, competition models in industrial

organization where in the framework of horizontal product differentiation and mobile con-

sumers, demand may grow (or decrease) over time. Therefore, the interaction between two

players in the presence of a mobile renewable resource (or non-constant mobile demand) will

represent an interesting direction for future research.
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Aniţa, S. (2000): Analysis and Control of Age-Dependent Population Dynamics, vol. 11 of

Mathematical Modelling: Theory and Applications, Dordrecht u. a.: Kluwer Academic

Publishers.

Arino, O. and J.-A. Montero-Sánchez (2000): “Optimal Control of a Nonlinear El-

liptic Population System,” Proceedings of the Edinburgh Mathematical Society, 43, 225–

241.

Aseev, S. M. and A. V. Kryazhimskii (2007): “The Pontryagin Maximum Principle

and Optimal Economic Growth Problems,” Proceedings of the Steklov Institute of Math-

ematics, 257, 1–255.

Bai, L. and K. Wang (2005): “Gilpin-Ayala Model with Spatial Diffusion and its Optimal

Harvesting Policy,” Applied Mathematics and Computation, 171, 531–546.

20



Belyakov, A. O. and V. M. Veliov (2014): “Constant Versus Periodic Fishing: Age

Structured Optimal Control Approach,” Mathematical Modelling of Natural Phenom-

ena, 9, 20–37.

Bressan, A., G. M. Coclite, and W. Shen (2013): “A Multidimensional Optimal-

Harvesting Problem with Measure-Valued Solutions,” SIAM Journal on Control and

Optimization, 51, 1186–1202.

Brock, W. A. and A. Xepapadeas (2005): “Spatial Analysis in Descriptive Models of

Renewable Resource Management,” Schweizerische Zeitschrift für Volkswirtschaft und

Statistik, 141, 331–354.

——— (2008): “Diffusion-induced Instability and Pattern Formation in Infinite Horizon

Recursive Optimal Control,” Journal of Economic Dynamics and Control, 32, 2745–

2787.

——— (2010): “Pattern Formation, Spatial Externalities and Regulation in Coupled

Economic-ecological Systems,” Journal of Environmental Economics and Management,

59, 149–164.
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