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A note on optimal portfolios under
regime–switching



Abstract

This paper extends the stochastic dominance rules for normal mixture

distributions derived by Levy and Kaplanski (2015). First, the portfolios un-

der consideration are allowed to follow different regime-switching processes.

Second, the results are extended from second- to fourth-order stochastic

dominance, which is known to be closely related to kurtosis aversion in fi-

nancial markets and allows to compare mixture distributions with the same

overall variance. In particular, when a risk-free asset is available, checking

for fourth-order stochastic dominance turns out to amount to a compari-

son of the regime-specific and overall Sharpe ratios of the portfolios under

consideration.

JEL classification: C46; C58; G11

Keywords—portfolio selection; regime–switching; Sharpe ratio; stochastic

dominance



1 Introduction

Empirical evidence suggests that the distribution of financial returns displays regime–

switching behavior, e.g., between bull and bear market periods (for a review of the

literature, see, e.g., Guidolin, 2011; and Ang and Timmermann, 2012). If regime changes

are stochastic and returns are Gaussian within regimes, then the overall conditional

distribution is a mixture of normals.1 More precisely, assume that

(i) there are k different states (or regimes) of the market,

(ii) the (conditional) probability that the market will be in state j is λj, j = 1, . . . , k,2

(iii) conditional on the market being in state j, the portfolio return under consideration,

R, is Gaussian with mean µj and variance σ2
j , with (µi, σ

2
i ) 6= (µj, σ

2
j ) for i 6= j.3

Then the portfolio return R follows a k–component finite normal mixture distribution

with density

fR(r) =
k
∑

j=1

λjφ(r;µj, σ
2
j ), (1)

where the component densities φ(r;µj, σ
2
j ) are Gaussian with component means µj and

component variances σ2
j , i.e.,

φ(r;µj, σ
2
j ) =

1√
2πσj

exp

{

−(r − µj)
2

2σ2
j

}

, j = 1, . . . , k, (2)

and the strictly positive regime probabilities or mixing weights satisfy
∑k

j=1 λj = 1.

In applications to financial return data, it is usually found that the market regimes

differ mainly in volatility, whereas the component means are rather close in value and

their differences are (typically) statistically insignificant (Ang and Timmermann, 2012).

1 Taboga (2005) relates the literature on regime–switching to that on portfolio selection under ambigu-
ity, pointing out that “[i]t seems natural to interpret the existence of multiple regimes as ambiguity
about asset returns: under each regime, returns have a different probability distribution and the
investor is not able to identify which one correctly describes returns next period.”

2 Typically the regime probabilities will be (conditionally) time–varying. E.g., a popular approach to
modeling persistent regimes is the Markov–switching model (cf. Hamilton, 2008). There is no need
to make this explicit in our presentation.

3 Just as for the regime probabilities, conditional time–variation of the regime–specific means and
variances can be accommodated as well, e.g., via a regime–switching GARCH specification (cf.
Haas and Paolella, 2012).
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Thus, in the following discussion, and as in Levy and Kaplanski (2015), we assume that,

in (1),

µ1 = · · · = µk =: µ, (3)

which is referred to as a scale normal mixture. In this case, the mean and the variance

of R are given by

E(R) = µ, and Var(R) =

k
∑

j=1

λjσ
2
j , (4)

respectively. For later reference, we denote the k–component scale mixture described

by (1)–(3) as

R ∼ MixN(λ1, . . . , λk, µ, σ
2
1, . . . , σ

2
k).

If markets are subject to regime–switching and thus returns follow a mixed normal

distribution, then a comparison of portfolios based on the overall mean and variance

as given by (4) will not be sufficient. Rather, to arrive at unambiguous comparisons of

portfolios, the more general theory of stochastic dominance can be employed (cf. Levy,

2006). Levy and Kaplanski (2015) have recently established the stochastic dominance

rule of order two (i.e., for all risk averters) for the situation where the mixture distri-

butions involved in the comparison have two components and share the same mixing

weights (i.e., are subject to the same regime–switching behavior).

These assumptions are reasonable in many applications. E.g., a typical finding in the

literature is that two regimes are appropriate to describe the distribution of stock returns

(e.g., Guidolin and Timmermann, 2006; Guidolin, 2011). On the other hand, Guidolin

and Timmermann (2006) find that three regimes are required for bond returns. More

generally, the coherence between the regimes of different asset classes or geographical

areas may be less than perfect (e.g., Bae et al., 2014; and Case et al., 2014). Thus, the

portfolio returns of funds following different investment strategies, leading to investments

in different markets or asset classes, can be characterized by regime–switching processes

which are not perfectly synchronized, or even have different numbers of regimes. We

therefore extend the stochastic dominance criteria of Levy and Kaplanski (2015) to

the situation where the portfolios under consideration may be governed by different

regime–switching processes.

The second extension is that, in addition to second–order stochastic dominance, the

(weaker) criterion for fourth–order stochastic dominance is considered, which applies
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to utility functions u with u′ ≥ 0, u′′ ≤ 0, u′′′ ≥ 0, and u′′′′ ≤ 0. The positive

and negative sign, respectively, of u′′′ and u′′′′ are typically referred to as representing

prudence and temperance in the literature on decision making under uncertainty. Both

plausibility and evidence point towards the presence of both of these attitudes in the

typical investor’s behavior (for discussion and references, see Eeckhoudt, 2012; and

Eeckhoudt and Schlesinger, 2013).

From the viewpoint of the problem considered herein, i.e., deriving stochastic dom-

inance relations for normal mixture distributions, an advantage of extending the scope

to fourth–order dominance is that it enables us to compare distributions with the same

overall variance, as given in (4). For example, it is now possible to compare a k–

component normal mixture with a single–component Gaussian distribution with the

same variance. Moreover, when a risk–free asset is available, it turns out that fourth–

order stochastic dominance requires specific relations between the regime–specific and

overall Sharpe ratios (expected excess return per unit of standard deviation) of the

portfolios involved in the comparison.

Despite their more general nature, the derivation of the results is also somewhat

simplified, making use of the concavity of two–parameter (mean and standard devia-

tion/variance) preference functions derived under normality.

2 Stochastic dominance criteria for normal mixture

distributions

The stochastic dominance rule of order n identifies the preferred distributions for an

investor with a utility function u ∈ Un, where

Un = {u : (−1)iu(i)(x) ≤ 0, ∀x ∈ R, i = 1, . . . , n},

where u(i)(x) is the ith derivative of u at x. We are interested in the case when the two

distributions involved are scale normal mixtures as defined by (1)–(3). As in Levy and

Kaplanski (2015), we proceed in two steps. In the first step, it is assumed that the two

portfolios to be compared have the same expected return (Section 2.1). We drop this

assumption in the second step, where a risk–free asset is introduced (Section 2.2).
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2.1 Situation without a risk–free asset and equal means

In case of normally distributed returns, R ∼ N(µ, σ2), expected utility can be expressed

as a function V of µ (mean) and σ (standard deviation),4

V (µ, σ) =

∫

∞

−∞

u(x)φ(x;µ, σ2)dx

=

∫

∞

−∞

u(σz + µ)φ(z)dz, (5)

where φ(z) is the standard normal density. We may also define

W (µ, σ2) := V (µ, σ), (6)

which expresses expected utility as a function W of mean and variance rather than

mean and standard deviation. In case of a normal mixture, expected utility is given by

a probability–weighted linear combination of µ/σ preference functions of the form (5)

or (6). The derivation of the second– and fourth–order stochastic dominance criteria for

normal mixtures makes use of the fact that (cf. Chipman, 1973)5

V is concave in σ if u ∈ U2, and W is concave in σ2 if u ∈ U4. (7)

We compare two random variables R1 and R2, where R1 is k–component mixed

normal,

R1 ∼ MixN(λ1, . . . , λk, µ, σ
2
1, . . . , σ

2
k), (8)

and R2 is m–component mixed normal,

R2 ∼ MixN(ω1, . . . , ωm, µ, θ
2
1, . . . , θ

2
m). (9)

Recall the convention that σ2
i 6= σ2

j and θ2i 6= θ2j for i 6= j. Otherwise, with equal

component means, two of the components in the respective mixture would be identical

and could be merged. Also note that it may be the case that, e.g., k = 1, i.e., one of

the distributions under consideration may be Gaussian.

4 Technical conditions for this and the following relations to hold for the utility function (such as
growth conditions to guarantee that expected utility exists finite) can be found in Schneeweiß
(1966, Ch. 4) and Chipman (1973). They are satisfied for any even half–reasonable utility function.

5 With subscripts denoting partial derivatives, this follows for V from Vσσ =
∫

z2u′′(σz + µ)φ(z)dz.
For W , Chipman (1973) makes use of the fundamental result that W satisfies the “heat equation”
Wσ2 = 1

2
Wµµ, which can be seen from the normal density in (2) satisfying φµµ(x;µ, σ

2)/2 =
φσ2 (x;µ, σ2) = φ(x;µ, σ2)[(x − µ)2 − σ2]/(2σ4), and differentiation under the integral sign. Thus
Wσ2σ2 = 1

2
(Wµµ)σ2 = 1

2
(Wσ2 )µµ = 1

4
Wµµµµ = 1

4

∫

u′′′′(σz + µ)φ(z)dz.
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In this situation, a sufficient condition for second–order stochastic dominance, which

generalizes Theorem 1 of Levy and Kaplanski (2015), is as follows.

Proposition 1. Random variable R1 in (8) second–order stochastically dominates ran-

dom variable R2 in (9) if

(i) it is possible to label the mixture components such that

θ1 < · · · < θℓ ≤ σ1 < · · · < σk ≤ θℓ+1 < · · · < θm, (10)

and

(ii)
k
∑

j=1

λjσj ≤
m
∑

i=1

ωiθi. (11)

Condition (11) is also necessary. It is also necessary that

max{σ1, . . . , σm} ≤ max{θ1, . . . , θm}. (12)

Remark 1. It is clear that Proposition 1 does not cover all situations of stochastic

dominance among scale normal mixture distributions. E.g., if m = k = 2, σ2
1 < θ21 <

σ2
2 < θ22 (which is not covered by condition (10)), and λ1 ≥ ω1 (and hence λ2 = 1−λ1 ≤

ω2 = 1 − ω1), then R1 dominates R2, but this case is trivial. As pointed out by Levy

and Kaplanski (2015), in the two–regime setting, “the interesting non–trivial case is the

case where [R1] has a lower volatility than [R2] in one regime, but a higher volatility in

the other regime”, which is the situation covered by condition (10).

Proof. (i) For sufficiency of (10) and (11), note that, since u ∈ U2 implies that V , as

defined in (5), is concave in the standard deviation,

E(u(R2)) =
m
∑

i=1

ωiV (µ, θi)

=
ℓ
∑

i=1

ωiV (µ, θi) +
m
∑

i=ℓ+1

ωiV (µ, θi)

≤ ωV (µ, θ1) + (1− ω)V (µ, θ2),

where

ω = ω1 + · · ·+ ωℓ, θ1 =
1

ω

ℓ
∑

i=1

ωiθi, and θ2 =
1

1− ω

m
∑

i=ℓ+1

ωiθi.
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Thus, random variable R2 in (9) is second–order stochastically dominated by the

two–regime normal mixture variable

R̃2 ∼ MixN(ω, 1− ω, µ, θ
2

1, θ
2

2),

which shares with R2 the properties (10) and (11), i.e.,

θ1 ≤ σ1 < · · · < σk ≤ θ2, (13)

and
k
∑

j=1

λjσj ≤ ωθ1 + (1− ω)θ2 =
m
∑

i=1

ωiθi. (14)

We show that R1 second–order dominates R̃2. First note that, from (14),

1− ω ≥
∑k

j=1 λjσj − θ1

θ2 − θ1
.

Hence, since V (µ, θ2) < V (µ, θ1), and by (7), i.e., concavity,

E(u(R̃2)) = ωV (µ, θ1) + (1− ω)V (µ, θ2)

= V (µ, θ1) + (1− ω)(V (µ, θ2)− V (µ, θ1))

≤ V (µ, θ1) +

∑k
j=1 λjσj − θ1

θ2 − θ1
(V (µ, θ2)− V (µ, θ1))

=

k
∑

j=1

λj

{

V (µ, θ1) +
V (µ, θ2)− V (µ, θ1)

θ2 − θ1
(σj − θ1)

}

≤
k
∑

j=1

λjV (µ, σj) = E(u(R1)).

(ii) For necessity of (11), we use the general result that a random variable X with

distribution function (cdf) F second–order dominates a random variable Y with

distribution G if and only if (cf. Levy, 2006)

∆(t) =

∫ t

−∞

[G(x)− F (x)]dx ≥ 0 ∀t. (15)

To use this in our context, we note that the “cumulative cdf”
∫ t

−∞
F (x)dx can be

expressed in terms of the first–order lower partial moment (cf. Bawa, 1975; and

Ingersoll, 1987, p. 98),

∫ t

−∞

F (x)dx =

∫ t

−∞

(t− x)f(x)dx. (16)
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Now assume X ∼ N(µ, σ2), i.e., f(x) = 1
σ
φ
(

x−µ
σ

)

, and F (x) = Φ
(

x−µ
σ

)

, where

φ(z) = (2π)−1/2e−z2/2 and Φ(z) =
∫ z

−∞
φ(ξ)dξ are the standard normal pdf and

cdf, respectively. Then we get

∫ t

−∞

Φ

(

x− µ

σ

)

dx
(16)
=

∫ t

−∞

(t− x)
1

σ
φ

(

x− µ

σ

)

dx

=

∫ (t−µ)/σ

−∞

(t− µ− σz)φ(z)dz

= (t− µ)Φ

(

t− µ

σ

)

+ σφ

(

t− µ

σ

)

,

where the substitution z = (x− µ)/σ was made in the second line, and the third

line follows from φ′(z) = −zφ(z), i.e.,
∫

zφ(z)dz = −φ(z).

Therefore, when substituting R1 in (8) for X and R2 in (9) for Y , (15) evaluated

at t = µ is given by

∆(µ) =
1√
2π

(

m
∑

i=1

ωiθi −
k
∑

j=1

λjσj

)

,

and the necessity of (11) follows.

To see the necessity of (12), consider the exponential utility function, u(x) =

−e−cx, where c > 0 is the coefficient of constant absolute risk aversion. Clearly

u ∈ U2. In this case, expected utility under mixture (8) is

E(u(R1)) = −e−cµ

k
∑

j=1

λje
c2σ2

j /2. (17)

As c → ∞, mixture (9) will be preferred over mixture (8) if maxj{σj} > maxi{θi},
thus (12) is necessary.6

The essence of Proposition 1 is contained in Figure 1, which depicts the situation

for k = m = 2. The dash–dotted line is V (µ, σ) defined in (5), which is decreasing and

concave in σ. Expected utility of random variable R1 in (8) is located somewhere on

6 Intuitively, the behavior under extreme risk aversion (c → ∞) is completely determined by the
investor’s desire to select the distribution with the least unfavorable worst–case scenario, as repre-
sented by the most turbulent regime. But note that this interpretation should be taken cum grano

salis, since part of the result for c → ∞ may be due to the unlimited liability implied by the normal
mixture distribution and the explosion of u(x) = −e−cx towards −∞ as x → −∞. See also the
discussion in Footnote 10 of Levy and Kaplanski (2015).
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σ1 σ2θ1 θ2λ1σ1 + λ2σ2 ≤ ω1θ1 + ω2θ2
 

 

V (µ,σ)
E(u(R1))

E(u(R2))

b1

b2

a1

a2

Figure 1: Illustration of Proposition 1 for k = m = 2.

the dashed line between a1 and a2, and expected utility of random variable R2 in (9) is

somewhere on the solid line between b1 and b2. Moreover, since λ1σ1+λ2σ2 ≤ ω1θ1+ω2θ2,

the former is to the left of the latter, and thus E(u(R1)) ≥ E(u(R2)).

Remark 2. Proposition 1 extends Theorem 1 of Levy and Kaplanski (2015), who con-

sider the situation k = m = 2, λ1 = ω1, and show that, if the second regime is the high–

volatility regime for both R1 and R2, then σ2 ≤ θ2 and λ1σ1+(1−λ1)σ2 ≤ λ1θ1+(1−λ1)θ2

are necessary and sufficient for R1 to second–order dominate R2. Without the restric-

tion λ1 = ω1, however, it is required to consider the entire pattern of the regime–specific

standard deviations. That is, in general, the necessary conditions (11) and (12), i.e.,

smaller average standard deviation and less extreme worst–case scenario, are not suf-

ficient for second–order stochastic dominance. To illustrate, let the utility function be

exponential, i.e., u(x) = −e−cx, c > 0, so that expected utility is given by (17). Suppose
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that both R1 in (8) and R2 in (9) are characterized by two components (k = m = 2), and

that λ1 = 0.8, σ1 = 0.1, σ2 = 1, ω1 = 0.9, θ1 = 0.5, and θ2 = 1, so that (11) and (12)

are valid, but (10) is violated. Since the worst–case scenario is the same under R1 and

R2 but more likely under R1, investors characterized by sufficiently large c (c > 1.88)

will prefer R2 over R1. If we decrease σ2 from 1 to 0.95, then both investors with suf-

ficiently small and investors with sufficiently large c will prefer R1, whereas those with

c roughly between 2.6 and 3.6 prefer R2. For the latter, the higher probability of the

high–volatility regime under R1 outweighs its only slight reduction in turbulence relative

to the high–volatility regime under R2.

A potential drawback of condition (11) is that it cannot be interpreted in terms

of the overall standard deviation of the return distribution. In particular, the linear

combination of the regime–specific standard deviations σ1, . . . , σk of the scale mixture

(8) is not the standard deviation of R1.
7 Rather, inspection of (4) reveals that such a

relation applies to the regime–specific variances, with the overall standard deviation be-

ing
√

Var(R1) =
√

∑

j λjσ
2
j . Extending the scope of analysis to fourth–order stochastic

dominance allows us to replace requirement (19) by a weaker condition on the variances

of the variables under consideration. This result is stated next.

Proposition 2. Random variable R1 in (8) fourth–order stochastically dominates ran-

dom variable R2 in (9) if

(i) it is possible to label the mixture components such that

θ21 < · · · < θ2ℓ ≤ σ2
1 < · · · < σ2

k ≤ θ2ℓ+1 < · · · < θ2m, (18)

and

(ii)

Var(R1) =
k
∑

j=1

λjσ
2
j ≤

m
∑

i=1

ωiθ
2
i = Var(R2). (19)

Condition (19) is also necessary. It is also necessary that

max{σ2
1, . . . , σ

2
m} ≤ max{θ21, . . . , θ2m}. (20)

7 Condition (11) can be expressed as E |R1 − µ| ≤ E |R2 − µ|.
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Remark 3. Note that conditions (18) and (20) are just (10) and (12), rewritten in terms

of variances rather than standard deviations. The new part is (19), which weakens (11)

and requires us to compare the (overall) variances of the mixture distributions involved.

Proof. The largest part of the proof of Proposition 2 is a reformulation of that of Propo-

sition 1, with standard deviations replaced by variances, and V replaced by W defined

in (6). It remains to show the necessity of (19). To see this, consider the utility function

u(x) = −e−cx, c > 0, which is in U4. In this case,

E(u(R1)) = −e−cµ

k
∑

j=1

λje
c2σ2

j
/2

= −e−cµ

k
∑

j=1

λj

(

1 +
c2σ2

j

2
+O(c4)

)

= −e−cµ

(

1 +
c2

2
Var(R1) +O(c4)

)

, as c → 0.

Thus, for small enough risk aversion, c, the distribution with the smaller variance will

be preferred.

Remark 4. Since the exponential utility function satisfies sgn u(n) = (−1)n+1, the proof

of Proposition 2 makes clear that condition (19) cannot be further weakened by consid-

ering stochastic dominance of orders higher than the fourth.

Proposition 2 can be interpreted in the sense that, for a given level of overall variance,

temperate investors (i.e., investors with u ∈ U4) prefer a more even distribution of the

variances across states, so in order to rule out the likelihood of an unpleasant surprise

(in the form of extremely turbulent market conditions) once the “veil of ignorance”

with regard to the prevailing market regime has been raised.8 This interpretation is

particularly clear–cut when a temperate investor compares any MixN distribution (8)

with k > 1 with the single–component Gaussian distribution with the same mean and

variance. The latter will always be preferred since

W

(

µ,
k
∑

j=1

λjσ
2
j

)

≥
k
∑

j=1

λjW (µ, σ2
j ).

8 This interpretation is closely related to the definition of temperance suggested in Eeckhoudt and
Schlesinger (2006), namely, as a preference for “disaggregating the harms” in the sense that an
agent prefers an even distribution of independent zero–mean shocks across states of nature.
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That is, for a given overall variance, temperate investors prefer a certain state of the

world, with a given variance, over the uncertainty about the prevailing volatility level

that comes along with the mixture distribution. Risk aversion is not sufficient for this

conclusion, since
√

∑

j λjσ
2
j >

∑

j λjσj, and thus condition (11) is violated.

2.2 Situation with a risk–free asset and different means

Now suppose there is a risk–free asset with return rf and the risky portfolios under

consideration have possibly different expected returns, i.e., (8) and (9) are replaced

with

R1 ∼ MixN(λ1, . . . , λk, µ1, σ
2
1, . . . , σ

2
k), (21)

and

R2 ∼ MixN(ω1, . . . , ωm, µ2, θ
2
1, . . . , θ

2
m), (22)

respectively, where possibly E(R1) = µ1 6= µ2 = E(R2). Assume that we can lend and

borrow any desired amount at the risk–free rate, rf , and that both risky portfolios (21)

and (22) have positive excess returns over the risk–free rate, i.e., µi > rf , i = 1, 2.

We can mix both of the risky portfolios (21) and (22) with the risk–free asset to

obtain new portfolios with returns R̃1(α1) and R̃2(α2), respectively, where αi is the

weight of the risky portfolio i in the corresponding new (overall) portfolio, i = 1, 2.

Then R̃i(αi) = αiRi + (1− αi)rf , i = 1, 2, and

R̃1(α1) ∼ MixN(λ1, . . . , λk, µ̃1(α1), α
2
1σ

2
1, . . . , α

2
1σ

2
k), (23)

and

R̃2(α2) ∼ MixN(ω1, . . . , ωm, µ̃2(α2), α
2
2θ

2
1, . . . , α

2
2θ

2
m), (24)

where the (overall) portfolio return

µ̃i(αi) = αiµi + (1− αi)rf = rf + αi(µi − rf), i = 1, 2. (25)

Now fix an (overall) portfolio mean return µp, µp > rf . With unlimited lending and

borrowing at the risk–free rate, any µp can be achieved by an appropriately selected

weight αi. Solving (25) shows that the suitable weight is

α⋆
i =

µp − rf
µi − rf

, i = 1, 2. (26)
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Now apply the stochastic dominance criteria of Propositions 1 and 2 to random variables

R̃1(α
⋆
1) and R̃2(α

⋆
2), defined, respectively, by (23) and (24), with αi given by (26), i = 1, 2.

It follows from Proposition 1 that R̃1(α
⋆
1) second–order stochastically dominates R̃2(α

⋆
2)

if we can label the components such that

µp − rf
µ2 − rf

θ1 < · · · < µp − rf
µ2 − rf

θℓ

≤ µp − rf
µ1 − rf

σ1 < · · · < µp − rf
µ1 − rf

σk

≤ µp − rf
µ2 − rf

θℓ+1 < · · · < µp − rf
µ2 − rf

θm,

and
µp − rf
µ1 − rf

k
∑

j=1

λjσj ≤
µp − rf
µ2 − rf

m
∑

i=1

ωiθi,

or, alternatively,

µ2 − rf
θm

< · · · < µ2 − rf
θℓ+1

≤ µ1 − rf
σk

< · · · < µ1 − rf
σ1

≤ µ2 − rf
θℓ

< · · · < µ2 − rf
θ1

, (27)

and
µ1 − rf
∑k

j=1 λjσj

≥ µ2 − rf
∑m

i=1 ωiθi
. (28)

Following the same logic, Proposition 2 implies that R̃1(α
⋆
1) fourth–order stochastically

dominates R̃2(α
⋆
2) if we can label the components such that (27) holds and

µ1 − rf
√

Var(R1)
=

µ1 − rf
√

∑k
j=1 λjσ2

j

≥ µ2 − rf
√

∑m
i=1 ωiθ2i

=
µ2 − rf
√

Var(R2)
. (29)

Conditions (28) and (29) are also necessary for second– and fourth–order stochastic

dominance, respectively. Moreover,

min
j

{

µ1 − rf
σj

}

≥ min
i

{

µ2 − rf
θi

}

(30)

is also necessary for both.

Note that conditions (27) and (28) do not depend on µp, i.e., if they hold, they hold

for any µp. That is, if (27) and (28) hold, then any portfolio combination of R2 in

(22) and the risk–free rate is second–order dominated by an appropriately constructed

portfolio consisting ofR1 in (21) and the risk–free rate, i.e., random variable (21) second–

order dominates random variable (22). Similarly, if (27) and (29) hold, then random

variable (21) fourth–order dominates random variable (22).

12



The quantities appearing in (27) and (30) are the regime–specific Sharpe ratios of

the portfolios involved in the comparison, whereas condition (29) says that the overall

Sharpe ratio of R2 must not exceed that of R1 for fourth–order stochastic dominance.

The interpretation is the same as that of Proposition 2. To see this, recall that, if

Portfolio 1 has a higher Sharpe ratio than Portfolio 2, then by combining Portfolio

1 with the risk–free asset we can achieve any expected return with a lower overall

portfolio variance than by combining Portfolio 2 with the risk–free asset (Sharpe, 1966).

Thus, with risk–free lending and borrowing, investors preferring a more even distribution

of Sharpe ratios over the regimes, for a given overall Sharpe ratio, is equivalent to

investors preferring a more even distribution of regime–specific variances, for a given

overall variance.

3 Concluding remarks

The stochastic dominance criterion for normal mixture distributions derived by Levy

and Kaplanski (2015) has been generalized and extended to be applicable to a broader

set of situations. As in Levy and Kaplanski (2015), it has been assumed that regimes

are characterized by different volatility levels, whereas expected returns are constant

across regimes. This is consistent with empirical evidence, i.e., differences between

regime–specific variances are typically highly statistically significant, whereas differ-

ences between regime–specific means are not (c.f. Ang and Timmermann, 2012).9 As a

result, the overall return distribution is leptokurtic but symmetric. A source of asym-

metry different from regime–specific expected returns is within–regime skewness, which

can be allowed for, e.g., by replacing the Gaussian in (1) by Azzalini’s (1985) skew–

normal distribution. This naturally leads to the class of finite mixtures of skew–normal

distributions (e.g., Bernardi, 2013; and Otiniano et al., 2015), which nests the class of

normal mixtures and may be useful when portfolio return distributions display asym-

metries. Stochastic dominance criteria for single–component skew–normal distributions

have been investigated by Blasi and Scarlatti (2012). It may be worthwhile to consider

whether these can be generalized to finite mixtures of skew–normal distributions.

9 Further empirical evidence is presented in Levy and Kaplanski (2015) for monthly returns of 311
mutual funds.
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