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Abstract

We study the optimal design of alternative dispute resolution (ADR) mechanisms
by a third-party mediator. ADR takes place before two litigants face each other in
court. Litigation is a legal contest with players who are privately informed about the
cost of collecting admissible evidence. Players update their beliefs after the mediation
process, but before they decide on evidence collection. Different from standard mecha-
nism design problems, the belief-system post-ADR is important for the outcome of the
continuation game: within litigation, choice variables are similar to strategic comple-
ments and the evidence supplied is driven by the belief system. There is an incentive
for parties to misreport in ADR to profit from this deviation in litigation should ADR
fail to resolve the conflict. We show that optimal ADR has to break down on-path
in some cases to screen the players with respect to their costs. Furthermore, ADR
induces truthful reporting by creating post-breakdown beliefs which are independent
of type-reports during ADR. To reduce inefficiency vis-à-vis symmetric litigation, op-
timal ADR induces asymmetric breakdown beliefs even for ex-ante symmetric types to
increase the settlement rate compared to symmetric mechanisms. Independent of the
set of parameters, ADR achieves settlement for the majority of cases.
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1 Introduction

Alternative Dispute Resolution (ADR) is a tool introduced into the legal system of many
countries to increase the system’s efficiency by settling as many cases as possible outside
court. ADR itself can take many forms and describes a third-party mechanism other than
formal litigation to solve the conflict. However, ADR typically cannot overturn the rule
of law, such that parties return to the litigation track once ADR fails. Given that ADR
and litigation remain thus connected, several questions arise. How does the information
exchanged during ADR influence the behavior in litigation post ADR-breakdown? How
does the threat of ADR-breakdown influence the litigants’ willingness to release information
during ADR? How should we design ADR “in the shadow of the court”?

The aim of this paper is to study the optimal third-party ADR-mechanism that uses
litigation as the fall-back option in case no agreement is reached. We provide a model
identifying the two-way channel that links an optimal mechanism (ADR) and an underlying
contest (litigation). We show that optimal ADR and litigation cannot be considered as
independent problems: the information revealed in the ADR-stage influences the choice
of action in both ADR and litigation. Litigants’ investment into evidence provision after
breakdown depends on the beliefs about their opponent’s action. The ADR-designer needs
to be concerned about managing the players’ beliefs in case ADR breaks down. Moreover,
ADR cannot fully eliminate litigation as parties differ in their marginal cost of evidence
provision. ADR breaks down sometimes to screen parties and to ensure truth-telling during
ADR.

Most modern societies accept the concept of the “rule of law” despite an overburdened
legal system: in 2014 each judge in the U.S. district courts received 658 new cases. At
the same time the number of pending cases is even larger with 694 per judge. The large
caseload leads to a median time from filing to trial of around 2 years. As litigation requires
a lot of time and resources from courts, each case that forgoes litigation also has a positive
externality on the functioning of the legal system as a whole.

Thus, most jurisdictions encourage parties to engage in some form of ADR before starting
the formal litigation process. The U.S. Alternative Dispute Resolution Act of 1998 states that
courts should provide litigants with ADR-options in all civil cases. ADR is defined as “any
process or procedure, other than an adjudication by a presiding judge, in which a neutral
third party participates to assist in the resolution of issues in controversy” (Alternative
Dispute Resolution Act, 1998). However, ADR supplements the “rule of law” rather than
replacing it. Ultimately, each party has the right to return to formal litigation.1 Hence,

1For a detailed discussion on this, see Brown, Cervenak, and Fairman (1998).
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ADR indeed happens “in the shadow of the court:” whenever no settlement is achieved via
ADR, litigants return to the traditional litigation path.

Nonetheless, ADR is a very effective tool to settle conflicts and has success rates substan-
tially above 50% across time, jurisdictions, and case characteristics. Furthermore, litigants
report that ADR has an impact on the continuation of the trial even if unsuccessful (Genn,
1998; Anderson and Pi, 2004). The informational spillovers to post-breakdown litigation
influences the design of optimal ADR: if the information a player receives during ADR de-
pends on the information she provides, parties have an incentive to strategically extract
information within ADR which they can use in litigation once ADR breaks down.

We follow a large literature dating back to Posner (1973) and consider litigation as a legal
contest (for an overview on the litigation literature see Spier (2007)). The party providing the
most convincing evidence wins the case. In such a contest, the optimal amount of evidence
the plaintiff provides is a function not only of her own cost of evidence provision, but also of
her beliefs about the defendant’s evidence choice and vice versa. Hence, litigation strategies
after ADR-breakdown are a function of the players’ belief system.

Optimal ADR-design should take the belief-channel into account to ensure incentive
compatibility: suppose a plaintiff who only has access to circumstantial evidence reports to
the mediator instead that she has direct evidence. She then might gain from misreporting
in two dimensions. First, through a direct effect: reporting better evidence can lead to a
more favorable settlement. Second, there is an indirect effect: if the plaintiff misreports, she
may also benefit if ADR fails to resolve the conflict. By misreporting in the ADR stage,
the plaintiff may influence her post-breakdown expectation about the defendant’s type since
breakdown is a function of both players’ reports. Changing the beliefs post-breakdown affects
expected litigation outcomes and provides an additional incentive to misreport. While the
direct effect is present in standard mechanism design models, we seem to be the first to
consider the indirect effect as the outside-option of our mechanism depends on the belief
system.

Our analysis highlights several important features of ADR in the shadow of a legal contest:
we show that if ADR cannot promise full-settlement for all type-profiles, then ADR cannot
promise full-settlement for any type-profile. The reason is that if the mediator promises set-
tlement for a specific type-profile, it imposes an externality on the other types by influencing
their breakdown beliefs.

We further show that the optimal mechanism is always asymmetric. It favors one player
when ADR breaks down and the other when ADR is successful, even when players are fully
symmetric ex-ante. At the time of participating, players only care about their expected
valuation being the sum of the valuations in case of both settlement and breakdown. To
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keep the expected valuations constant, the valuation promised to players in settlement must
increase the more competitive and therefore wasteful litigation post ADR-breakdown is.
Consequently, optimal mediation makes the litigation process post-ADR less competitive by
inducing asymmetric beliefs to save on resources needed for settlement.

While the optimal mechanism results in asymmetric beliefs, it ensures that beliefs are
independent of the player’s type-report. If a player could obtain different information from
different reports, she could induce a situation without common knowledge of beliefs post-
breakdown: the deviating player knows that she misreported, but her opponent does not.
Each player’s optimal action depends on both her own belief about the opponent and what
the opponent thinks this belief is. Learning from reports can thus provide an incentive to
misreport in hope of breakdown. If beliefs are independent of the report, however, such a
problem does not arise because deviations do not create an information advantage.

We significantly differ from standard models of conflict resolution in that we consider a
model in which investment into the conflict is made after the resolution mechanism broke
down. Nonetheless, a key result derived by Hörner, Morelli, and Squintani (2015) carries over
to our setting: if the mediator can talk to parties in private, the players’ level of commitment
is not important. Compared to a situation in which parties commit to the mechanism at
an interim stage, the mediator can achieve (almost) the same result if parties are allowed to
unilaterally opt-out of mediation after the settlement proposal. The reason is that private
communication allows the mediator to conceals some information even at an ex-post stage.

Our findings contribute to the ongoing discussion of optimal ADR-design by pointing
out several important aspects: (1) optimal ADR can settle most of the cases outside court
independent of the cases’ characteristics; (2) the level of commitment needed by the parties
is not important if the mediator can communicate to parties in private; (3) regulators should
be careful when preventing mediators from using asymmetric protocols as they increase the
probability of ADR breaking down; and (4) to incentivize settlement, optimal ADR should
predominantly manage beliefs in case a breakdown occurs.

We also contribute to the literature on mechanism design. If screening can happen only
through an underlying game, on-path breakdown is informative for players and necessary for
optimality. Our model emphasizes the relevance of belief management by the mechanism if
the underlying game, and thus the outside option, is belief dependent. Our findings directly
apply to other situations in which a wasteful contest is the last resort such as strikes, political
lobbying, patent races, and standard setting organizations.
Outline. After discussing the literature in Section 2, we set up the model in Section 3
and derive the optimal mechanism in Section 4. Subsequently, we discuss the findings in
Section 5 and several extensions in Section 6. Section 7 concludes.
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2 Related Literature

We contribute to three strands of literature: (1) to the best of our knowledge we provide
the first formal model in the law and economics literature that explicitly addresses the
complementarity of litigation and ADR; (2) we add a new channel to the literature on
mechanism design with endogenous outside option by showing that a mechanism which
cannot fully avoid a post-mechanism game should be concerned about the information release
during the process; and (3) we add to the existing literature of mechanism design and conflict
resolution as we consider a setup in which parties make their decision on investment into the
default game after the conflict arises.

We connect to the law and economics literature on settlement under asymmetric infor-
mation dating back to the seminal paper by Bebchuk (1984). Spier (1994) is the first in this
line to consider a mechanism design approach. She uses a model that applies to situations
in which investment in evidence provision was made prior to negotiations and is interested
in optimal fee-shifting between parties. We differ in two aspects: we hold the rules of lit-
igation fixed and study a model in which the choice on how much evidence to present is
made after settlement negotiations. This results in an optimal mechanism that conditions
on informational spill-overs of ADR onto litigation.2

Brown and Ayres (1994) highlight that managing the information flow between litigants
can be a rationale for ADR that goes beyond reducing psychological barriers to negotiation.
There is, however, to the best of our knowledge no paper yet, that links information exchange
in pre-litigation ADR with litigation as a strategic game. We model litigation in the tradition
of Posner (1973) as a legal contest.3 Our findings show that such a link is important as ADR
and litigation should not be treated as two independent problems, but two stages of the
same game.

The second strand of literature we relate to is that of mechanism design with endogenous
outside options, i.e. mechanisms which cannot fully replace an underlying strategic game.
Similar to Cramton and Palfrey (1995) and Celik and Peters (2011, 2013), we consider a
mechanism that needs to be ratified by both parties. Without mutual consent, parties play
the litigation game. In our model moreover, mediation sometimes breaks down and parties
are referred to the underlying game. Breakdown is informative as in Cramton and Palfrey

2Another recent paper discussing third-party mediation is Doornik (2014) who studies the optimal use
of a fixed mediation mechanism. Different from us, she is interested in when to use a certain ADR mecha-
nism,while we focus on the optimal design of ADR.

3Examples include Katz (1988), Baye, Kovenock, and Vries (2005), Spier and Rosenberg (2011), and
Prescott, Spier, and Yoon (2014). In addition, see Spier (2007) for a general discussion on litigation in the
law and economics literature.
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(1995) and Celik and Peters (2011). While Cramton and Palfrey (1995) are interested in
finding worst off-path beliefs, Celik and Peters (2011) show that for some games it is optimal
to design a mechanism without full participation. In our model, both channels are not present
and full participation is optimal. Instead, we explore an additional channel: we ask how on-
path references to the default game by the mechanism interact with the belief structure of
the players after breakdown.

We also connect to the literature on conflict resolution as the two closest papers to ours
are Bester and Wärneryd (2006) and Hörner, Morelli, and Squintani (2015). Bester and
Wärneryd (2006) were the first to study conflict resolution in a mechanism design environ-
ment. Similar to us, they look for the conflict minimizing mechanism and find that it is
typically stochastic. Hörner, Morelli, and Squintani (2015), building on Bester and Wärn-
eryd (2006), study optimal mediation in the context of international relations. They show
that limited commitment of the disputants does not change the outcome of the optimal
mechanism as long as the mediator can talk to parties in private.

The main difference between our model and those of Hörner, Morelli, and Squintani
(2015) and Bester and Wärneryd (2006) is the timing of events: through their fixed, type-
dependent outside option, Hörner, Morelli, and Squintani (2015) implicitly assume that
investment decisions take place before the conflict arises. While this assumption may ap-
ply to mediation attempts in international relations, it applies less to ADR negotiations as
the collection of evidence typically happens after the conflict arises. Our results are thus
a complement to Meirowitz et al. (2015) who study the relationship between dispute res-
olution and pre-conflict investment. Contrary to that, we study the relationship between
dispute resolution and post-mediation investment. An important result of Hörner, Morelli,
and Squintani (2015), however, carries over to our setting: limited commitment changes the
result of the optimal mechanism arbitrarily little.

Although the result on limited commitment is similar, the optimal mechanism itself
is qualitatively different: in Hörner, Morelli, and Squintani (2015), the result is always
symmetric and involves full-settlement between weak types. In our setup neither occurs: the
optimal mechanism is never symmetric and mediation has a positive breakdown probability
for all type profiles as weak types are needed in the post-mediation contests to ensure full
participation which is always optimal.

Our concept of mediation is based on Bester and Wärneryd (2006) and lies between pure
communication devices as in Mitusch and Strausz (2005) and a mediator with independent
sources of information (Fey and Ramsay, 2010). Pavlov (2013) shows that the former has
no effect on the outcome in contests but, different to Fey and Ramsay (2010), the mediator
can resolve the majority of conflicts without the need of an exogenous information source.
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3 Model

Litigation Game. The underlying litigation game Γ of our model is an all-pay contest
with asymmetric information as in Szech (2011) and Siegel (2014).4 There are two risk-
neutral players i = 1, 2 who compete for a good of a commonly known value of 1. Both
players simultaneously decide on a score si and the player with the highest score wins the
good. Ties are broken in favor of player 1.5 Obtaining a score is costly. Players are ex-
ante symmetric and have low marginal cost, cl, with probability p, or high marginal cost,
ch ≡ κ cl; κ > 1, with probability (1 − p). All but the realization of the cost, which is
privately learned by each player, is common knowledge. To simplify notation, we denote the
low-cost type “l” and the high-cost type “h”. In line with this simplification, we are going
to use the expressions “player i, type k” and “player ik” interchangeably.
Mediator. We model the mediator as a neutral third-party possessing no private informa-
tion who announces a protocol X and has the ability to commit to it. The protocol is a
mapping from a message profile, M , to triple (G,X1, X2) where G denotes the matrix of
breakdown probabilities and Xi the matrix of settlement shares. It is without loss of gener-
ality to restrict the message space to the number of type-pairs once the mechanism has been
ratified (Cramton and Palfrey, 1995; Celik and Peters, 2011). Thus, let

G =
γ(l, l) γ(l, h)
γ(h, l) γ(h, h)

 ,
and

Xi =
xi(l, l) xi(l, h)
xi(h, l) xi(h, h)

 ,
where γ(M) denotes the probability of mediation breakdown after message profile M =

(m1,m2), that is the probability that players are sent back to the litigation game Γ after
message M . Further, xi(M) denotes the share of the good assigned to player i after M .6

We assume budget balance and non-negative shares: the designer can only divide the
good in question and allocate shares to players. These shares sum up to not more than one,
that is x1(k1, k2) + x2(k1, k2) ≤ 1.7

Formally, the mediator is a mechanism designer who cannot enforce actions in the contest.
4We follow the terminology of Siegel (2009), indicating that players have heterogeneous cost of effort but

a common perception of the prize.
5This technical assumption allows us to circumvent openness problems off-path. However, any other

tie-breaking rule would work at cost of additional notation.
6For the ease of notation, we assume without loss of generality that the message k is assigned to the

meaning “I am type k”.
7If the good itself was indivisible, a lottery could implement the same result.
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In principle, we could allow the mediator to send players non-binding recommendations
within the contest. It is without loss of generality to abstract from such recommendations as
they would induce a communication equilibrium in the litigation game and all communication
equilibria in all-pay contests are payoff equivalent to the unique Nash equilibrium.8

We are looking for a mechanism that minimizes the ex-ante probability of mediation
breakdown, Pr(Γ). The solution concept is perfect Bayesian equilibrium.
Timing. For most of the analysis, we consider an interim individually rational mechanism.9

Hence, the timing is as follows: first, the mediator commits to the mediation protocol X
and players learn their type privately. Second, players simultaneously decide whether to
participate in the mediation mechanism. If any player rejects, players update beliefs and
play the litigation game. If both accept, players privately send a messagemi to the mediator.

Following her protocol X , the mediator either implements an allocation (x1, x2) or initi-
ates breakdown. In the latter case players update beliefs and go to litigation.
Discussion of the Assumptions. We follow a large strand of the literature in assuming
that litigation is a legal contest. The all-pay contest, a limiting case of a general Tullock
(1980) contest, is only assumed to ensure closed form solutions.

As expected, contest utilities are continuous for every action pair, hence adding noise
would not change our results qualitatively.10 The same is true for the constant marginal cost
of evidence production. Results maintain if we assume a more sophisticated (monotonic)
evidence provision function as used e.g. in Baye, Kovenock, and Vries (2005). Ex-ante
symmetry is chosen for simplicity, too, and can be relaxed without changing the results.

The assumption that mediation is designed by a neutral third-party follows the U.S.
Alternative Dispute Resolution Act of 1998. In practice, ADR is typically conducted by
(retired) judges, law professors or private mediation companies all repeating the mediation
services on a regular basis. Clearly, trust is a relevant issue for those mediators and provides
a rationale for commitment.

Interim individual rationality of the players is assumed for the ease of notation, only. In
Section 6 we show in line with the argument by Hörner, Morelli, and Squintani (2015) that
assuming ex-post individual rationality changes results only arbitrarily little.

Finally, the assumption that the mediator aims to minimize breakdown is in line with
the theoretical literature on conflict resolution. Courts have an enormous backlog in pending

8See Pavlov (2013), especially Proposition 6 for details on this. Uniqueness of the Nash equilibrium is
discussed in section 4.1.

9In Section 6 we show in an extension that assuming ex-post individual rationally can changes results
arbitrarily little.

10See e.g. Baye, Kovenock, and Vries (1996), Che and Gale (2000), and Ewerhart (2015) for a detailed
discussion.

8



cases. Mainly because of the backlog, the time from filing to trial takes typically more than
two years. Decreasing the number of court cases therefore has a positive effect on caseloads
as well as on possible future conflicting parties and their ability to use the legal system
effectively. Related to that, reducing the backlog is the main goal of ADR in practice: the
success of dispute resolution programs is typically measured in the share of cases settled
(see, e.g., Genn (1998) and Anderson and Pi (2004)). Moreover, the assumption that ADR
minimizes the number of court cases adds to the tractability of the model: contest utilities
are not well behaved in the mediator’s choices. A different objective complicates the analysis
substantially by adding non-convexities to the objective function.

4 Analysis

We proceed with the analysis in several steps. First, we characterize the equilibrium of
the continuation game after on-path breakdown for a given information structure. Next,
we characterize the properties of the continuation game following a misreport during the
reporting stage. Breakdown after a false report essentially produces a situation without
common knowledge of beliefs and provides the deviator with an informational advantage. We
show that all players and types weakly prefer the on-path contest to the deviation contest only
if beliefs are independent of their type reports. The third step is to rewrite the problem to
overcome non-convexities and to make it tractable. Litigation is the only source of screening,
and thus, the mediator is concerned about choosing the optimal information structure post-
breakdown. This determines the solution of the problem up to a constant. We show that this
constant is entirely determined by the fact that the optimal mechanism is budget balanced.
Finally, we characterize the optimal mechanism. We show that it discriminates even between
symmetric players, but involves a type-independent belief structure.

We organize the remainder of this section as follows: for each step we first state its result
and provide an intuition thereafter. Formal proofs are provided in Appendix C.

4.1 Equilibrium Characterization of the Continuation Game

The continuation game after breakdown of mediation is an all-pay contest with type-dependent
probabilities as defined in Section 3.

Let pi(ki|m−i) denote the probability that player i is of type ki, given that player -i
is of type m−i. For readability, we drop the player subscript in the arguments and write
pi(k|m). In contests, the literature typically assumes some form of monotonicity condition
which guarantees that having a low-cost type is desirable for all players. We follow Siegel
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(2014) and call the environment monotone if

pi(k|l)
pi(k|h) >

cl
ch

= 1
κ

∀ i, k. (M)

In what follows, we are going to assume that (M) holds, i.e. we assume that it is optimal
for the mediator to induce post-breakdown belief structures that satisfy (M). In the Ap-
pendix we show that this is indeed optimal even if the mediator could choose non-monotone
environments.11 Further, we assume throughout the paper that the probability that player 1
has low-cost, given player 2 reported low-cost, is weakly larger than the probability that
player 2 has low-cost, given player 1 reported low-cost. Hence, player 1 is the stronger player
in the contest or p1(l|l) ≥ p2(l|l). This assumption is without loss of generality.

Lemma 1. Suppose (M) holds and p1(l|l) ≥ p2(l|l). Then, the all-pay contest has a unique
equilibrium which has the following properties:

• the support of equilibrium strategies of each type is disjoint from but connected to the
other type of the same player,
• the highest score played in equilibrium, ∆l,l, is in the strategy support of any l-type,
• the joint support of player 1’s strategies is (0,∆l,l],
• the joint support of player 2’s strategies is the same as that of player 1 plus an additional
mass point at 0, in case p1(l|k) 6= p2(l|k) for some k,
• both players play mixed strategies with piecewise constant densities on at most three
subintervals of (0,∆l,l].

s
b m t

type h type l

type h type l

Player 2

Player 1

0 ∆h,h ∆l,h ∆l,l

Figure 1: Strategy support of player 1 and 2 with type-dependent priors.

The Lemma is a direct application of Siegel (2014) to our setting. Figure 1 summarizes
the equilibrium strategies. The horizontal axis depicts the score s. The dark-red and the
light-blue line denote equilibrium strategy support for both players if player 1 is more likely
to have low-cost. Player 1 (dark-red line at the top), type h (dashed part), is indifferent

11Siegel (2014) shows that in principle little can be said if (M) is violated. In our setting, the mediator can
only induces Bayes’ plausible belief structures. Thus, it is actually possible to characterize the non-monotonic
equilibria explicitly. We characterize them in the Appendix C.12.
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for all scores on the bottom interval b from 0 up to and including ∆h,h. This is the lower
bound for the score of 1l (solid part) who is indifferent on all scores on intervals m and t

up to and including ∆l,l given the strategy of player 2. Player 2h (light-blue dashed line at
the bottom) is indifferent between a score of 0 (indicated by the dot) and on intervals b and
m up to and including ∆l,h. Player 2l is indifferent on interval t. If players become ex-ante
symmetric, interval m vanishes, the mass point at 0 disappears, and strategies become fully
symmetric.

There are no pure-strategy equilibria: whenever one player scores on a singleton only, it
is either optimal to marginally overscore this value or to score 0 instead. There are several
relevant properties of this mixed-strategy equilibrium. First, the highest score obtained by
both players is the same. If one player was to strictly overscore her opponent, she could
always deviate by reducing her score to the highest possible score of her opponent. Such a
deviation does not reduce the probability of winning, but reduces the cost of the score.

Second, choices in all-pay contests are similar to strategic complements: whenever the
likelihood of player 1l increases, player 2l reacts by scoring more aggressively. As l-types
share the upper bound in their strategies, 2l has a higher average score than player 1l.

Third, for every information structure at least one h-type player receives 0-utility in
expectations. This player is always the ex-ante weakest player-type combination, here
player 2h. If this is not the case, no player would score exactly 0 with positive proba-
bility. But then, whatever the lower bound of the joint support, scoring at this lower bound
yields a negative utility, which can always be avoided by deviating to a score of 0.

If player 2h has a mass point at 0, player 1h receives strictly positive utility as every
score arbitrarily close to 0 guarantees her to win if player 2h decides to score 0.

Overall, the equilibrium actions in the all-pay contest depend on the belief about both the
opponent’s type, and the opponent’s action, where the latter is a function of the opponent’s
beliefs. Thus, expected utilities depend on the entire belief structure. The following corollary
to Lemma 1 defines the expected contest utilities in closed form.

Corollary 1. Under the assumptions of Lemma 1, and pi(l|k) > 0, the expected contest
utilities are

U1(l) = U2(l) = 1− cl ∆l,l > 0,

U1(h) = p2(h|h)F2,h(0), (U)

U2(h) = 0.

Moreover, utilities are linear in beliefs, if beliefs are type-independent. If beliefs are symmet-
ric, F2,h(0) = 0.
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The utility of the low-cost types is a direct consequence of the common highest score.
Both players win with probability 1 if they score at ∆l,l and have cost cl∆l,l. On all other
scores in their support they must be indifferent. The utility of the high-cost type of player 1
is derived as she always wins against those high-cost types that score 0 even if she scores
arbitrarily close to 0. High-cost types of player 2 score 0 with probability F2,h(0) which gives
them utility 0. If beliefs become type-independent, that is pi(l|l) = pi(l|h), the upper bound,
∆l,l, and the mass on 0, F2,h(0), is linear in beliefs. If beliefs are symmetric between players,
that is p1(l|k) = p2(l|k), the mass point on 0, F2,h(0) = 0 and U1(h) = 0.

4.2 Deviator Payoffs in the Continuation Game

As players in our model differ only with respect to their cost in the contest, it is important
for incentive compatibility to characterize the post-deviation continuation game. It needs
to be assessed how players’ actions and utilities change in case of breakdown conditional on
a false report during the reporting stage. A false report introduces non-common knowledge
of beliefs between the players. The deviating player knows about her deviation and assigns
correct beliefs to her opponent. The non-deviating player and the mediator, on the other
hand, are unaware of the deviation and incorrectly predict the deviator’s beliefs. The wrong
prediction affects actions, expected contest utilities, and thus incentive compatibility.12

Lemma 2. Assume (M) and p1(l|l) ≥ p2(l|l) > 0. All player-type combinations but player 1h
are weakly better off in their respective deviation contest. Player 1h is strictly worse off in
the deviation contest if and only if the probability of facing a high-cost type in her deviation
contest is strictly smaller than in her on-path contest.

Lemma 3. Assume (M) and p1(l|l) ≥ p2(l|l) > 0. Then, exactly one type of each player is
strictly better off in the deviation contest than in the on-path contest if and only if the beliefs
the player holds are not type-independent. If beliefs are type-independent, no player is better
off in the deviation contest.

Lemmas 2 and 3 state that the only situation in which no player-type prefers the deviation
contest to the on-path contest is when beliefs, pi(l|m), are independent of the reported
type m. To understand the intuition, let us first define the two types of contest.

Definition 1. On-path contest: the contest is called on-path contest if the belief structure
is such that any player i, type k, holds belief p−i(l|k) about player −i. Further, the belief
that each player and type holds is common knowledge.

12The deviator of course correctly predicts the wrong prediction of the non-deviator, and so on.
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Definition 2. Deviation contest: the contest is called deviation contest of player ik if
player i, type k holds a belief p−i(l|¬k) that is the same belief that player i, who is not
k, holds on-path. This belief is called the deviator’s belief. Player −i, however, holds her
on-path belief pi(l|k) about player i. Thus, generically, there is no common knowledge of
beliefs in this contest.

A direct consequence of non-common knowledge of beliefs is that the deviating player is
no longer indifferent between several scores. The non-deviating player chooses her strategy
to make an on-path opponent indifferent on some interval. The deviator, however, has a
different belief about the non-deviator than the on-path opponent and is thus not indifferent
as second-order beliefs differ. Decisions are similar to strategic complements, such that a
too aggressive choice of the non-deviator leads the deviator to pick an aggressive response.
If the choice is too soft, the deviator picks a soft response. The best response is generically
a singleton.

s
b m t

type h type l

Optimal strategy
of player 2l

after report h

Optimal strategy
of player 2h
after report l

Player 1

0
∆h,h ∆l,h ∆l,l

Figure 2: Optimal behavior in the deviation contest of player 2 if p1(l|h) > p1(l|l). Notice that the
deviation strategies are conditional on 2l reporting h and 2h reporting l without player 1 noticing.

Figure 2 illustrates the optimal strategies for player 2’s deviation contest in case it is
more likely that l-types appear after an h-report, i.e. p1(l|h) > p1(l|l). The horizontal
axis describes the scores, the dark-red line the strategy of player 1, which is the same as in
equilibrium. The light-blue, dashed arrow points to the unique best response of player 2h
who reported l, the solid arrow to that of player 2l who reported h.

If the probability that the opponent has low cost is larger in the deviation contest, the
deviating l-type decides to score more aggressively. By the common upper bound in the
strategy support, scoring above the highest score, ∆l,l, is never beneficial. Thus, her optimal
strategy in the deviation contest is to score at ∆l,l and to win with probability 1, if she is
more likely to meet an l-type. Therefore, her utility is the same as on path, where she wins
with probability 1 at a score ∆l,l which is part of her equilibrium strategy.

Whenever reporting h increases the likelihood to meet an l-type opponent for player 2,
reporting l must increase the likelihood to meet an h-type, i.e. p1(h|l) > p1(h|h). Similar to
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the case of 2l, a deviation by 2h makes her increase the score against an h-type (interval b
in Figure 2), but decrease it against an l-type (interval m in Figure 2), since those occur less
likely. Thus, her optimal response is ∆h,h which leads to a win against all h-types. High-cost
types occur with higher probability as p1(h|l) > p1(h|h), and hence, 2h prefers the deviation
contest to the on-path contest.

Low-cost players are never worse off in the deviation contest, as they can always score at
the top. Moreover, player 2h is not worse off either as she can secure her on-path utility of
0. The only player that can be worse off in the deviation contest is player 1h, if she expects
to meet less 2h. She then softens her bid to 0 and wins by the tiebreaker but suffers from
the low probability of meeting 2h.

Having discussed both on-path and post-deviation behavior in the continuation game,
we shorten notation and use Ui(k|m) to describe the expected utility that player i, type k
enjoys in the contest stage if she reported to be type m and behaves optimally thereafter.

4.3 Rewriting the Problem

We now turn to the problem of the designer. Note that the problem is highly non-convex
and standard techniques do not apply. To be able to characterize the solution we need to
transform it to a tractable problem. We do so in several steps. As the transformation is a
series of technical issues we proceed as follows. First, we state the proposition describing
the reformulated problem. Second, we state the original problem. Third, we provide a brief,
non-technical comment on each transformation step in the main text. We refer the inter-
ested reader to Appendix A for the corresponding detailed description of the transformation
including the intermediate lemmas.

Proposition 1. Any ex-post implementable, individually feasible and incentive compatible
solution to

min
P
Pr(Γ) = min

P
R(P )γ∗(P ) (P1’)

is also a solution to the mediator’s problem if and only if γ∗(P ) ≤ 1, where R(P ) =
Pr(Γ)/γ(l, l).

The proposition states that an equivalent formulation of the mediator’s problem exists. In
it, she optimizes over the set of breakdown beliefs, P = {p1(l|l), p2(l|l), p1(l|h)}, instead of the
set of shares and breakdown probabilities, X = (G,X1, X2). The remaining breakdown belief
about player 2, p2(l|h), is implicitly defined by P and Bayes’ rule. The rewritten problem
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comes at the cost of two additional, technical constraints, namely ex-post implementability
and individual feasibility. We are going to discuss these constraints below.
The Original Problem of the Mediator. As the mechanism needs to pass a ratification
stage it is not necessarily without loss of generality to assume full participation. Given the
payoff structure of the litigation game, however, we can use a result of Celik and Peters
(2011) to conclude that full participation is indeed optimal in our setting, the corresponding
lemma stating this result is included in Appendix A. Given full participation, the mediator’s
problem is

min
X

Pr(Γ) = min
X

(
p, (1− p)

)
·G ·

 p

(1− p),

 (P1)

subject to the following sets of constraints for all i ∈ {1, 2} and k,m ∈ {l, h}

Πi(k|k) ≥ Vi(k), (PCk
i )

Πi(k|k) ≥ Πi(k|m), (ICk
i )

x1(k1, k2) + x2(k1, k2) ≤ 1, xi(k1, k2) ≥ 0,

0 ≤ γ(k1, k2) ≤ 1,

where Πi(k|m) describes the expected total payoff of a participating player i, type k given
she reports m. Vi(k) describes the value of vetoing the mechanism for player i, type k.
The first set of constraints are participation constraints, (PCk

i ), indicating that each player
and type should prefer to participate in ADR over vetoing. The second set, the incentive
compatibility constraints (ICk

i ), state that it is optimal for each agent to announce her
true type. The third set of constraints prohibits additional payments by the agents or the
mechanism and ensures a balanced budget. Finally, the last set of constraints ensures that
breakdown probabilities are between 0 and 1.

Value of vetoing. To determine the outside option we need to define the equilibrium
of the litigation game after a veto by either of the parties in the ratification stage. High-
cost types do not receive any payoff after a veto and are thus always at least indifferent
to participate in ADR. Low-cost types’ value of vetoing depends on the choice of beliefs
after vetoing. In our case any choice of these off-path beliefs after vetoing which satisfy the
intuitive criterion leads to the same value of vetoing: the expected litigation payoff under
the prior p.13

Whenever the value of vetoing is smaller than 1/2 for low-cost types, however, the me-
13This is a direct consequence of the low-cost types’ contest utilities being a function of the weaker players’

probability to have low-cost in case of type-independent beliefs. Any deviation belief satisfying the intuitive
criterion, makes the non-deviating player the weaker one. Thus, the relevant belief remains constant at p.
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diator could offer parties a sharing rule of (1/2, 1/2) for each type-realization and settle all
cases. To make the problem interesting we make the following assumption.

Assumption 1. The low-cost types’ value of vetoing is strictly above 1/2.

Assumption 1 translates into the following condition on parameters: κ > (2− 2p)/(1− 2p).
Expected payoff. The expected payoff from participation, Π1(k|m), has two com-

ponents: the expected value of successful settlement and the expected value of mediation
breakdown and subsequent litigation. Thus,

Πi(k|m) = zi(m) + γi(m)Ui(k|m), (1)

where messagem leads to a value of settlement, zi(m), and a value of breakdown γi(m)U1(k|m).
The expected contest probability, γi(m), is a convex combination of the breakdown proba-
bilities conditional on the opponents type

γ1(m) = pγ(m, l) + (1− p)γ(m,h),

the value of settlement is a convex combination of realized shares and settlement probabilities

z1(m) = p(1− γ(m, l))x1(m, l) + (1− p)(1− γ(m,h))x1(m,h),

and analogously for player 2. Equation (1) shows how optimal mediation relies on the litiga-
tion game. While the value of settlement, zi, is similar to transfers in standard mechanism
design, the utility of the contest continuation game is the screening device.
Step 1: Reduced-Form Problem à la Border (2007). In this step we make use of a pro-
cedure introduced by Border (2007) to reduce the problem from realized values to expected
values. The reduced form problem has the advantage that the exact composition of the set-
tlement shares, Xi, becomes irrelevant and we can use the settlement values, zi(·), directly
as choice variables. To ensure a feasible Xi, reducing the problem introduces two additional
constraints: an individual feasibility constraint, (IF ), and an ex-post implementability con-
straint, (EPI). The first constraint states that each player cannot get more than the whole
good in case of settlement. The second constraint guarantees that the total amount of value
distributed to a given type-profile does not exceed the total probability of any of the types
within that profile occurring.
Step 2: Backing out Expected Settlement Shares. In the second step, we make use of
the fact that we can assume without loss of generality that both the high-cost types’ incentive
compatibility constraints and the low-cost types’ participation constraints are binding. The
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latter follows naturally from the values of vetoing, that is the fact that low-cost types need
to be compensated to take part in ADR. Binding incentive compatibility for high-cost types
follows from their low expected payoff in litigation: it provides an incentive to mimic low-
cost types to get their settlement value. The binding constraints allow us to eliminate all
settlement values, as they can be expressed in terms of breakdown valuations.
Step 3: From Breakdown Probabilities to Breakdown Beliefs. This step uses that
breakdown beliefs are homogeneous of degree 0 with respect to the set of breakdown prob-
abilities, G by Bayes’ rule. Thus, the set of breakdown beliefs defines the set of breakdown
probabilities up to a constant. We choose this constant to be γ(l, l) such that all other break-
down probabilities are defined relative to γ(l, l). This allows us to eliminate all breakdown
probabilities but γ(l, l), and replace them by breakdown beliefs.
Step 4: Eliminate γ(l, l) via expected feasibility. The final step is to eliminate γ(l, l).
We use the fact an ex-ante feasible settlement rule is a necessary condition for individual
feasibility, (IF ). All expected breakdown probabilities increase linearly in γ(l, l) by Step 3.
Therefore, the mediator wants to set γ(l, l) as low as possible, as long as the problem remains
feasible in expectation. This introduces an equality constraints γ(l, l) = γ∗(P ) by which we
replace γ(l, l). The additional constraint γ∗ ≤ 1 ensures that γ(l, l) remains a probability.
This concludes the rewriting of the problem.

4.4 Optimal ADR-Mechanism

Having established the reduced problem (P1’), which is a problem of three choice variables
only, we can now state the main result:

Theorem 1. Suppose Assumption 1 holds. Then, any optimal mediation protocol has the
following properties:

• on-path breakdown beliefs are type-independent, that is for any i it holds that pi(l|l) =
pi(l|h) =: ρi,
• on-path breakdown beliefs are asymmetric, that is ρi 6= ρ−i,
• both player’s on-path breakdown belief is weakly larger than the prior, that is ρi ≥ p ∀i,
• all type profiles {k1, k2} have a breakdown probability that is strictly positive.

Theorem 1 states that, independent of the primitives, any optimal protocol induces an
information structure that is report-independent. In addition, although parties start per-
fectly symmetric, the mediation protocol should always be set up asymmetrically. At the
same time the ADR protocol ensures that both parties appear to be at least as strong after
mediation breakdown as they appeared before mediation. Therefore, the fraction of low-cost
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types is at least as high in a post-mediation contest as before the start of the game. Finally,
the mediator needs to ensure that in principle any type profile can lead to a breakdown of
mediation to get the above mentioned features.

To build intuition we organize the remainder of the section as follows. We first discuss
the optimal solution to (P1’) ignoring (IC l

i) and γ∗(P ). We then reintroduce (IC l
i) and

later γ∗(P ) ≤ 1. Finally, we verify that the solution is implementable in the sense of Border
(2007).

Recall that the assumption of player 1 appearing weakly stronger in the contest implies
the following expected litigation utilities of the high-types: U2(h|h) = 0 and U1(h|h) ≥ 0
with strict inequality whenever player 1 appears strictly stronger. Further, litigation utilities,
Ui(k|m), depend on breakdown beliefs and all expected breakdown probabilities, γi(m), are
linear in γ(l, l). In addition, the following technical lemma is useful to keep in mind. It
states that whenever it is more likely for player 2 to meet 1l after a report of l, the same is
true for player 1 and vice versa.

Lemma 4. p1(l|l) > p1(l|h)⇔ p2(l|l) > p2(l|h) if pi(l|m) ∈ (0, 1).

Part 1: Neglecting (IC l
i) and γ∗(P ) ≤ 1. First, we want to argue that beliefs are type-

independent. The basic idea is straight-forward: if the mechanism does not allow parties to
influence the opponent’s type distribution in case of breakdown, then there is no incentive for
a false report. Similar to a second price auction, where expected payments are independent
of the type report, the mediator ensures that the type distribution the player faces, and by
that her contest utility, is independent of her type report.

Proposition 1 states a problem with the three breakdown beliefs, p1(l|l), p2(l|l), p1(l|h) as
choice variables. Given Lemma 4 we can fix p2(l|l) and p1(l|h) for the upcoming argument
and concentrate on p1(l|l) without loss of generality.

As the mediator cannot achieve full settlement by the participation constraint of the
low-cost types and the high-cost types’ desire to mimic them, she needs to strategically fail
mediation to screen types. High-cost types need to be present in the contest to guarantee
some utility for the low-cost player and to match her participation constraint. However,
the high-cost players should have an incentive to avoid the contest to report truthfully.
Thus, the probability of a high-cost player meeting another high-cost player after mediation
breakdown, pi(h|h), should be smaller than the ex-ante probability of a high-cost type, 1−p.
Without a belief dependent outside option this effect typically drives pi(l|h) to 1 as in e.g.
Hörner, Morelli, and Squintani (2015).

There is, however, a second, non-standard effect, changing utilities after breakdown. If
breakdown is informative, i.e. pi(l|l) 6= pi(l|h), the expected utility in the deviation contest
might differ from the expected utility in the on-path contest.
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Recall from Lemmas 2 and 3 that Ui(h|l) > Ui(h|h) whenever it is more likely to meet a
low-cost type under truth-telling than under deviation, that is whenever

pi(h|h) < pi(h|l)⇔ p1(l|l) < p1(l|h),

due to the information advantage effect in the contest. This advantage vanishes as p1(l|l)→
p1(l|h). If p1(l|l) increases further, player 2 receives no utility in the contest and therefore
also no marginal breakdown utility from lying. Player 1, on the other hand, actually starts
gaining utility again, as an intimidation effect becomes dominant. Player 1 appears to be
much stronger in expectation than player 2. Thus, player 2 invests less into the contest
which increases player 1’s utility. Therefore, both deviation utilities have a minimum at
type-independent beliefs.

Deviation utilities have a kink at type-independent beliefs by the all-pay contest assump-
tion. The kink is a direct consequence of Lemma 3 as deviating high-cost players are only
indifferent for type-independent beliefs. High-cost types score at the upper end of their
on-path equilibrium strategy set for lower values of p1(l|l) and at the lower end for higher
values of p1(l|l). Hence, for type-independent beliefs their utilities are non-differentiable and
obtain a minimum. The left panel of Figure 3 plots the deviation utilities as a function of
p1(l|l).

Expected Utility in Deviation Contest

p1(l|l)

U

0
1p2(l|l) p1(l|h)

U1(h|l)

U2(h|l)

U1(h|h)

Marginal Breakdown Value of Lying

p1(l|l)

U

0
1p2(l|l) p1(l|h)

γ1(l)U1(h|l)− γ1(h)U1(h|h)

γ2(l)U2(h|l)− γ2(h)U2(h|h)

Figure 3: The left panel depicts the high-types deviation utilities as a function of p1(l|l). The right
panel depicts the marginal breakdown-value of lying. Red is for player 1, blue player 3. The gray
line in the right panel is the on-path utility of the high-cost type of player 1.

If we combine the effects on breakdown probabilities γi(m) and contest utilities, we find
that the minimum at type-independent beliefs prevails. The result can best be seen if we
consider the marginal breakdown-value of lying. This breakdown value is the right-hand side
of the following representation of the high-types incentive constraint,(ICh

i ),

zi(h)− zi(l) = γi(l)Ui(h|l)− γi(h)Ui(h|h).
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The left hand side can be interpreted as the marginal settlement value of truth-telling which
matches the right hand side being the marginal breakdown value of lying. The right panel
of Figure 3 displays the marginal breakdown value of lying and illustrates how the minimum
property prevails and type-independent beliefs are optimal. We can thus simplify notation
and define ρi to be the probability that player i is the low-type post-mediation.

Having established that beliefs are type-independent we can simplify the analysis using
a corollary to the derivation of the breakdown beliefs.14

Corollary 2. If beliefs are type independent, breakdown probabilities can be simplified to

γi(l) = p

ρ−i
γ(l, l), γi(h) = (1− ρi)

(1− p)
p

ρi
γi(l), P r(Γ) = p2

ρ1ρ2
γ(l, l).

Moreover, Corollary 1 allows us to write contest utilities with type-independent beliefs
as

Ui(l|m) = (1− ρ2)κ− 1
κ

, U1(h|m) = (ρ1 − ρ2)κ− 1
κ

. (2)

These expressions are useful in the argument for asymmetry of the optimal mechanism which
we turn to next. We discuss the general argument non-formally to provide a good under-
standing of the qualitative results. A more detailed and formal analysis is in Appendix B.

The main argument for asymmetry lies in the structure of a contest. A symmetric contest
is expected to be tight: parties expect to be matched with an opponent of similar strength
and the marginal value of investment is high. By contrast, an asymmetric contest appears to
be less tight, and the marginal value of investment is lower for both parties. This imposes an
externality, especially for the high-cost type of the ex-ante stronger player. Her opponent’s
high-cost type is going to increase her investment but remains at a utility of 0 as she is the
weakest of all player-types. Thus, the stronger player’s h-type can reduce the investment and
still has a reasonable chance to win the contest as the opponent believes she likely faces a
low-cost type. This effect can be seen by inspecting equations (2). If we start in a symmetric
setting and unilaterally increase the belief put on player 1, then l-types would not benefit
in terms of expected utilities and neither would 2h. However, player 1h actually achieves a
positive utility in such a case which she would not under symmetry.

Although only concerned about the probability of contest, the optimal ADR-mechanism
uses this property of the underlying game to increase the breakdown utility of one of the
high-cost types. This allows the mediator to reduce the settlement value that needs to be
paid to this player which in turn increases the available resource for settlement. There is,

14To be precise, Corollary 2 is a corollary to Lemma 11 which is stated in Appendix A.
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however, a second effect that limits the extent to which the mediator can use this feature:
as breakdown probabilities are derived in their relative relation to γ(l, l) in problem (P1′),
an increase in ρ1 is effectively a decrease of the breakdown probability of high-cost types of
player 1, γ(h, l) and γ(h, h). This implies, in turn, a decrease in the breakdown probability
for player 2l, γ2(l), according to Corollary 2. While such a decrease has a positive effect
on the objective, Pr(Γ), it also leads to a decrease in player 2’s breakdown utility. Thus,
the mediator would need to increase player 2’s settlement utility. Making the contest less
resource intensive is therefore only optimal up to a certain point. This point balances the
additional resources needed to finance the loss for player 2l and the gain from making the
contest less resource-intensive. A similar argument is true for the other player-types.

To see the aggregate effect consider the expected settlement share paid to player i, zi.
The expected settlement share is a convex combination of the settlement share paid to the
l-type to ensure participation and the settlement share paid to the h-type to ensure incentive
compatibility. The shares are given by

z2 = V (l)− 1− ρ2

ρ1

κ− 1
κ

pγ(l, l)

z1 = V (l)− 1− ρ1

ρ2

κ− 1
κ

pγ(l, l)︸ ︷︷ ︸
symmetric part

+ ( p
ρ1
− p

ρ2
)κ− 1

κ
pγ(l, l)κ.︸ ︷︷ ︸

asymmetric part

The first part in z1 is present in the symmetric case, too, while the second vanishes. Without
the second part z1 would be the anti-symmetric version of z2 which would lead to endogenous
symmetry. However, the second part provides a clear incentive for asymmetry driven by
U1(h|h).15 An increase in ρ2 requires more resources to compensate the players than an
increase in ρ1. Thus, the optimal choice involves ρ1 > ρ2 , that is player 1 appears relatively
stronger in the contest. Finally, notice that the asymmetric part is always negative and
thus, some asymmetry always saves resources. The next lemma states the findings up to this
point.

Lemma 5. Ignoring (IC l
i), (IF ), (EPI) and γ(l, l) ≤ 1, and assuming that ρ1 ≥ ρ2, the

unconstrained optimum of (P1’) is achieved at

ρ∗1 = 1 + p

2 ρ∗2 = 1− p
2 .

Moreover, the optimal breakdown belief ρ∗i is independent of the opponents breakdown belief
ρ−i.

15Notice that this part can also be written as −Pr(Γ)U(h|h).
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Part 2: Reintroducing (IC l
i). Next, we reintroduce the low-cost type’s incentive com-

patibility constraint, (IC l
i). For type-independent beliefs and with (ICh

i ) satisfied this boils
down to (

γi(l)− γi(h)
)
Ui(h|h) ≤

(
γi(l)− γi(h)

)
U(l|l). (3)

A sufficient condition for this to hold is γi(l) ≥ γi(h), as U(l|l) ≥ Ui(h|h) by construction.
For player 2 it is also necessary since U2(h|h) = 0. Using Corollary 2, γi(l) ≥ γi(h) is
equivalent to ρ2 ≥ p. Intuitively the reasoning is straightforward: suppose ρ2 ≤ p. The
likelihood of breakdown must be larger when reporting to be an h type. By (ICh

2 ), the value
of settlement, z2(l) = z2(h), is independent of the report and the low-cost type prefers to
be sent to contest more often and would misreport. Thus, incentive compatibility requires
ρ2 ≥ p.

Taking into account the results from Lemma 5, this means that (IC l
i) is violated whenever

(1− p)/2 < p which holds if and only if p > 1/3. Note further that ρ∗1 > p for all p and thus,
(IC l

1) never binds. As the optimal ρi does not depend on ρ−i, we get the following lemma.

Lemma 6. Ignoring (EPI) and γ∗(P ) ≤ 1, and assuming that ρ1 ≥ ρ2, (IC l
i) binds for

player 2 if and only if p ≥ 1/3. In this case the constrained optimum is achieved at

• ρ∗1 = 1+p
2

• ρ∗2 = p.

Lemma 6 states that the probability of breakdown for low-types is larger than the proba-
bility of breakdown for high-types, i.e. γi(l) ≥ γi(h). In such a case one individual feasibility,
(EPI), which is one of the two constraints coming from the reduced form, is always satisfied.
Appendix C.4.2 provides details on this.
Part 3: Full model. So far we have ignored that the scaling parameter γ∗ is in fact always
equal to the probability of breakdown for two low-cost types, γ(l, l), in the original problem.
Thus, we need to ensure that γ∗ ∈ [0, 1] to guarantee that γ(l, l) remains a probability.

Whenever the constraint γ∗(P ) binds, (IC l
i) must hold, too. To see this recall

γi(l) = p

ρ−i
γ(l, l).

To ensure γi(l) ∈ [0, 1] even if γ(l, l) = 1 we need p ≤ ρ−i. Such a high post-breakdown belief
ensures incentive compatibility by Lemma 6. If the ex-ante probability of low-cost types is
high enough for (IC l

i) to bind, the scaling parameter γ∗(P ) < 1. Thus, γ∗ ≤ 1 does not
change the results of Lemma 6. Next, recall that

γ∗(P ) = ν

Q(P )−R(P ) ,
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such that γ∗ is increasing in ν for any P . The value of ν, in turn, is large for small p and
large κ. Therefore, the solution computed in Lemma 5 violates γ∗ ≤ 1 if cost difference
between low-cost and high-cost types are high, or the probability to have high-cost is small.

To compensate this, the mediator can decrease either ρi. As in the discussion of Lemma 5
such an operation increases the resources available for distribution in settlements and allows
to reduce γ∗.

Given small values of the prior, p, the optimal breakdown belief ρi without considering
the γ∗-constraint is strictly larger than p, and thus the mediator reduces both beliefs, ρ1 and
ρ2, simultaneously up to the point at which one equals the prior, i.e. ρ2 = p. If this does
not suffice to make γ(l, l) feasible, the mediator decreases the belief on player 1, ρ1, further
until γ∗(P ) = 1. It turns out that the remaining Border-constraint, (EPI), holds at any
such point and ex-post implementation is thus possible. Combining all results allows us to
make a statement about any set of parameters, κ and p. The characterization is given in the
next lemma which concludes the argument for Theorem 1.

Lemma 7. Consider without loss of generality only ρ1 ≥ ρ2. Fix some κ such that assump-
tion 1 holds. Then there are three cutoff values p′, p′′ and p′′′ such that the optimum of the
minimization problem is either 0 or satisfies

• (IC l
2) and therefore ρ2 = p with equality only if p /∈ (p′, p′′′),

• γ(l, l) ≤ 1 with equality only if p ≤ p′′,
• 2p < ρ1 ≤ (1 + p)/2 where the last holds with equality only if p ≥ p′′.

The cutoffs are given by:

p′ = 1
6(κ− 1)

(
κ− 8 +

√
28− 4κ+ κ2

)
,

p′′ = 1
2 + 3κ

(
2(κ− 1)−

√
8− 4κ+ κ2

)
,

p′′′ = 1
3 .

The cutoffs describe the main characteristic of the optimum. For low p the mediator offers
low-cost types a litigation utility post breakdown which is smaller than their value of vetoing,
i.e. ρ2 > p. To do this l-types need a high enough settlement share which the mediator
finances by reducing the overall breakdown probability by increasing γ∗. However, for very
low p not even γ∗ = 1 suffices as V (l) is too high. To account for the constraint, the mediator
decreases both breakdown probabilities, ρ2 and ρ1. However, ρ2 cannot fall below p as this
would violate both (IC l

2) and γi(k) ≤ 1. Thus, for very low p, the mediator chooses ρ2 = p

and adjusts ρ1 accordingly.
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Figure 4: Ex-ante probability of the contest as a function of p (left panel) and κ (right panel). The
dashed line describes the situation of the unconstraint problem (P1′) as in Lemma 5. The green
solid line corresponds to Lemma 6. All solid lines together display the result of Lemma 7.

As the prior p increases, the solution ρ2 increases, too, and ρ2 ≥ p does not bind anymore.
The resource constraint, γ∗ ≤ 1, however, still does. If p is larger than p′′, the solution of
Lemma 5 can be implemented directly. For p > 1/3, on the other hand, low-cost types of
player 2 have an incentive to misreport given the protocol from Lemma 5 which means that
(IC l

2) binds and the belief on player 2 is set to the prior, ρ2 = p. The left panel of Figure 4
illustrates the findings. The dashed line plots the optimal protocol according to Lemma 5
whereas the solid line is the full model.

5 Discussion of the Results

Comparative Statics. Figure 4 depicts the probability of litigation under the optimal
mechanism both as a function of the prior, p (left panel), and as a function of the distance
between low and high cost, κ (right panel). The different colors indicate the different regimes
as discussed in Lemma 7. Red and blue (for p < p′′) denote the areas in which the resource
constraint, γ∗ ≤ 1, binds; green (to the right of p′′′) is the area in which 2l’s incentive con-
straint binds and black is the area in which (P1′) is solved “unconditionally” as in Lemma 5.
p0 indicates the point at which Assumption 1 starts to fail and the mediator achieves full
settlement for p > p0. For comparison, the dotted line depicts the solution ignoring (IC l

i)
and γ∗ ≤ 1.

As expected, the probability of litigation increases in the distance between high-costs
and low-costs. As the low-cost type’s cost advantage increases, it becomes more expensive
to compensate her for participation and thus the mediator initiates breakdown more often.
The relationship with respect to the prior is non-monotone. When chances to meet a low-
cost type are small, litigation can effectively be avoided. Although low cost types require a
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large compensation for a settlement, the mediator can grant this as she needs to pay this
compensation seldom. As the ex-ante probability of low-cost types increases the mediator
must pay the compensation more often, but at the same time the amount decreases. The
result is an inverse U-shaped relationship between the prior and the probability of litigation.

In addition, comparative statics show that ADR is a very effective tool. In our setup the
mediator can settle the majority of the cases for any set of parameters, p and κ. The next
proposition summarizes these findings.

Proposition 2. Under the optimal mediation protocol, the ex-ante probability of breakdown
is never greater than 1/2. Moreover, the probability of breakdown is increasing and concave
in κ while it takes the form of an inverse U-shape in p.

Next, we want to discuss how the asymmetry translates to the different outcome variables.
A first result is straightforward and a direct consequence of Theorem 1: low cost types
experience breakdown more often than high-cost types. Moreover, player 1l is sent to court
more often than player 2l as the belief on player 1 is larger than on player 2. Since the
participation constraint binds, both low-cost type players experience the same utility in
expectations. However, the contest utility is the same for both low-cost types and smaller
than the value of vetoing, V (l), as low-cost types are more likely after breakdown than in
the initial population. Thus, player 2l, who is sent to court less often, receives a smaller
expected share than player 1l. For high-cost types the intuition is the other way around.
Player 2h, who experiences no utility in contest post-mediation, is compensated with a larger
amount than 1h. The next proposition states that this is the case for all parameter values.
Thus, player 1, who is stronger in the contest, expects a less favorable settlement contract
than player 2 who, in turn, faces a more difficult task to win the litigation process after
breakdown.

Proposition 3. Both the pre-mediation probability of being sent to court during mediation
and the expected share conditional on settlement are largest for player 1l and smallest for
player 1h.

Figure 5 illustrates the results of Proposition 3 as a function of the prior distribution. The
left panel (a) describes breakdown utilities, the middle panel (b) expected shares conditional
on settlement, xi(m) ≡ zi(m)/(1− γi(m)), and the right panel (c) the settlement valuation.
Dark-red lines are for player 1 and light-blue lines for player 2. Dashed lines indicate high-
cost types, solid lines indicate low-cost types. The linear, gray, dotted line in panel (b)
denotes the value of vetoing for the l-type, V (l).

If the probability of low-cost types is very small, the mediator sends one of the two low-
cost types to litigation with certainty to ensure that the resource constraint holds. As the
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(a) Breakdown Probab. by Type (b) Expeceted Share by Type (c) Settlement Valuation by Type

Figure 5: (a) Expected Contest Probability, (b) Expected Share conditional on settlement taking
place, and (c) Valuation of Settlement by player-type as a function of the ex-ante probability of
being a low-cost type. Solid lines depict low-cost types, dashed lines depict high-cost types. Dark-red
is player 1 and light-blue is player 2. The dotted gray line in (b) is the value of vetoing for low-cost
type players. In (c), player 2h has the same settlement value as 2l by incentive compatibility.

probability of low-cost players increases, the pressure from the resource constraint relaxes
as compensation for low-cost types declines. The mediator thus wishes to implement a less
asymmetric solution. As p increases further, the mediator can in fact reduce the probability
of litigation for all types up to the point where Assumption 1 seizes to hold and the problem
therefore becomes trivial.

Another feature of our model is that we are able to evaluate the consequences of the
mediation decision on the litigation process. As litigation in our model is a strategic game
with actions that depend both on first and second order beliefs, we should not expect players
to play the same strategies as in litigation without a preceding mediation stage. Indeed the
mediation attempt changes the belief structure of the opposing parties in two ways: (1) it
increases the likelihood for both players to meet a low-cost type in court and (2) it introduces
an asymmetry that makes player 1 more likely to be the low-cost type than player 2.

The first effect clearly makes competition more intense as litigants are afraid that the
opponent can and will produce good evidence. The second effect works in the other direction,
since the high-cost type of player 2 has little chance of winning in court. She refuses to
compete at all from time to time and gives away the good for free. The second effect exceeds
the first, if player 2’s likelihood of being the low type is the same as the prior, that is if
ρ2 = p or p 6= (p′, p′′′). In such a case the incentive to downsize investment in evidence due
to the asymmetry between players always supersedes the incentive to increase investment
in evidence due to the higher probability of low-cost types and we would see lower legal
expenditure post-mediation.

Proposition 4. Assume parameters are such that p < p′ or p > p′′′. Then, the sum of ex-
pected legal expenditures after breakdown never exceeds the sum of expected legal expenditures
if mediation did not exist.

26



Outside this range no clear statement can be made other than that for any κ there exists
a possibly empty interval (p̂, p̌), with p̂ ≥ p′ and p̌ ≤ p′′′. Only in this interval, the expected
legal expenditure after breakdown is higher than without mediation.

6 Extensions

Pre-trial Bargaining. The traditional law and economics literature focuses mainly on
bilateral settlement negotiations. Typically, these bargains are modeled as a simple take-it-
or-leave it bargaining game (Schweizer, 1989; Shavell, 1995; Posner, 1996). For illustration
assume the following bargaining procedure close to Schweizer (1989): one player (Sender)
makes a take-it-or-leave-it offer to the other player (Receiver) who decides whether to accept
or reject the offer. Upon rejection both players update their beliefs and proceed to litigation.

To compare our results, notice first that by the revelation principle and Lemma 8, the
equilibrium rejection channel is absent. Pre-trial negotiations thus cannot out-perform the
result of the mechanism.

As in the mediation mechanism, off-path beliefs play a crucial role in the bargaining
game. The actions in the contest are based on the belief structure as discussed above.

The solution concept of perfect Bayesian Nash equilibrium allows to freely choose beliefs
put on the deviator at the first node of deviation, but requires Bayes’ rule thereafter. Any
bargaining equilibrium that performs as well as the mediation mechanism replicates outcome
utilities of the mechanism and is furthermore equipped with a set of off-path beliefs that
deter any deviation by any player. It turns out that no off-path belief exists such that the
bargaining can replicate the mediator’s solution as long as Assumption 1 holds.

Proposition 5. Independent of the off-path belief structure, take-it-or-leave-it bargaining
leads to a strictly higher probability of litigation than the optimal mediation mechanism pro-
vided that Assumption 1 holds.

The intuition behind the result is that a low-cost Sender could always profitably deviate
by proposing an arbitrarily small share ε to Receiver. Then, given any belief Receiver holds
after observing this deviation, she either accepts the share which gives Sender a higher utility
than in the optimal mechanism, or rejects the share if she thinks Sender is weak. Assuming
a weak Sender, however, induces her to score softer than in the litigation game under priors.
By strategic complementarity, Sender scores softer as well. But then, Sender expects a higher
utility as winning is less costly. Thus, it is not optimal for a low-cost Sender to reproduce
the outcome of the optimal mechanism: the incentive to deviate from the mechanism leads
to a higher breakdown probability in expectations.
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This shows the importance of a third-party who manages the information flow. With
direct bargaining, Receiver always interprets Sender’s proposal as a signal and Sender cannot
commit to abstain from signaling via her proposal. A neutral third-party can overcome this
adverse selection problem and thus improves upon bilateral negotiations.
Asymmetric Players. Asymmetric players do not change any of the results obtained. The
reason is that the mediator would always treat the ex-ante stronger player as “player 2”, i.e.
the player that gets the better settlement conditions. The ex-ante weaker player accepts a
small settlement share, since she fears a strong opponent in litigation. The weaker player,
however, is compensated for the small share with a favorable contest after breakdown. Thus,
while the ex-ante weaker player is strong post-breakdown, she agrees to settlement-contracts
that favor her opponent. With such a protocol the mediator is still able to solve the majority
of the cases. A key result of our analysis is, however, that we get asymmetric results even
with symmetric players.
Different forms of commitment. So far we have assumed that both players can fully
commit to the proposed mediation protocol. In particular, once the mechanism is accepted,
parties commit to only go back to litigation if the mediator tells them. In reality this
is not always the case. Many jurisdictions demand that parties can unilaterally opt-out
of ADR at any point to return to litigation. We discuss two stages at which parties can
unilaterally decide to break down ADR. The first is a situation in which they can leave after
the mechanism has told players’ their expected share conditional on settlement. We call this
commitment structure post-ADR individual rationality (PAIR). The second commitment
structure is that parties can veto the mechanism after they have learned their realized share
conditional on settlement. We call this ex-post individual rationality (EPIR).

The mediation protocol developed in Section 4 does not directly carry over to PAIR and
EPIR. In fact, given these commitment schemes, the mediator profits from the ability to
communicate to parties even after ADR breaks down. If this is the case, the mediator can
give parties non-binding recommendations for the play of the contest and by that restore
the outcome under full-commitment. The modified game thus follows a slightly enhanced
timeline:

1. the mediator commits to X and recommendation structure Σ; players learn their types,
2. players send a message mi to the mediator,
3. the mediator privately announces a share xi according to X to each player i,
4. players accept/reject the share,
5. players receive a recommendation σi by the mediator,
6. if either of the players rejected her offer, the contest is played under updated beliefs.

Note that since the mediator first observes the behavior of the players with respect to the
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announced share she has the ability to detect a deviation in this stage (other than in the
reporting stage). To restore the result of Section 4 the mediator uses the following slightly
more sophisticated mechanism(s).

To find the optimal PAIR mechanism, we need to define a convex combination of the
protocol derived in Section 4 and its mirror image switching roles of player 1 and 2. Define
X̂λ, a mediation protocol such that Xi applies with probability λ and X−i with probability
(1− λ). Xi denotes a mediation protocol similar to the one discussed in Theorem 1. When
mediation is successful, player i is treated as “player 1”. To trigger litigation in this protocol,
the mediator offers a share of 0 to at least one of the players. This share is going to be rejected
such that parties move to the litigation game.

To ensure EPIR we need that, in addition, the mediator sends both parties to contest
irrespective of their reports with probability ε > 0. Thus, we define X̂ ε

λ to be a mediation
protocol such that with probability ε players are send to court and with probability (1− ε)
the mediator executes X̂λ. This is sufficient to ensure the following two results.

Proposition 6. There exists a signal Σ, such that an incentive compatible PAIR mechanism
(X̂1/2,Σ) has the same breakdown probability Pr(Γ) as the mechanism X under interim
individual rationality.

Proposition 7. For any δ > 0, there exists a signal Σ and an ε > 0, such that an incentive
compatible EPIR mechanism (X̂ ε

1/2,Σ) achieves a breakdown probability Pr(Γ)ε < Pr(Γ) −
δ, where Pr(Γ) is the optimal breakdown probability of the mechanism X under interim
individual rationality.

To gain intuition observe the following. First, with both PAIR and EPIR the mediator
can trigger the play of a contest by offering at least one party an unacceptable share as
rejection leads to contest. Second, the mediator achieves the result by obfuscating two
issues: the role of the player and the relevance of her decision.

The latter derives from the possibility that the mediator wants to trigger contest play and
has offered the player’s opponent an unacceptable share. As both do not know which litigant
takes the role of player 1, and who is offered the trigger share 0, she cannot learn much from
her own offer. As the conditional distribution post-breakdown is on-path revealed via the
signal σ, obfuscation is only payoff relevant in deviation games. Deviation is, however, only
detected by the mediator, not by the non-deviator. Thus, the mediator can react to deviation
by sending the the deviator a signal of a strong non-deviator to punish her. This suffices to
get the same result as under full-commitment.

In the case of EPIR the mediator is more constrained as revealing the ex-post share
xi(k1, k2) to player i allows for more inference by the player. For some parameter values it

29



might be the case that certain constellations do not settle on-path. Thus, the mediator might
have a degenerate belief after some proposed realized shares which makes the procedure of
PAIR impossible. The mediator can use another option instead, though. She can commit
to initiate breakdown for any type-profile with a small probability ε and to send a fully
informative signal thereafter. In such a case both parties can end up with 0 expected utility
after breakdown. If the mediator commits to signal this event to the non-deviator after
any deviation, the non-deviator will always invest an amount large enough to effectively
punish the deviator. As ε→0 the mechanism converges to X̂λ and the resulting probability
of breakdown is arbitrarily close to that of the mechanism described in Theorem 1.

Nonetheless, allowing the types to go back to court after all uncertainty has unraveled
would naturally lead to a different result. Typically however, once a detailed settlement
agreement has been signed by both parties, it is hard to imagine a legal system that allows
parties to overturn this contract simply because they have learned that they might have a
good chance to beat the opponent.

7 Conclusion

In this paper we characterize optimal Alternative Dispute Resolution (ADR) in the shadow
of the court. We show that optimal ADR is always asymmetric and offers one player an
advantage after breakdown and the other one an advantage under settlement. We show that
the optimal information structure post-ADR is completely independent of the players’ report,
but conditions only on their identity. Such a mechanism prevents players from misreporting
to achieve an informational advantage.

We find that a litigation-minimizing ADR-protocol is highly effective and solves the ma-
jority of cases. The effectiveness indicates that mandatory ADR should be considered by
all courts to reduce the prevalent stress on judges and court’s backlog of cases. In addition,
the asymmetry of the optimal mechanism implies that regulators should act carefully when
defining their notion of fairness for mediation protocols. The same holds true for discre-
tionary policies: mediators should always have the possibility to talk to the disputants in
private as this eliminates commitment problems on the disputants side. Finally, we show
that mediators should not be forced to disclose all their information in the event of break-
down. Trust in the mediator’s discretion is an important driving force of the success of a
mechanism.

More broadly, we show that the most important aspect of the optimal ADR-protocol
is the management of the information structure in litigation post-breakdown. The optimal
protocol imposes type-independent beliefs to minimize the potential gain a deviator can
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earn in the litigation game following a misreport. In addition, the protocol is asymmetric to
reduce resource intensity in case of breakdown.

We demonstrate that the standard assumption of fixed, type-dependent outside options
in mechanism design is not innocuous when the following two conditions are satisfied: (1)
the mechanism cannot replace the underlying default game completely and (2) the actions
chosen in the underlying game depend on player’s beliefs. We show that the behavior of
the players in the mechanism and those in the underlying game are interconnected. For
the case of contests, we show that players invest less resources post-breakdown for extreme
type distributions compared to a situation in which no resolution mechanism is present.
For intermediate type-distributions, however, the post-mediation contest can also be more
resource intensive.

Not claiming that the actual ADR-mechanisms we observe in reality are optimal, we
want to note that our findings are in line with some observations on ADR. Its success rates
are beyond 50% across cases and jurisdictions and mediation is considered to be informative
when breaking down. In addition, one reason why mediation is perceived to be successful is
its ability to not rely on publicly observable actions of the mediator, but allowing for private
settlement negotiations.

Our findings provide several interesting directions for future research. First of all, the
assumption that the mechanism designer has full-commitment could be relaxed to allow
for third-party renegotiation. Especially when mediators compete for clients this seems
reasonable. Further, extending the analysis to a setup of more than two players and possibly
correlated types might add several interesting channels to the model. In addition, many
conflicts evolve around a variety of battlefields on different subjects or points in time. If types
are correlated over time this adds an additional signaling dimension which is interesting to
analyze further. Finally, although minimizing court appearances is optimal given the public
good properties of the legal system, it is less clear in other contest situations whether this
is the most suitable objective. Although a richer model is needed to address such issues
properly, we are confident that the results of this papers provide a first step towards analyzing
these problems.
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A Details on Rewriting the Problem
Full Participation. Full participatio is a consequence of the fact that litigation utility is
convex in beliefs and Proposition 2 from Celik and Peters (2011).

Lemma 8. It is without loss of generality to assume full participation in the optimal mech-
anism.

Value of Vetoing. Any off-path belief structure that satisfies the intuitive criterion leads
to a player independent value Vi(k), which is

V (l) = (1− p)κ− 1
κ

, and V (h) = 0.

Given the constant outside option, the channels identified by Celik and Peters (2011) and
Cramton and Palfrey (1995) are not present in our model as off path beliefs are less important.
Reduced Form Problem à la Border (2007). We reduce the problem by replacing
the settlement shares, Xi, by the settlement values, zi. For any given matrix of breakdown
probabilities, G, this reduction is possible if and only if each settlement share is both individ-
ually feasible (condition (F ), below) and ex-post implementable (condition (EPI), below).
The following lemma states these conditions. With some abuse of notation, let p(m) be the
ex-ante probability that player i is of type m, that is p(l) = p and p(h) = 1− p.

Lemma 9. For every message m ∈ {l, h}, let mc :=
{
k ∈ {l, h}|k 6= m

}
, and fix some

feasible G and zi ≥ 0 for every i. Then there exists an ex-post feasible Xi that implements
zi if and only if the following constraints are satisfied:
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• ∀{m,n} ∈ {h, l}2 :
p(m)zi(m) + p(n)z−i(n) ≤ (EPI)

1− Pr(Γ)−
(
1− γ(mc, nc)

)
p(mc)p(nc)

• ∀m ∈ {h, l} and i = 1, 2:
zi(m) ≤ 1− γi(m) (IF )

Moreover, if γi(l) ≥ γi(h) then zi(l) ≤ 1− γi(l) and (IC l
i) imply equation (IF ).

Note that a necessary condition for individual feasibility (IF ) is that it holds in ex-
pectations, that is the weighted sum of settlement values cannot exceed the probability of
successful ADR, ∑

i∈{1,2}

∑
m∈{l,h}

p(m)zi(m) ≤ 1− Pr(Γ). (AF )

The High-Cost’s IC and the Low-Cost’s PC bind. Next, we eliminate all settlement
values with help of the following lemma stating that in the optimal mechanism the high-cost
type’s incentive constraint and the low-cost type’s participation constraint bind for both
players.

Lemma 10. It is without loss of generality to assume that (ICh
i ) and (PC l

i) hold with
equality in the optimal mechanism.

The result is a direct consequence of the different costs. High-cost types care more about
settlement than about breakdown. Thus, incentive compatibility requires a large value of
settlement, zi(h), for them. However, there is no reason for the mediator to set zi(h) too
high, as the h-type would never veto ADR. We can express (ICh

i ) as

zi(h) + γi(h)Ui(h|h) ≥ zi(l) + γi(l)Ui(h|l). (ICh
i )

If this inequality is strict, the mediator can reduce the value of settlement, zi(h), without
affecting the breakdown probability Pr(Γ) or any of the other constraints.

Similarily the mediator can reduce the value of settlement, zi(l), if l-types’ participation
constraint is not binding, as any negative effect on l-types incentive constraint (IC l

i) is of
second order compared to the positive effect on h-types incentive constraint, (ICh

i ). By
readjusting the settlement value for h-types, zi(h), incentive compatibility for both types
can always be guaranteed. The l-types participation constraint is

zi(l) + γi(l)Ui(l|l) ≥ V (l). (PC l
i)

Using (PC l
i), (ICh

i ) and Lemma 10 we can eliminate all settlement values, zi, and express
the result only in terms of breakdown valuations, γi(m)Ui(k|m).
Breakdown Probabilities and Beliefs. Breakdown beliefs pi(l|k) are a result of break-
down probabilities. The belief that player 1 is type l, given 2 reported m is

p1(l|m) = pγ(l,m)
pγ(l,m) + (1− p)γ(h,m) .

Observation 1. Any pi(l|m) is homogeneous of degree 0 in G.
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Thus, any set of beliefs pi(k|m) induced by some G is induced by G′ = αG, too.

Lemma 11. Fix any feasible G with 1 ≥ γ(l, h), γ(h, l), γ(l, l) ≥ 0 and define

qi(m) := p

1− p
1− pi(l|m)
pi(l|m) .

Then the induced information structure P > 0 satisfies:

γ(h, l) = q1(l)γ(l, l) ≤ 1 γ(l, h) = q2(l)γ(l, l) ≤ 1; (C)
γ(h, h) = q2(h)q1(l)γ(l, l) ≤ 1 q2(h)q1(l) = q1(h)q2(l),

where the last equation ensures consistency with the prior. Conversely, for any γ(l, l) ∈ (0, 1]
and P > 0 satisfying (C) there exists a feasible G.

The Fully Reduced Problem. By Lemma 11 all breakdown probabilities are linear in
γ(l, l). If we plug all breakdown probabilities into the aggregate feasibility constraint, (AF ),
we get an expression of the form

2V (l)− γ(l, l)Q(P )︸ ︷︷ ︸
LHS of (AF )

≤ 1− γ(l, l)R(P )︸ ︷︷ ︸
1−Pr(Γ)

. (4)

Assumption 1 implies Q(P ) ≥ R(P ) and we can reformulate

1 ≥ γ(l, l) ≥ ν

Q(P )−R(P ) =: γ∗(P )m, (AF ′)

with ν = 2V (l) − 1 independent of P . Reducing γ(l, l) reduces Pr(Γ). Thus, constraint
(AF ′) binds at the optimum, and γ(l, l) = γ∗(P ). Plugging into Pr(Γ), we get

min
P
R(P )γ∗(P ) (P1’)

subject to the remaining constraints (IC l
i), (IF ), (EPI) and γ∗(P ) ≤ 1 and any solution to

(P1) is also a solution to (P1′).16

B Forces of Asymmetry
We first consider the optimal symmetric mechanism. Notice that the designer of a symmetric
mechanism has only one choice variable ρ̃ := ρ1 = ρ2. In a symmetric mechanism, Corollary 1
holds and any subscripts can be dropped. In combination with type-independent beliefs we
get U(h|h) = U(h|l) = 0. By incentive compatibility, (ICh), settlement values must thus be
equal, i.e. z(l)=z(h)=z. Using the participation constraint, (PC l), the settlement value z
can be expressed as

z = V (l)− γ(l)U(l|l).
16Problem (P1’) is in fact equivalent to problem (P1) whenever P > 0. As every argument is continuous

in P this limitation only becomes relevant once (P1’) has no minimum.
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Ignoring any effect on U(l|l), an increase in ρ̃ increases the settlement-value the mediator
needs to offer. This effect is strengthened as ρ̃ decreases U(l|l). Next, consider the total
resources distributed

2z = 1− Pr(Γ). (AF )

As ρ̃ increases, breakdown decreases and the mediator can distribute more resources in case
of settlement.

Combining the two equations yields

2V (l)− 1︸ ︷︷ ︸
=ν

= 2γ(l)U(l|l)− Pr(Γ). (5)

Using Corollary 2 and (2) we can rewrite equation (5)

ν =γ(l)
(

(1− ρ̃)(κ− 1)
κ

− p

ρ̃

)

⇔ ν =2 γ(l)p
ρ̃︸ ︷︷ ︸

=Pr(Γ)

(
(1− ρ̃)ρ̃

p

(κ− 1)
κ

− 1
)
.

Solving for Pr(Γ) yields

Pr(Γ) = ν

2

(
(1− ρ̃)ρ̃

p

(κ− 1)
κ

− 1
)−1

which is minimized for ρ̃ = 1/2. Thus, the optimal symmetric solution to (P1′) is obtained
for breakdown probability ρ̃ = 1/2.

A symmetric mechanism is, however, never optimal. This follows from the differences in
the resources needed to sustain a certain level of either ρi. First, observe that despite any
asymmetry, (ICh

2 ) still requires that the settlement value of the high type z2(h) = z2(l). As
U2(h|h) = 0, the breakdown value is 0 and expected settlement valuation of player 2 is

z2 := z2(l) = V (l)− γ2(l)U(l|l) = V (l)− (1− ρ2)
ρ1

(κ− 1)
κ

pγ(l, l).

The first equality comes from (PC l
2) and second from the results of Corollary 2 and the

equations in (2).
For player 1, on the other hand the results change more substantially under asymmetry.

Player 1h’s incentive constraint is

z1(h) = z1(l) +
(
γ1(l)− γ1(h)

)
U1(h|h). (ICh

1 )

As U1(h|h) 6= 0 the mediator pays an information rent to player 1 if γi(l) 6= γi(h). Thus, the
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ex-ante expected valuation of player 1 under settlement is

pz1(l)+(1− p)z1(h) = z1(l)+(1− p)
(
γ1(l)− γ1(h)

)
U1(h|h)

= z1(l) + γ1(l)
(

1− p

ρ1

)
U1(h|h) (6)

where the first uses (ICh
1 ) and the second uses Corollary 2 to simplify. Simplifying this using

(PC l
1), (2), and Ui(·, ·) yields

z1 := V (l)−
(

(1− ρ1)
ρ2

)
κ− 1
κ

pγ(l, l)︸ ︷︷ ︸
symmetric part

+
(
p

ρ1
− p

ρ2

)
κ− 1
κ

pγ(l, l)︸ ︷︷ ︸
asymmetric part

.

While the symmetric part is always present, the asymmetric is only non-zero in asymmetric
cases. As ρ1 > ρ2 in such cases the asymmetric part is genereically negative. Marginal effects
on the second part cancel out with those on z2. As the asymmetric part is additive separable
in ρi, the optimum of ρi is independent of the choice of ρ−i.

C Proofs

C.1 Proof of Lemma 1
Proof. The proof is along the lines of Siegel (2014). However, as the proof is instructive and
our setup differs slightly, we spell it out here. We first show that at least one type of one
player has 0 expected utility. Second, we show that at most one type has an atom at 0.
Third, we constructively show that the equilibrium exists and then show that it is indeed
unique given (M). Then we calculate ∆ to state Corollary 1.
Step 1: One player has 0 expected utility and no atoms at positive scores. We
prove this by contradiction. Suppose that both players and both types expect a utility larger
0. That means the smallest score s > 0 in the union of the best-responses of all players wins
the contest with positive probability as otherwise it is no best response. As a result, the
smallest score is an atom in the strategy of at least one type of each player. But then, there
exists an ε in the neighborhood of s such that the probability of winning increases with more
than ε ∗ κcl. Deviating to s+ ε is profitable for that type of player, and thus s cannot be an
atom in her strategy. Therefore, at least one player earns an expected utility of 0 for sure.
Note that this player may very well have an atom at 0 as there is no need to win the good
with positive probability for an atom at 0. However, if both players had a type with an atom
at 0 at least one of them can profitably deviate to a positive neighborhood of 0 winning
against the atom scoring opponent with a probability that exceeds the cost of scoring. Thus,
at most one player has an atom at 0.
Step 2a: Construct the equilibrium. First, consider the following strategy of player
2l: she uniformly mixes on (∆l,h,∆l,l] with density f2,l(t) = cl/p2(l, l). Then, player 1l is
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indifferent between playing any point on s ∈ (∆l,h,∆l,l] as

U1(l, s) = F2(∆l,h) + p2(l|l)(s−∆l,h)
cl

p2(l, l) − cls =

= F2(∆l,h)−∆l,hcl.

We want to construct strategies with constant density and non-overlapping strategies, thus
the length of the top interval L(t) is the solution to

L(t)f2,l(t) = 1.

To make player 2l indifferent as well, player 1l plays a similar strategy only flipping the
probabilities from p1 to p2. As we assumed p1(l|l) ≥ p2(l|l), the mass of player 1l is only
fully exhausted on the top interval iff p1(l|l) = p2(l|l). If this is not the case, player 1 has
some mass left to place. She does so on the middle interval (∆h,h,∆l,h]. For the same reasons
as above, she assigns density f1,l(t) = cl/p1(l|h) to this interval to make player 1h indifferent.

The length of the medium interval can be calculated by acknowledging that player 1l
needs to place all mass available to her and not placed on the top interval on this interval.

By a similar exercise we can find the length of the interval (0,∆h,h) and by this the
absolute values of all ∆.
Step 2b: Show that no (global) deviation is possible. What remains to be shown is
that any player that scoring on more than one interval is in fact indifferent between those
and that no global deviation is possible.

Note that the indifference across intervals follows from the intervals being connected.
Consider for example player 1l. From the above we know that

U1(l, s = ∆l,h) = U1(l, s = ∆l,l)

but also that
U1(l, s = ∆h,h) = U1(l, s = ∆l,h).

Thus, it must be the case that

U1(l, s = ∆h,h) = U1(l, s = ∆l,l).

The same holds true for player 2h. The two other player-type tuples place there scores on
a single interval only. Note that, since player 1h has positive mass only on (0,∆h,h] it can
in fact earn an expected utility greater 0 if and only if player 2h does not enter the auction
with positive probability.

To exclude global deviation observe that player 2h would only deviate to anything on
the interval (∆l,h,∆l,l] if the probability of winning increases faster in the top interval than
in the middle interval, that is the density is smaller in the top interval,

f1,l(m) = cl
p1(l|l) ≥

κcl
p1(l|h) = f1,l(t),

which is ruled out by (M).
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For 1h, the deviation could be made into the middle or the top interval if
κcl

p2(h|h) ≥
cl

p2(h|l) ,

which again is ruled out by monotonicity. As player 1h prefers the bottom interval to
anything in them she must prefer scoring at ∆l,l to ∆h,l. However as player 2h does not prefer
to score at ∆l,l it follows that ∆l,l > 1/κcl. Thus player 1h does not want to deviate. Similar
arguments hold for the second player, such that we can conclude that global deviations are
not beneficial.
Step 3: Uniqueness. For uniqueness observe first that there is only one monotonic equi-
librium, that is an equilibrium such that the lowest score of player i, type l, is weakly above
the highest score of player i, type h. This follows directly from the equilibrium construction.

Second, we need to show that no non-monotonic equilibrium exists. We do so by contra-
diction, that is suppose there exists a score shi > sli such that ski is in the set of best responses
for player i type k, BR(k). Then, it must hold that

Ui(h, s = shi ) ≥ Ui(h, s = sli)
⇔

∑
k

pi(k|h)F−i,k(shi )− κclshi ≥
∑
k

pi(k|h)F−i,k(sli)− κclsli

⇔
∑
k

pi(k|h)(F−i,k(shi )− F−i,k(sli)) ≥ κcl(shi − sli). (7)

Similarly, as sli is a best response for l it must hold that∑
k

pi(k|l)(F−i,k(shi )− F−i,k(sli)) ≤ cl(shi − sli). (8)

But, as F−i,k(·) is always positive and pi(h|·) = 1− pi(l|·), inequalities (7) and (8) only hold
if

pi(l|h)
κcl

∑
k

(F−i,k(shi )− F−i,h(sli)) ≥
pi(l|l)
cL

∑
k

(F−i,k(shi )− F−i,h(sli)).

As the sum is identical on both sides, this boils down to the inverse of (M), a contradiction.

(Addendum) Step 4: Equilibrium expected utilities. The length of the top interval,
(∆l,h,∆l,l], is p2(l|l)/cl that of the bottom interval, (0,∆h,h), is p1(h|h)/κcl and that of the
middle interval (∆h,h,∆l,h] is

p1(l|h)
κcl

(1− f1,l(t)
f2,l(t)

) = p1(l|h)
κcl

(1− p2(l|l)
p1(l|l)).

Putting the respective probability masses on the different intervals leaves player 2 with some
mass µ ≥ 0. This is placed on scoring 0 and constitutes F2,h(0).

Notice that scoring ∆l,l wins the auction for sure at cost of ∆l,lcl for both players, type
l, and player 1 scoring (arbitrarily close) to 0 wins the auction with probability F2,h(0) for
no cost.
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C.2 Proof of Lemma 2
Proof. First, consider player 2h. She earns an expected utility of 0 on-path. Post-deviation
she can always choose a score of 0 to secure this utility.

Second, consider player il. Independently of her report she can always choose a score
∆l,l and win with probability 1. As this is also part of the best response on-path and the
probability is 1 in that case as well, she can only be better of by choosing a score different
than ∆l,l.

Finally consider player 1h after reporting to be type l. She holds belief p2(h|l) while
her opponent plays the equilibrium strategies. If she were to score 0, then by our tie-
braking assumption she would enjoy a utility at least as good as the equilibrium utility if
p2(h|l) ≥ p2(h|h). Thus, in those cases she is weakly better of.

If, however, p2(h|l) < p2(h|h) then player 1 suffers whenever scoring against an h-type
compared to the on-path game as the probability of winning decreases while costs stay the
same. However, scoring against the low-cost type and at the same time earning a higher
expected utility than in the default game can, by the constant density of player 2’s low-cost
type on the support of her equilibrium strategy, only mean scoring to the very top, that is
∆l,l which yields negative utility to a high type by the construction of the equilibrium.

C.3 Proof of Lemma 3
Proof. First, notice that player il benefits if and only if p−i(l|l) > p−i(l|h). The if part
follows directly from the density of the opposing player on the top interval which is f−i,l(t) =
cl/p−i(l|l). As p−i(l|h) is smaller than this, scoring at ∆l,h is strictly preferred to ∆l,l, but
∆l,l yields the same result as the on-path game.

The only-if party follows as for p−i(l|l) = p−i(l|h) would induce type independent beliefs
and therefore the same result as the on-path game. For p−i(l|l) < p−i(l|h), however, scoring
at the top, i.e. ∆l,l is preferred leading to no changes in expected utilities at all.

As p−i(l|l) < p−i(l|h) implies p−i(h|h) < p−i(h|l) we know that player 1, type h is better
off, as scoring 0 yields him already a higher payoff by p2(h|l)F2,h(0) > p2(h|h)F2,h(0). Player
2 strictly prefers to score at ∆h,h compared to 0 as the density of her opponent is given by
f1,l(b) = cl/p1(h|h) which leads to a (strictly) increasing utility on the bottom interval. Thus
scoring at ∆h,h must yield strictly positive utility.

The only setup in which neither party has a type that strictly profits from deviating is
that of type-independent beliefs.

C.4 Proof of Proposition 1 (together with lemmas 8 to 11)
The proof of the proposition is along the lines described in appendix A.

C.4.1 Proof of Lemma 8
Proof. We show that the condition stated on the optimality of full participation stated in
Proposition 2 of Celik and Peters (2011) is satisfied. That is, given the independent prior
p, there is no Bayes’ plausible belief structure p̃ = (p, p) such that the expected utility
Ui(k, p̃, p) < Ui(k, p, p) for any type k. The condition is a direct consequence of expected
contest utilities under a type-independent prior as defined in Corollary 1. For type indepen-
dent priors utilities are in fact linear in beliefs except for a kink at the point where utilities
become flat. However, around that point utilities are convex and Jensen’s inequality yields
the desired result.
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C.4.2 Proof of Lemma 9
Proof. We apply theorem 3 of Border (2007) which says the following:

Border (2007), Theorem 3: The list P= (P1, ..., PN) of functions is the re-
duced form of a general auction p= (p1, ....pn) if and only if for every subset
A ⊂ T of individual-type pairs (i, τ) we have∑

(i,τ)∈A
Pi(τ)µ•(τ) ≤ ({t ∈ T : ∃(i, τ) ∈ A, ti = τ}).

An individual type pair in our setting is given by (m, i), in what follows we are going to
abuse notation slightly by treating p(m) such that p(l) = p and p(h) = 1 − p. The general
auction p in our setup is defined by a list

qi(m,n) := xi(m,n).

We want to implement p by the list P containing

Qi(m) := qi(m, l)µi(l|m) + qi(m,h)µi(h|m)

where

µi(n|m) := µ(m,n)
µ•i (m) ,

µ(m,n) := p(l)p(m)1− γ(m,n)
1− Pr(Γ) ,

µ•i (m) := p(m) 1− γi(m)
1− Pr(Γ) .

Plugging in yields,

Qi(m) = p(l)(1− γ(m, l))xi(m, l) + p(h)(1− γ(m,h))xi(m,h)
1− γi(m) = xi(m).

To state the conditions let in addition

mc :=
{
y ∈ {l, h}|y 6= m

}
.

Applying the above quoted theorem of Border (2007) to this and reformulating everything
in terms of zi allows us to conclude that X can be implemented via zi ≥ 0 if and only if the
following conditions are satisfied:
• ∀{m,n} ∈ {h, l}:

p(m)zi(m) + p(n)z−i(n) ≤ (EPI)

1− Pr(Γ)− (1− γ(mc, nc))p(mc)p(nc)

• ∀m ∈ {h, l} and i = 1, 2:
zi(m) ≤ 1− γi(n) (IF )
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• ∀i = 1, 2
zi(l)p(l) + zi(h)p(h) ≤ 1− Pr(Γ) (BC2)∑
i∈{1,2}

∑
k∈{l,k}

p(k)zi(k) ≤ 1− Pr(Γ) (AF )

• ∀{m,n} ∈ {h, l}2 and i = 1, 2:∑
k∈{l,h}

pi(k)zi(k) + pz−i(n) ≤ 1− Pr(Γ). (BC4)

Note that in our setup equation (IF ) implies (BC2) and equation (AF ) which implies (BC4).
For the second claim, recall (IC l

i), that is

γi(h)Ui(h|l) + zi(h) ≤ γi(l)Ui(l|l) + zi(l).

Hence,

zi(h) ≤ γi(l)Ui(l|l)− γi(h)Ui(l|h) + zi(l) ≤ (γi(l)− γi(h))Ui(l|l) + zi(l), (9)

where the last equality follows from Lemma 2.
If γi(l) ≥ γi(h) and zi(l) ≤ 1− γi(l) we can rewrite (9) to

zi(h) ≤ (γi(l)− γi(h))Ui(l|l) + zi(l) ≤ 1− γi(h),

which indeed is equation (IF ).

C.4.3 Proof of Lemma 10
Proof. We proof this by contradiction. Suppose there exists a feasible X that forms an
optimal mediation protocol without (ICh

i ) binding for some i. That is, without loss of
generality assume that for player 1 it holds that

z1(h)− z1(l) > γ1(h)U1(h|h)− γ1(l)U1(h|l).

Recall that
z1(h) = p(1− γ(h, l))x1(h, l) + (1− p)γ(h, h)x1(h, h),

but then if X was feasible before, it remains feasible if we reduce x1(h, l) such that (ICh
1 )

holds with equality. Changing this has no effect on the right hand side of the inequality and
(IC l

i) gets relaxed as it is

z1(h)− z1(l) ≤ γ1(h)U1(l|h)− γ1(l)U1(l|l)

Similarly, suppose (PC l
i) is not binding, then

zi(l) > Vi(l)− γi(l)Ui(l|l).

Provided that zi(l) > 0 the mediator could react, by changing zi(l) such that the participation
constraint is binding. Then, she can reduce z1(h) such that the high-cost types incentive
constraint is binding which leads to another X with both (PC l

i) and (ICh
i ) binding that is
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feasible and delivers the same value to the objective.
If zi(l) = 0, this procedure is not possible, but then the mediator could use the homo-

geneity of degree 1 of γi(k) and the homogeneity of degree 0 w.r.t. G to satisfy (PC l
i) by

multiplying all elements of G by α < 1. Again, if zi(h) > 0 the increase in in zi(h) can
always be off-set by reducing Xi appropriately which is always possible. If zi(h) is indeed 0,
then multiplying G by α has if at all only a positive effect on incentive compatibility. Thus,
it is without loss of generality to assume that (PC l

i) holds indeed.

C.4.4 Proof of Lemma 11
Proof. Recall that the elements of P can be rewritten such that e.g. the probability of
meeting player 1l, given a report m2 = l is

p1(l|l) = pγ(l, l)
pγ(l, l) + (1− p)γ(h, l) . (10)

As p1(l|l) > 0 which is guaranteed by γ(l, l) > 0 the probability representation for γ(h, l)
follows immediately, that is

γ(h, l) = 1− p1(l|l)
p1(l|l)

p

1− pγ(l, l).

Repeating the same exercise for any γ(k,m) yields the desired representation.
The last equation of (C) can be obtained noticing that given we have established all other

results from (C) and using the homogeneity of degree 0 of P w.r.t G we can rewrite G as

G = γ(l, l)G′ = γ(l, l)
(

1 q2(l)
q1(l) q2(h)q1(l)

)
.

We know that G′ induces the same P as G in particular we know that

p1(l|h) = pγ(h, l)
pγ(h, l) + (1− p)γ(h, h) = pq2(l)

pq2(l) + (1− p)q2(h)q1(l)

which after rearranging yields the desired

q1(l)q2(h) = q1(h)q2(l). (C)

As all we have done have been rearrangements, the converse holds as well, that is, for a
given P and γ(l, l) > 0 that satisfy equation (C) we can establish a feasible G such that P
and γ(l, l) is induced by G.

C.5 Proof of Theorem 1 (together with Lemmas 4 to 7)
We proof the proposition in several steps. In line with the text, we first solve the “un-

constrained problem” (P1′) which is also the proof of Lemma 5.17 After that we introduce
17Recall that “unconstrained” refers to (P1′) which includes all constraints that bind at all points already

in the problem definition.
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(IC l
i) and proof Lemma 6 before finally introducing the remaining constraints with the proof

of Lemma 7. Throughout this proof we make use of the following lemma

Lemma 12. At any optimum of (P1′), the monotonicity condition (M) is always satisfied.

The proof of this lemma can be found at the end of the appendix as it is neither con-
structive nor relevant to understand the main argument. However, with help of this lemma,
we can restrict the choice set of the mediator to the set of induced beliefs that result in
monotonic equilibria as discussed in Lemma 1.

C.5.1 Proof of Lemma 4
Proof. Rewrite p2(l|h) with help of Lemma 11

p2(l|h) =

(
1− p1(l|l)

)
p2(l|l)p1(l|h)

p2(l|l)p1(l|h)− p1(l|l)
(

1− p2(l|l)− p1(l|h)
) . (11)

p2(l|h) > p2(l|l) if equation (11) divided by p2(l|l) is larger 1 that is

p2(l|h)
p2(l|l) = (1− p1(l|l)) p1(l|h)

p2(l|l)p1(l|h)− p1(l|l)
(

1− p2(l|l)− p1(l|h)
) > 1.

Rewriting yields,

(1− p1(l|l))p1(l|h) > p2(l|l)p1(l|h)− p1(l|l)(1− p2(l|l)− p1(l|h))
⇔ p1(l|h)− p1(l|l) > (p1(l|h)− p1(l|l))p2(l|l),

which holds if and only if p1(l|h) > p1(l|l).

C.5.2 Proof of Lemma 5
Proof. Notice that the unconstrained problem is (P1′) is a problem of three elements P =
(p1(l|l), p2(l|l), p1(l|h) only, as the fourth is directly defined via consistency equation (C). We
calculate the unconstrained optimum in several steps. First, we show that at the optimum
the objective is not differentiable with respect to at least one of the three choices variables.
Second, we show that if p1(l|l) is either p1(l|h) or p2(l|l)m then it is p1(l|l) = p1(l|h) and
calculate this optimum. Finally, we show that a deviation to p1(l|l) = 1 is not optimal.
Step 1: No optimum in the differentiable interior exists. To proof this claim we
are going to proof that the objective Obj(P ) := R(P )v/(Q(P )−R(P )) is locally concave at
any critical point in p1(l|l) in what we call the “differentiable interior”, meaning that such
a critical point is in fact a local maximum in p1(l|l), which is sufficient to proof the claim.
Let us begin with defining the differentiable interior.
Definition 3 (Differentiable Interior). The differentiable interior of problem (P1’) is the set
of all P such that for each 1 > p(k|m) > 0 the left-derivative and the right-derivative of
Obj(P ) with respect to all variables coincides.

Next, for the ease of notation define ρ = (ρ1(l), ρ2(l), ρ1(h)) :=
(
p∗1(l|l), p∗2(l|l), p∗1(l|h)

)
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Step 1a: Transform R(P ) and Q(P ).
Observe that

R(P ) = Pr(Γ)
γ(l, l) = p2

ρ1(l)ρ2(l)ρ1(h) (ρ1(l)(1− ρ2(l)) + ρ2(l)ρ1(h)) .

Defining the function
Ỹ := Y ∗ ρ1(l)ρ2(l)ρ1(h)

p2

allows us to rewrite (dropping the argument to simplify notation)

Obj = R̃v

Q̃− R̃
.

Notice that R̃ is linear in any variable of ρ. Step 1b: Define necessary conditions for
an optimal interior point. Suppose (P1′) has indeed an optimal point in the differentiable
interior. Then a necessary condition on this point is that it is indeed a critical point in all
three variables, that is

Obj′(ρ) := ∂Obj(ρ)
∂ρ

= ν

(Q̃(ρ)− R̃(ρ))2︸ ︷︷ ︸
=:f(ρ)

(
R̃′(ρ)Q̃(ρ)− Q̃′(ρ)R̃(ρ)

)
︸ ︷︷ ︸

=:g(ρ)

= 0 (FOC)

for every ρ ∈ ρ. Noticing that f(ρ) 6= 0 for any ρ by definition, the necessary first order
condition boils down to g(ρ) = 0. Another necessary condition for a local minimum is that
any critical point in any ρ is not locally concave in this variable. If it was locally concave
in any ρ this means that we are at a local maximum in this variable ρ and that the second
order conditions for a minimum are never fulfilled. Formally, this means that at any critical
point ρcp it needs to hold that

Obj′′(ρcp) = f ′(ρcp)g(ρcp)︸ ︷︷ ︸
=0 by equation (FOC)

+f(ρcp)g′(ρcp) ≥ 0 (12)

for every ρcp ∈ ρcp. The first term is 0 by the standard envelope argument, such that (12)
boils down to

Obj′′(ρcp) = f(ρcp)g′(ρcp) = f(ρcp)
(
R̃′′(ρcp)Q̃(ρcp)− R̃(ρcp)Q̃′′(ρcp)

)
≥ 0.

By the linearity of R̃ and the obeservation that R̃ ≥ 0 by construction, a necessary and
sufficient condition for (12) to hold is simply

Q̃′′(ρcp) ≤ 0 (13)

for every ρcp ∈ ρcp. Step 1c: Show that the necessary conditions never hold for
ρ1(l). To complete the claim of step 1 we are now going to show, that Q̃(ρ1(l)) is indeed a
convex function.
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To see this observe first by plugging in we can reduce γi(l) = γ(l, l)p/ρ−i(l) which in turn
means that while γ̃2(l) is constant in ρ1(l), γ̃2(l) is linearly increasing in ρ1(l). In addition,
we do not need to worry about γ2(h) as player 2h has no expected utility by Corollary 1.
Further we can rewrite using Corollary 1 and Lemma 11

γ̃1(h)U1(h|h) = γ(l, l)
1− p (1− ρ1(h))ρ1(h) (ρ1(l)− ρ2(l))(κ− 1)

κ

which is linearly increasing in ρ1(l) and positive. Rewriting yields

γ(l, l)Q̃ =
∑
i

γ̃i(l) (Ui(l|l)− (1− p)Ui(h|l)) + γ̃1(h)(1− p)U1(h|h)

it suffices to show that

hi(ρ1(l)) = γ̃i(l)
(
Ui(l|l)− (1− p)Ui(h|l)

)
is convex for every i.

For h2, observe that by Lemmas 2 and 3, player 2h only gains from deviating if p1(h|l) >
p1(h|h) . In such a case player 2h, best post-deviation strategy is to play ∆h,h with probability
1, which yields utility

U2(h|l) = p1(h|l)−∆h,hκcl. (14)

Bidding the same on-path is in the best response set of player 2 yielding

U2(h|h) = p1(h|h)−∆h,hκcl = 0. (15)

Subtracting equation (15) from equation (14) yields

p1(h|l)− p1(h|h) = ρ1(h)− ρ1(l) = U2(h|l) (16)

and thus U2(h|l) is linear in ρ1(l). As γ̃2(l) is constant in ρ1(l), h2(ρ1(l)) is convex if and
only if U2(l|l) is convex in ρ1(l) which can easily be verified by the utilities derived in (U).
The last step is now to show that h1(ρ1(l)) is convex as well.

To see this, observe first that whenever deviation is profitable for player 1, type h, she
would deviate by playing ∆h,h. But, ∆h,h is in fact the lower bound of player 1, type l and
thus in such a case we can rewrite

U1
(
h|l, p2(h|l) > p2(h|h)

)
= U1(l|l) + (1− κ)cl∆h,h.

As γ̃1(l) = ρ1(l)ρ1(h)p we can use the expression derived in Corollary 1 to establish that
γ̃1(l)U1(l|l) is linear in ρ1(l) and thus convex.

What remains is to show that −ρ1(l)∆h,h is weakly convex. This can be established using
that ∆h,h = p1(h|h)/κcl which is independent of ρ1(l) which proofs the claim.
Step 2: ρ1(l) ∈ {ρ2(l), ρ1(h)}.

By assumption ρ1(l) ≤ ρ2(l) is ruled out. Second, fix some ρ2(l) and ρ1(h). If ρ1(l) ∈
[ρ2(l), ρ1(h)] then Obj(ρ1(l) = 1) > Obj(ρ1(l) = ρ1(h)). Further we know that Obj is
continuously differentiable on ρ1(l) ∈ (max{ρ2(l), ρ1(l)}, 1). By Step 1 we know that every
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interior point is a maximum in ρ1(l).
Next, notice by Lemma 4 that for ρ1(l) > ρ1(h) ⇒ ρ2(l) > ρ2(h) ⇒ pi(h|h) > pi(h|l) ⇒

U2(h|l) = 0 and U1(h|l) < U1(h|h).
Now, notice that ρ1(l) = 1 can only be optimal if Obj is (LHS-)decreasing at ρ1(l) = 1

as there cannot be a local minimum in ρ1(l) by Step 1. To check this it suffices to look at
the sign determining function of the derivative which is, by Step 1, R′Q−Q′R. Solving this
for ρ1(l) > ρ1(h) yields a quadratic function in ρ1(l).

The sign-determining function at ρ1(l) = 1 is quadratic in ρ1(h), i.e. a condition

aρ1(h)2 + bρ1(h) + c < 0 (17)

where

a = (κ− 1 + ρ2(l)2) (18)

b = 1 + 2ρ2(l)− 2
(
ρ2(l)

)2
+ p(1− κ) (19)

c =
(
ρ2(l)

)2
κ− ρ2(l)

(
(κ− 1)(1− p) + κ

)
+ (κ− 1)(1− p). (20)

Note first, that (17) is decreasing in ρ2(l), second note that for ρ2(l) = ρ1(h) condition
(17) becomes

(κ− 1)
(
1− p− 2ρ1(h)

)
+
(
ρ1(h)

)4
− 2

(
ρ1(h)

)3
+
(
ρ1(h)

)2
(1 + 2κ) < 0. (21)

Note that this is minimal if κ is minimal and p is maximal. Therefore, it must hold that

1/2 + ρ1(h))2
(

(ρ1(h))2 − 2ρ1(h) + 5
)

︸ ︷︷ ︸
>4

−2ρ1(h)

︸ ︷︷ ︸
>−1/4

< 0,

a contradiction. Thus, whenever ρ1(h) ≥ ρ2(l), choosing ρ1(l) = 1 is not preferred to
ρ1(l) = ρ1(h). Solving the first order conditions given ρ1(l) = 1 for 0 < ρ1(h) < ρ2(l) yields
that no critical point in both variables exists and therefore no interior solution. As Obj is
decreasing at ρ2(h) = 0, there cannot be any solution with ρ1(l) = 1. Thus, ρ1(l) must either
be equal to ρ1(h) or to ρ2(l).
Step 3: Calculate the optimum if ρ1(l) ∈ {ρ2(l), ρ1(h)}. By Step 1, we know that if
ρ1(l) ∈ [ρ2(l), ρ1(h)] the optimum involves ρ1 being equal to either of the bounds.

Therefore, we only need to consider the two cases for any ρ2(l) and ρ1(h).
Step 3a: The equilibrium for ρ1(l) = ρ2(l). First, consider ρ(l) = ρ1(l) = ρ2(l). By
Lemma 11, ρ1(h) = ρ2(h) = ρ(h).

All payoffs are symmetric and, by Corollary 1, Ui(h|h) = 0 and, by Lemma 2, Ui(h|l) =
max{0, ρ(h)− ρ(l)). Finally, Ui(l|l) = (κ− 1)/κ+ (ρ(h)− ρ(l)κ)/κ.
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In addition, γ1(l) = γ(h) = γ(l) = p/ρ(l) and therefore

Q̃ = 2ρ(l)ρ(h)
p

(Ui(l|l)− (1− p)Ui(h|l)).

Finally, as R̃ = ρ(l)(1− ρ(l) + ρ(h)) we can simplify Obj to

Obj(ρ(l), ρ(h)) = p(1− ρ(l) + ρ(h))
2ρ(h)(Ui(l|l)− (1− p)Ui(h|l))︸ ︷︷ ︸

=:Q̂

− p(1− ρ(l) + ρ(h))︸ ︷︷ ︸
=:R̂

.

Employing the same technique as in Step 1, we know, as R̂ is linear in both ρ(k) any interior
solution needs to have that Q̂ is concave in ρ(k).

Notice that the second derivative of Q̂ when Ui(h|l) = 0 boils down to 4/κ as Ui(l|l) is
linearly increasing with factor 1/κ in ρ(h). Thus, any solution with ρ(l) ≥ ρ(h) can be ruled
out.

Second whenever ρ(l) < ρ(h) observe that Q̂ is linearly decreasing in ρ(l) with factor
2ρ(h)p. Hence, the sign determining function of the first derivative R̂′Q̂− Q̂′R̂ becomes

R̂′(ρ(l))Q̂− Q̂′((̂l))R̂|ρ(l)<ρ(h) = −2ρ(h)p
((
Ui(l|l)− Ui(h|l)

)
− R̂

)
. (22)

Note that by construction Obj defines a probability and is thus in [0, 1]. Whenever equa-
tion (22)=0, then Q̂ − R̂ = (2ρ(h)p − 1)R̂ which can only be positive if 2ρ(h)p = 1. As
p < 1/2 this condition never holds. Therefore, we do not find an interior solution when
ρ(h) > ρ(l).

What remains are then boundary solutions with either of the ρ(k) ∈ {0, 1}.
If ρ(h) = 1 we need to go back to the original Q and R as our modifications are not valid

if ρi(k) 6= (0, 1).
This is for ρ(h) = 1

R = p2 2− ρ(l)
ρ(l)

Q = p2 2(1− ρ(l))
ρ(l) ,

which obviously violates Q > R and is thus not feasible. ρ(l) = 0 would violate monotonicity
and is ruled out by Lemma 12.
Step 3b: The equilibrium for ρ1(l) = ρ1(h). It remains to show that an equilibrium
exists in which ρ1(l) = ρ1(h) = ρ1. Note that again by consistency in Lemma 11 we get
ρ2 = ρ2(l) = ρ2(h).

With this, we know that Ui(k|m) = Ui(k|k) for every i and k and U2(h|l) = 0, Ui(l|l) =
(1− ρ2)κ−1

κ
, and U1(h|h) = U1(h|l) = (ρ1 − ρ2)κ−1

κ
. As γ̃i(l) = p/ρ−i we get

Q̃ = 1
κp
ρ1(κ− 1)

(
(ρ1)2 − ρ1(1 + p)− ρ2(1− ρ2 − p)

)
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and
R̃ = ρ1.

Note that this means that for an optimum in ρ1 we need Q̃ = ρ1Q̃
′(ρ1) and for an optimum

in ρ2 we would need Q̃′(ρ2) = 0.
Notice that

Q̃′(ρ2) = ρ1(κ− 1)
κp

(1− p− 2ρ2)

⇒ ρ1Q̃
′(ρ1)− Q̃ = (ρ1)2(κ− 1)

κp
, (1 + p− 2ρ1)

and thus we arrive at the desired results. Checking second order conditions in each variable
yield that the function is convex in both arguments. As cross derivatives are 0 at the
optimum, the critical point is a minimum by the second order derivative test.

C.5.3 Proof of Lemma 6
Proof. Step 1: The unconstrained optimum satisfies (IC l

i) for p ≤ 1/3. As Ui(l|h) =
Ui(l|l) by Lemma 3 and with the help of Lemma 10 stating that (ICh

i ) binds, we can rewrite
(IC l

i)
(γi(l)− γi(h))Ui(l|l) ≥ (γi(l)− γi(h))Ui(h|h). (23)

As Ui(l|l) ≥ Ui(l|h) by construction this holds if and only if (γi(l)− γi(h)) > 0.
Calculating the difference yields

γi(l)− γi(h) = p

ρ−i

ρi − p
1− p (24)

which is positive if and only if ρi ≥ p.
Recall from Lemma 5 that the optimal unconstrained ρ2 = 1−p

2 which is larger p if and
only if p < 1/3.
Step 2: Describe the equilibrium including (IC l

i) for p > 1/3.
Step 2a: No solution with ρ1(l) > ρ1(h). First, we show that we do not want to deviate
to any ρ1(l) > ρ1(h) for p > 1/3. To do so, consider (IC l

2). By Lemma 3 the RHS remains
at 0, and U2(l|h) > U2(l|l). Thus, for (IC l

2) to hold we would still need that γ2(l) ≥ γ2(h).
However, then also ˜γ2(l) − ˜γ2(h) needs to be positive. Plugging in and simplifying, we find
that

γ̃2(l)− γ̃2(h) = ρ1(h)ρ2(l)(1− p)− ρ1(l)p2(1− ρ2(l)) (25)

which is decreasing in ρ1(l). Hence, no deviation to ρ1(l) > ρ1(h) is profitable since whenever
IC holds for this deviation, it also holds for ρi(l) = ρi(h) which is preferred by Lemma 5.
Step 2b: The proposed solution is indeed an optimum. Next, we need to show that
also no deviation to ρ1(l) < ρ1(h) is optimal. For this we use a guess and verify approach to
show that the proposed equilibrium with ρ2 = p is indeed an optimum.

To do this, this solution needs to satisfy the first order conditions of the Lagrangian at
the proposed point. As we know from Step 2a we do not need to consider ρ1(l) > ρ1(h).
Define g(ρ) ≤ 0 to be the incentive constraint, reformulated such that if g ≤ 0, (IC l

2) holds.18

18As ρ1 ≥ p at the imposed constrained optimum, we do not worry about (ICl
1) which always has slack.
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The Lagrangian is given by

L(λ, µ,ρ) = Obj(ρ) + λgρ) + µ(ρ1(l)− ρ1(h)). (26)

Any solution to the constrained minimization problem ρ∗ must be such that it solves the
following problem

minL(·) (27)

and
λ, µ ≥ 0. (28)

It turns out that the proposed solution is such a point and further L is strictly concave at
this point, thus the problem is indeed locally minimized at ρ∗.
Step 2c: Show that no other solution exists. It is not clear whether the problem is
also globally minimized at this point, as both the objective as well as the constraint do not
satisfy the usual assumption needed for global optimality, in particular they are not globally
convex. However, fixing k we know the following two aspects:
(a) at p = 1/3 the solution is the same as the “unconstrained” optimum considered in

Lemma 10. For p > 1/3 the solution is worse than the unconstrained optimum,
(b) as all functions are continuous in p the functional value and thus the equilibrium value

must be continuous in p.
This means that if another solution (strictly better than the candidate) exists for some
p̂ > 1/3 then there also must exist some p̌ ∈ [1/3, p̂] such that the equilibrium values ρ̂ of p̂
as a function of p yield the same outcome as the proposed equilibrium.

Further, as L is strictly convex at the proposed optimum, this alternative value ρ̂ must
be bounded away in at least one of its variables.

Suppose the other optimal point is at some ρi(k) not in the neighborhood of ρ∗i . Then
by continuity, the mean value theorem, and the strict convexity of L at the proposed point
this point can only be optimal if the derivative of Obj w.r.t. ρi(k) is 0 at some point on
(ρi(k), ρ∗i ).

As ρ1(l) has no extreme value on the interval (ρ2(l), ρ1(h)) by Step 1 in appendix C.4.3,
ρ1(l) must be the same in both optima.

But then, if ρ1(l) is constant, ρ1(h) is increasing on (a, 1). Then again ρ1(h) = 1 cannot
be optimal. Thus, no other minimum exists and our proposed minimum is the only and
therefore global minimum.

C.5.4 Proof of Lemma 7
Proof. Finally, introducing γ(l, l) ≤ 1 to the problem it is straightforward to compute that
the constraint has slack for any p ≥ 1/3.

Also, by computing ν/(Q(P )−R(P )) one can verify that it holds at ρ∗1, ρ∗2 whenever

k ≤ 2− 4p− 2p2

1− 4p+ 3p2 .

Further, if the constraint γ(l, l) ≤ 1 binds, we can use Lemma 11 to see that γ(l, h), γ(h, l) ≤ 1
if and only if ρi(l) ≥ p.

We know that at the unconstrained optimum with ρ1(l) = ρ1(h) and thus, we have a

50



boundary solution in those variables for a given ρ2(l). However, the solution with respect to
ρ2(l) is such that Obj′(ρ2(l)) = 0.

In addition we know by strict concavity that in fact the regime change happening at
ρ1(l) = ρ1(h) (from high-cost types having a beneficial deviation payoff to low cost types
having one), must be such that around the unconstrained optimum we would not change
the equation ρ1(l) = ρ1(h) as this would either provide us with a free lunch lowering ρ1(h)
to put slack on γ(l, l) ≤ 1. Then, as we change the regime to ρ1(l) > ρ1(h) it must be that
Obj′(ρ1(l)) > 0 as we started at the optimum. Thus, we could lower ρ1(l) at no cost on the
constraint to ρ1(l) = ρ1(h) as the constraint can be rewritten as

ν/(Q(P )−R(P ))− 1 = Obj −R ≤ 0,

and R|ρ1(l)=ρ1(h) = p2/ρ1(l)ρ2(l).
As ρ1(l) = ρ1(h) remains to hold the problem

min
ρ1,ρ2

Obj

s.t. ρ2 ≥ p and γ(l, l) ≤ 1 is well-behaved such that we get the desired solution of the lemma.
Finally, plugging the solution for every regime into the Border constraints (EPI) and

(IF ) shows that they hold at the optimum.

C.6 Proof of Proposition 2
Proof. For the first result, observe that for p < 1/3, the solution at which ρ2 = p and
ρ1 = 2p+1/(κ−1) is always feasible and in line with γ(l, l) ≤ 1 and (IC l

i). The corresponding
probability of contest is given as

Pr(Γ,ρ∗) = (κ+ 1)p
1 + 2(κ− 1)p, (29)

which is increasing in p and κ and becomes 1/2 for p = 1/3 and κ→∞.
Second, the optimal probability of a contest for p > 1/3 is

4p κp− (1− p)(κ− 2)
(κ− 1)(7p2 − 2p− 1) + 4p, (30)

which is falling in p for p > 1/3. Thus, it suffices to look at the probability at p = 1/3. But
at this point it becomes

κ− 4
2κ− 5 , (31)

which again is bounded by 1/2.
The inverse u-shape follows from Pr(Γ,ρ∗) being concave on all intervals and that the

derivative and smooth pasting at p′, p′′, p′′′.
Finally, monotonicity (and concavity) in κ follows from monotonicity and concavity in κ

for all regions as well as smooth pasting at the transition of the regions.
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C.7 Proof of Proposition 3
Proof. The results for the probability of being send to contest follow immediately from the
ex-ante symmetry and the equilibrium beliefs specified in Theorem 1 and 7.

The result on the expected share follows from Theorem 1 and Lemma 1. The low-cost
types expected utility from contest is weakly below her outside option V . In order to fulfill
the participation constraint in expectations, the player needs to be compensated by a higher
share if mediation fails. As player 1l has a higher probability to enter the contest, she
also needs to receive a higher share than player 2l. A weakly higher share for any l-type
compared to the same player’s corresponding h-type follows from h-types binding incentive
compatibility. Finally, as player 1h gains a positive expected utility in case of the contest
her expected share can be pushed down the most completing the proof.

C.8 Proof of Proposition 4
Proof. The expected legal expenditure of player ik is by the uniform equilibrium scoring
functions given by

E[LEk
i ] =

∑
r∈{b,m,t}

Prob(ski ∈ r)
r + r

2

where b,m and t are the scoring ranges used in Figure 1 and the proof of Lemma 1. Further,
r denotes the upper bound of range r and r denotes the lower bound of range r.

The expected scoring function of player 1 entirely depends on ρ2, that is

ρ1E[LEl
1] + (1− ρ1)E[LEh

1 ] = ρ1
ρ1(2− ρ1) + (ρ2)2(κ− 1)

2ρ1clκ
+ (1− ρ1)(1− ρ1)

2clκ

= 1 + ρ2(κ− 1)
clκ

.

Thus, the equilibrium expected contest score of player 1 is the same as in a contest without
mediation whenever ρ2 = p.

The expected score of player 2 is computed in a similar manner but depends on both ρ1
and ρ2. It is given by:

1
2clκ

(
(κ− 1)
κ

(
ρ1(ρ1 − 2) + (ρ2)2(κ− 1) + 2ρ2

)
+ 1

)
.

The derivative of this function w.r.t. to ρ1

κ− 1
κ2 (ρ1 − 1) < 0.

As ρ1 > p by Lemma 7 and ρ2 = p for p /∈ (p′, 1/3), it follows that total legal expenditures
post-mediation are indeed smaller than under the prior belief p.

C.9 Proof of Proposition 5
Proof. As participation is optimal by lemma 8 and the optimal mechanism is unique, no
bargaining protocol can achieve a better result than Theorem 1. By convexity of contest
utilities in beliefs, no Bayes plausible signal structure over the prior can make the receiver
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worse-off than the prior. Thus, the participation constraint of the mechanism holds in the
bargaining game as well.

To show that take-it-or-leave-it bargaining performs worse in environments that satisfy
1 we show that the low-cost type of Sender has always an incentive to deviate to some offer
0 < ε < 1 − V (l) that yields a utility higher than V (l) which is her on-path utility. We do
so by considering the possible response of Receiver to such an offer given any off-path βS
describing the probability assessment of Receiver on Sender in the contest game.
Any Receiver type accepts. As ε < 1− V (l), Sender earns a utility larger V (l).
Any Receiver type rejects. The high-type only rejects an offer of ε if she expects a utility
UR(h|βS) > ε, given her off-path belief βS. By Lemma 1 UR(h|βS, βR) > 0 only if βS < βR.
Since any Receiver type rejects the offer, the belief on the receiver is the same as the prior,
that is βR = p. But βS < p implies via lemma 1 that US(l|βS, βR) > V (l).
h-type Receiver rejects and l-type Receiver accepts. This case doesn’t exist, as any
offer that the h-type rejects is also rejected by the l-type as PBE requires type-independent
beliefs after the deviation (Fudenberg and Tirole, 1988) and l-types have lower cost of evi-
dence provision.
l-type Receiver rejects and h-type Receiver accepts. h-types only accept if ε ≥
UR(h|βS, βR) that is

ε ≥ (βR − βS)κ− 1
κ

.

If Receiver h, type l rejects, then Sender, type l gains (1− p)(1− ε) which is larger V (l) =
(1 − p)(κ − 1)/κ as ε goes to 0. Thus Receiver, type h must be indifferent. Rewriting the
above equation yields

βR = εκ

κ− 1 + βS.

In order to induce a belief of βR, Receiver, type h must choose to reject the offer with
probability

γR,h = p

1− p
1− βR
βR

,

which follows analogously to Lemma 11.
Plugging this into Sender l-types yields:

(1− p)(1− γR,h)(1− ε) +
(
p+ (1− p)γR,h

)
(1− βS)κ− 1

κ
=

(1− p)(1− ε) + p

βR

(
(1− βS)κ− 1

κ
− (1− βR)(1− ε)

)
.

Taking into account that βR is a function of βS this expression is continuous and monotone
in βS. βS is naturally bounded by 1 and βR. As we are looking for the lowest utility, we
can assign for any ε > 0 it suffices to consider an upper and a lower bound. For ε close
to 0 however, both βS = βR as well as βS = 1 yield a utility larger (1 − p)(κ − 1)/κ.
Thus, Sender, type l always has an incentive to deviate to some ε irrespective of the out-
of-equilibrium beliefs of Receiver resulting in an inferior solution which is actually strict as
long as the case is not trivial by the uniqueness of the proposed mechanism as shown in the
proof of Theorem 1.
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C.10 Proof of Proposition 6
The proof relies on three features of the model which can be exploited to guarantee a

weaker participation constraint:
• the mediator can ex-ante commit to probabilistic private messages she sends to parties

following any given message profile (but before the acceptance decision),
• the mediator can ex-ante commit to an additional probabilistic private message she

sends to parties following any message and acceptance profile (that is after the accep-
tance decision),
• yll type profiles lead to on-path to litigation with positive probability.

Proof. For PAIR we need that the expected share given one’s own type, that is xi(l) is larger
than the expected utility of a contest that occurs upon rejection of this share. Suppose
without loss of generality that an offer of 0 is rejected by all parties and is used by the
mediator to trigger litigation.

Two aspects facilitate the analysis: First, the mediator can choose a signal σ(m,d) that
depends on the received messages m as well as on the acceptance decision d of both players.
That is, the mediator has the possibility to define a post-mediation protocol, too.

Recall from Theorem 1 that any type profile leads to litigation with positive probability.
At the same time rejection by one party is enough to trigger litigation. Thus, as we allow
for private communication, the mediator is free to choose one of the two messages sent to
one party if she triggers rejection by the other party. The mediator can therefore randomize
not only between who takes the role of player 1, that is which Xi to use, but also between
whom of the two player’s receives the “trigger message” 0. For the non-triggering player the
mediator can in fact randomizes between all messages the player could receive on-path when
the conflict is settled. This way the player does not know whether she is treated as player
1 or player 2 in the mediation protocol at the time of making her decision as to whether
to accept or reject the offer. She does in fact not even know whether rejecting the offer
makes any difference at all (as the opponent might have received an offer of 0 anyways).
By Proposition 3, the mediator can choose Xi such that for any offer xi(k) there exists an
on-path continuation game in which the player is worse off than xi(k). Hence, it is possible
for the mediator to choose a signal σi conditional on deviation that signalling the deviator
is in this on-path subgame deterring deviation altogether.

C.11 Proof of Proposition 7
Proof. Whenever γi(k) 6= 1 the proof is the same as that of Proposition 6.

The situation is however different if either of the players is sent to court with probability
γi(k) = 1. According to Theorem 1 and Lemma 7, γi(h) < 1. In addition at most one of the
l-types has γi(l) = 1 on path.

This way the player knows that in one of the two mediation protocols she is always going
to litigate anyways. Thus if x1(l, h) 6= x1(l, l), player 1 might have a strong incentive to
deviate as she knows whom she is facing in case her decision is relevant at all. In all other
cases she is going to litigate anyways and receives V (l) as litigation payoff by Theorem 1
together with Lemma 1. Thus, it might be optimal for her to reject anything but x1(l, l).

Suppose instead the mediator announces a mediation protocol X ε
λ in which reporting two

l-types follows mediation breakdown with full information disclosure with probability ε and
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a protocol as that derived in Section 4 otherwise. As ε→ 0, the result gets arbitrarily close
to that of Theorem 1. However, the mediator can signal any l-type deviator that in fact
the low-cost vs. low-cost litigation game is played, causing the l-type to also except ex-post
shares.

C.12 Proof of Lemma 12
Proof. If condition (M) is violated, the equilibrium is no-longer monotonic but instead over-
lapping strategies might be possible. The reason for this is that if, e.g. p1(l|l)κ < p1(l|h) the
likelihood of meeting a low-cost type when being a high-cost type is too high compared to
being a low-cost type, such that the high-cost type has a strong incentive to overscore the
low-cost type. Further, by the consistency condition equation (C) whenever the high-cost
type faces a low-cost type, she faces indeed a low-cost type that thinks she herself is facing a
high-cost type with very high probability. This provides an incentive for the h-type to com-
pete more aggressive and for the l-type to compete softer than under condition (M). The
equilibrium scores in the non-monotonic equilibrium are as depicted in figure 6. Player 1l
and player 1h overlap on the middle interval but are otherwise “close to monotonic”. While
the high-cost type of player 2 has a support covering the whole scoring interval, player 2l
only competes in the middle interval. In addition player 2h also has a mass point at 0.

s
b m t

Player 2 h

Player 1 h

Player 2 l

Player 1 l

0 ∆h,h ∆{l,h},{h,l} ∆l,h

Figure 6: Strategy support of player 1 and 2 if monotonicity fails.

Solving for the optimal mechanism, it turns out that there is still no interior solution in
p1(l|l). The mediator would set p1(l|l) equal to any discontinuity point or at the respective
borders. That is either p1(l|l) = 0 or p1(l|l) = max{p2(l|l), p1(l|h)/κ}. If p1(l|l) = p2(l|l) =
ρ(l) under non-monotonicity, the first order condition of the mediator’s problem is monotone
in ρ(l) and thus, we would need ρ(l) = 0 which is never optimal. If p1(l|l) = p1(l|h)/κ utilities
converge to their monotone counterparts and thus, the solution is no different than that for
monotonicity. Finally, p1(l|l) = 0 is never optimal as the objective is always decreasing at
this point.
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