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Abstract

This paper presents an analysis of the differential role of mortality for the opti-
mal schooling and retirement age when the accumulation of human capital follows
the so-called “Ben-Porath mechanism”. We set up a life-cycle model of consump-
tion and labor supply at the extensive margin that allows for endogenous human
capital formation. This paper makes two important contributions. First, we pro-
vide the conditions under which a decrease in mortality leads to a longer education
period and an earlier retirement age. Second, those conditions are decomposed
into a Ben-Porath mechanism and a lifetime-human wealth effect vs. the years-to-
consume effect. Finally, using US and Swedish data for cohorts born between 1890
and 2000, we show that our model can match the empirical evidence.
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1 Introduction

In many countries, economic development has been accompanied with sig-
nificant increases in life expectancy and reductions in labor supply. Over
the nineteenth and twentieth century record life expectancy (at birth) has
increased by 40 years at a rate of 3 months per year (Oeppen and Vau-
pel, 2002; Lee, 2003), while labor supply has decreased at two extensive
margins: later entrance in the labor market and earlier retirement.1 These
historical trends are shown in Figure 1 for males born in the United States
from 1850 to 1930. Between the 1850 and 1930 cohorts, average years of
schooling increased from 8 to 13.28 (an increase of 5 years), average retire-
ment age decreased from 69 to 63.8 (a declined of 5 years), and the life
expectancy at age 5 increased from 52.5 to 66.7 (an increase of 14 years).
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Figure 1: Life expectancy at age 5, average years of schooling, and average
retirement age for US men by birth cohort

Source: Hazan (2009). The average retirement age were calculated using the labor force

participation rates from age 45 to 80.

These trends are not exclusively of the United States but are, instead,
common to most advanced countries. Prior to industrialization, male lit-
eracy rates started to increase in the most advanced countries (Cippola,
1969; Cervellati and Sunde, 2005; Boucekkine et al., 2007). This process
continued with an expansion of primary education enrollment rates at the
end of the nineteenth century and first half of the twentieth century (Be-

1Before 1950, most of the gain in life expectancy was due to large reductions in death
rates at younger ages (Oeppen and Vaupel, 2002). Still, although at a lower rate, the life
expectancy at ages 6 and 16 have also risen for the last 160 years in developed countries
like Sweden at a steady pace of 13/4 and 11/2 months per year, respectively.

2



navot and Riddle, 1988). By 1950, the average length of schooling for males
was around six years in the most advanced countries and has increased up
to twelve years in 2010 (Barro and Lee, 2013). Over the same period, la-
bor force participation rates for old workers started to fall until recently,
even before the introduction of pension systems (Costa, 1998; Schieber and
Shoven, 1999). In 1970, the average retirement age was 68 in OECD coun-
tries and has declined to age 63 in 2010 – see OECD (2009).

Existing theoretical models that analyze the effect of mortality on edu-
cation and retirement implicitly assume a positive causal relationship be-
tween the length of schooling, retirement, and life expectancy; for example
Boucekkine et al. (2002), Echevarria (2004), Echevarria and Iza (2006),
Ferreira and Pessoa (2007), and Zhang and Zhang (2009), among others.
Thus, according to the existing literature, a decline in mortality leads to
an increase in education and a postponement of the retirement age, which
contradicts the historical empirical evidence. The motivation of our study
is therefore to provide possible explanations under which a decrease in
mortality leads to an increase in schooling and early retirement.

There are two important dimensions to be considered when modeling
the effect of mortality on schooling and retirement. First, the observed
positive link between human capital investment and life expectancy that is
theoretically replicated through the well-known Ben-Porath (1967)’s mech-
anism (de la Croix and Licandro, 1999; Kalemli-Ozcan et al., 2000; Zhang
et. al., 2001, 2003; Cervellati and Sunde, 2005; Soares, 2005; Zhang and
Zhang, 2005; Jayachandran and Lleras-Muney, 2009; Oster et al., 2013),
except for Hazan and Zoabi (2006). Second, the recent findings showing
that the link between the life expectancy and labor supply depends on the
age pattern of mortality improvements. In particular, on the one side, for
a given retirement age it has been shown that only improvements in sur-
vival during prime-working ages –and not longevity per se– increase human
capital investment (Cervellati and Sunde, 2013; de la Croix, 2015). On the
other, for a given educational attainment mortality declines during adult-
hood may cause early retirement, while reductions in mortality at older
ages delay retirement (d’Albis et al., 2012; Strulik and Werner, 2012).2

In this paper, we set up a life-cycle model of consumption and labor
supply at the extensive margin that allows for endogenous human capital
formation through the Ben-Porath’s mechanism. First, we explain the dif-
ferential role of mortality on the optimal schooling choice and retirement
choice. Second, we use the model to study whether the observed decline

2Empirical investigations of the mortality decline over the last two centuries show
that mortality does not improve uniformly across age groups (Lee, 1994; Wilmoth and
Horiuchi, 1999; Cutler et al., 2006). Early stages of the mortality transition are mainly
characterized by reductions of mortality for infants and children, while recent mortality
declines occur at older ages.

3



in mortality across cohorts born in US and Sweden can produce a mono-
tonic increase in schooling followed by a decline in retirement. Our model
has one key feature. Following the literature on human capital formation,
individuals have a relative disutility from attending school, or aversion to
schooling time, like in Heckman et al. (1998), Bils and Klenow (2000), Card
(2001), Oreopoulos (2007), Restuccia and Vandenbroucke (2013). This fea-
ture has been shown to be important to account for the substantial differ-
ence between the returns to schooling and the marginal cost of schooling
(Oreopoulos, 2007).3 Our model differs from the previous literature in two
aspects. First, we model the labor supply decision at the extensive margin
(retirement) rather than at the intensive margin (hours worked). Thus, we
complement the recent work by Restuccia and Vandenbroucke (2013), who
have shown that the increase in life expectancy during the last century only
counts for 3% of the decline in hours worked in the US, by empirically show-
ing the effect of life expectancy on retirement. Second, since the decline
in mortality does not occur uniformly across age-groups, following d’Albis
et al. (2012) we model the age-specific mortality rates non-parametrically.
Thus, using the derivative of a functional (Ryder and Heal, 1973; d’Albis
et al., 2012), we analyze the impact of a mortality decline at any arbitrary
age on human capital investment and retirement.

This paper provides two important contributions. First, we find that
when there exists an aversion to schooling time, an increase in the length
of schooling might lead to a decline in the retirement age. An increase in
productivity raises the marginal benefit of continue working, inducing indi-
viduals to retire later, whereas an increase in productivity also implies that
individuals use the additional income to raise consumption and leisure (sub-
stitution effect). The net effect is ambiguous and depends on the strength
of the income effect versus the substitution effect. We show that the crit-
ical parameter driving the strength of the income effect is the aversion to
schooling time. Hence, only when we assume that there exists aversion
to schooling time we can replicate that an increase in life expectancy may
cause an increase in the length schooling and early retirement, reconcil-
ing the empirical facts with the economic theory. Second, using a general
utility function we provide the economic intuition of our results by decom-
posing the differential effect of mortality on schooling and retirement into
a Ben-Porath mechanism and a lifetime human wealth effect vs. the years-
to-consume effect. The Ben-Porath mechanism is the positive effect on the

3The empirical work on the returns to education suggests that the aversion to school-
ing time captures sizable nonpecuniary effects of schooling. Examples of negative non-
pecuniary effects of schooling are high psychic costs of school and higher risk and un-
certainty (Heckman, 2003; Carneiro et al., 2003; Cunha et al., 2005; Heckman et al.,
2006), while suggested positive nonpecuniary effects of compulsory schooling are foster-
ing trust and the reduction of teen fertility, criminal activity, or smoking (Oreopoulos
and Salvanes, 2011), among others.
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marginal benefit of schooling caused by gains in life expectancy. Lifetime
human wealth effect stands for the positive impact that a mortality decline
has on consumption because it raises the likelihood of receiving a future
labor income stream. On the contrary, the years-to-consume effect, which
is always negative, reflects the overall reduction in consumption due to a
longer lifespan.

We also perform a quantitative exercise of our model using US and
Swedish mortality data. We restrict the parameters of the model so that it
reproduces the years of schooling and retirement age observed in the data
for the cohort born in 1890.4 Then, we compute cohort-specific sequences
of years of schooling and retirement ages assuming that each cohort faces
a different survival probability. Using a stylized model, we find that im-
provements in the survival probability may account for a decline in the
retirement age around 1.2 years (or 40% of the total decline) and an in-
crease in years of education around 1.2 year (or 30%) between the 1890 and
1930 cohorts. Thereby, our results suggest that the effect of increases in
life expectancy on the labor supply is stronger than previously suggested.
In addition, since in the earlier stage of mortality transition, a decline in
mortality mainly occurred to younger people, whereas in the later stage, a
decline in mortality has mainly occurred at older ages, we show that the
optimal retirement age bottomed out for cohorts born in the 1920s and it
is expected to increase from now on.

The paper is organized as follows: Section 2 introduces the model setup
and presents the first-order conditions for optimal consumption, length of
schooling, and retirement. Furthermore, the relationship between the op-
timal length of schooling and retirement is explained. In Section 3, we
study –using the Volterra derivative of a functional– the differential role
of mortality on the optimal length of schooling and retirement. For a bet-
ter understanding on the role of mortality on each variable, we distinguish
between the partial and total impact of mortality on education and re-
tirement, separately. In Section 4, we solve the model numerically and
demonstrate, using a simple quantitative exercise, how the mortality tran-
sition may increase the length of schooling and reduce the retirement age.
Concluding remarks are made in Section 5.

4Starting from this cohort guarantees that in both countries individuals received
pension benefits upon retirement from the PAYG pension system. In the United States
the Social Security Act was signed in 1935 by Franklin D. Roosevelt. In Sweden the
old-age pension system switched from a fully funded system that dates back to 1913 to
a pay-as-you-go system in 1935 (Palme, 2005). The universal coverage was achieved in
1946 in Sweden, while more than 60% of workers were covered by the Social Security in
1940 in the US (Schieber and Shoven, 1999).
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2 The model

We setup a consumer’s problem that consists in choosing the optimal num-
ber of years of schooling (S), optimal retirement age (R), and the optimal
consumption path (c(x)) in order to maximize the expected lifetime utility
(V (S,R, c)). We assume time is continuous. Agents face lifetime uncer-
tainty, which is represented by the survival function

p(x) = e−
∫ x
0 µ(q)dq, (1)

where p(x) is the (unconditional) probability of surviving to age x, p(0) = 1,
p(ω) = 0, ω ∈ (0,∞) denotes the maximum age, and µ(q) ≥ 0 is the
mortality hazard rate at age q.

Schooling and labor supply are indivisible and the transitions from
schooling to working and from working to retirement are irreversible, as
in Boucekkine et al. (2002), Echevarria (2004), Echevarria and Iza (2006),
and Cai and Lau (2012). We also assume that agents do not save with a
bequest motive in mind and there exists a perfect annuity market, which
grants that agents borrow and lend freely at a fixed interest rate. Thereby,
consumers optimally choose to purchase annuities (Yaari, 1965). The in-
stantaneous expected utility depends positively on current consumption
and negatively on current non-leisure time. The utility of consumption
U(c) is an increasing and concave function (i.e. Uc(·) > 0, Ucc(·) < 0).5 Let
φ̃(S, x) denote the disutility of non-leisure time at age x of an individual
who has completed S years of schooling. Assume φ̃(S, x) is a positive and
increasing function with respect to age (i.e. φ̃(S, x) > 0, φ̃x(S, x) > 0),
which reflects the fact that the disutility of not enjoying leisure is increas-
ing with age (Hazan, 2009; Kalemli-Ozcan and Weil, 2010; d’Albis et al.,
2012; Cai and Lau, 2012). After retirement, φ̃(S, x) equals zero. Then,
assuming that agents discount future utility flows at a subjective discount
rate ρ, the expected lifetime utility, conditional on the years of schooling
(S), retirement (R), and consumption path (c) is

V (S,R, c) =

∫ ω

0

e−ρxp(x)U
(
c(x)

)
dx−

∫ R

0

e−ρxp(x)φ̃(S, x)dx. (2)

Following Heckman et al. (1998), Bils and Klenow (2000), Card (2001),
Oreopoulos (2007), Restuccia and Vandenbroucke (2013), we assume agents
may have different preferences between schooling time and working time

φ̃(S, x) =

{
φ(x) + ψ(x) if x ≤ S,

φ(x) if x > S,
(3)

5We use subscripts to denote the derivative with respect to the variable in the sub-
script, and apply the same notation for partial derivatives.
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where φ(x) > 0 (with φx(x) ≥ 0) is the underlying disutility of non-leisure
time and ψ(x) is the relative disutility from attending school or aversion
to schooling time. Factor ψ(x) is positive when the agent prefers work to
schooling or negative when schooling is preferred to work. We assume that
if ψ(x) is positive, the aversion to schooling time increases with age (i.e.
ψx(x) ≥ 0), whereas if ψ(x) is negative, our agent has a decreasing prefer-
ence for schooling, or ψx(x) ≤ 0. As a particular case, notice ψ(x) = 0 for
all x ∈ (0, ω) is implicitly assumed in Boucekkine et al. (2002), Echevarria
(2004), Echevarria and Iza (2006), Ferreira and Pessoa (2007), Zhang and
Zhang (2009), Kalemli-Ozcan and Weil (2010), and Cai and Lau (2012),
among many others.

Labor income, denoted by y, is assumed to be proportional to years of
schooling (S) and years of post-schooling experience (E), which is equal
to x − S (Mincer, 1974). Thus, we write labor income at age x = S + E
conditional on S years of schooling as y(S, S +E) = w(E)h(S +E), where
w(E) > 0 represents the wage rate per unit of human capital with E = x−S
years of post-schooling experience and h(S + E) is the stock of human
capital of an individual at age x with S years of schooling. We assume
there exists an Ē ∈ [0, R− S], for R > S, such that

{
wE(E) ≥ 0 if E ≤ Ē,

wE(E) ≤ 0 if E ≥ Ē,
(4)

which represents the usual hump-shape pattern of the labor income found
in empirical data (Heckman et al., 2006).6 This assumption although re-
alistically capture the observed shape of lifetime income profiles, it is not
necessary for the results presented in the paper.7 Assume the law of mo-
tion of human capital of an individual at age x with S years of schooling
accumulates according to a Ben-Porath (1967) technology

hx(x) =

{
q(h(x))− δh(x) if x ≤ S

−δh(x) otherwise,
(5)

where q(·) is the human capital production function (with qh(·) > 0 and
qhh(·) < 0), and δ > 0 is the human capital depreciation rate, which is
assumed constant across age.8 As a result, the law of motion of financial

6Using data from the US Decennial Censuses, the estimated coefficients from Mincer
log earnings regressions for white males during the period 1940-90 report an average Ē
value of 30.1 years (Heckman et al., 2006, Table 2, p. 326).

7A sufficient condition for our results to hold is that the wage rate is a non-increasing
function upon retirement. See Appendix A.

8The functional form h(S) = eθ(S), used by Hazan (2009), p. 1834, can be obtained
assuming either that δ = 0 or that q(h(x)) is equal to (θx(x) + δ)h(x).
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wealth at age x (a(x)) is

ax(x) =

{
[r + µ(x)]a(x) + y(S, x)− c(x) if S < x < R,

[r + µ(x)]a(x)− c(x) otherwise,
(6)

with boundary conditions a(0) = 0 and a(ω) = 0, where r is the real
interest rate. Integrating (6) with respect to age, subject to the boundary
conditions, we obtain the standard lifecycle budget constraint faced by our
individual:

∫ ω

0

e−rxp(x)c(x)dx =

∫ R

S

e−rxp(x)y(S, x)dx ≡ W (S,R), (7)

where W (S,R) is the lifecycle earnings (measured at age 0) conditional
on S years of schooling and retirement age R. For the sake of comparison
with the literature on the impact of mortality on retirement and education,
notice that we implicitly assume that the only pecuniary cost of schooling
is foregone labor income (Kalemli-Ozcan et al., 2000; Hazan, 2009; Cai and
Lau, 2012; Cervellati and Sunde, 2013). Tuition costs, earnings while in
school, and taxes are also modeled in the returns to education literature
(Willis, 1986; Card, 2001; Heckman et al., 2006).

2.1 Optimal consumption, length of schooling, and
retirement age

Following d’Albis and Augeraud-Véron (2008), Heijdra and Romp (2009),
and d’Albis et al. (2012) we obtain our agent’s optimal consumption path,
length of schooling, and retirement in two steps. First, we derive the opti-
mal consumption path. We define the optimal consumption at age x, condi-
tional on the length of schooling (S) and retirement age (R), as c(x, S,R).
Second, based on the conditional consumption path derived in the first
step, we obtain the optimal length of schooling and retirement age. Let us
define V̂ (S,R) as the expected lifetime utility conditional on the optimal
consumption path.

In Proposition 1, we characterize the optimal consumption path, the
optimal length of schooling, and the optimal retirement age. The proof is
given in Appendix A.

Proposition 1 For the life-cycle model given by (1)-(6), the optimal con-
sumption path, conditional on a length of schooling S and a retirement age
R, is characterized by

Uc
(
c(x, S,R)

)
= e(ρ−r)xUc

(
c(0, S, R)

)
. (8)
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Moreover, an interior optimal length of schooling (S∗) satisfies

∫ R

S∗
e−r(x−S

∗) p(x)

p(S∗)
yS(S∗, x)dx = y(S∗, S∗) +

e(r−ρ)S∗
ψ(S∗)

Uc
(
c(0, S∗, R)

) , (9)

and an interior optimal retirement age (R∗) is given by

Uc
(
c(0, S, R∗)

)
e−rR

∗
y(S,R∗) = e−ρR

∗
φ(R∗). (10)

Eq. (8) is the standard Euler condition characterizing the consumption
path. The left-hand side of Eq. (9) is the marginal benefit of the S∗-th year
of schooling, whereas the right-hand side represents the marginal cost of
the S∗-th year of schooling. The first term is the foregone earnings, or pe-
cuniary cost of schooling, and the second term represents the nonpecuniary
cost (if ψ(S∗) > 0) or benefit (if ψ(S∗) < 0) from attending schooling. Let
us define f(S,R) as the marginal effect of an additional unit of schooling
(measured at age S) on lifecycle earnings:

f(S,R) ≡ WS(S,R)

e−rSp(S)
=

∫ R

S

e−r(x−S) p(x)

p(S)
yS(S, x)dx− y(S, S), (11)

or, equivalently, the marginal benefit of the S-th year of schooling minus
the foregone labor income at age S (measured at age S). Provided the
labor income is separable in education and experience, from (5) Eq. (11)
can be rewritten, after rearranging, as

f(S,R) =
W (S,R)

e−rSp(S)

(
q
(
h(S)

)

h(S)
− δ

−r −
∫ R
S
e−(r+δ)xµ(x)p(x)w(x− S)dx
∫ R
S
e−(r+δ)xp(x)w(x− S)dx

− e−rRp(R)y(S,R)

W (S,R)

)
, (12)

where q(h(S))/h(S)− δ is the rate of return to education at the S-th unit
of schooling (henceforth rh(S)). The third and fourth terms inside the
parenthesis represent the average return lost in the capital market from
postponing the entrance in the labor market. Specifically, the fourth term
is the average risk premium lost from the S-th unit of schooling, which
hereinafter we denote by µ̄[S,R]. The last term is the income lost at re-
tirement relative to the lifetime wealth. For notational convenience, let us
denote the sum of the negative terms in (12) as r̄(S,R); that is

r̄(S,R) = r + µ̄[S,R] +
e−rRp(R)y(S,R)

W (S,R)
. (13)

Eq. (13) represents the hurdle rate or annuitized marginal cost of the S-th
unit of schooling, expressed in terms of foregone earnings, conditional on

9



the retirement age R.9 Assuming there is no mortality risk and considering
that R tends to infinity, Eq. (13) reduces to the real interest rate. Thus, if
ψ(S∗) is zero, we obtain the result that individuals invest in schooling until
the marginal return to education equals the return to capital, see Willis
(1986).

Substituting (11)-(13) in (9), and rearranging, gives

rh(S∗) = r̄(S∗, R) +
e−ρS

∗
p(S∗)ψ(S∗)

W (S∗, R)Uc(c(0, S∗, R))
. (14)

Eq. (14) implies that the return to education at the S∗-th unit of schooling
is equal to the sum of the marginal cost of the S∗-th unit of schooling
expressed in terms of foregone earnings and the nonpecuniary cost/benefit
of schooling. Eq. (14) implies that when working is preferred to schooling
(ψ(S∗) > 0), individuals underinvest in education since rh(S∗) > r̄(S∗, R).
In contrast, when schooling is preferred to work (ψ(S∗) < 0), individuals
over-investment in education since rh(S∗) < r̄(S∗, R). As a consequence, if
education were considered a pure investment good (ψ(S∗) = 0), rh(S∗) =
r̄(S∗, R∗).

Empirically, the econometric estimations of returns to education report
values of rh(S∗) exceeding those of r̄(S∗, R∗). For example, Card (1999)
finds a wide range of rates of returns to education in the US centered around
8% per year, while Heckman et al. (2008) estimate also for the US that the
returns to education range between 10 to 15% per year. In contrast, when
education is considered a pure investment good, the rate of return to edu-
cation for an individual with 10 years of education does not exceed 3% per
year for a wide range of feasible retirement ages.10 Several explanations
are suggested in the literature for the positive difference between rh(S∗)
and r̄(S∗, R∗). The most common ones are high “psychic cost” of school,
uncertainty, and heterogeneity among individuals (Carneiro et al., 2003;
Cunha et al., 2005; Heckman et al., 2006), the myopic behavior of adoles-
cents (Oreopoulos, 2007), while credit constraints might be important for
going to college decisions (Belley and Lochner, 2007), but not for most stu-
dents (Carneiro and Heckman, 2002; Heckman et al., 2006). Henceforth,
following the literature on returns to education, we assume hereinafter that
ψ(x) > 0 for all x ∈ (0, S). As a consequence, rh(S∗) > r̄(S∗, R).

Eq. (10) is the optimal retirement age condition. Eq. (10) implies that
the marginal benefit of continued working at age R∗, which is equivalent to

9The hurdle rate is: the minimum return required to make an individual financially
better off from taking one year of school instead of one year of work (Oreopoulos, 2007).

10A value of 3% has been calculated based on the wage rate per unit of human capital
logw(x−S) = logw(0)+0.094(x−S)−0.0013(x−S)2 withdrawn from Table 2 (Heckman
et al., 2006, p. 326), US death rates of males from the cohort born in year 1900 (Bell
et al., 1992), an interest rate of 3%, and no human capital depreciation rate.
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the additional labor income at age R∗ measured in utility terms, equals the
marginal cost of working at age R∗, or the disutility of continued working
at age R∗. This optimal retirement age condition was first derived by
Sheshinski (1978).

The first important results one can obtain from Proposition 1 are the
effects of an increase in the optimal length of schooling and retirement age
on the optimal consumption path. Differentiating (7) and (8) with respect
to S, substituting, and using (11) gives

cS(0, S∗, R)

c(0, S∗, R)
=

e−rS
∗
p(S∗)σ(c(0, S∗, R))f(S∗, R)∫ ω

0
e−rxp(x)σ(c(x, S∗, R))c(x, S∗, R)dx

. (15)

where

σ(c) = − Uc(c)

c · Ucc(c)
> 0, (16)

is the intertemporal elasticity of substitution (IES) for consumption c. Us-
ing (7) and (12)-(14), Eq. (15) becomes11

cS(0, S∗, R)

c(0, S∗, R)
=
σ(c(0, S∗, R))

σ(c(x̄, S∗, R))
(rh(S∗)− r̄(S∗, R)), (18)

Assuming a constant IES, Eq. (18) implies that the relative increase in
the initial consumption due to an additional unit of schooling is equal
to the difference between the return to education and the marginal cost
of the S∗-th unit of schooling expressed in terms of foregone earnings.
As a consequence, an additional investment in schooling is efficient when
rh(S∗) > r̄(S∗, R), and inefficient when rh(S∗) < r̄(S∗, R).

To analyze the impact of retirement on the optimal consumption path
we differentiate (7) and (8) with respect to R. Substituting and using (10),
we have

cR(0, S, R∗)

c(0, S, R∗)
=

e−rR
∗
p(R∗)σ(c(0, S, R∗))y(S,R∗)∫ ω

0
e−rxp(x)σ(c(x, S,R∗))c(x, S,R∗)dx

, (19)

which is equivalent to

cR(0, S, R∗)

c(0, S, R∗)
=
σ(c(0, S, R∗))

σ(c(x̄, S, R∗))

e−rR
∗
p(R∗)y(S,R∗)

W (S,R∗)
. (20)

11Applying the mean value theorem for integration, there exists an x̄ ∈ (0, ω) such
that

∫ ω

0

e−rxp(x)σ(c(x, S∗, R))c(x, S∗, R)dx

= σ(c(x̄, S∗, R))

∫ ω

0

e−rxp(x)c(x, S∗, R)dx = σ(c(x̄, S∗, R))W (S∗, R). (17)
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For a constant IES, Eq. (20) states that the relative impact of delaying
retirement on the initial consumption is equal to the weight of labor income
at age R∗ in lifecycle earnings. Thereby, contrary to an increase in the
length of schooling, an increase in the retirement age always raises the
optimal consumption path because the agent receives an additional labor
income at age R∗.

2.2 Relationship between years of schooling and re-
tirement

In the previous subsection we have shown the first-order conditions for an
optimum of S∗ and R∗, separately, and how they impact on the optimal
consumption path. In this subsection, we turn to a detailed study about
the relationship between the optimal years of schooling and the optimal
retirement age.

Let us denote c(0, S∗, R∗) as c∗ and c(x̄, S∗, R∗) as c̄. Applying the
implicit-function theorem to the first order condition for S∗ around the
point (S∗, R∗), we can examine the impact on the optimal length of school-
ing of a change in the retirement age. Totally differentiating (9) with
respect to R and S, taking ψ(S∗) as common factor, and rearranging, we
obtain

dS∗

dR

∣∣∣∣
R=R∗

=

fR(S∗,R∗)
f(S∗,R∗)

− 1
σ(c∗)

c∗R
c∗

ψS(S∗)
ψ(S∗)

+ 1
σ(c∗)

c∗S
c∗
− fS(S∗,R∗)

f(S∗,R∗)

. (21)

Similarly, applying the implicit-function theorem, we totally differentiate
(10) with respect to S and R to examine the impact on the optimal retire-
ment age of a change in the length of schooling

dR∗

dS

∣∣∣∣
S=S∗

=
− 1
σ(c∗)

c∗S
c∗

+ rh(S∗) + δ − wR−S(R∗−S∗)

w(R∗−S∗)

1
σ(c∗)

c∗R
c∗
− wR−S(R∗−S∗)

w(R∗−S∗)
+ δ + φR(R∗)

φ(R∗)

. (22)

Provided (S∗, R∗) is an interior solution of our problem, substituting (11)
and (20) in (21)-(22), and using (13), we have12

sign

[
dS∗

dR∗

]
= sign



r̄(S∗, R∗) + σ(c̄)

[
δ − wR−S(R∗−S∗)

w(R∗−S∗)

]

1− σ(c̄)
− rh(S∗)


 , (23)

Eq. (23) implies that the length of schooling S∗ and the retirement age R∗

may be either positively or negatively related. On the one hand, looking
at Eq. (22), we have that an additional year of schooling after age S∗

12From now on, we use the term dS∗/dR∗ as a shorthand notation for
dS∗

dR

∣∣∣
R=R∗

/
dR∗

dS

∣∣∣
S=S∗

.
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increases the labor income at age R∗ by rh(S∗) + δ − wR−S(R∗−S∗)

w(R∗−S∗)
, which

increases the marginal benefit of working. As a consequence, our individual
optimally postpones the retirement age in order to reap the benefits of
schooling. On the other hand, the increase in education may also change
the marginal utility of consumption, and hence the marginal benefit of
working, by − 1

σ(c∗)

c∗S
c∗

.13 Thus, the net effect of a change in education on
retirement depends upon the strength of the income effect, reflected by
the IES (Imrohoroglu and Kitao, 2009; Keane, 2011), and the difference
between rh(S∗) and r̄(S∗, R∗). At the extreme cases, when σ(c̄) tends to
one or r̄(S∗, R∗) = rh(S∗), we have that the sign of dS∗

dR

∣∣
R=R∗ and dR∗

dS

∣∣
S=S∗

depend on the sign of r̄(S∗, R∗) + δ− wR−S(R∗−S∗)

w(R∗−S∗)
, which is always positive

whenever R∗ − S∗ ≥ Ē.

Return to
education,
rh(S∗)

r̄(S∗,R∗)

IES, σ(c̄)0 1

dS∗
dR∗ < 0

dS∗
dR∗ > 0

r̄(S∗,R∗)+σ(c̄)
[
δ−wR−S(R

∗−S∗)
w(R∗−S∗)

]

1−σ(c̄)

f (S∗,R∗)> 0

f (S∗,R∗)< 0

Figure 2: Relationship between S∗ and R∗ by return to education and
intertemporal elasticity of substitution

Figure 2 summarizes the result obtained in Eq. (23). For any given wage

13Differentiating (8) with respect to S, we have

1

σ(c∗)

c∗S
c∗

=
1

σ(c(x, S∗, R∗))

cS(x, S∗, R∗)

c(x, S∗, R∗)
for all x ∈ [0, ω).
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rate per unit of human capital, Figure 2 is divided into two shaded areas.
A dark gray area that contains the combination of (rh(S∗), σ(c̄)) values
for which S∗ and R∗ are positively related, and a light gray area with the
combination of (rh(S∗), σ(c̄)) values for which S∗ and R∗ are negatively
related. It is clear looking at Figure 2 that S∗ and R∗ are positively related
whenever the return to education is equal to, or lower than, r̄(S∗, R∗)
(dark gray area below the horizontal dotted line in Figure 2). In this
region, an increase in the retirement age leads to an increase in the optimal
length of schooling (Ben-Porath, 1967), as well as an increase in schooling
yields an increase in the retirement age (Boucekkine et al., 2002; Echevarria
and Iza, 2006). However, when the return to education is higher than
r̄(S∗, R∗), S∗ and R∗ can either be positively or negatively related. The
black dashed line in Figure 2 delimits the combination of (rh(S∗), σ(c̄))
values at which S∗ and R∗ are not related to each other; i.e. dS∗

dR∗ = 0.
The light gray area, located at the upper-left corner, is characterized by
low IES and high return to education. In this area, the income effect
dominates. Thus, for a sufficiently high return to education and low IES,
when a positive income shock increases the optimal years of schooling, the
optimal retirement age decreases, since individuals purchase more leisure
time, and the positive effect on years of schooling gets reinforced. The
same effect would take place if the positive income shock initially reduces
the retirement age. Notice, however, the negative relation between S∗ and
R∗ vanishes as the return to education approaches the dashed line, which
eventually occurs when the length of schooling is sufficiently large. On the
contrary, in the dark gray area, where the strength of the income effect
diminishes –as a consequence of a positive income shock that raises the
retirement age– the optimal years of schooling increases and the rise in the
retirement age gets also reinforced.

3 Differential impact of mortality decline on

optimal schooling years and retirement age

In this Section, we study the impact of a mortality decline at an arbitrary
age (x0) on the optimal length of schooling (S∗) and the optimal retirement
age (R∗). For clarity of exposition, we make explicit the dependence of the
optimal schooling and retirement age on each other and on the underlying
mortality schedule; i.e. S∗ ≡ S∗(R∗;µ) and R∗ ≡ R∗(S∗;µ).14

Eqs. (24a)-(24b) below show how the effect of a mortality decline at an

14Let the continuous function µ : [0, ω) → R+, x0 7→ µ(x0) represents the mortality
hazard rate at any age x0 ∈ [0, ω).
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arbitrary age x0 is characterized by the sum of two partial effects:

sign

[ −dS∗
dµ(x0)

]
= − sign

[
S∗µ(x0)(R

∗;µ) +
dS∗

dR∗
R∗µ(x0)(S

∗;µ)

]
, (24a)

sign

[ −dR∗
dµ(x0)

]
= − sign

[
R∗µ(x0)(S

∗;µ) +
dR∗

dS∗
S∗µ(x0)(R

∗;µ)

]
. (24b)

See the proof in Appendix D. The first partial effect is the impact of a mor-
tality decline at x0 on S∗ and R∗ –respectively– holding all other variables
unchanged, while the second partial effect is the impact of retirement (resp.
schooling) on schooling (resp. retirement) that is mediated by a change in
mortality. Thus, as shown in (24a) and (24b), the effect of mortality on S∗

and R∗ are intertwined.
For exposition clarity, in Section 3.1 we first focus on the analysis of the

partial effects and, in Section 3.2, we study the total impact of a mortality
decline on both variables.

3.1 Partial effect

Following the same order as the derivation of the first-order conditions, we
first study the partial impact that a mortality decline has on the optimal
consumption path and, second, we continue with the analysis of the par-
tial effect of a mortality decline on the optimal length of schooling and
retirement age.

To study the effect of mortality on our variables of interest, we make
use of the derivative of a functional (Ryder and Heal, 1973; d’Albis et al.,
2012) to obtain, through (1), that

− ∂p(x)

∂µ(x0)
=

{
p(x) if x0 ≤ x,

0 if x0 > x.
(25)

Eq. (25) means that a mortality decline at age x0 has no effect on the sur-
vival probability before age x0, but it increases the survival probability at
ages above or equal to x0. From (25) we derive the impact that a mortality
decline at an arbitrary age x0 has on the optimal consumption path and,
in particular, on the initial optimal consumption (c∗). Differentiating (7)
and (8) with respect to −µ(x0), substituting, and rearranging gives

1

c∗
−∂c∗
∂µ(x0)

= −σ(c∗)

σ(c̄)

e−rx0p(x0)a(x0)

W (S∗, R∗)
. (26)

Notice in Eq. (26) that if the IES is constant across the lifecycle, the
relative impact of a mortality decline at age x0 on the initial consumption
is minus the ratio between the financial wealth position at age x0 and
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lifecycle earnings. Thereby, the sign of the impact of a decline in mortality
at age x0 on the optimal consumption path is equal to minus the sign of
the financial wealth at age x0. Moreover, according to Eq. (26) a decline in
mortality at two different ages does not necessarily have the same impact
on consumption.15

Eq. (26) is the extension of Eq. (B.5) in d’Albis et al. (2012) to a model
with endogenous human capital investment. Like d’Albis et al. (2012) we
show that the optimal consumption path increases with a decline in mor-
tality at age x0 when a(x0) < 0, while the optimal consumption declines
when a(x0) > 0, for all x0 ∈ [0, ω). The intuition is simple. On the one
hand, a decline in mortality increases the number of years the agent is ex-
pected to live. As a consequence, agents compensate a longer lifespan with
an overall reduction in consumption. This effect, which is always negative,
is named the “years-to-consume” effect. On the other hand, a mortality
decline during the working period raises the likelihood of receiving a future
labor income stream, which leads to an overall increase in the consumption
path. This other effect, which is always positive, is named the “lifetime
human wealth” effect. For a better understanding, Proposition 2 gives the
net result of these two opposite effects using a CIES utility function. The
proof is given in Appendix B.

Proposition 2 For the life-cycle model given by (1)-(6), if Uc(c) is a power
function, the overall result of 1

c∗
−∂c∗
∂µ(x0)

is the same as that of

g(x0) =

∫ R∗

S∗ e
−rx
[
−∂p(x)
∂µ(x0)

]
y(S∗, x)dx

∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
−
∫ ω
x0
e−[(1−σ)r+σρ]xp(x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

, (28)

where σ ∈ [0, 1] is the intertemporal elasticity of substitution. Moreover,
there exists a critical point xc within the open interval (S∗, R∗) such that





g(x0) > 0 for all x0 < xc,

g(x0) = 0 for all x0 = xc,

g(x0) < 0 for all x0 > xc.

(29)

The first component of (28) is the “lifetime human wealth” effect, while
the second component represents the “years-to-consume” effect. An illus-
tration of the shape of both effects across the life-cycle is given in Figure 3.
Notice the lifetime human wealth effect dominates the years-to-consume

15The partial impact of a mortality decline at all ages on the initial consumption is

1

c∗
−∂c∗
∂µ

=

∫ ω

0

1

c∗
−∂c∗
∂µ(x)

dµ(x) = −σ(c∗)

σ(c̄)

∫ ω
0
e−rxp(x)a(x)dµ(x)

W (S∗, R∗)
. (27)
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effect up to age xc ∈ (S∗, R∗), the year at which the financial wealth is
zero, a(xc) = 0. Therefore, a mortality decline early in life leads to an
overall increase in consumption. In contrast, a decline in mortality at ages
above xc leads to an overall decline in consumption because the years-to-
consume effect dominates the lifetime human wealth effect. Though for
simplicity we have not modeled any retirement pension system, our results
are robust to the introduction of a more general and realistic framework.
Indeed, the introduction of an income during the retirement period will
extend the lifetime human wealth effect up to age ω, shifting the age xc
toward older ages.

x0

x0

1

g(x0)

0

0

S∗

S∗

xc

xc

R∗

R∗

ω

ω

years-to-consume effect

lifetime human wealth effect

Figure 3: The lifetime human wealth and years-to-consume effect

The partial impact of a decline in mortality on the length of school-
ing and retirement age is given in Proposition 3. The proof is given in
Appendix C.

Proposition 3 For the life-cycle model given by (1)-(6),
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(a) the sign of −S∗µ(x0) is the same as that of

rh(S∗)− r̄(S∗, R∗)
σ(c̄)

a(x0), (30)

when x0 ≤ S∗ and x0 ≥ R∗, and

rh(S∗)− r̄(S∗, R∗)
σ(c̄)

a(x0) +

∫ R∗

x0

e−r(x−x0) p(x)

p(x0)
yS(S∗, x)dx, (31)

when x0 ∈ (S∗, R∗), and

(b) the sign of −R∗µ(x0) is the same as that of a(x0).

In Proposition 3(b) we obtain the same “consumption-leisure” relation-
ship as in d’Albis et al. (2012). That is, given that consumption and
leisure are normal goods, Proposition 3(b) implies that if a mortality de-
cline yields an increase in consumption because the lifetime human wealth
effect dominates the years-to-consume effect, agents anticipate their opti-
mal retirement age in order to enjoy more leisure time. Similarly, when
the decline in mortality implies that the years-to-consume effect dominates
the lifetime human wealth effect, agents diminish their consumption and
postpone their optimal retirement age.

Proposition 3(a) extends the years-to-consume effect and lifetime hu-
man wealth effect reasoning to the accumulation of human capital. In this
regard, we obtain unambiguous results concerning the sign on the optimal
length of schooling of a mortality decline at ages before the entrance into
the labor market, S∗, and after the optimal retirement age, R∗. Specifically,
Proposition 3(a) implies that when rh(S∗) > r̄(S∗, R∗), if a mortality de-
cline yields an increase in consumption because the lifetime human wealth
effect dominates the years-to-consume effect, agents reduce their invest-
ment in education. Recall that this happens during the schooling period as
Figure 3 shows. In contrast, a decline in mortality after the optimal retire-
ment age leads to more years of schooling. Instead, if rh(S∗) = r̄(S∗, R∗)
–as frequently assumed in the literature– a decline in mortality during the
schooling period or during retirement period does not have an impact on
the optimal length of schooling.

During the working period, Proposition 3(a) shows that a decline in
mortality positively affects education through the second term in Eq. (31),
which reflects the effect of a mortality decline at age x0 on the marginal
benefit of schooling (measured at age x0), also known as the Ben-Porath
mechanism. Actually, this is the only component driving the effect of mor-
tality on the length of schooling when rh(S∗) = r̄(S∗, R∗), but it is not
the case whenever rh(S∗) 6= r̄(S∗, R∗). In other words, under a model of
human capital investment with a fixed retirement age, only improvements
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in survival during prime-working ages triggers the Ben-Porath mechanism
(Cervellati and Sunde, 2013).

Next we use the results obtained in Proposition 3 to derive the total
effects.

3.2 Total effects

In this section we complete the analysis studying the total impact of a
mortality decline at an arbitrary age on the optimal length of schooling
and retirement age. To do so, we combine the partial effects, presented in
Section 3.1, according to Eqs. (24a) and (24b).

Proposition 4 gives under the strict concavity of the expected lifetime
utility, the sign of a decline in mortality at an arbitrary age x0 on the
optimal length of schooling and retirement age. See Appendix D for the
proof.

Proposition 4 Assuming the strict concavity of V̂ (S,R), for the life-cycle
model given by (1)-(6),

(a) the sign of −dS
∗

dµ(x0)
is the same as that of

{
a(x0) 1

σ(c∗)
1
c∗

dc∗

dS∗ +
∫ R∗

x0
e−r(x−x0) p(x)

p(x0)
yS(S∗, x)dx if S∗ < x0 < R∗,

a(x0) 1
σ(c∗)

1
c∗

dc∗

dS∗ otherwise,

(32)

(b) and the sign of −dR
∗

dµ(x0)
is the same as that of

{
a(x0) 1

σ(c∗)
1
c∗

dc∗

dR∗ + dS∗

dR∗

∫ R∗

x0
e−r(x−x0) p(x)

p(x0)
yS(S∗, x)dx if S∗ < x0 < R∗,

a(x0) 1
σ(c∗)

1
c∗

dc∗

dR∗ otherwise.

(33)

Eqs. (32) and (33) show that the total impact of a decline in mortality at
an arbitrary age x0 on the optimal length of schooling and retirement age
is given by three factors: (i) the “lifetime human wealth” effect versus the
“years-to-consume” effect, which is reflected by the financial wealth at age
x0, i.e. a(x0); (ii) the total impact of years of schooling and retirement on
the initial consumption; and (iii) the effect of mortality on the marginal
benefit of schooling or Ben-Porath mechanism. Factors (i) and (ii) only
have an impact when rh(S∗) 6= r̄(S∗, R∗). The first thing to notice is that
the increase in the marginal benefit of schooling due to a decline in mor-
tality always has a positive impact on education, but it is not necessarily
true on the optimal retirement age since it depends on the relationship
between education and retirement. If S∗ and R∗ are negatively related,
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agents anticipate their retirement age and enjoy more leisure time when a
decline in mortality causes an increase in the marginal benefit of school-
ing. In contrast, if S∗ and R∗ are positively related, agents postpone their
retirement age in order to reap the benefits of schooling. This is because
in the former alternative the income effect dominates over the substitu-
tion effect, whereas in the latter the substitution effect dominates over the
income effect.

During the schooling period and the retirement period, the effect of
mortality on the marginal benefit of schooling is null. Thereby, in these
two periods, the sign of the total impact of a decline in mortality on the
optimal length of schooling and retirement age solely depend on the lifetime
human wealth effect versus the years-to-consume effect and the total impact
of years of schooling and retirement on the initial consumption:

sign

[ −dS∗
dµ(x0)

]
= sign

[
a(x0)

1

σ(c∗)

1

c∗
dc∗

dS∗

]
,

sign

[ −dR∗
dµ(x0)

]
= sign

[
a(x0)

1

σ(c∗)

1

c∗
dc∗

dR∗

]
,

for all x0 ∈ [0, S∗]∩[R∗, ω]. On the one side, from (6) we know that a(x0) <
0 during the schooling period, while a(x0) > 0 during the retirement period.
On the other side, combining (18), (20)-(22) we have

1

σ(c∗)

1

c∗
dc∗

dS∗
= (1−λR)

rh(S∗)− r̄(S∗, R∗)
σ(c̄)

+λR
(
rh(S∗) + δ − wR−S(R∗ − S∗)

w(R∗ − S∗)

)
,

(34)
where

λR =
1

σ(c∗)

c∗R
c∗

/(
1

σ(c∗)

c∗R
c∗
− wR−S(R∗ − S∗)

w(R∗ − S∗) + δ +
φR(R∗)

φ(R∗)

)
. (35)

Since λR takes values between zero and one, assuming rh(S∗)− r̄(S∗, R∗) >
0 and R∗ − S∗ > Ē, it is straightforward to show that (34) is always
positive. Therefore, like Cai and Lau (2012) a decline in mortality during
the schooling period has a negative impact on education, while a decline in
mortality during the retirement period has a positive impact on education.
On the contrary, the total impact on the initial consumption of an increase
in the optimal retirement age is a priori ambiguous. In particular, it can
be shown

1

σ(c∗)

1

c∗
dc∗

dR∗

{
≥ 0⇔ dS∗

dR∗ ≥ − c∗R
c∗S
,

≤ 0⇔ dS∗

dR∗ ≤ − c∗R
c∗S
.

(36)

Consequently, according to (23), the total impact of a decline in mortality –
during the schooling and retirement periods– on the optimal retirement age
coincides with that on the length of schooling if, and only if, the relationship
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between the optimal years of education and retirement age is positive;
otherwise, when dS∗

dR∗ < 0, both alternatives are possible.
The direct consequence of this ambiguity is that the impact of a reduc-

tion of µ(x0) on R∗ − S∗ is in general ambiguous. In the next section we
perform a simple numerical analysis using observed mortality data in order
to show the impact of µ(x0) on R∗ − S∗ under different scenarios.

4 Quantitative exercise

In this Section we study numerically the impact of the epidemiological
transition on the optimal years of schooling and retirement age when both
variables are endogenous. We thus abstract from the effect that a pension
system or any policy reform may have on our decision variables. This is
a strong simplification but it allows us to focus on the main point of the
article: the effect of mortality declines on education and retirement.

For comparability with the existing literature, our quantitative exercise
exploits the data used by Hazan (2009). Moreover, we extend the analysis
by using death rates of Swedish males born between 1890 and 2000 in order
to see the effect that an alternative observed mortality pattern may have
on labor supply. Our analysis delivers two important results. First, when
the life expectancy rises, our model is capable of producing a decline in
the optimal retirement age and an increase in years of schooling. Second,
since in the earlier stage of mortality transition, a decline in mortality
belongs mainly to younger people, whereas in the later stage, a decline
in mortality decline has mainly occurred at older ages, we show that the
optimal retirement age stops declining after the cohort born in year 1920
and increases thereafter.

4.1 Data

To estimate the marginal effect of the decline in mortality on the length
of schooling and retirement age, we just need data on mortality rates.
Nevertheless, to realistically match the effective retirement age and years
of schooling for the cohort born in 1890 (our baseline cohort), we also
collect data on labor force participation rates and years of schooling for
Swedish males and US males. The effective retirement age for Swedish
males is based on employment rates, taken from census data, for the period
1910-1985 and labor force surveys for the period 1975-2004 published by
Statistics Sweden.16 Years of schooling for birth cohorts born in Sweden

16Employed and working age population in Sweden during the period 1910-1985 is
available at http://www.scb.se/tidsseriehafteforvarvsarbetandefob1910-1985.
Before the 1980s, unemployment rates above age 45 were roughly constant and lower
than 2 percent (Ljungqvist and Sargent, 1995; Holmlund, 2009). Therefore, we do not
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is calculated based on the number of students by educational attainment
reported by de la Croix et al. (2008).17 US data on labor force participation
rates and on years of schooling for cohorts born between 1890 and 1930 are
taken from Hazan (2009).

As widely shown in the literature, our data suggest a clear downward
trend in the effective retirement age across cohorts.18 Specifically, US males
born in 1890 retired on average at age 66.7, while US males born in 1930
retired on average at age 63.8. Similarly, in Sweden, the expected retire-
ment age of males born in 1890 was 65.9, while it declined to age 63.17 for
males born in 1930. In this paper, however, for comparability reasons we
only make use of the retirement age and length of schooling data points for
US males born in year 1890. Similar results, though, are obtained using
the retirement age and length of schooling for Swedish males born in 1890.
These results are shown in a supplementary appendix upon request.

4.1.1 Mortality data

Like Hazan (2009), we combine the data reported by Haines (1998) and Bell
et al. (1992) to produce the probability of dying at each age for US males
born between 1890 and 2000. Notice, though, that US mortality data for
cohorts born before 1933 are not based on complete death registrations and
census data.19 The probability of dying at each age for Swedish males born
between 1890 and 1911 is taken from Human Mortality Database (2013).
Deaths rates for cohorts born after year 1911 are constructed applying the
Lee-Carter model (Lee and Carter, 1992).20

expect a significant error by combining both datasets.
17Information on number of students and enrollment rates by educational attainment

in Sweden from year 1768 to 2002 are withdrawn from http://perso.uclouvain.de/

david.delacroix/data/swedish-educ-data.pdf.
18We assume individuals might retire from age 45 and that no withdrawal from the

labor market occur after age 80. The effective retirement age for the birth cohort i (Ri)
is calculated according to

Ri =
∑80

x=45
x
(
lfpix − lfpix+1

)/∑80

x=45

(
lfpix − lfpix+1

)
,

where lfpix denotes the labor force participation at age x for the cohort born in year i.
19Death rates based on complete death registrations and census data for cohorts born

before year 1900 are only available for a small set of countries: Belgium, Denmark, Fin-
land, France, Iceland, Italy, Netherlands, Sweden and Switzerland. The same standards
of quality for the US demographic data start in 1933. This information can be drawn
from the Human Mortality Database.

20Future age-specific death rates from year 2011 are projected applying the Lee-Carter
method to actual Swedish period-death rates from year 1945 up to 2011. Thus, it is
assumed that the log of the death rate is explained by the following multiplicative
process:

logmτ,x = ax + kτ bx + εt,x,where ετ,x is i.i.d.(0, σε),
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Figure 4: Conditional survival probability at age 6 across cohorts by coun-
try: Cohorts 1890-2000.

Note: Survival probabilities for cohorts born after 1920 is based on forecasted data.

Figure 4 presents the cohort survival probabilities conditional on reach-
ing age 6 for males born in 1890, 1920, and 2000 in (a) US and (b) Sweden.
Both panels show the progressive increase in the conditional survival prob-
ability for younger cohorts in US and Sweden. This pattern implies that
the life expectancy from age 6 of US males (i.e. the area below the survival
probability curve) is expected to increase from 56.9 years for the cohort
born in 1890 to 72.8 years for the cohort born in 2000.21 In Sweden, the
expected increase in life expectancy at age 6 is greater than that of US,
rising from 59.7 years for Swedish males born in year 1890 to 80.9 for those
born in 2000. Therefore, the life expectancy gap between both countries
is expected to increase from 2.8 for cohorts born in 1890 to 8.1 years for
cohorts born in 2000.

Figure 5 shows the contribution of the mortality decline by stage of
life on the increase in life expectancy across males born in US and Sweden
from 1890 to 2000. We distinguish three periods: schooling from ages 6 to
15 (dashed green line), working period from ages 16 to 65 (solid blue line),
and retirement for ages above 65 (circle red line).

According to Figure 5, most years-gained occur during (prime) working
ages for the oldest cohorts. Specifically, five additional years were gained,

where mτ,x is the death rate at age x in year τ , ax, bx are age-specific constants, and kτ
is a time-varying index obtained through the singular-value decomposition of a matrix
of death rates.

21Life expectancy at age 6 is calculated as: et(6) =
∫ ω
6

pt(s)
pt(6)

ds, where t denotes the

birth cohort.
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Figure 5: Stage of life decomposition of differences in life expectancy from
age 6 across cohorts by country (baseline cohort 1890): Cohorts 1890-2000.

Note: Authors’ calculations based on the decomposition of life expectancy proposed by

Arriaga (1984).

on average, in both countries at (prime) working ages between the cohort
born in 1890 and that in 1920, while the total contribution of the mortal-
ity reduction during the schooling period and the retirement period was
slightly above two years of age. Between the cohort born in 1920 and that
in year 2000 a further increase of 5.8 and 7.5 years at (prime) working
ages is expected in the US and Sweden, respectively. Hence, as it is shown
in Figure 5, the increasing life expectancy gap between both countries for
younger cohorts is mainly due to the faster increase in Sweden compared
to that in the US in the life expectancy at age 65. In particular, Swedish
males born in 2000 are expected to gain at least three more years of age
than their counterparts in US.

In the next section we perform a numerical simulation to show the
consequences of the different mortality transition on the optimal length of
schooling and retirement age.

4.2 Numerical simulation

To solve the model, we follow Cervellati and Sunde (2013) and consider a
constant intertemporal elasticity of substitution (CIES) utility function,

U(c) =
c1− 1

σ − 1

1− 1
σ

, with σ ∈ (0, 1]. (37)
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The underlying disutility of non-leisure time is assumed constant φ(x) = φ.
For simplicity, we assume a constant aversion to schooling time, ψ(x) = ψ,
for all x ∈ (0, S). Since our individual devotes her full time to education
while she is in school, we use the following simplified version of the Ben-
Porath human capital production function

q
(
h(x)

)
= ξh(x)γ, with ξ > 0 and γ ∈ (0, 1), (38)

where ξ is a scaling factor and γ is the returns to scale in human capital
investment. Similar to Hazan (2009) and Cervellati and Sunde (2013) the
wage rate is assumed to be constant.

To shed light on the effects of mortality on S∗ and R∗, we introduce
further simplifying assumptions. We assume zero discounting, r = δ = ρ =
0, so that the inverse of r̄(S∗, R∗) coincides with the expected lifetime labor
supply (ELW)22

r̄(S∗, R∗) =

[∫ R∗

S∗

p(x)

p(S∗)
dx

]−1

. (40)

Integrating (5) and using (38) the return to education at age S becomes

rh(S∗) = ξ/ (h(0) + (1− γ)ξS∗) . (41)

As in Cervellati and Sunde (2013), we set γ = 0.65, σ = 0.5, the wage rate
per unit of human capital to one, and fix h(0) = 1. In order to show the
importance on the results of the relationship between S∗ and R∗, we run
three alternative simulations combining three different returns to education
function. In particular, we set ξ to 1, .25, and 0.075 so as to have a return
to education after 13 years in school around 18%, 11.5% (Heckman et al.,
2008), and 5.5%.23 Finally, to isolate the effect of the decline in mortality,
we restrict the parameters of the model so that it reproduces the years of
schooling and retirement age observed in the data for the cohort born in
1890 in the United States. Table 1 reports the values of φ and ψ for US
and Sweden, which are calculated so as to have an initial optimal length
of schooling of 9.3 years and an optimal retirement age of 66.7 years for
males born in 1890 (Hazan, 2009).

22Under the assumptions zero discounting and constant wage rate, the annuitized
marginal cost of the S-th unit of schooling becomes

r̄(S∗, R∗) =

∫ R∗

S∗ µ(x)p(x)dx
∫ R∗

S∗ p(x)dx
+

p(R∗)
∫ R∗

S∗ p(x)dx
. (39)

Since it follows from (1) that −dp(x) = µ(x)p(x)dx, substituting it in (39), and rear-
ranging, gives Eq. (40).

23Notice that when h(0) = 1, ξ is equal to the initial return to education rh(0).

25



Table 1: Values of φ and ψ

CIES Human capital Underlying Aversion to Ratio
scaling factor disutility schooling

of leisure time
σ ξ φ ψ ψ/φ

US SWE US SWE US SWE

0.50 1.000 0.03 0.03 0.27 0.29 9.0 9.3
0.50 0.250 0.34 0.36 1.67 1.82 4.9 5.0
0.50 0.075 1.01 1.07 1.59 1.75 1.6 1.6

Note: US and SWE stand for United States of America and Sweden, respectively.

4.3 Results

We divide this Section in three parts. First, we study the effect of the
aversion to schooling time assumption for modeling the impact of mortality
on total years worked. Second, we analyze the differential effect of mortality
declines at different stages of life on the optimal years of schooling and
optimal retirement age. Finally, we estimate quantitatively the importance
of the aversion to schooling time for explaining the evolution of the years
worked.

4.3.1 The importance of the aversion to schooling time assump-
tion

To show the impact of mortality on the labor supply for different relation-
ship between S∗ and R∗, we compute for each country three simulations
that results from three different human capital scaling factors. The pa-
rameters of the model are held constant across cohorts and fixed at the
values that reproduce the years of schooling and retirement age observed
in the data for the cohort born in 1890 in the United States. Hence, in
each controlled experiment, any variation in S∗ and R∗ across cohorts is
solely due to changes in mortality.

Table 2 reports the absolute change in S∗ and R∗ for cohorts born be-
tween year 1890 and 1930 using US and Swedish survival probabilities. The
first important result from Table 2 is that the model is capable of predict-
ing that a decline in mortality leads to an increase in schooling followed
by a decline in the retirement age. The extent to which the optimal retire-
ment age decreases and the optimal length of schooling increases depends
on the ratio ψ/φ, or equivalently ξ. Higher (lower) values of ψ/φ yield
a stronger (weaker) decline in the optimal retirement age and a smaller
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Table 2: Absolute change in years of schooling and retirement
age between 1890 and 1930

Human capital scaling factor ξ 1.000 0.250 0.075
Aversion to schooling time ratio ψ/φ 9.0 4.9 1.6

I II III

US Survival
Retirement R∗1930 −R∗1890 -1.80 -1.17 0.92
Schooling S∗1930 − S∗1890 0.68 1.17 2.72
Years worked† -2.48 -2.34 -1.80

Swedish Survival
Retirement R∗1930 −R∗1890 -1.68 -1.09 0.83
Schooling S∗1930 − S∗1890 0.69 1.19 2.76
Years worked† -2.38 -2.28 -1.93

† Note: Years worked is calculated as the difference between the optimal
retirement age and the optimal length of schooling.

(higher) increase in the optimal years of schooling. For instance, if ξ = 1
or ψ/φ = 9.0 (column I), the decline in mortality would account for 62.6%
(-1.80/-2.88) and 61.6% (-1.68/-2.73) of the decline in the retirement age,
while it would account for 17.5% (0.68/3.93) and 17.5% (0.69/3.93) of the
increase in years of schooling in the US and Sweden, respectively. Instead,
if we assume ξ = 0.25 or ψ/φ = 4.9 (column II), the model predicts that
the decline in mortality would account for 40.7% (-1.17/-2.88) and 40.0%
(-1.09/-2.73) of the decline in the retirement age, whereas it would account
for 29.7% (1.17/3.93) and 30.2% (1.19/3.93) of the increase in the years of
schooling in the US and Sweden, respectively. The second result is that
the optimal years worked, or the difference between the retirement age and
the years of schooling, are negatively related to the value of ψ/φ. Accord-
ing to Proposition 4, this is because the decline in mortality only affects
positively on the optimal years of schooling, while it can have a negative
or a positive effect on the optimal retirement age. As explained in Section
3.2, this result is due to the negative relationship between S∗ and R∗ or,
equivalently, because the income effect dominates over the substitution ef-
fect. Under the assumptions of zero discounting and a constant wage rate,
the sign of the relation between S∗ and R∗, or Eq. (23), is given by

sign

[
dS∗

dR∗

]
= sign

[
1

(1− σ)(1 + ψ/φ)
− 1

]{
< 0 if ψ

φ
> σ

1−σ ,

> 0 otherwise .
(42)

Hence, for σ = 0.50, a value of ψ/φ higher (lower) than one implies a
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negative (positive) relationship between S∗ and R∗. Note therefore that the
condition dS∗/dR∗ < 0, although necessary, is not sufficient to guarantee
that a decline in mortality yields earlier retirement. For instance, according
to (42), in all simulations the sign of dS∗/dR∗ is negative, while the model
only predicts an early retirement age in columns I and II. The increase in
the retirement age shown in column III is therefore explained by the weak
negative relationship between S∗ and R∗ that results from an aversion to
schooling time value of 1.6. In the next subsection, Figures 6 and 7 give
further intuitions about the effect of the weak negative relationship between
S∗ and R∗ for the impact of mortality on the years worked.

4.3.2 Contribution of mortality at different stages of life

We complement the empirical analysis by showing the contribution of mor-
tality improvements at different stages of life on the optimal years of school-
ing and optimal retirement age for our two alternative mortality schedules:
males born in US and Sweden. In these simulations, we divide the lifes-
pan in three periods: childhood (ages 6-15), adulthood (ages 16-65), and
retirement (ages 65+), which are closely related to the stages of life de-
limited by the observed length of schooling and retirement age. In order
to show the contribution of mortality improvements at each stage of life,
we calculate the optimal schooling and retirement considering exclusively
the gains in survival during either childhood, or adulthood, or retirement
across cohorts ceteris paribus the probability of dying in the other stages
of life. We recalculate the survival probability to age x based on the new
probability of dying in each age interval.
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Figures 6 and 7 show how mortality improvements during childhood
(circled blue arrows), adulthood (squared green arrows), and retirement
(red-diamond arrows) affect on the optimal years of schooling and the re-
tirement age by different functional form of the returns to education. The
height of each arrow represents the change from the baseline (solid gray
line) in the endogenous variable, while the position of the marker repre-
sents the direction of the effect. The evolution of the optimal length of
schooling and optimal retirement age –represented by the dashed black
line– equals the sum of the heights of the three arrows. Note that the dif-
ference between the top and bottom panels for each human capital scaling
factor ξ gives the total number of years worked, conditional on reaching
the retirement age.

The bottom panels in Figures 6 and 7 show how mortality improvements
raise the optimal years of schooling. According to Proposition 4, a decline
in mortality during adulthood raises the marginal benefit of schooling and
hence the optimal length of schooling, because the likelihood of receiving a
future labor earning increases, also known as the Ben-Porath’s mechanism.
A decline in mortality during retirement also leads to an increase in the
length of schooling, because agents continue studying in order to finance the
consumption after retirement through an increase in lifetime earnings. That
is, the years-to-consume effect dominates over the lifetime human wealth
effect. The contribution of mortality improvements during childhood on the
optimal length of schooling is negative but negligible. The sum of these
three effects of mortality on the optimal length of schooling is represented
by the black dashed line.

The panels at the top in Figures 6 and 7 show how mortality improve-
ments change the optimal retirement age. The parameter values assumed in
both Figures imply that the income effect dominates over the substitution
effect. As a consequence, the relationship between S∗ and R∗ is negative,
or dS∗

dR∗ < 0. Thus, a decline in mortality during adulthood leads to early
retirement (see the second term in Eq. 33). Individuals use the additional
income to increase consumption and enjoy more leisure time. Note, how-
ever, that the strength of the negative effect decreases (see the length of
the green arrows) with lower returns to education. This is because the
negative relation between education and retirement vanishes when rh(S∗)
tends to r̄(S∗, R∗) (see Figure 2). Consequently, if the relation between S∗

and R∗ were positive, a decline in mortality during adulthood would lead
to a delay in the retirement age. On the other hand, mortality declines
late in life leads to a delay in the optimal retirement age because individ-
uals need more earnings to finance the additional consumption due to a
longer retirement period. This positive effect on retirement is indicated
by the upward green squared arrow. Similar to the effect on the length of
schooling, the contribution of mortality improvements during childhood on
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the optimal retirement age is also negative but negligible. The net effect of
mortality improvements at different stages of life on the optimal retirement
age is represented by the black dashed line. Notice that in all cases we ob-
serve a turning point in the evolution of the optimal retirement age after
the cohorts born in the 1920s. This is because mortality improvements
for cohorts born before the 1920s mainly occurred during childhood and
adulthood, whereas the improvements in mortality for more recent cohorts
mainly occur at older ages.

4.3.3 Aversion to schooling time values

To assess how reasonable our aversion to schooling timeassumption is, we
compute the nonpecuniary cost of schooling that results from our theoret-
ical model and compare it to the values derived in the literature. To do
so, we pin down the values of φ and ψ that corresponds to the observed
length of schooling (Ŝt) and retirement age (R̂t) across cohorts and human
capital scaling factors.

Assuming a flat wage rate and no discounting, from Eq. (14) the returns
to schooling at the optimal schooling decision must satisfy

rh(S∗) = r̄(S∗, R∗) [1 + (ψ/φ)] , (43)

where the ratio (ψ/φ) gives information about the importance of the nonpe-
cuniary cost of schooling for the optimal schooling decision. Thus, provided
the values of (Ŝt, R̂t) and pt(x), from (43) we can calculate the evolution
of this ratio as

(̂ψ/φ)t =
rh(Ŝt)

r̄(Ŝt, R̂t)
− 1. (44)

From Eq. (40) we know that the marginal cost of the Ŝt-th unit of schooling
(i.e. r̄(Ŝ, R̂)) is, by definition, the inverse of the expected lifetime labor
supply (ELW ). Column III in Table 3 shows that the expected lifetime
labor supply has slightly decreased from 42.7 years to 41.3 between cohort
1890 and 1930. Thus, our assumed marginal cost of the Ŝt-th unit of
schooling, or hardle rate, is close to 2.4% –column IV in Table 3–. A value
of 2.4% is between 1.2% and 2.6% estimated for the US; see Table 5 in
Oreopoulos (2007).24

Using our estimated hardle rate, Figure 8 shows the evolution of the

ratio (̂ψ/φ)t that corresponds to the observed length of schooling (Ŝt) and

retirement age (R̂t) in the US across cohorts for different human capital

24The hardle rate values reported by Oreopoulos (2007) are estimated for individuals
between age 14 and 16. Thereby, our initial length of schooling of 15.3 years is between
the range of ages used by Oreopoulos (2007).
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Table 3: Observed average length of schooling (Ŝ), average retirement age
(R̂), expected lifetime labor supply (ELW ), and three hypothetical returns
to schooling in the US

Cohort Ŝ + 6 R̂ ELW r̄(Ŝ, R̂) rh(Ŝ)
ξ =1.00 ξ =.250 ξ =.075

I II III IV=1/III V VI VII

1890 15.3 66.7 42.7 2.3% 23.4% 13.8% 6.0%
1900 17.0 66.3 42.0 2.4% 20.6% 12.7% 5.8%
1910 17.8 64.8 41.7 2.4% 19.5% 12.3% 5.7%
1920 18.5 63.9 41.5 2.4% 18.7% 12.0% 5.7%
1930 19.3 63.8 41.3 2.4% 17.7% 11.6% 5.6%

Note: The expected lifetime labor supply (ELW) is defined as
∫ R̂t

Ŝt

pt(x)

pt(Ŝt)
dx, where pt(x)

is the probability of surviving to age x conditional on reaching age 6 for the cohort born

in year t.

scaling factors. We obtain that the ratio (̂ψ/φ)t might range between 1 and
9 according to our different scaling factors. However, since estimated re-
turns to compulsory schooling range between 9.5% and 17.4% (Oreopoulos,
2007), a scaling factor of 0.25 seems to be the most likely case according
to column VI in Table 3. In Figure 8, the red dashed curve depicts the

evolution of (̂ψ/φ)t that corresponds to the human capital scaling factor of
0.25, which takes values between 4.9 (cohort 1890) and 3.8 (cohort 1930).
A human capital scaling factor of 0.25 implies that by staying an additional
year in school lifetime wealth would have increased by 11.4% for the cohort
born in 1890, while it would have increased by 9.1% for the cohort born
in 1930. These values are also within the empirically estimated increase in
lifetime wealth from an additional year of compulsory schooling that range
between 8.5% and 17.6% (Oreopoulos, 2007).

In sum, we conclude, based on the comparison of our results to the
existing empirical literature on the returns to schooling, that the most
likely value of ψ/φ is 4.9. Therefore, our “aversion to schooling time” is
significant and implies that the observed decline in mortality would account
for 40.7% of the decline in the retirement age and 29.7% of the increase in
the years of schooling in the US.
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Figure 8: Values of (̂ψ/φ)t that match the observed length of schooling and
retirement age by cohort for different ξ values

5 Conclusion

Existing theoretical models predict a causal positive relation between in-
creasing life expectancy and human capital investments and retirement age.
However, one salient feature of the economic development during the last
two centuries is the negative relation between life expectancy and the ex-
tensive labor supply. To reconcile the empirical evidence with economic
theory, we develop a lifecycle model with endogenous human capital in-
vestment and labor supply in which mortality declines may cause higher
schooling and early retirement.

This article makes two important contributions. First, we show that the
‘aversion to schooling time’ assumption is a necessary, although not suf-
ficient, condition for a decline in mortality to cause higher education and
early retirement age. The intuition is as follows. Higher human capital
investment, triggered by the Ben-Porath mechanism, causes two opposite
effects: on the one side, an increase in earnings at all ages that raises the
marginal benefit of working; on the other side, an increase in consumption
and hence a decline in the marginal utility of consumption that reduces
the marginal benefit of working. Early retirement occurs when the income
effect dominates the substitution effect, which in this model depends on
the strength of the ‘aversion to schooling time’. Second, we derive the dif-
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ferential impact of the mortality decline at any arbitrary age on education
and retirement. We show that a mortality decline after retirement always
results in higher human capital investment and late retirement, whereas a
mortality decline at younger ages leads to higher human capital investment
and may, or may not, cause early retirement. Using mortality data for co-
horts born between year 1890 and 1930 in US and Sweden, we show for
reasonable values of the ‘aversion to schooling time’ and the intertempo-
ral elasticity of substitution that improvements in the survival probability
may account for a 40% of the decline in the retirement age and 30% of the
increase in the years of education.

For simplicity, our model abstracts from realistic features like the ex-
istence of a pension system, the intervention of governments in the access
to all levels of education, the introduction of mandatory years of schooling
and retirement ages. Still, our results offer an explanation to the empirical
evidence, collected during the last centuries in US and Sweden, on the evo-
lution of education and retirement. Moreover, our model is robust to the
introduction of the above mentioned features. For instance, if education
and retirement are negatively related, positive spillovers from education and
publicly provided education will increase the marginal benefit of schooling
and will reduce even further the retirement age. Similarly, the existence
of pension incentives for early retirement and the overall increase in the
labor-augmenting technological progress during the last century would have
induced earlier retirement ages and higher increases in the marginal benefit
of schooling. Therefore, our results suggest some interesting directions for
future research. In particular, first, a logical extension of our framework is
the introduction of a pension systems. Second, the implementation of the
model in a computable general equilibrium setting in order to analyze the
effect of changes in wages and interest rates. The implementation of these
issues can provide researchers and policy-makers a better understanding of
the effect of changes in the population on modern economic growth.

A Proof of Proposition 1

We first derive the optimal length of schooling condition (S∗) and optimal
retirement age (R∗) introduced in Eqs. (9)-(10). Second, we study the
conditions for a maximum in S∗ and R∗. Substituting the conditional
optimal consumption, c(x, S,R), into (2) and differentiating it with respect
to S, we obtain

VS(S,R) =

∫ ω

0

e−ρxp(x)Uc
(
c(x, S,R)

)
cS(x, S,R)dx− e−ρSp(S)ψ(S). (45)
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Substituting (8) in (45), and rearranging, gives

VS(S,R) = Uc
(
c(0, S, R)

) ∫ ω

0

e−rxp(x)cS(x, S,R)dx−e−ρSp(S)ψ(S). (46)

Differentiating (7) with respect to S, and simplifying, we have

∫ ω

0

e−rxp(x)cS(x, S,R)dx

= e−rSp(S)

(∫ R

S

e−r(x−S) p(x)

p(S)
yS(S, x)dx− y(S, S)

)
. (47)

Substituting (47) in (46), and taking Uc
(
c(0, S, R)

)
e−rSp(S) as common

factor, we obtain

VS(S,R) = Uc
(
c(0, S, R)

)
e−rSp(S)×(∫ R

S

e−r(x−S) p(x)

p(S)
yS(S, x)dx− y(S, S)− e(r−ρ)Sψ(S)

Uc
(
c(0, S, R)

)
)
. (48)

Setting VS(S,R) to zero and simplifying, the first-order condition for an
optimal length of schooling is given by (9).

Applying a similar approach, the derivative of (2) with respect to R
becomes

VR(S,R) = p(R)
(
Uc
(
c(0, S, R)

)
e−rRy(S,R)− e−ρRφ(R)

)
. (49)

Then, setting VR(S,R) to zero and simplifying, the first-order condition for
an optimal retirement age is given by (10).

Let V̂ (S,R) be the expected lifetime utility conditional on the optimal
consumption path. Also, let c∗ be optimal initial consumption condition
on S = S∗ and R = R∗. In order for V̂ to be strictly concave at S = S∗

and R = R∗ it needs to satisfy

V̂SS < 0, V̂RR < 0, (50a)
∣∣∣∣
V̂SS V̂SR
V̂RS V̂RR

∣∣∣∣ > 0. (50b)

Substituting (11) in (48), differentiating with respect to S around (S∗, R∗),
using (16), and simplifying gives

V̂SS(S∗, R∗) = Uc
(
c∗
)
e−rS

∗
p(S∗)

×
(
fS(S∗, R∗)− f(S∗, R∗)

(
ψS(S∗)

ψ(S∗)
+

1

σ(c∗)

c∗S
c∗

))
. (51)
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Since the sign
[
ψS(S∗)
ψ(S∗)

]
and sign [c∗S] is the same as the sign of f(S∗, R∗), a

necessary and sufficient condition for S∗ < R∗ to be a maximum of V̂ (S,R∗)
is

fS(S∗, R∗) < f(S∗, R∗)

(
ψS(S∗)

ψ(S∗)
+

1

σ(c∗)

c∗S
c∗

)
. (52)

For f(S∗, R∗) > 0 notice that fS(S∗,R∗)
f(S∗,R∗)

− ψS∗ (S∗)
ψ(S∗)

< 1
σ(c∗)

c∗S
c∗

. It is also worth

noticing that for f(S∗, R∗) = 0, fS(S∗, R∗) < 0.
Differentiating (49) with respect to R, at S = S∗ and R = R∗, gives

V̂RR(S∗, R∗) = Uc
(
c∗
)
e−rR

∗
p(R∗)y(S∗, R∗)

×
(
− 1

σ(c∗)

c∗R
c∗

+
yR(S∗, R∗)

y(S∗, R∗)
− φR(R∗)

φ(R∗)

)
. (53)

Provided yR(S∗, R∗) = wR−S(S∗−R∗)

w(R∗−S∗)
− δ ≤ 0 for all R∗ − S∗ ≥ Ē and since

φx(x) ≥ 0, we conclude that V̂RR(S∗, R∗) < 0 is strictly negative. Finally,
the second-order conditions of the maximum in S = S∗ and R = R∗ is
satisfied, if (52) holds, yR(S∗, R∗) ≤ 0, and

V̂SR(S∗, R∗)

−V̂SS(S∗, R∗)
× V̂RS(S∗, R∗)

−V̂RR(S∗, R∗)
< 1. (54)

Since dS∗

dR

∣∣
R=R∗ = V̂SR(S∗,R∗)

−V̂SS(S∗,R∗)
and dR∗

dS

∣∣
S=S∗ = V̂RS(S∗,R∗)

−V̂RR(S∗,R∗)
, it follows from

(54) that the impact of a change in S∗ on R∗ differs from the impact of a
change in R∗ on S∗; i.e. dS∗

dR

∣∣
R=R∗ × dR∗

dS

∣∣
S=S∗ < 1.

B Proof of Proposition 2

If Ux(x) = x−
1
σ , where σ is the intertemporal elasticity of substitution, from

(8) we have c(x, S,R) = c(0, S, R)eσ(r−ρ)x, for all x ∈ (0, ω), substituting it
in (7), and simplifying, we obtain

c(0, S, R) =

∫ R
S
e−rxp(x)y(S, x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

. (55)

Taking logarithms at both sides of (55) and differentiating with respect to
−µ(x0) gives

1

c(0, S, R)

−∂c(0, S, R)

∂µ(x0)

=

∫ R
S
e−rx

[
−∂p(x)
∂µ(x0)

]
y(S, x)dx

∫ R
S
e−rxp(x)y(S, x)dx

−
∫ ω
x0
e−[(1−σ)r+σρ]xp(x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

, (56)
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Note that the right-hand side of (56) at S = S∗ and R = R∗ is (28). Now,
from (28), we obtain g(S∗) > 0, g(R∗) < 0,

g′(x0) = − e−rx0p(x0)y(S∗, x0)∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
+

e−[(1−σ)r+σρ]x0p(x0)∫ ω
0
e−[(1−σ)r+σρ]xp(x)dx

, (57)

and

g′′(x0) =

[
r + µ(x0)− yx0 (S∗,x0)

y(S∗,x0)

]
e−rx0p(x0)y(S∗, x0)

∫ R∗

S∗ e−rxp(x)y(S∗, x)dx

− [(1− σ)r + σρ+ µ(x0)] e−[(1−σ)r+σρ]x0p(x0)∫ ω
0
e−[(1−σ)r+σρ]xp(x)dx

, (58)

for any x0 within the interval (S∗, R∗). Since g(·) is a continuous function
in (S∗, R∗), g(S∗) > 0, and g(R∗) < 0 imply that there exists at least a
critical age xc within the interval (S∗, R∗) such that g(xc) = 0.

In order to prove that xc is unique, we show that there exists only one
local optimum in the interval (S∗, R∗). At a local optimum (denoted by
x̃0, with g′(x̃0) = 0), from (57) and (58) we obtain

g′′(x̃0) =

[
σ (r − ρ)− yx0 (S∗,x0)

y(S∗,x0)

]
e−rx̃0p(x̃0)y(S∗, x̃0)

∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
. (59)

Let x̃i0 and x̃ii0 be two possible candidates, which satisfy that g′(x̃i0) = 0 and
g′(x̃ii0 ) = 0 with x̃i0 < x̃ii0 . Provided that y(S∗, x) is strictly concave within
the interval (S∗, R∗), x̃0 is unique (x̃i0 = x̃ii0 ) either because σ (r − ρ) −
yx0 (S∗,x0)

y(S∗,x0)
< 0 or σ (r − ρ) − yx0 (S∗,x0)

y(S∗,x0)
> 0 for all x̃0 ∈ (S∗, R∗), or x̃i0 is a

local maximum and x̃ii0 a local minimum, which proves that xc is unique.

C Proof of Proposition 3

Given the implicit-function theorem holds, there is one unique function
Γ(R;µ) that equals S∗ for any (R;µ) around (R∗;µ(x0)). Provided the
optimal length of schooling condition (9)

V̂S(Γ(R;µ), R;µ) = V̂S(S∗, R∗;µ(x0)) = 0, (60)

and assuming V̂ (S,R;µ) is strictly concave around the point (S∗, R∗;µ(x0)).
Then, we differentiate (60) with respect to a mortality decline at an arbi-
trary age x0, −µ(x0), to obtain the marginal impact of a mortality decline
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on the optimal length of schooling. Applying the Chain rule in (60) we
obtain

−S∗µ(x0) =

−∂f(S∗,R∗)
∂µ(x0)

− f(S∗,R∗)
σ(c∗)

1
c∗
−∂c∗
∂µ(x0)

f(S∗, R∗)
(
ψS(S∗)
ψ(S∗)

+ 1
σ(c∗)

c∗S
c∗

)
− fS(S∗, R∗)

. (61)

Thus, from (52) we have

sign
[
−S∗µ(x0)

]
= sign

[−∂f(S∗, R∗)

∂µ(x0)
− f(S∗, R∗)

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

]
. (62)

Note from (25) that the first term on the right-hand side of (62) is zero
whenever x0 ≤ S∗ or x0 ≥ R∗. Substituting (12)-(13) and (26) in (62), and

taking e−r(x0−S
∗) p(x0)
p(S∗)

as common factor gives

sign
[
−S∗µ(x0)

]
= sign

[
rh(S∗)− r̄(S∗, R∗)

σ(c̄)
a(x0)

]
. (63)

when x0 ≤ S∗ and x0 ≥ R∗, and

sign
[
−S∗µ(x0)

]
= sign

[
rh(S∗)− r̄(S∗, R∗)

σ(c̄)
a(x0) +

∫ R∗

x0

e−r(x−x0) p(x)

p(x0)
yS(S∗, x)dx

]
.

(64)
when x0 ∈ (S∗, R∗). This proves Proposition 3(a).

Similarly, given that the implicit-function theorem holds, there is one
unique function Υ(S;µ) that equals R∗ for any (S;µ) around (S∗;µ(x0)).
Provided the optimal retirement age condition (10)

V̂R(S,Υ(S;µ);µ) = V̂R(S∗, R∗;µ(x0)) = 0. (65)

Assuming V̂ (S,R;µ) is strictly concave around the point (S∗, R∗;µ(x0)).
We obtain after differentiating (65) with respect to −µ(x0), and applying
the Chain rule,

−R∗µ(x0) =
− 1
σ(c∗)

1
c∗
−∂c∗
∂µ(x0)

1
σ(c∗)

c∗R
c∗
− wR−S(R∗−S∗)

w(R∗−S∗)
+ δ + φR(R∗)

φ(R∗)

. (66)

From (53), we have

sign
[
−R∗µ(x0)

]
= −sign

[ −∂c∗
∂µ(x0)

]
. (67)

Now, in order to prove Proposition (3)(b) we show that the sign of −R∗µ(x0)

is that of a(x0).
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Differentiating (7) at S = S∗ and R = R∗ with respect to −µ(x0), and
rearranging, gives

∫ ω

x0

e−rxp(x)c(x, S∗, R∗)dx+

∫ ω

0

e−rxp(x)
−∂c(x, S∗, R∗)

∂µ(x0)
dx

=

∫ R∗

S∗
e−rx
−∂p(x)

∂µ(x0)
w(x− S∗)h(S∗, x)dx. (68)

The intertemporal budget constraint at age x0 can be expressed as

e−rx0p(x0)a(x0)

=

{∫ ω
x0
e−rxp(x)c(x, S∗, R∗)dx−

∫ R∗

x0
e−rxp(x)w(x− S∗)h(S∗, x)dx if S∗ < x0 < R∗,∫ ω

x0
e−rxp(x)c(x, S∗, R∗)dx otherwise.

(69)

Substituting (69) into (68), we obtain

∫ ω

0

e−rxp(x)
−∂c(x, S∗, R∗)

∂µ(x0)
dx = −e−rx0p(x0)a(x0). (70)

Differentiating (8) at S = S∗ and R = R∗ with respect to −µ(x0), and
simplifying, gives

1

c(x, S∗, R∗)

−∂c(x, S∗, R∗)
∂µ(x0)

=
σ(c(x, S∗, R∗))

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

. (71)

Substituting (71) into (70), and rearranging, we get (26). Finally, substi-
tuting (26) in (67), we have

sign
[
−R∗µ(x0)

]
= −sign

[ −∂c∗
∂µ(x0)

]
= sign [a(x0)] , (72)

which proves Proposition 3(b).

D Proof of Proposition 4

Given the implicit-function theorem holds, there are two unique functions
Γ(R;µ) and Υ(S;µ) that are equal to S∗ and R∗, respectively, for any
(S,R;µ) around (S∗, R∗;µ(x0)). Provided the optimal length of schooling
and retirement age conditions, we have:

V̂S(Γ(R;µ),Υ(S;µ);µ) = V̂S(S∗, R∗;µ(x0)) = 0, (73a)

V̂R(Γ(R;µ),Υ(S;µ);µ) = V̂R(S∗, R∗;µ(x0)) = 0. (73b)
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For notational simplicity, hereinafter we skip the arguments. Writing the
system of equations (73) in differential form we have

V̂SΓdΓ + V̂SΥdΥ + V̂Sµdµ = 0, (74a)

V̂RΓdΓ + V̂RΥdΥ + V̂Rµdµ = 0. (74b)

If V̂S(·) and V̂R(·) are continuously differentiable with respect to (S,R;µ),
(S∗, R∗) is a solution of the system at the mortality value µ(x0), and the
Jacobian matrix of the system (73) evaluated at (S∗, R∗;µ(x0)) is not sin-
gular, or |J | 6= 0, then the system can be locally solved at (S∗, R∗;µ(x0)).

The solution of (74), by Cramer’s rule, is



dS∗

dµ(x0)

dR∗

dµ(x0)


 =

1

|J |



−V̂RRV̂Sµ(x0) + V̂RSV̂Rµ(x0)

V̂SRV̂Sµ(x0) − V̂SSV̂Rµ(x0)


 . (75)

Taking V̂RRV̂SS as common factor in the right-hand side of (75) gives



dS∗

dµ(x0)

dR∗

dµ(x0)


 =

V̂RRV̂SS
|J |




V̂Sµ(x0)

−V̂SS
+ V̂RS
−V̂SS

V̂Rµ(x0)

−V̂RR

V̂Rµ(x0)

−V̂RR
+ V̂SR
−V̂RR

V̂Sµ(x0)

−V̂SS


 . (76)

Provided the strict concavity of V̂ (S,R;µ) at (S∗, R∗;µ(x0)) and multi-
plying both sides of (76) by −1, since we are interested in the effect of a
decline in mortality rather than an increase in mortality, we obtain

sign

[ −dS∗
dµ(x0)

]
= − sign

[
S∗µ(x0)(R

∗;µ) +
dS∗

dR∗
R∗µ(x0)(S

∗;µ)

]
, (77)

sign

[ −dR∗
dµ(x0)

]
= − sign

[
R∗µ(x0)(S

∗;µ) +
dR∗

dS∗
S∗µ(x0)(R

∗;µ)

]
. (78)

This completes the proof of Eqs. (24a) and (24b).
We now differentiate (48) and (49) with respect to −µ(x0) at (S∗, R∗),

respectively,

−V̂Sµ(x0) = Uc
(
c∗
)
e−rS

∗
p(S∗)

(−∂f(S∗, R∗)

∂µ(x0)
− f(S∗, R∗)

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

)
,

(79)

−V̂Rµ(x0) = Uc
(
c∗
)
e−rR

∗
p(R∗)y(S∗, R∗)

(
− 1

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

)
. (80)

Substituting (79)-(80) in (77), taking Uc(c∗)e−rS
∗
p(S∗)

−V̂SS(S∗,R∗)
as common factor, and

using (12), (18) and (20), we get

sign

[ −dS∗
dµ(x0)

]
= sign

[−∂f(S∗, R∗)

∂µ(x0)
− f(S∗, R∗)

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

(
1 +

dR∗

dS∗
c∗R
c∗S

)]
.

(81)
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Using (11), (18), and (26) we obtain, after rearranging,

sign

[ −dS∗
dµ(x0)

]
= sign

[∫ R∗

S∗
e−r(x−S

∗) −∂
∂µ(x0)

[
p(x)

p(S∗)

]
yS(S∗, x)dx

−e−r(x0−S∗) p(x)

p(S∗)
a(x0)

1

σ(c∗)c∗

(
c∗S + c∗R

dR∗

dS∗

)]
. (82)

Finally, taking e−r(x0−S
∗) p(x)
p(S∗)

as common factor and using the fact that
dc∗

dS∗ = c∗S + c∗R
dR∗

dS∗ we obtain Proposition 4(a), or Eq. (32).

Using the same steps for the sign of −dR∗

dµ(x0)
but now taking −V̂RR as

common factor, it can be shown that

sign

[ −dR∗
dµ(x0)

]
= sign

[
dS∗

dR∗

∫ R∗

S∗
e−r(x−S

∗) −∂
∂µ(x0)

[
p(x)

p(S∗)

]
yS(S∗, x)dx

−e−r(x0−S∗) p(x)

p(S∗)
a(x0)

1

σ(c∗)c∗

(
c∗R + c∗S

dS∗

dR∗

)]
. (83)

Similarly, taking e−r(x0−S
∗) p(x)
p(S∗)

as common factor and using the fact that
dc∗

dR∗ = c∗R + c∗S
dS∗

dR∗ we obtain Proposition 4(b), or Eq. (33).

References

Arriaga, E., 1984. Measuring and explaining the change in life expectancies.
Demography 21 (1), 83–96.

Barro, R. J., Lee, J. W., 2013. A new data set of educational attainment in
the world, 19502010. Journal of Development Economics 104, 184–198.

Bell, F. C., Wade, A. H., Goss, S. C., 1992. Life tables for the United States
social security area. Actuarial Study No. 107, SSA Pub. No. 11-11536.

Belley, P., Lochner, L., 2007. The changing role of family income and ability
in determining educational achievement. Journal of Human Capital 1 (1),
37–89.

Benavot, A., Riddle, P., 1988. The expansion of primary education, 1870-
1940: Trends and issues. Sociology of Education 61 (3), 191–210.

Ben-Porath, Y., 1967. The production of human capital and the life cycle
of earnings. The Journal of Political Economy 75 (4), 352–365.

Bils, M., and Klenow, J. P., 2000. Does schooling cause growth? The
American Economic Review 90 (5), 1160–1183.

42



Boucekkine, R., de la Croix, D., Licandro, O., 2002. Vintage human cap-
ital, demographic trends, and endogenous growth. Journal of Economic
Theory 104, 340–375.

Boucekkine, R., de la Croix, D., Peeters, D., 2007. Early literacy achieve-
ments, population density and the transition to modern growth. Journal
of the European Economic Association 5:183–226.

Cai, Z., Lau, P., 2012. Does longevity improvement always raise the length
of schooling through the longer-horizon mechanism? Society for Eco-
nomic Dynamics, 2013 Meeting Papers, number 292.

Card, D., 1999. The causal effect of education on earnings. In O. C. Ashen-
felter and D. Card (Eds.), Handbook of labor economics (1st ed., Vol. 3,
pp. 1801–1863) Amsterdam: Elsevier.

Card, D., 2001. Estimating the return to education: Progress on some
persistent economic problems. Econometrica 69 (5), 1127–1160.

Carneiro, P., Heckman, J. J., 2002. The evidence on credit constraints in
post-secondary schooling. Economic Journal 112 (482), 705–734.

Carneiro, P., Hansen, K. T., Heckman, J. J., 2003. 2001 Lawrence R. Klein
Lecture estimating distributions of treatment effects with an application
to the returns to education and measurement of the effects of uncertainty
on college choice. International Economic Review 44 (2), 631–422.

Cervellati, M., Sunde, U., 2005. Human capital formation, life expectancy,
and the process of development. American Economic Review 95, 1653–
1672.

Cervellati, M., Sunde, U., 2013. Life expectancy, schooling, and lifetime
labor supply: Theory and evidence revisited. Econometrica 81 (5), 2055–
2086.

Cipolla, C., 1969. Literacy and development in the West. Baltimore: Pen-
guin Books.

Costa, D. L., 1998. The evolution of retirement. In The Evolution of Retire-
ment: An American Economic History, 1880-1990. University of Chicago
Press, 6–31.

Cunha, F., Heckman, J., Navarro, S., 2005. Separating uncertainty from
heterogeneity in life cycle earnings. Oxford Economic Papers 2005 57 (2),
191–261.

Cutler, D., Deaton, A., Lleras-Muney, A., 2006. The determinant of mor-
tality. Journal of Economic Perspectives 20 (3), 97–120.

43
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