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Abstract 

This paper studies the allocation of buffer times in a single machine environment. 
Buffer times are a common tool to protect the schedule against disruptions such as 
machine failures. We introduce new classes of robust machine scheduling problems. For 
an arbitrary scheduling problem l\ß\y, prmt g ß, we obtain three corresponding robust 
problems: maximize overall (weighted) buffer time while ensuring a given schedule's 
Performance (regarding 7), optimize the schedule's Performance (regarding 7) while 
ensuring a given minimum overall (weighted) buffer time, and finding the trade off 
curve regarding both objectives. 

We outline the relationships between the different classes of problems and the corre
sponding underlying problem. Furthermore, we analyze the robust counterparts of three 
fundamental problems. 

Keywords: Single machine scheduling, robustness, buffer time allocation 

1 Introduction 

In recent years robust optimization has attained more and more attention. While there are 
lots of formal definitions of robust solutions to an optimization problem (and still there seems 
not to be one single approach) the basic idea can be put in an abstract way like this: Find 
a feasible Solution to the optimization problem at hand that is not necessarily optimal but 
remains feasible and has a good Performance if parameter values of the problem change. 
Depending on the specific problem the changes of parameters may be restricted to a given 
domain or to a subset of parameters. Furthermore, it may depend on the underlying problem 
to which extent the focus is on solutions that remain feasible or solutions that have good 
Performance, respectively. Usually, a Solution is called solution-robust if i t remains feasible for 
certain changes in the problem's parameters. If, even more, the solutions Performance does 
not change for certain changes, the Solution is called quality-robust. 
There are several reasons why robust solutions may be important. Data used in the opti
mization problem may be uncertain. Hence, while solving the problem we cannot consider the 
problem that turns out to be the challenge (or at least there is no guarantee that we do so). 
Moreover, realization of the solutions derived from the optimization problem may be uncertain 
and, thus, the realization may differ from the plan derived from the optimization problem. In 
both cases it adds considerably to the predictability of the result of the real world process if 
our Solution is robust. 
A vast amount of literature on robust optimization can be found, see Ben-Tal and Nemirovski 
[3, 4] and Kouvelis and Yu [15] for overviews. Most approaches of robust optimization belong 
to one of the following classes as proposed by Davenport and Beck [10]: First, redundancy 
based approaches aim at protecting solutions against uncertainty by using less resources or 
time slots than are available. In case of disruptions this surplus can be used to follow the 
actual plan. Second, probabilistic approaches are based on the analysis of probability and the 
extension of disruptions providing a tool to evaluate solutions' robustness. Third, contingent 
Solution approaches come up with a set of solutions being alternatives chosen - and possibly 
being switched in between - during execution. 
Robust machine scheduling has been considered in several papers, see Aytug et al. [2] for a 
recent survey. Daniels and Kouvelis [9] propose an approach based on worst-case analysis. 
Daniels and Carrillo [8] consider the problem to find the schedule that reaches a given Perfor
mance (minimization of flow-time) with the maximum likelihood under uncertain processing 
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times. Kouvelis et al. [16] consider a two-machine flow shop where processing times are uncer-
tain and the makespan should be minimized. These approaches are scenario based and aim at 
minimizing the regret of choosing a specific schedule caused by an other schedule performing 
better for a certain scenario. 
Goren and Sabuncuoglu [11], Herroelen and Leus [13], Leon et al. [19], Leus and Herroelen 
[20, 21], Mehta and Uzsoy [22], and Wu et al. [26] employ probabilistic analysis to construct 
predictive schedules. Predictiveness here means that the expected deviation of the realized 
schedule to the intended one is minimized. The deviation is measured either in the schedule s 
Performance or in the schedule's specification (e.g. Start times of Jobs). 
Briand et al. [6] consider l\ri\Lmax and find a set of solutions of equal Performance which 
allow to switch from one Solution to an other while processing. Therefore, it is possible to 
adapt the schedule to be executed online. 
A specific redundancy based approach to protect schedules against disruptions is to insert time 
buffers between jobs. More specifically, a buffer between two Jobs protects the Start time of 
the latter Job (and, therefore, its finishing time) against delays of the finishing time of the 
former one. Time buffer allocation has been studied in the context of project scheduling (e.g. 
in Al-Fawzan and Haouari [1], Kobylanski and Kuchta [14], Shi et al. [24], and Van de Vonder 
et al. [25]) as well as in the context of machine scheduling (e.g. in Leus and Herroelen [21]). 
Leus and Herroelen [21] discuss the problem to allocate buffer such that the sum of weighted 
expected deviation of start times is minimum when the makespan (and, therefore, the overall 
buffer time) is limited. 
In this paper we consider a similar concept. However, we consider the minimum (weighted) 
buffer inserted between a pair of consecutive jobs on a single machine. The Insertion of 
buffer times affects two opposed properties of the schedule. We reasonably assume that 
robustness is increasing if the inserted buffers are larger. However, the schedules Performance 
(e.g. makespan) may then worsen. Informal speaking, this gives us two types of optimization 
Problems: 

• Given a required robustness (measured as minimum (weighted) buffer time) what is the 
best Performance we can reach? 

• Given a requirement for the schedule's Performance what is the maximum robustness 
(hence the maximum minimum (weighted) buffer time) we can reach? 

The remainder of the paper is organized as follows. In Section 2 we formalize a framework 
concerning buffer allocation for one machine problems. Section 3 focuses on Performance 
optimization if a certain degree of robustness is required. The results obtained here are used 
in the following Section 4 as a tool box to obtain results for robustness maximization if a 
certain Performance is required. We conclude the paper with a summary of our insights and 
an overview of future directions for research. 

2 Problem Specification 

In what follows we restrict ourselves to single machine environments without preemption of 
jobs. We consider robust counterparts of machine scheduling problems that can be clas-
sified according to the well-known notation introduced by Graham et al. [12] as 1|/?|7, 
ß C {prec,rupi = l,pd =p,di}, 7 <E {/**=, EQ, E EE%%%, E Z%%%}. 
For a given schedule a of n jobs let a{l), 1 < l < n, denote the job in the Zth position. We 
define the buffer time 6j related to job i = a(l), 1 < l < n — 1, as the amount of machine 
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idle time between Jobs i and a(l + 1). Hence b^i) = CCT(z+i) — Ca(j) — p ^i+i), 1 < l <n-l. 
Furthermore, b^n) '•= 0. 
The main idea of a buffer time bi between job i and its successor is to protect the starting time 
of i's successor. If completion of i is delayed by pf for whatever reason, then the starting time 
of its successor is not affected if pf < 6%. If pf > bi then the successor cannot Start on time 
but still its starting time is delayed less than it would be without a buffer. Hence, time buffers 
are convenient because they do not only provide a certain degree of quality-robustness but first 
and foremost the robustness of each single starting time is enhanced. This may be important 
if w e think of a single machine embedded in an JIT-environment, for example, where tools or 
material to process Jobs are delivered right on time. 
We propose three Surrogate measures for robustness that have to be maximized: 

• the minimum buffer time of schedule a that is defined as B™ = mini<z<n b^i), 

• the minimum relative buffer time of schedule er that is defined as B% = 
mini<i<rl (K{i)/pc{i)), and 

• the minimum weighted buffer time of schedule er that is defined as B™ = 

(b<7(i)/wbcr(i))-

Each buffer protects the following Jobs from disruption. Considering the minimum buffer time 
as a robustness measure is motivated by the idea to balance the degree of protection from 
disruption by the preceding job. If we can assume that the probabilities ofjobs to be finished 
later than expected as well as the amount of delay are similar, then this minimum buffer time 
seems to be an appropriate Surrogate measure of robustness. 
Minimum relative buffer time is motivated by the assumption that the protection for the 
following job should be correlated with the processing time of the actual job. There may be 
two reasons for that. First, we may assume that procedures required to process jobs are more 
or less homogeneous and mainly differ in the amount of time necessary. Then, the risk of 
malfunctions at each point of time may be quite the same. However, a job that is processed 
for a longer period of time bears a higher risk of failure during its processing. Second, if we 
assume that procedures ofjobs differ reasonably, then more complicated procedures (leading 
to larger processing times) may entail a higher probability of malfunction. In both cases it is 
appropriate to postulate a fixed relation between processing times and corresponding buffer as 
a Surrogate measure. 
In order to consider the individual risk for each job we propose a minimum weighted buffer 
time. Here, a buffer weight w\ is associated with each job i giving the planner an idea of how 
the buffers of different jobs should be related to each other. Of course, as by setting w\ = 1 
or w\ = pi we can cover both cases mentioned above. 
In each case no protection is necessary for disruptions caused by the last job and, hence, we 
exclude this job from the robustness measures. We want to emphasize that we are aware 
of the fact that the proposed measures seem to be methodically inferior to several other 
proposals in literature. However, the simplicity of the concept may imply opportunities to solve 
corresponding optimization problems while for many other robustness measures optimization 
problems are intractable even for the most simplest settings. 
Moreover, the buffer Insertion can be seen as an application of the robustness concept in 
Bertsimas and Sim [5] to machine scheduling. Bertsimas and Sim [5] consider robust solutions 
to a linear program. They assume that an interval for each parameter is known where its 
actual value is randomnly drawn from. Informally speaking, for given protection parameter F& 
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for constraint k, the authors consider the set of r& parameters having the worst impact on 
feasibility of a Solution if they deviate from the expected value. The authors then formulate 
the problem to find the optimal solutions that is feasible even if for each constraint k each 
Parameter in differs from the expected value to a maximum amount. 
Although we cannot formulate most scheduling problems as a linear optimization problem we 
can apply this idea. Consider the following set of constraints where s* and is the starting 
time and the successor, respectively, of job i: 

Si+Pi< sSi Vi 

Since we have only one parameter in each constraint there is no choice to be made which 
Parameter affects feasibility of a Solution most. Suppose that the realization of pi is drawn 
from the interval — p~ ,pi +P*] where p is the expected value. Then, obviously, ^ -I-pf is 
the worst case regarding feasibility of a Solution. To protect the Solution against this case we 
have to choose ssi > Si+^+pf. Note that this can be seen as inserting buffer time 6, > 
to protect the Start time of job S*. 
There is an other buffer time related Surrogate measure for robustness of a schedule that has 
been mentioned in the literature, e.g. Al-Fawzan and Haouari [1], namely the sum of all buffer 
times. However, in accordance with the reasoning in Kobylanski and Kuchta [14] we refuse 
to follow this idea. If we consider total buffer time as a robustness measure, the distribution 
of total buffer time on single buffers is not concerned. Hence, a schedule having only a single 
buffer before the last job is considered as robust as a schedule where the same amount of total 
buffer time is evenly distributed on buffers between each pair of consecutive jobs. However, 
in the first schedule no job but the last one is protected against disruptions by preceding ones 
while in the second schedule each job is protected (to a certain amount). 

ea
. II bi i = 2 CO II h II ' CS 

. — 1 L_ . J 1. 1 1 1 1 1 1 1 J J. ! 

5 10 15 20 25 

Figure 1: Schedule a with Time Buffers 

Figure 1 presents an arbitrary schedule a of 4 jobs. Job 4 is scheduled last. We observe that 
B™ = 2 since mini<«^ ba^) = min{2,4,6} = 2. Furthermore, B% = 1 since 

. &<r(I) . T 4 61 min —- = min < 1, - > = 1. 
1 <l<n Pcr(f) \ 3 4 J 

To illustrate B™ let us assume that buffer weights w\ = 1, = 5, and = 6 are given. 
Then, B% = 0.8 since 

min = min {2,0.8,1} = 0.8. 

For a given scheduling problem l\ß\i we define Sß, SVB, and Sß as the subsets of feasible 
schedules such that if and only if er € Sß, a € Sß, and er E Sß we have B™ > B_, B%> B_, 
and B™ > B_, respectively. Additionally, we introduce S1 as the subset of feasible jobs such 
that if and only a € S^ the objective value of u does not exceed 7. 
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For the scheduling problems considered in the paper at hand, there is a trade off between 
robustness of a schedule and its Performance. On the one hand, if we increase a schedule's 
robustness we may reduce its Performance (e.g. the number of late jobs may go up). On the 
other hand, if we improve the schedule's Performance (e.g. decrease the makespan) overall 
time buffer is reduced which may result into a reduced robustness. Consequently, we introduce 
robust counterparts concerning these trade-off effects for a given scheduling problem l\ß\y. 

• Given a lower bound B_ of robustness find a schedule <r G Sß, o G Sß, or o G Sß, 
respectively, that optimizes 7. We denote the corresponding problem by Ijß, Bmjj, 
\\ß, ßp|7, and 1|ß,Bw\i, respectively. 

• Given an upper bound 7 of Performance find a schedule a G £2 having B™ = 
max {B™ 17r G <Sy}, BI = max{ß£ | TT G «Sy}> and B™ = max {i?™ | IT G <Sy}, 
respectively. We denote the corresponding problem by 11/3,7)Bm, l\ß,^y\Bp, and 
11/5,7IBw, respectively. 

• Find the trade off curve according to objectives (i) minimize 7 and (ii) maximize B™, 
B§, and B™, respectively. We denote the corresponding problem by 1|/?|(7, Bm), 
l|yö|(7,Bp), and l|/ö|(7,Bw), respectively. 

The motivation for these problem formulations can be derived from real world application. 
Suppose a planner can specify the robustness requirement (using the Surrogate measures 
given above) of a schedule. Regarding this he still is interested in the best Performance. 
Even in a single machine environment the sequence ofjobs may significantly differ from the 
optimal sequence of the underlying problem (when no robustness measure is considered). The 
other way round, let us assume the planner has an upper bound on the Performance of the 
schedule. If this upper bound exceeds the optimal Performance without time buffers, the 
planner may want to use this surplus to protect the schedule against uncertainty. Last but not 
least, regarding the reasons above it is only natural to ask for the set of schedules being not 
dominated in a way that there is schedule better in one objective and at least as good in the 
other. 

3 Performance Optimization for given Levels of Robust

ness 

In this section we establish relations between an underlying scheduling problem l\ß\^y and its 
three robust scheduling counterparts l\ß, B™^, 1|/?, J3P|7, and l\ß, Bw\j. We distinguish 
between two classes of objective functions: min sum objectives (i.e. Uj, J2wjUj, YjTj, 
YlwjTj, J2wjCj) and min max objectives (i.e. /max or more specifically Cmax and 
Lmax)' For our reductions in this section we may have to modify processing times pit due 
dates di, and functions ff. 

• For min sum objectives we modify processing times and due dates (if given). The basic 
idea is to represent a job i and its corresponding buffer by job i' whose processing time 
comprises the processing time and buffer time of job i. However, when doing so we have 
to take care of the following Situation. Job i"s part representing 1 s processing time may 
be finished before 1 s due date while the part representing the buffer is finished after dj. 
In this case i' should be considered early and, thus, we have to modify due dates also. 
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• For min max objectives we do the same modifications as mentioned above. Additionally, 
we have to consider function Function fc is a function of job i's completion time 
and, moreover, i's due date may be involved. So, in the first case we have to ensure that 
MC,): MC, - ipi' -Pi)) and in the second case /i'(CV, dv) = fi{Cv - (jpv-Pi), di) 
must hold. Basically, this says that the functions values for i and i' for the same starting 
points have to be the same. 

i = 1 £>i i = 2 £>2 II CO
 

II &4 

i = 1 &i i = 2 &2 2 = 3 h i = 4 h 

i = 1 z = 2 i = 3 i = 4 

1 1_, 1 1 1 | I 1 1 I I 1 I .1 I J L.. 1 1 1 1 1 1 1 . —1 1 -1 » 

5 10 15 20 25 

Figure 2: Sketch of reduction technique 

Figure 2 presents three schedules that are related to one another. Schedule er is the Solution 
to an underlying scheduling problem having no time buffers. Schedule am represents the 
corresponging Solution to the robust counterpart considering minimum buffer time. In this 
case I?m = 1. Schedule ap represents the corresponging Solution to the robust counterpart 
considering minimum relative buffer time (J?771 = 0.75). 
First, to provide some Intuition for the basic technique used in all proofs in this section 
we determine as an example the complexity status of l\pj = p;rj] Bm\Y,Tj and 1| Pj = 
p; Tj] Bw\ Y Tj. Afterwards, we give proofs for more general results. 

Lemma 1. 1|p3- = p; r3-; Bw\ Y Tj is strongly NP-hard. 

Proof. We prove the complexity of 1|pi = p;ri, Bw\ Y2^i by reduction from l|rt| Ŷ i which, 
as a generalization of l|ri|Lmaa;, is known to be strongly iVP-hard. 
For a given instance P of 1 [rf̂ Y^Tj we construct an instance Pw as follows. We retain all 
Parameters but p, and d* and set p\ = p' = miiij{pj} as well as d[ = di — Pi +pr. Note that 
we obtain identical processing times. Furthermore, we set w\ = (pj —p')/p' and J3W = 1. 
We find an optimal Solution er to P from crw to Pw as follows. We set Q = C• —p' + Pi. 
First, we obeserve that er is feasible to P. Let i be an arbitrary job that is not scheduled last 
and let s(z) be i's immediate successor. Then, 

Cs{%) — C i = — p' + ps(i) — C[ +p' — pi 

> C- + p'w\Bw +p' -p'+ ps(i) ~ C[ + p' - Pi (1) 

= Pi~P' + Ps(i) +P' ~Pi= Ps(i) 

Suppose there is a better schedule o"3 for Pw. We construct a better schedule er for P by 
setting C- = Ci +p' — p^. For corresponding solutions for Pw and P objective values are 
identical since 
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Ci — di — C[ — p' + Pi — d[ — Pi + p' — C[ — d^. 

Hence, a is better than o and a can therefore not be optimal. • 

In the following, we use the reduction techniques to determine relationships between underlying 
problems and their robust counterparts in a setting that is more general than the one in 
Lemma 1. 

Theorem 1. Problems l\ß, Bm\j and l[/3, Bp\-j are equivalent even ifBm > 0 and B? > 0. 

Proof. The proof is done in two steps: First, we reduce l\ß,Bm\i to l\ß,Bp\^y and we do 
the reverse afterwards. We distinguish between two cases. 

• Gase (i): Processing times are arbitrary, that is ß fl {pi = p,pi = 1} = 0. 

• Gase (ii): Processing times of all jobs are equal, that is {pi = p} G ß or {pi = 1} £ ß. 

Let Pm be an arbitrary instance of l\ß, Bm\^. We construct an instance Pp of l\ß,Bp\^ as 
follows. We preserve all problem's characteristics but pit di, and fit % G {1,... ,n}. In case 
(i) we set # = (% = d, + (B™ - p,)/2, //(CJ, = /,(CJ - (B- - ̂)/2, d,), 
and B? = 1. In case (ii) we set p' = p, d[ = dk, and fl = fi as well as = (Sm)/p. 
We derive a Solution crm to Pm from an optimal Solution crp to Pp by setting C* = C'i+p'i—B"1 

in case (i) and Q = C[ in case (ii). 
Note that in case (i) we have b'Jp'i > B„P = 1 for each i ^ ap(n) while in case (ii) we have 
b'i/p'i > Bpp = Bm/pi for each i ^ ap(n). Now we can see that Solution am is feasible to Pm. 
Let i be an arbitrary job that is not scheduled last and let s(i) be i's immediate successor. 
In c ase (i), 

Cs(i) - Ci = C's(l) + p's(i) - üm — C[ - p[ + ßm 

> C'i+p'i+ p's{i) + p's<j) -C'i-p'i (2) 

= 2P's(i) = Ps(i) + 

while in case (ii), 

Cs(i) — Ci — — C'i 

> C'i+Pi——b ps{i) — C[ (3) 
Pi 

= Ps(%) + ii™-

Furthermore, in case (i) 

Ci — di = C\ +p'i- Bm — d[ H 

= + (4) 

= Cf-d; 

while, trivially, Ci — di = C'-d^ in case (ii). Note that lateness Ci — di may concern feasibility 
or Performance. So, feasibility of am is given. If the 7 Performance is based on lateness, 
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obviously the Performances of am and ap are identical. The same holds for general due 
to the modification of /j. Finally, if 7 € {]T} C») Solutions am and ap have objective 
values that differ by a constant that does not depend on the solutions, that is 

7K) = wiC'i 
i 

= wiCi ~ ~ (5) 
i j 

i 

in case (i) and 7(CTP) = Yhj wjC'j = ]TV wjCj = ry(<jTn) otherwise. 
Suppose there is a Solution Zf™ t hat is better than am. Then, we can construct a feasible 
Solution W by letting Cj = Cj—p'j + in case (i) and Cj = Cj otherwise. Using (2), (3), 
(4), and (5) it is easy to show that o? is better than ap. 
Now, let Pp be an arbitrary instance of\\ß, BpI7. We construct an instance Pm of l\ß, BmI7 
as follows. We preserve all problem's characteristics but pit dit and fit i 6 m}. In 
case (i), we set Pm = p\ = (1 -t-5p) - Bm, d[ = di + piB'p - B_m, and 
fi(C'i, d'i) = fi(C'i + Bm - piBp, di). In case (ii), we set p' = p,d'i = dit and // = /* as well 
zsBp = Bm/p. 
We derive a Solution ap to Pp from an optimal Solution om to Pm by setting Q = C[ + Bm — 
PiBp in case (i) and Q = Cj otherwise. Based on the same arithmetics as in (2), (3), (4), 
and (5) it is easy to show that ap must be optimal for Pp. • 

Theorem 2. If not all processing times are equal to 1, then problems 1 |/?J7, 11/?, Bm\j and 
l\ß, Bp I7 are equivalent even if ff71 > 0 and W > 0. 

For proofs to Theorems 2 to 5 we only give reductions. All arithmetics to prove feasibility and 
optimality are analogous to (2), (3), (4), and (5). Regarding Theorem 1 we restrict ourselves 
to show that llßlj and l\ß, Bm|7 are equivalent to prove Theorem 2. 

Proof. First, we reduce l\ß, 5m|7 to 1|/3|7- Let Pm be an arbitrary instance of \\ß, Pm|7. We 
construct an instance P of l\ß\y as follows. We preserve all problem's characteristics butpi, dit 

and fi, i £ {1,...,n}. We setp\ = Pi + Bm, d[ = di + Bm, and d-) = fi{C'i-Em,d{). 
We derive a Solution am to Pm from an optimal Solution er t o P by setting Q = Cj — B_ m. 
Now, we reduce l\ß\j to l\ß, B™^. Let P be an arbitrary instance of 1|/3|7- We construct 
an instance Pm of l\ß, J5m|7 as follows. We preserve all problem's characteristics but pit 

di, and fit i G {1,..., n}. We set Bm = (minjPi)/2, p[ = p{ — Bm, d[ = di - B_m, and 
/,'(Cj',d9 = fi(C'i +BJn,di). We derive a Solution er t o P from an optimal Solution am to 
Pm by setting Ci = C[ + Bm. • 

Theorem 3. Ifpi = 1, then problems l\ß, Bp\j, l\ß, Bm(7, and \\ß'\q are equivalent when 
ß' restricts all processing times to be equal (but not necessarily unit). 

Proof. The reduction of l\ß, Bm|7 to l\ß'\^ is analogous to the one in the proof of Theorem 2. 
Note that p'ä = p holds for all processing times. The reduction of l\ß'Yy to l\ß, BmI7 is done 
as follows. If p < 1, then we can multiply all processing times and - if considered - due 
dates and release dates by a constant k such that kp > 1. Then, we set B_m = p — 1, 
d = P - = 1, 4 = 4 - ä", and 4). O 
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Theorem 4. If processing times are arbitrary, then problems 1|/?|7, l\ß, Bm I7, l\ß, Bp (7, and 
l\ß, BwI7 are equivalent even if B™ > 0 and Bp > 0. 

Regarding Theorem 2 we restrict ourselves to show that l\ß\"f and l\ß,Bw\^ are equivalent. 

Proof. First, we reduce \\ß, B̂ qf to l\ßY). Let Pw be an arbitrary instance of l\ß, Bw\r). 
We construct an instance P of 1|/?|7 as follows. We preserve all problem's characteristics but 
ph di, and fit i € {1, — ,n}. We set pj = p{{ 1 + w\), d[ = + p^, and d|) = 
fi(C-—piWi, di). We derive a Solution crw to Pw from an optimal Solution er t o P by setting 

Ci = C[- Piw\. 
Note that l\ß, BwI7 is a generalization of \\ß, BpI7. Due to Theorem 2 1|/3|7 can be reduced 
to l|ß, ß"|7. • 

Theorem 5. Ifpi = p, then problems l\ß,Bw\/y and 11/?'17 are equivalent even if B™ > 0 
when ß' implies arbitrary processing times. 

Proof. First, we reduce l\ß, Bw\j to I|j0'|7 in analogy to the reduetion in the proof to Theo
rem 4. 
Now, we reduce 1|/5'|7 to l\ß, BwI7. Let P be an arbitrary instance of 1|/3'|7_ We construct an 
instance Pw of •l\ß,Bw\'j as follows. We preserve all problem's characteristics but pit dit and 

1,.. •, n}. We set p\ = (mini{pi})/2, w\ = (p{ -p-)/p-, Bm = 1, < = di ~Pi +p'it 
and fKC^d'i) = fi(C[ + Pi - p'^di). Note that we have no restriction for pi- We derive a 
Solution er t o P from an optimal Solution crm to Pm by setting C, = C- — p\ - \-pi. • 

Remark 1. Using the techniques employed above it is easy to see that l\ß,Bw\i and 
1|ß',Bw\'j, where ß and ß' implypj = 1 andPj = p, respectively, are equivalent. 

Summarizing Theorems 1 to 5, we can provide strong results for the computational complexity 
of the robust counterparts of the single machine scheduling problem 1|/?|7 when the robustness 
is given. 

• l\ß, i?m|7 and 1|/?, £?p|7 are equivalent 

• l\ß,Bm\^y, l\ß, BpYf, and 1|/?|7 are equivalent unless p, = 1 

• l\ß, Bm\i, l\ß, ßp|7, and l\ß'\^ are equivalent for ß implying unit processing times and 
ß' implying equal (but not necessarily unit) processing times 

• l\ß, I?m|7, 1|/?, 5P|7, l\ß, BwYy, and l\ß\i are equivalent unless pj =p 

• 11/5, Bm\7, l\ß, BpI7, l\ß, BpI7, and V\ß'\i are equivalent for ß implying equal process
ing times and ß' implying arbitrary processing times 

Figure 3 illustrates the reducability of the classes of problems considered in this section. 
Each node represents the class of problems speeified by the strueture of processing times 
corresponding to the column and the robustness measure corresponding to the row. Note 
that 1|/?|7 represents the underlying problem. The label at each arrow outlines the Theorem 
providing the relationship represented by the arrow. Here, "Gen." and "Rem. 1" refer to 
a trivial generalization and Remark 1, respectively. The dashed lines partition the problem 
classes into three equivalence classes. 
Hence, in most cases if the underlying problem is known to be solvable in polynomial time, 
we can solve the robust counterpart where robustness is given using the algorithms for the 
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Figure 3: Equivalence Graph 

p pw P' 
l\prec,pi = p-,ri\Lmax 

l\prec-,pi=p;ri\Y,Cj 

% fi\J2wjCj 
1| Pi =P]ri\J2wjUj 

l\Pi = P',ri\J2Tj 

1| prec; pi = p; r*; Bw\Lmax 

l\prec;pi = p; r*; Bw\X) Cj 
l\pi = p]ri]Bw\J2wjCj 

l\pi=p]ri-Bw\^2wjUj 

l\pi=p]ri-,Bw\^2Tj 

l\prec\ Ti\Lmax 

l\prec] Ti\ YhCj 
l\ri\YlwjCj 
1N Y,wiui 
1 HETj 

Table 1: Polynomial Problems with NP-hard Robust Counterparts 

underlying problem. However, this does not hold in general. For underlying problems where 
processing times are restricted the processing time structure may get more general by the 
reduction mechanism, that is change from unit processing times to equal processing times or 
change from equal processing times to arbitrary processing times. Table 1 provides underlying 
problems in the left column that are maximum polynomially, see Brucker [7]. In the second 
column we have the strongly NP-hard robust counterpart Pw corresponding to the underlying 
problem P. Pw is (in each case) strongly NP-hard since it is equivalent to corresponding 
problem P' in the right column. 
Although there may be some we could not find an underlying problem being polynomially 
solvable or binary NP-hard and having a binary NP-hard or unary NP-hard robust counterpart, 
respectively. 

4 Robustness Optimization for a required Performance 

Level 

In this section we consider the three robust counterparts 1|/?,7|Bm, l\ß,^y\Bp, and l\ß,j\Bw. 
The main issue is here that the order of jobs is not fixed but depends on the degree of robustness 
as we can illustrate with a rather simple example. 
Figure 4 shows three optimal solutions a0, CT0.5, and ai corresponding to the same underlying 
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Figure 4: Changing sequence ofjobs for 1|| Lmax 

problem instance of 1||Lmax for f?p = 0, Bp = 0.5, and B_p = 1, respectively. The problem 
instance itself is defined by n = 4, pi = p2 = Pi = 2, p3 = 8, dx = 2, d2 = 11, d3 = 15, 
and di = 24. Note that we can find an optimal Solution by arranging a sequence ofjobs in 
non-decreasing order of due dates. According to Theorem 2 this approach can be applied by 
sorting modified due dates d'{ = di + PiBp. For = 0.5 this gives us d'^ = 3, d'2 = 15, 
d'z = 16, and d'A = 25 and, hence, we obtain a optimal sequence of oo.s = (1,2,3,4). Note 
that this sequence is the only optimal one. However, for W — 1 this gives us d[ = 4, d'2 = 19, 
d'3 = 17, and d'A = 26 and, hence, the only optimal sequence is o\ — ( 1,3,2,4). 
In what follows we analyze the robust counterparts of several basic scheduling problems that 
seek for the maximum robustness if a certain Performance must be guaranteed. It is easy to 
see that the robust counterpart can not be easier than the underlying problem. That is why 
we restrict ourseives to underlying problems that are known to be solvable in polynomial time, 
namely l\sp - graph\ J^WiQ, 1|| and l\prec\fmax. 
Note that for all these cases the robust counterparts from Section 3 are equivalent to the 
underlying problem. Hence, as long as an upper bound on the robustness is given we can 
find a Solution differing from the optimal one only by a Constant e in polynomial time using 
binary search on the robustness domain. Therefore, we focus on finding the exact Solution or 
exploring the tradeoff curve between Performance and robustness. 
The strategy in all cases can be sketched as follows. We determine a set of values Bs for Bm, 
Bp, and B_w that mark sequence changing robustnesses for the problem, that is if b G Bs, 
then the sequence ofjobs optimizing Performance for given B_w = b~ < b is different from the 
optimal sequence for given Bw = b+ > b. For JBw = b both sequences are optimal. Searching 
these intervals, we can determine the sequence ofjobs for the maximum robustness. Given 
the sequence, finding the optimal robustness bolds down to easy arithmetics. 

4.1 l\sp — graph,J2wiCi\Bw 

First, we consider underlying problem 1|| J^wiCi that is well studied and that serves well to 
gain insights that can be applied to more general problems. Afterwards, we tackle l|sp -
graph\ J2 
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4.1.1 

It is well known that an optimal Solution to this problem can be found by sorting jobs in non-
increasing order of pi/wi. Regarding Theorem 4, 1|Bw\ can be solved by reducing it 
to 1|| J2wiCi where processing times are defined as p\ = + w^B™. Thus, we derive the 
optimal order ofjobs for given robusteness by sorting (j?i + w\Bw)/wi. Furthermore, we can 
see the optimal Performance as a non-decreasing function of the required robustness. 
We determine 

B* = fb\b= >0,i<j 
| Wi Wj — WjW\ 

and sort this set according to non-decreasing values. Note that |J3S| e 0(n2). Let bk, 
k £ 1,..., |5S| be the kth value in Bs. Applying binary search on Bs, we can find the smallest 
value bk* in Bs such that the optimal Solution value to 1\BW\ J^WiCi with Bw = bk* exceeds 
7. Then, the sequence of jobs corresponding to the interval bk.] is the sequence of 
jobs for maximum robustness. For a given sequence er o fjobs we can determine the maximum 
robustness as a function of 7: 

S"(T,<7)= EmA ' 

(we assume that jobs are numbered according to er). The computational complexity of this 
procedure is 0(n2 logn). 
Instead of finding the optimal robustness for a specific given 7 we may be interested in finding 
the trade off curve between robustness and total weighted completion time. In the following, 
we give an aIgorithm to find the tradeoff curve represented by function Bw(7). The procedure 
resembles the one described above except for Bs being searched sequentially. 

Algorithm 1 

1. find and sort Bs 

2. find the optimal sequence <7 for 1 || and corresponding optimal Solution value VQ 

3. in [0, VQ[ the tradeoff curve is not defined 

4. for k = 1,..., |JBS| 

(a) find the optimal Solution value vi for 1\BW\ Ŷ WiCi where B,w = bk 

(b) in [vl_vvl[ the tradeoff curve is given by linear function Bw(7) = Bw(7y,a) 

(c) modify a by switching the jobs bk corresponds to 

(d) k <— k + 1 

5. in [b\B'\, oo[ the tradeoff curve is given by linear function Bw(7) = Bw{7, er) 

Obviously, the algorithm finds all optimal sequences and, therefore, the whole tradeoff curve 
in 0(n2logn). The complexity is not higher than the one for solving l\Bw\Y^WiCi because 
in both cases sorting Bs takes the most effort. 
In order to illustrate the connection between we give the following example. Let us suppose 
we have a set of jobs I — {1,2,3}. We have Pi = i and Wi = 1 for each 1 < i < 3, and 
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Figure 5: Trade Off Curve for 1|\(J2Ci,Bw) 

w\ = 3.5, w\ = 1.5 and w\ = 0.5. We then have Bs = {0.5,2/3,1}. Figure 5 illustrates the 
the graph corresponding to the trade off curve as the solid line. Break points are dotted and 
correspond to jobs 1 and 2, jobs 1 and 3, and jobs 2 and 3 switching in the optimal sequence. 
Note that the trade off curve is piecewise linear and convex which can also be observed from 
the formal expression of Bw(7). Due to the definition of Bs jobs i! and j', Pi'/w, < p^/wy, 
can switch positions in the optimal sequence only if w^wj, — wyw\, < 0. Let a and er' be the 
sequences before and after the switch. Then, 

n i—1 n i—1 

J2W«'Ü) - = wi,wf - w?wi' < °-
i=1 j=1 i—1 j=1 

Note that for special case l\Bp\^2wiCi we have Bs = 0 which means that each optimal 
sequence of jobs for B'p = 0 is optimal for each EP > 0. Hence, in this case finding the 
tardeoff curve can be done in O(nlogn). 

4,1.2 l\sp — g raph, J2wiCi\Bw 

First, we give a brief overview of the aIgorithm for l|gp —graph| Y2wiCi by Lawler [18]. For a 
given problem the algorithm does a series of comparisons of values pi/wi. However, the exaet 
values are of no importanee as far as sequencing is concerned since it only decides which of 
two values is larger. In each Iteration the algorithm may form a composite job (i, j) from two 
jobs i and j that is defined by p^j) = Pi +pj and = wt + Wj. This is why, in contrast 
to Section 4.1.1, it is not sufficient to consider 

B. = ib\b = l^ZJV*>0,i<A 
[^ WiWj - WjW? J 

to find all values of B"' leading to changing optimal sequences. 
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We pick up the example of Section 4.1.1 and add a single precedence constraint requiring 
that 2 can not precede 1. Considering the decom position tree we can see that 2 follows 1 
immediately in each optimal sequence. Therefore, only optimal sequences are oi = (1,2,3) 
and cr2 = (3,1,2). It turns out that crx = (1,2,3) provides a better schedule for Bw < 0.75 
and that <J2 = (1,2,3) provides a better schedule for B>w > 0.75. However, 0.75 0 B3. In 
Figure 5 we represent the corresponding trade off curve as dashed line. Note that in the first 
section both trade off curves are identical due to identical optimal sequences. However, in 
contrast to Section 4.1.1 jobs 1 and 2 can not switch and from this point both trade off curves 
are different. 
The reason for this effect is that composite job (i,j) replaces simple jobs i and j whenever it 
is decided that j follows i immediately. In our case, (1,2) replaces 1 and 2. Then, comparing 

Pl + +P2 + w\BW to P3 + w\BW 

W1 + W 2 IÜ3 

gives the result that 3 should precede (1,2) for 5™ > 0.5. An extension of Bs covering all 
sequence changing robustnesses could be defined as 

B« =/6|6= PW-Pr-vr > r „ c ,1 
[ wpuij,, - wr>w°r J 

where pr = P%< wr = wi< and wr = Y2iei,wi- However, since \B'S\ E 0(22ra) 
we can not sort it in polynomial time. 
Taking this into account, our algorithm works in a stepwise manner mimicking the algorithm 
by Lawler [18]. We determine JB8'1 which is identical to Bs in S ection 4.1.1 and sort this set 
according to non-decreasing values. After having determined (analogue to 6&.) we obtain 
a unique ordering of values 

+ i6J.i = I 

Wi 

which allows us to execute at least one step of the algorithm by Lawler [18]. As soon as a 
composite job (i,j) is created, we have to consider the modified set ofjobs I2 = I1\ {i,j} U 
{(i, j)} starting the procedure all over again. More specifically, the algorithm can be given as 
follows. 

Algorithm 2 

1. I1 «-/ 

2. for k <— 1 

3. repeat 

(a) find and sort Bs,k according to Ik 

(b) find bl» using binary search on Bs'k and the algorithm by Lawler [18] 

(c) having a unique ordering ofjobs in Ik execute one step of the algorithm by Lawler 
[18] 

(d) if no composite job is created go to Step 3c 

(e) if a composite job is created obtain set ofjobs Ik+1 by adding the composite job 
and dropping all jobs being contained in the composite job from Ik 
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(f) if only one node is left in the decomposition tree go to Step 4 

(g) k <— k +1 

4. extract optimal sequence a from the remaining job 

5. obtain maximum robustness as Bw(j,a) 

Note that determining B3'1, l > 1, takes less effort than determining Bs,x. Since we restrict 
ourselves to robustness values within [blfT*1_1,blkZ1[ w e consider 

r-_ {»I tl,<»= f \ 

and obtain G O(n). 
Correctness of our algorithm follows from correctness of the algorithm for l|sp—graph| 
and the fact that sequencing is based only on elementary steps of deciding which of two values 
Pi/wi and Pi/wi is larger. 
Computational complexity of öur algorithm can be determined as follows. Rinding and sorting 
Bs'x takes 0(n2logn). Employing binary search and the algorithm by Lawler [18] to find b\* 
costs 0(nlog2 n). Since e 0{n), l > 1, computational effort to determine and sort Bs'1 

in following iterations is 0(nlogn). Furthermore, finding blk» costs 0{nlog2 n) again. Since 
we have no more than n iterations overall complexity is 0(n2log2 n). 
Note, that analogue to Section 4.1.1 the optimal sequence of jobs does not change depending 
on Bp. To see this, consider two disjoint subsets of jobs I1 and I2. Corresponding composite 
jobs have 

Etgji Pj J Eigi2 & 

Eier ̂  
which translates to 

EiE/.p.fl+g) Jnd z)epp<(i+m 

Eie/i wi Siel2 wi 
regarding the reduction of the robust problem to the underlying problem. Hence, 

if and only if 

zi€ilPi(i+m cE^(i+gp) 

EieP wi Etep wi 

Eie/i Pi < Eis/2 P* 

Eie/i wi Eie/2 Wi 

Therefore, we can determine the tradeoff curve trivially by finding the only optimal sequence 
in O(nlogn). 

4.2 

In th is section we first develop properties of optimal Solution. Then, algorithms for 1| Ui\Br' 
and 1| E^l^ are proposed. 

Lemma 2. In an optimal Solution to 1| Y,Ui\Bw the number of late jobs is exactly7. 
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Proof. First, we show that in an optimal schedule there is at least one tight job. Let a schedule 
be given such that all early jobs are scheduled before the first late job and let jobs be numbered 
according to this schedule. Suppose no job in the set of early jobs Ie is tight in schedule er. 
Then, we can increase B™ by 

di — Ci 
min = r > 0 

which means that er is not optimal. 
Now, let assume we have a schedule er with less than 7 late jobs and i is the first tight 
job. Moving i to the end of schedule we can start each following job Pi time units earlier. 
Considering the above, we increase B™ a nd, therefore, a has not been optimal. • 

4.2.1 

Note that the problem is not bounded for 7 = n or 7 = n — 1 and there is a job i having 
Pi < di. For 7 < n—2, Lemma 2 enables us to develop the following algorithm for 1| Ui\Bm. 
Since there is at least one tight job among exactly n — 7 early jobs in an optimal schedule er 
there are up to n — 7 — 1 buffers before the first tight job that determines Bm. Hence, the 
maximum robustness is 

Bm E | i E I,k E {1,..., w — 7 — 1}^ . 

Assuming that processing times as well as due dates are integer w. I. o. g., we obtain integer 
total buffer before the first tight job. Multiplying processing times and due dates by 
we obtain an integer maximum robustness as optimal Solution to 1| Ŷ Ui\Bm. Hence, we can 
apply binary search on {l,..., maxj to find maximum robustness. Note that 

log (max = O(nlogn). 

Considering, that we have to solve the underlying problem 1||^Ui in each step which takes 
0(n\ogn) we obtain overall complexity of 0(n2log2 n). 

4.2.2 llEt/il-B™ 

As for 1| YhUi\Bm, the problem is not bounded for 7 = n or 7 = n — 1 and there is a 
job i having pi < di. For all other cases we propose an algorithm using the known Solution 
algorithm for the underlying problem 1|| in an iterative procedure. The basic idea of 
the following algorithm is to focus on a set Bs such that we can find an interval 6&«], 
bk*-i,bk* E Bs, of robustness values containing the optimal Solution value and providing a 
unique ordering of modified processing times and due dates for all B,w E [bk*-i, bk*]. 
We consider the set 

We can find the smaliest value bk* in Bs such that the optimal Solution value to 1\BW\ 
with Bw = bk* exceeds 7 using binary search. This can be done in 0(n2\ogn) time since 
|£s| E 0(n2). The order of non-decreasing modified processing times p\ = pi + bw\ and 
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non-decreasing modified due dates = di-f-bwf (breaking ties according to non-decreasing 
w^) gives two total Orders of the set of jobs for the optimal Solution. Note that the algorithm 
by Moore [23] is based on steps dependent on the comparison of processing times or due dates 
only. 
The basic idea of our algorithm is as follows. Based on the current Solution (and, hence, given 
sequence of early jobs) for a given S™ we enlarge robustness as much as possible without one 
of the early jobs violating its due date. Let jobs be numbered according to non-decreasing due 
dates and let Ie be the set of early jobs. Then, the maximum amount b+ by which robustness 
can be increased without the current sequence of early jobs getting infeasible is 

b+ = d[ — Ci 
min 
ie/e Y, b' 

j€le,j<i Wj 

If w e set Bw = B_w + b+ at least one job i G Ie will be tight. If w e further increase robustness 
by e, according to the procedure by Moore [23] a job j = arg maxjej=j<j will be chosen to be 
late. Note that this does not mean that necessarily the number of late jobs goes up. 
In the following we first specify the algorithm and afterwards provide a proof of correctness. 

Algorithm 3 

1. find b using binary search on Bs 

2. solve problem l\Bw\YlUi, Bw = b 

3. repeat until the optimal Solution has more than 7 tardy jobs 

(a) find b+ 

(b) b <— b + b+ + e 

(c) solve problem 1|Bw\Y,Ui, B<w = b 

Let <7 a nd a' be the sequences of jobs before Step 3b and after Step 3c. Let j be the job 
having largest processing time p'j among those jobs being on time and scheduled before tight 
job i. In the following we neglect the subschedule of late jobs and assume that late jobs are 
scheduled after the last early job. Jobs in Ie be numbered according to non-decreasing due 
dates. 

Lemma 3. If k is the position of j in a, then a(k) < cr'(k) and <j(k') = a'(k') for each 
k' < k. 

Proof. Since the order of modified processing times and modified due dates is identical, the 
algorithm by Moore [23] processes identically for the first a(k) - 1 jobs. To see that, note 
that if for a subset I' the largest due date (corresponding to job i' £ /') was violated before 
Step 3b, then the same subset violates the largest due date again after Step 3c. 

(P'i + wib+) > J2Pi + wi'b+ 

ier iei' 
> d'i, + wbi,b+ 

Furthermore, let I1'1 C {1,..., «?(&)} be the subset of jobs chosen to be tardy in Iteration l of 
the algorithm until cr(k) is scheduled. Since the order of modified processing times does not 
change we obtain P'1 C I^+1. The Lemma follows. • 
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Theorem 6. The algorithm terminates after no more than 0(n3) iterations. 

Proof. Let jobs be numbered according to non-decreasing due dates. Consider a string of 
binary values indicating that job i is early in Iteration l if and only if the corresponding bit 
equals 1. Note that the number of ones can never be increased during our algorithm. Regarding 
Lemma 3, the fact that in the Solution given by the algorithm by Moore [23] early jobs are 
sorted according to non-decreasing due dates, and the unique order of due dates, we can 
sketch the behaviour of the bstring like this: For each number of tardy jobs the number of 
zeroes is fixed. The zeroes may go from left to right in the string which cannot take more 
than n2 steps. So, the overall number of steps is n3. • 

Regarding Theorem 6 and the fact that we apply the algorithm of Moore [23] in each Iter
ation we obtain a computational complexity of 0(n4logn) to find the optimal Solution to 
1| 2̂ Ui\B'w. To find the trade off curve we have to search Bs sequentially. This cummulates 
in run time complexity of 

0(n2 • n 4logn) = 0(n6 log n). 

This curve is defined only for 7 £ {0,..., n — 2 } and gives the high est b that allowes for a 
certain number n — 7 of early jobs. 

4.3 l\prec, fmax\Bw 

In this section we consider robust counterparts of problem l|prec|/max that is known to be 
solvable in 0(n2), see Lawler [17]. First, we focus on the special cases l|prec|Cmax and 
l\prec\Lmax. Afterwards, we consider a more general case where is an arbitrary non-
decreasing function in Q. The basic idea is to employ algorithms known for the underlying 
problem in a procedure searching the domain of B_. 

4.3.1 l\prec,Cmax\Bw and l\prec, Lmax\Bw 

Obviously, an arbitrary sequence of jobs (as long as precedence constraints are not vio-
lated) gives an optimal Solution for l|prec|Cmax- The reduction of l\prec, Bw\Cmax to 
l\prec, Bm\fmax as proposed in Section 3 leads to p\ = pi + w^Bw and //(C-) = fi{C[ — 
w\B^) = C\ — w^Bw. The makespan (according to modified processing times) in the reduced 
problem is Y îP'i but due to the modification of fo jobs may be differently suitable to be chosen 
as the last job. An intuitive explanation is that the buffer corresponding to the last job does 
not contribute to the makespan and should be, therefore, chosen as large as possible. 
It is easy to see that chosing job 

i* = argmjuc{w- | {i, j) £ EVj ^ i} 

as the last job provides an optimal Solution for l\prec, Cmax\Bw. This implies that the choice 
is arbitrary for l\prec, CmaxfBm. Note in both cases the optimal sequence ofjobs does not 
depend on Bw. Furthermore, we do not even need to find the optimal sequence ofjobs to 
find the trade off curve. The curve is given as a function 

m?) = I" Ei6,g 

which means the trade off curve (that is linear in this case) can be found 0(n). 
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For l\prec\Lm3JC we again refer to the reduction of 11prec, Bw\fmax to l|prec|/max as proposed 
in Section 3 leading to a modification. We obtain p\ = pi + w\Bw and /[{CdQ = f^Cl — 
w\B'w, d^—w^B™) = Cl-dl Therefore, we can apply a modification of the well known earliest 
due date rule: We choose the job having largest modified due date among those having no 
successor to be the last job. In order to solve 1|prec, Lmax\Bw we consider set of robustness 
values 

Bs = 

Applying binary search to find the b* G Bs that is the smallest value such that 1|prec, BW\Lm„ 
with B_w = b* leads to an objective value exceeding 7. This gives us the order of modified due 
dates for the optimal value of Bw and, hence, enables us to apply the modified due date rule. 
This takes takes 0{n2 logn) time since |BS| G 0(n2). After finding the optimal sequence a 
we can compute the maximum robustness as 

7 + da(i) Ysj<i Pffij) | 
JJ-LLJ-L \ 7 / min 

in linear time. Hence, overall computational complexity is 0(n2logn). 
Of course, by sequential search of Bs we can find all optimal sequences in 0(n3logn). Note 
that there may be several break points of the trade off curve for a given sequence er since the 
tight job 

may change. It is easy to see that if i* is the tight job for 7 and j* is the tight job for 
7' > 7 and both optimal sequences are identical, then j > i. Hence, the tight job for a given 
sequence of jobs cannot change more than n — 1 times. Since finding the next tight job is in 
O(n) finding the whole trade off curve is in 0(n5logn). 
The trade off curve Bw(j,a,i*) for given sequence of jobs er and tight job i* is linear and 
speeified by 

j<f u(j) 

Since for given sequence er e ach tight job for larger 7 cannot be a predecessor of i* in er, we 
can see that the trade off curve for er is concave. 
However, as we illustrate with an example the trade off curve may not be concave in general. 
Consider 3 jobs speeified by pi = P2 = Pz — 1. ^I = ^3 = 1- w2 = 2, di = 1, d2 — 2 , and 
d3 = 5. We observe that job 1 can be scheduled first in each schedule since d[ < min{d'2, d'3}. 
Job 2 precedes and follows job 3 if B < 3 and if B > 3, respectively. Note that B = 3 
corresponds to 7 = 7. Since Lmax cannot be negative (due to job 1) 5®(7) is defined for 
7>0. 
We observe that job 2 is tight for 7 G [0,1] while job 3 is tight for 7 6 [1,7]. Note that jobs 2 
and 3 switch at B = 3 and 7 = 7, respectively. For B > 3 and 7 > 7 job 2 is tight resulting 
into a break point at the switch point, see Figure 6. Clearly, Bw{7) is neither concave nor 
convex. However, Bw(7) is concave for both optimal sequences corrseponding to intervals 
[0,7] and [7,00[. 
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4.3.2 1| prec,fmax\Bw 

Here we consider the more general case where the only restriction on fc is that it is non-
decreasing function in completion time. Here, we distinguish two cases regarding /j. 

Theorem 7. If finding max{C |/-1(C) < 7} is NP-hard, then l\prec, fmax\Bm, 
l\prec, /max|-Bp, and l\prec, fmax\Bw are NP-hard also. 

Proof. We can reduce the problem to find max{C | /_1(C) <7} to l\prec, fmax\Bm as 
follows. Let the number ofjobs be 2. Consider both jobs having unit processing time and 
functions fi(C) = fj(C) = f{C — 2). The maximum buffer size b between both jobs will obvi-
ously lead to the second job being finished exactly at max{C | /-1(C) < 7}+ 2. Subtracting 
overall processing time of 2, we obtain B™ = max{C | /-1(C) < 7} as value of optimal 
schedule er. The proof can be done analogously for 1|prec, fmax\Bp and 1|prec, fmax\Bw. • 

Theorem 8. If finding max{C | /_1(C) < 7} can be done in polynomial time, then 
1|prec, fmax\Bm, 1|prec, fmax\Bp, and 1|prec, fmax\Bw can be solved in polynomial time. 

Proof. We reduce l\prec, fmax\Bm, l\prec, fmax\Bp, and l\prec, fmax\Bw to 
l\prec,Lmax\Bm, l\prec, Lmax\Bp, and l\prec, Lmax\Bw, respectively. Obviously 
dj = max {Ci | /i_1(Ci) <7} gives a due date for job i. Given an instance P of 
l\prec, fmax\Bw we create an instance P' of l\prec, Lmax\Bw as follows: 

• n' = n 

• Pi=Pi 

• d'i = dj 

*7 = 0 
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It is easy to see, that the optimal Solution to P' provides an optimal Solution to P. • 

Consequently, the computational complexity of l\prec, /max|ßm and l\prec, fmax\Bw is 
0(C(dJ) + nlogn) and 0(C(dJ) + n2logn), respectively, where C(dJ) gives the comu-
tational complexity to find max{C | /_1(C) <7}. Corresponding trade off curves can be 
found in 0(C(dJ) + nlogn) and 0(C(dJ) + n3logn). 

5 Conclusions and Outlook 

In this paper we propose three Surrogate measures for robustness of a schedule on a single 
machine based on time buffers between jobs. We introduce a generic robustness counterpart 
for classic single machine scheduling problems and obtain a robust decision problem and three 
robust optimization problems corresponding to each classic single machine scheduling problem. 
While being reasonable our robustness concept has the advantage over other concepts in the 
literature that we do not loose polynomiality of classic problems when considering the robust 
counterpart in general. In particular, for the problem to minimize the objective function while 
providing a certain robustness level we show exactly in which cases we loose polynomialty. For 
the problem to maximize robustness while not exceeding a certain objective value we show for 
three problems exemplarily that we can obtain polynomial algorithms. Also trade off curves for 
minimizing the objective value and maximizing the robustness are found in polynomial time. 
For future research we can think of several variations and extensions of the concept provided in 
the paper at hand. First, incontrast to jobs being related with the following buffer each job may 
be related to the preceding buffer. This can be motivated by requiring a certain protection level 
for each job which is implemented by the preceding job. Furthermore, combinations of both 
concepts are possible. Second, the size or importance, respectively, of a buffer may depend on 
its position in the sequence. Of course the probability of interruptions before a specific position 
is higher for positions being located towards the end of the schedule and, hence, buffers at 
the end should be larger than at the beginning tendentially. Third, probabilistic analysis can 
be employed to derive the size of a specific buffer. Fourth, the concept proposed here can be 
extended to the case with more than one machine. 
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