
Briskorn, Dirk; Leung, Joseph; Pinedo, Michael

Working Paper

Robust scheduling on a single machine usinge time
buffers

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 639

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Briskorn, Dirk; Leung, Joseph; Pinedo, Michael (2008) : Robust scheduling on a
single machine usinge time buffers, Manuskripte aus den Instituten für Betriebswirtschaftslehre
der Universität Kiel, No. 639, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147557

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147557
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 639

Robust Scheduling on a Single Machine using Time Buffers

Dirk Briskorn1'3'*, Joseph Leung2, Michael Pinedo3

October 2008

l: Christian-Albrechts-Universität zu Kiel
Institut für Betriebswirtschaftslehre

Olshausenstr. 40, 24098 Kiel, Germany
http://www.bwl.uni-kiel.de/bwlinstitute/Prod

briskorn@bwl.uni-kiel.de

2: Department of Computer Science
New Jersey Institute of Technology

University Heights, Newark, NJ 07102, USA
http://web.njit.edu/~leung/

leung@cis.njit.edu

3: Stern School of Business
New York University

44 West 4-th Street, New York, NY 10012, USA
http://www.stern.nyu.edu/~mpinedo

mpinedo@stern.nyu.edu

*: supported by a fellowship within the Postdoc-Program
nf the German Academic Exchange Service (DAAD)

Abstract

This paper studies the allocation of buffer times in a single machine environment.
Buffer times are a common tool to protect the schedule against disruptions such as
machine failures. We introduce new classes of robust machine scheduling problems. For
an arbitrary scheduling problem l\ß\y, prmt g ß, we obtain three corresponding robust
problems: maximize overall (weighted) buffer time while ensuring a given schedule's
Performance (regarding 7), optimize the schedule's Performance (regarding 7) while
ensuring a given minimum overall (weighted) buffer time, and finding the trade off
curve regarding both objectives.

We outline the relationships between the different classes of problems and the corre
sponding underlying problem. Furthermore, we analyze the robust counterparts of three
fundamental problems.

Keywords: Single machine scheduling, robustness, buffer time allocation

1 Introduction

In recent years robust optimization has attained more and more attention. While there are
lots of formal definitions of robust solutions to an optimization problem (and still there seems
not to be one single approach) the basic idea can be put in an abstract way like this: Find
a feasible Solution to the optimization problem at hand that is not necessarily optimal but
remains feasible and has a good Performance if parameter values of the problem change.
Depending on the specific problem the changes of parameters may be restricted to a given
domain or to a subset of parameters. Furthermore, it may depend on the underlying problem
to which extent the focus is on solutions that remain feasible or solutions that have good
Performance, respectively. Usually, a Solution is called solution-robust if i t remains feasible for
certain changes in the problem's parameters. If, even more, the solutions Performance does
not change for certain changes, the Solution is called quality-robust.
There are several reasons why robust solutions may be important. Data used in the opti
mization problem may be uncertain. Hence, while solving the problem we cannot consider the
problem that turns out to be the challenge (or at least there is no guarantee that we do so).
Moreover, realization of the solutions derived from the optimization problem may be uncertain
and, thus, the realization may differ from the plan derived from the optimization problem. In
both cases it adds considerably to the predictability of the result of the real world process if
our Solution is robust.
A vast amount of literature on robust optimization can be found, see Ben-Tal and Nemirovski
[3, 4] and Kouvelis and Yu [15] for overviews. Most approaches of robust optimization belong
to one of the following classes as proposed by Davenport and Beck [10]: First, redundancy
based approaches aim at protecting solutions against uncertainty by using less resources or
time slots than are available. In case of disruptions this surplus can be used to follow the
actual plan. Second, probabilistic approaches are based on the analysis of probability and the
extension of disruptions providing a tool to evaluate solutions' robustness. Third, contingent
Solution approaches come up with a set of solutions being alternatives chosen - and possibly
being switched in between - during execution.
Robust machine scheduling has been considered in several papers, see Aytug et al. [2] for a
recent survey. Daniels and Kouvelis [9] propose an approach based on worst-case analysis.
Daniels and Carrillo [8] consider the problem to find the schedule that reaches a given Perfor
mance (minimization of flow-time) with the maximum likelihood under uncertain processing

1

times. Kouvelis et al. [16] consider a two-machine flow shop where processing times are uncer-
tain and the makespan should be minimized. These approaches are scenario based and aim at
minimizing the regret of choosing a specific schedule caused by an other schedule performing
better for a certain scenario.
Goren and Sabuncuoglu [11], Herroelen and Leus [13], Leon et al. [19], Leus and Herroelen
[20, 21], Mehta and Uzsoy [22], and Wu et al. [26] employ probabilistic analysis to construct
predictive schedules. Predictiveness here means that the expected deviation of the realized
schedule to the intended one is minimized. The deviation is measured either in the schedule s
Performance or in the schedule's specification (e.g. Start times of Jobs).
Briand et al. [6] consider l\ri\Lmax and find a set of solutions of equal Performance which
allow to switch from one Solution to an other while processing. Therefore, it is possible to
adapt the schedule to be executed online.
A specific redundancy based approach to protect schedules against disruptions is to insert time
buffers between jobs. More specifically, a buffer between two Jobs protects the Start time of
the latter Job (and, therefore, its finishing time) against delays of the finishing time of the
former one. Time buffer allocation has been studied in the context of project scheduling (e.g.
in Al-Fawzan and Haouari [1], Kobylanski and Kuchta [14], Shi et al. [24], and Van de Vonder
et al. [25]) as well as in the context of machine scheduling (e.g. in Leus and Herroelen [21]).
Leus and Herroelen [21] discuss the problem to allocate buffer such that the sum of weighted
expected deviation of start times is minimum when the makespan (and, therefore, the overall
buffer time) is limited.
In this paper we consider a similar concept. However, we consider the minimum (weighted)
buffer inserted between a pair of consecutive jobs on a single machine. The Insertion of
buffer times affects two opposed properties of the schedule. We reasonably assume that
robustness is increasing if the inserted buffers are larger. However, the schedules Performance
(e.g. makespan) may then worsen. Informal speaking, this gives us two types of optimization
Problems:

• Given a required robustness (measured as minimum (weighted) buffer time) what is the
best Performance we can reach?

• Given a requirement for the schedule's Performance what is the maximum robustness
(hence the maximum minimum (weighted) buffer time) we can reach?

The remainder of the paper is organized as follows. In Section 2 we formalize a framework
concerning buffer allocation for one machine problems. Section 3 focuses on Performance
optimization if a certain degree of robustness is required. The results obtained here are used
in the following Section 4 as a tool box to obtain results for robustness maximization if a
certain Performance is required. We conclude the paper with a summary of our insights and
an overview of future directions for research.

2 Problem Specification

In what follows we restrict ourselves to single machine environments without preemption of
jobs. We consider robust counterparts of machine scheduling problems that can be clas-
sified according to the well-known notation introduced by Graham et al. [12] as 1|/?|7,
ß C {prec,rupi = l,pd =p,di}, 7 <E {/**=, EQ, E EE%%%, E Z%%%}.
For a given schedule a of n jobs let a{l), 1 < l < n, denote the job in the Zth position. We
define the buffer time 6j related to job i = a(l), 1 < l < n — 1, as the amount of machine

2

idle time between Jobs i and a(l + 1). Hence b^i) = CCT(z+i) — Ca(j) — p ^i+i), 1 < l <n-l.
Furthermore, b^n) '•= 0.
The main idea of a buffer time bi between job i and its successor is to protect the starting time
of i's successor. If completion of i is delayed by pf for whatever reason, then the starting time
of its successor is not affected if pf < 6%. If pf > bi then the successor cannot Start on time
but still its starting time is delayed less than it would be without a buffer. Hence, time buffers
are convenient because they do not only provide a certain degree of quality-robustness but first
and foremost the robustness of each single starting time is enhanced. This may be important
if w e think of a single machine embedded in an JIT-environment, for example, where tools or
material to process Jobs are delivered right on time.
We propose three Surrogate measures for robustness that have to be maximized:

• the minimum buffer time of schedule a that is defined as B™ = mini<z<n b^i),

• the minimum relative buffer time of schedule er that is defined as B% =
mini<i<rl (K{i)/pc{i)), and

• the minimum weighted buffer time of schedule er that is defined as B™ =

(b<7(i)/wbcr(i))-

Each buffer protects the following Jobs from disruption. Considering the minimum buffer time
as a robustness measure is motivated by the idea to balance the degree of protection from
disruption by the preceding job. If we can assume that the probabilities ofjobs to be finished
later than expected as well as the amount of delay are similar, then this minimum buffer time
seems to be an appropriate Surrogate measure of robustness.
Minimum relative buffer time is motivated by the assumption that the protection for the
following job should be correlated with the processing time of the actual job. There may be
two reasons for that. First, we may assume that procedures required to process jobs are more
or less homogeneous and mainly differ in the amount of time necessary. Then, the risk of
malfunctions at each point of time may be quite the same. However, a job that is processed
for a longer period of time bears a higher risk of failure during its processing. Second, if we
assume that procedures ofjobs differ reasonably, then more complicated procedures (leading
to larger processing times) may entail a higher probability of malfunction. In both cases it is
appropriate to postulate a fixed relation between processing times and corresponding buffer as
a Surrogate measure.
In order to consider the individual risk for each job we propose a minimum weighted buffer
time. Here, a buffer weight w\ is associated with each job i giving the planner an idea of how
the buffers of different jobs should be related to each other. Of course, as by setting w\ = 1
or w\ = pi we can cover both cases mentioned above.
In each case no protection is necessary for disruptions caused by the last job and, hence, we
exclude this job from the robustness measures. We want to emphasize that we are aware
of the fact that the proposed measures seem to be methodically inferior to several other
proposals in literature. However, the simplicity of the concept may imply opportunities to solve
corresponding optimization problems while for many other robustness measures optimization
problems are intractable even for the most simplest settings.
Moreover, the buffer Insertion can be seen as an application of the robustness concept in
Bertsimas and Sim [5] to machine scheduling. Bertsimas and Sim [5] consider robust solutions
to a linear program. They assume that an interval for each parameter is known where its
actual value is randomnly drawn from. Informally speaking, for given protection parameter F&

3

for constraint k, the authors consider the set of r& parameters having the worst impact on
feasibility of a Solution if they deviate from the expected value. The authors then formulate
the problem to find the optimal solutions that is feasible even if for each constraint k each
Parameter in differs from the expected value to a maximum amount.
Although we cannot formulate most scheduling problems as a linear optimization problem we
can apply this idea. Consider the following set of constraints where s* and is the starting
time and the successor, respectively, of job i:

Si+Pi< sSi Vi

Since we have only one parameter in each constraint there is no choice to be made which
Parameter affects feasibility of a Solution most. Suppose that the realization of pi is drawn
from the interval — p~ ,pi +P*] where p is the expected value. Then, obviously, ^ -I-pf is
the worst case regarding feasibility of a Solution. To protect the Solution against this case we
have to choose ssi > Si+^+pf. Note that this can be seen as inserting buffer time 6, >
to protect the Start time of job S*.
There is an other buffer time related Surrogate measure for robustness of a schedule that has
been mentioned in the literature, e.g. Al-Fawzan and Haouari [1], namely the sum of all buffer
times. However, in accordance with the reasoning in Kobylanski and Kuchta [14] we refuse
to follow this idea. If we consider total buffer time as a robustness measure, the distribution
of total buffer time on single buffers is not concerned. Hence, a schedule having only a single
buffer before the last job is considered as robust as a schedule where the same amount of total
buffer time is evenly distributed on buffers between each pair of consecutive jobs. However,
in the first schedule no job but the last one is protected against disruptions by preceding ones
while in the second schedule each job is protected (to a certain amount).

ea
. II bi i = 2 CO II h II ' CS

. — 1 L_ . J 1. 1 1 1 1 1 1 1 J J. !

5 10 15 20 25

Figure 1: Schedule a with Time Buffers

Figure 1 presents an arbitrary schedule a of 4 jobs. Job 4 is scheduled last. We observe that
B™ = 2 since mini<«^ ba^) = min{2,4,6} = 2. Furthermore, B% = 1 since

. &<r(I) . T 4 61 min —- = min < 1, - > = 1.
1 <l<n Pcr(f) \ 3 4 J

To illustrate B™ let us assume that buffer weights w\ = 1, = 5, and = 6 are given.
Then, B% = 0.8 since

min = min {2,0.8,1} = 0.8.

For a given scheduling problem l\ß\i we define Sß, SVB, and Sß as the subsets of feasible
schedules such that if and only if er € Sß, a € Sß, and er E Sß we have B™ > B_, B%> B_,
and B™ > B_, respectively. Additionally, we introduce S1 as the subset of feasible jobs such
that if and only a € S^ the objective value of u does not exceed 7.

4

For the scheduling problems considered in the paper at hand, there is a trade off between
robustness of a schedule and its Performance. On the one hand, if we increase a schedule's
robustness we may reduce its Performance (e.g. the number of late jobs may go up). On the
other hand, if we improve the schedule's Performance (e.g. decrease the makespan) overall
time buffer is reduced which may result into a reduced robustness. Consequently, we introduce
robust counterparts concerning these trade-off effects for a given scheduling problem l\ß\y.

• Given a lower bound B_ of robustness find a schedule <r G Sß, o G Sß, or o G Sß,
respectively, that optimizes 7. We denote the corresponding problem by Ijß, Bmjj,
\\ß, ßp|7, and 1|ß,Bw\i, respectively.

• Given an upper bound 7 of Performance find a schedule a G £2 having B™ =
max {B™ 17r G <Sy}, BI = max{ß£ | TT G «Sy}> and B™ = max {i?™ | IT G <Sy},
respectively. We denote the corresponding problem by 11/3,7)Bm, l\ß,^y\Bp, and
11/5,7IBw, respectively.

• Find the trade off curve according to objectives (i) minimize 7 and (ii) maximize B™,
B§, and B™, respectively. We denote the corresponding problem by 1|/?|(7, Bm),
l|yö|(7,Bp), and l|/ö|(7,Bw), respectively.

The motivation for these problem formulations can be derived from real world application.
Suppose a planner can specify the robustness requirement (using the Surrogate measures
given above) of a schedule. Regarding this he still is interested in the best Performance.
Even in a single machine environment the sequence ofjobs may significantly differ from the
optimal sequence of the underlying problem (when no robustness measure is considered). The
other way round, let us assume the planner has an upper bound on the Performance of the
schedule. If this upper bound exceeds the optimal Performance without time buffers, the
planner may want to use this surplus to protect the schedule against uncertainty. Last but not
least, regarding the reasons above it is only natural to ask for the set of schedules being not
dominated in a way that there is schedule better in one objective and at least as good in the
other.

3 Performance Optimization for given Levels of Robust

ness

In this section we establish relations between an underlying scheduling problem l\ß\^y and its
three robust scheduling counterparts l\ß, B™^, 1|/?, J3P|7, and l\ß, Bw\j. We distinguish
between two classes of objective functions: min sum objectives (i.e. Uj, J2wjUj, YjTj,
YlwjTj, J2wjCj) and min max objectives (i.e. /max or more specifically Cmax and
Lmax)' For our reductions in this section we may have to modify processing times pit due
dates di, and functions ff.

• For min sum objectives we modify processing times and due dates (if given). The basic
idea is to represent a job i and its corresponding buffer by job i' whose processing time
comprises the processing time and buffer time of job i. However, when doing so we have
to take care of the following Situation. Job i"s part representing 1 s processing time may
be finished before 1 s due date while the part representing the buffer is finished after dj.
In this case i' should be considered early and, thus, we have to modify due dates also.

5

• For min max objectives we do the same modifications as mentioned above. Additionally,
we have to consider function Function fc is a function of job i's completion time
and, moreover, i's due date may be involved. So, in the first case we have to ensure that
MC,): MC, - ipi' -Pi)) and in the second case /i'(CV, dv) = fi{Cv - (jpv-Pi), di)
must hold. Basically, this says that the functions values for i and i' for the same starting
points have to be the same.

i = 1 £>i i = 2 £>2 II CO

II &4

i = 1 &i i = 2 &2 2 = 3 h i = 4 h

i = 1 z = 2 i = 3 i = 4

1 1_, 1 1 1 | I 1 1 I I 1 I .1 I J L.. 1 1 1 1 1 1 1 . —1 1 -1 »

5 10 15 20 25

Figure 2: Sketch of reduction technique

Figure 2 presents three schedules that are related to one another. Schedule er is the Solution
to an underlying scheduling problem having no time buffers. Schedule am represents the
corresponging Solution to the robust counterpart considering minimum buffer time. In this
case I?m = 1. Schedule ap represents the corresponging Solution to the robust counterpart
considering minimum relative buffer time (J?771 = 0.75).
First, to provide some Intuition for the basic technique used in all proofs in this section
we determine as an example the complexity status of l\pj = p;rj] Bm\Y,Tj and 1| Pj =
p; Tj] Bw\ Y Tj. Afterwards, we give proofs for more general results.

Lemma 1. 1|p3- = p; r3-; Bw\ Y Tj is strongly NP-hard.

Proof. We prove the complexity of 1|pi = p;ri, Bw\ Y2^i by reduction from l|rt| Ŷ i which,
as a generalization of l|ri|Lmaa;, is known to be strongly iVP-hard.
For a given instance P of 1 [rf̂ Y^Tj we construct an instance Pw as follows. We retain all
Parameters but p, and d* and set p\ = p' = miiij{pj} as well as d[= di — Pi +pr. Note that
we obtain identical processing times. Furthermore, we set w\ = (pj —p')/p' and J3W = 1.
We find an optimal Solution er to P from crw to Pw as follows. We set Q = C• —p' + Pi.
First, we obeserve that er is feasible to P. Let i be an arbitrary job that is not scheduled last
and let s(z) be i's immediate successor. Then,

Cs{%) — C i = — p' + ps(i) — C[+p' — pi

> C- + p'w\Bw +p' -p'+ ps(i) ~ C[+ p' - Pi (1)

= Pi~P' + Ps(i) +P' ~Pi= Ps(i)

Suppose there is a better schedule o"3 for Pw. We construct a better schedule er for P by
setting C- = Ci +p' — p^. For corresponding solutions for Pw and P objective values are
identical since

6

Ci — di — C[— p' + Pi — d[— Pi + p' — C[— d^.

Hence, a is better than o and a can therefore not be optimal. •

In the following, we use the reduction techniques to determine relationships between underlying
problems and their robust counterparts in a setting that is more general than the one in
Lemma 1.

Theorem 1. Problems l\ß, Bm\j and l[/3, Bp\-j are equivalent even ifBm > 0 and B? > 0.

Proof. The proof is done in two steps: First, we reduce l\ß,Bm\i to l\ß,Bp\^y and we do
the reverse afterwards. We distinguish between two cases.

• Gase (i): Processing times are arbitrary, that is ß fl {pi = p,pi = 1} = 0.

• Gase (ii): Processing times of all jobs are equal, that is {pi = p} G ß or {pi = 1} £ ß.

Let Pm be an arbitrary instance of l\ß, Bm\^. We construct an instance Pp of l\ß,Bp\^ as
follows. We preserve all problem's characteristics but pit di, and fit % G {1,... ,n}. In case
(i) we set # = (% = d, + (B™ - p,)/2, //(CJ, = /,(CJ - (B- - ̂)/2, d,),
and B? = 1. In case (ii) we set p' = p, d[= dk, and fl = fi as well as = (Sm)/p.
We derive a Solution crm to Pm from an optimal Solution crp to Pp by setting C* = C'i+p'i—B"1

in case (i) and Q = C[in case (ii).
Note that in case (i) we have b'Jp'i > B„P = 1 for each i ^ ap(n) while in case (ii) we have
b'i/p'i > Bpp = Bm/pi for each i ^ ap(n). Now we can see that Solution am is feasible to Pm.
Let i be an arbitrary job that is not scheduled last and let s(i) be i's immediate successor.
In c ase (i),

Cs(i) - Ci = C's(l) + p's(i) - üm — C[- p[+ ßm

> C'i+p'i+ p's{i) + p's<j) -C'i-p'i (2)

= 2P's(i) = Ps(i) +

while in case (ii),

Cs(i) — Ci — — C'i

> C'i+Pi——b ps{i) — C[(3)
Pi

= Ps(%) + ii™-

Furthermore, in case (i)

Ci — di = C\ +p'i- Bm — d[H

= + (4)

= Cf-d;

while, trivially, Ci — di = C'-d^ in case (ii). Note that lateness Ci — di may concern feasibility
or Performance. So, feasibility of am is given. If the 7 Performance is based on lateness,

7

obviously the Performances of am and ap are identical. The same holds for general due
to the modification of /j. Finally, if 7 € {]T} C») Solutions am and ap have objective
values that differ by a constant that does not depend on the solutions, that is

7K) = wiC'i
i

= wiCi ~ ~ (5)
i j

i

in case (i) and 7(CTP) = Yhj wjC'j =]TV wjCj = ry(<jTn) otherwise.
Suppose there is a Solution Zf™ t hat is better than am. Then, we can construct a feasible
Solution W by letting Cj = Cj—p'j + in case (i) and Cj = Cj otherwise. Using (2), (3),
(4), and (5) it is easy to show that o? is better than ap.
Now, let Pp be an arbitrary instance of\\ß, BpI7. We construct an instance Pm of l\ß, BmI7
as follows. We preserve all problem's characteristics but pit dit and fit i 6 m}. In
case (i), we set Pm = p\ = (1 -t-5p) - Bm, d[= di + piB'p - B_m, and
fi(C'i, d'i) = fi(C'i + Bm - piBp, di). In case (ii), we set p' = p,d'i = dit and // = /* as well
zsBp = Bm/p.
We derive a Solution ap to Pp from an optimal Solution om to Pm by setting Q = C[+ Bm —
PiBp in case (i) and Q = Cj otherwise. Based on the same arithmetics as in (2), (3), (4),
and (5) it is easy to show that ap must be optimal for Pp. •

Theorem 2. If not all processing times are equal to 1, then problems 1 |/?J7, 11/?, Bm\j and
l\ß, Bp I7 are equivalent even if ff71 > 0 and W > 0.

For proofs to Theorems 2 to 5 we only give reductions. All arithmetics to prove feasibility and
optimality are analogous to (2), (3), (4), and (5). Regarding Theorem 1 we restrict ourselves
to show that llßlj and l\ß, Bm|7 are equivalent to prove Theorem 2.

Proof. First, we reduce l\ß, 5m|7 to 1|/3|7- Let Pm be an arbitrary instance of \\ß, Pm|7. We
construct an instance P of l\ß\y as follows. We preserve all problem's characteristics butpi, dit

and fi, i £ {1,...,n}. We setp\ = Pi + Bm, d[= di + Bm, and d-) = fi{C'i-Em,d{).
We derive a Solution am to Pm from an optimal Solution er t o P by setting Q = Cj — B_ m.
Now, we reduce l\ß\j to l\ß, B™^. Let P be an arbitrary instance of 1|/3|7- We construct
an instance Pm of l\ß, J5m|7 as follows. We preserve all problem's characteristics but pit

di, and fit i G {1,..., n}. We set Bm = (minjPi)/2, p[= p{ — Bm, d[= di - B_m, and
/,'(Cj',d9 = fi(C'i +BJn,di). We derive a Solution er t o P from an optimal Solution am to
Pm by setting Ci = C[+ Bm. •

Theorem 3. Ifpi = 1, then problems l\ß, Bp\j, l\ß, Bm(7, and \\ß'\q are equivalent when
ß' restricts all processing times to be equal (but not necessarily unit).

Proof. The reduction of l\ß, Bm|7 to l\ß'\^ is analogous to the one in the proof of Theorem 2.
Note that p'ä = p holds for all processing times. The reduction of l\ß'Yy to l\ß, BmI7 is done
as follows. If p < 1, then we can multiply all processing times and - if considered - due
dates and release dates by a constant k such that kp > 1. Then, we set B_m = p — 1,
d = P - = 1, 4 = 4 - ä", and 4). O

8

Theorem 4. If processing times are arbitrary, then problems 1|/?|7, l\ß, Bm I7, l\ß, Bp (7, and
l\ß, BwI7 are equivalent even if B™ > 0 and Bp > 0.

Regarding Theorem 2 we restrict ourselves to show that l\ß\"f and l\ß,Bw\^ are equivalent.

Proof. First, we reduce \\ß, B̂ qf to l\ßY). Let Pw be an arbitrary instance of l\ß, Bw\r).
We construct an instance P of 1|/?|7 as follows. We preserve all problem's characteristics but
ph di, and fit i € {1, — ,n}. We set pj = p{{ 1 + w\), d[= + p^, and d|) =
fi(C-—piWi, di). We derive a Solution crw to Pw from an optimal Solution er t o P by setting

Ci = C[- Piw\.
Note that l\ß, BwI7 is a generalization of \\ß, BpI7. Due to Theorem 2 1|/3|7 can be reduced
to l|ß, ß"|7. •

Theorem 5. Ifpi = p, then problems l\ß,Bw\/y and 11/?'17 are equivalent even if B™ > 0
when ß' implies arbitrary processing times.

Proof. First, we reduce l\ß, Bw\j to I|j0'|7 in analogy to the reduetion in the proof to Theo
rem 4.
Now, we reduce 1|/5'|7 to l\ß, BwI7. Let P be an arbitrary instance of 1|/3'|7_ We construct an
instance Pw of •l\ß,Bw\'j as follows. We preserve all problem's characteristics but pit dit and

1,.. •, n}. We set p\ = (mini{pi})/2, w\ = (p{ -p-)/p-, Bm = 1, < = di ~Pi +p'it
and fKC^d'i) = fi(C[+ Pi - p'^di). Note that we have no restriction for pi- We derive a
Solution er t o P from an optimal Solution crm to Pm by setting C, = C- — p\ - \-pi. •

Remark 1. Using the techniques employed above it is easy to see that l\ß,Bw\i and
1|ß',Bw\'j, where ß and ß' implypj = 1 andPj = p, respectively, are equivalent.

Summarizing Theorems 1 to 5, we can provide strong results for the computational complexity
of the robust counterparts of the single machine scheduling problem 1|/?|7 when the robustness
is given.

• l\ß, i?m|7 and 1|/?, £?p|7 are equivalent

• l\ß,Bm\^y, l\ß, BpYf, and 1|/?|7 are equivalent unless p, = 1

• l\ß, Bm\i, l\ß, ßp|7, and l\ß'\^ are equivalent for ß implying unit processing times and
ß' implying equal (but not necessarily unit) processing times

• l\ß, I?m|7, 1|/?, 5P|7, l\ß, BwYy, and l\ß\i are equivalent unless pj =p

• 11/5, Bm\7, l\ß, BpI7, l\ß, BpI7, and V\ß'\i are equivalent for ß implying equal process
ing times and ß' implying arbitrary processing times

Figure 3 illustrates the reducability of the classes of problems considered in this section.
Each node represents the class of problems speeified by the strueture of processing times
corresponding to the column and the robustness measure corresponding to the row. Note
that 1|/?|7 represents the underlying problem. The label at each arrow outlines the Theorem
providing the relationship represented by the arrow. Here, "Gen." and "Rem. 1" refer to
a trivial generalization and Remark 1, respectively. The dashed lines partition the problem
classes into three equivalence classes.
Hence, in most cases if the underlying problem is known to be solvable in polynomial time,
we can solve the robust counterpart where robustness is given using the algorithms for the

9

t\ß\1

1|A^|7

Pj = 1

Gen.

Gen.

Pj =P Pj

Rem. 1

Figure 3: Equivalence Graph

p pw P'
l\prec,pi = p-,ri\Lmax

l\prec-,pi=p;ri\Y,Cj

% fi\J2wjCj
1| Pi =P]ri\J2wjUj

l\Pi = P',ri\J2Tj

1| prec; pi = p; r*; Bw\Lmax

l\prec;pi = p; r*; Bw\X) Cj
l\pi = p]ri]Bw\J2wjCj

l\pi=p]ri-Bw\^2wjUj

l\pi=p]ri-,Bw\^2Tj

l\prec\ Ti\Lmax

l\prec] Ti\ YhCj
l\ri\YlwjCj
1N Y,wiui
1 HETj

Table 1: Polynomial Problems with NP-hard Robust Counterparts

underlying problem. However, this does not hold in general. For underlying problems where
processing times are restricted the processing time structure may get more general by the
reduction mechanism, that is change from unit processing times to equal processing times or
change from equal processing times to arbitrary processing times. Table 1 provides underlying
problems in the left column that are maximum polynomially, see Brucker [7]. In the second
column we have the strongly NP-hard robust counterpart Pw corresponding to the underlying
problem P. Pw is (in each case) strongly NP-hard since it is equivalent to corresponding
problem P' in the right column.
Although there may be some we could not find an underlying problem being polynomially
solvable or binary NP-hard and having a binary NP-hard or unary NP-hard robust counterpart,
respectively.

4 Robustness Optimization for a required Performance

Level

In this section we consider the three robust counterparts 1|/?,7|Bm, l\ß,^y\Bp, and l\ß,j\Bw.
The main issue is here that the order of jobs is not fixed but depends on the degree of robustness
as we can illustrate with a rather simple example.
Figure 4 shows three optimal solutions a0, CT0.5, and ai corresponding to the same underlying

10

r—
1

II "<S

6% i = 3 63 i — 2 62 i = 4

r—
1

II "N b± i — 2 62 i — 3 i — 4

T—H II i = 2 z = 3 i = 4

1

5 10 15 20 25

Figure 4: Changing sequence ofjobs for 1|| Lmax

problem instance of 1||Lmax for f?p = 0, Bp = 0.5, and B_p = 1, respectively. The problem
instance itself is defined by n = 4, pi = p2 = Pi = 2, p3 = 8, dx = 2, d2 = 11, d3 = 15,
and di = 24. Note that we can find an optimal Solution by arranging a sequence ofjobs in
non-decreasing order of due dates. According to Theorem 2 this approach can be applied by
sorting modified due dates d'{ = di + PiBp. For = 0.5 this gives us d'^ = 3, d'2 = 15,
d'z = 16, and d'A = 25 and, hence, we obtain a optimal sequence of oo.s = (1,2,3,4). Note
that this sequence is the only optimal one. However, for W — 1 this gives us d[= 4, d'2 = 19,
d'3 = 17, and d'A = 26 and, hence, the only optimal sequence is o\ — (1,3,2,4).
In what follows we analyze the robust counterparts of several basic scheduling problems that
seek for the maximum robustness if a certain Performance must be guaranteed. It is easy to
see that the robust counterpart can not be easier than the underlying problem. That is why
we restrict ourseives to underlying problems that are known to be solvable in polynomial time,
namely l\sp - graph\ J^WiQ, 1|| and l\prec\fmax.
Note that for all these cases the robust counterparts from Section 3 are equivalent to the
underlying problem. Hence, as long as an upper bound on the robustness is given we can
find a Solution differing from the optimal one only by a Constant e in polynomial time using
binary search on the robustness domain. Therefore, we focus on finding the exact Solution or
exploring the tradeoff curve between Performance and robustness.
The strategy in all cases can be sketched as follows. We determine a set of values Bs for Bm,
Bp, and B_w that mark sequence changing robustnesses for the problem, that is if b G Bs,
then the sequence ofjobs optimizing Performance for given B_w = b~ < b is different from the
optimal sequence for given Bw = b+ > b. For JBw = b both sequences are optimal. Searching
these intervals, we can determine the sequence ofjobs for the maximum robustness. Given
the sequence, finding the optimal robustness bolds down to easy arithmetics.

4.1 l\sp — graph,J2wiCi\Bw

First, we consider underlying problem 1|| J^wiCi that is well studied and that serves well to
gain insights that can be applied to more general problems. Afterwards, we tackle l|sp -
graph\ J2

11

4.1.1

It is well known that an optimal Solution to this problem can be found by sorting jobs in non-
increasing order of pi/wi. Regarding Theorem 4, 1|Bw\ can be solved by reducing it
to 1|| J2wiCi where processing times are defined as p\ = + w^B™. Thus, we derive the
optimal order ofjobs for given robusteness by sorting (j?i + w\Bw)/wi. Furthermore, we can
see the optimal Performance as a non-decreasing function of the required robustness.
We determine

B* = fb\b= >0,i<j
| Wi Wj — WjW\

and sort this set according to non-decreasing values. Note that |J3S| e 0(n2). Let bk,
k £ 1,..., |5S| be the kth value in Bs. Applying binary search on Bs, we can find the smallest
value bk* in Bs such that the optimal Solution value to 1\BW\ J^WiCi with Bw = bk* exceeds
7. Then, the sequence of jobs corresponding to the interval bk.] is the sequence of
jobs for maximum robustness. For a given sequence er o fjobs we can determine the maximum
robustness as a function of 7:

S"(T,<7)= EmA '

(we assume that jobs are numbered according to er). The computational complexity of this
procedure is 0(n2 logn).
Instead of finding the optimal robustness for a specific given 7 we may be interested in finding
the trade off curve between robustness and total weighted completion time. In the following,
we give an aIgorithm to find the tradeoff curve represented by function Bw(7). The procedure
resembles the one described above except for Bs being searched sequentially.

Algorithm 1

1. find and sort Bs

2. find the optimal sequence <7 for 1 || and corresponding optimal Solution value VQ

3. in [0, VQ[the tradeoff curve is not defined

4. for k = 1,..., |JBS|

(a) find the optimal Solution value vi for 1\BW\ Ŷ WiCi where B,w = bk

(b) in [vl_vvl[the tradeoff curve is given by linear function Bw(7) = Bw(7y,a)

(c) modify a by switching the jobs bk corresponds to

(d) k <— k + 1

5. in [b\B'\, oo[the tradeoff curve is given by linear function Bw(7) = Bw{7, er)

Obviously, the algorithm finds all optimal sequences and, therefore, the whole tradeoff curve
in 0(n2logn). The complexity is not higher than the one for solving l\Bw\Y^WiCi because
in both cases sorting Bs takes the most effort.
In order to illustrate the connection between we give the following example. Let us suppose
we have a set of jobs I — {1,2,3}. We have Pi = i and Wi = 1 for each 1 < i < 3, and

12

1.50 T
1.35 --
1.20
1.05
0.90

Bw 0.75
0.60
0.45
0.30 ••
0.15 -

0 l 1—l—l—I—I—l—I—l—I—l—i—l—I
1011 121314 15 16 171819 20 21 22 23 24 25

7

Figure 5: Trade Off Curve for 1|\(J2Ci,Bw)

w\ = 3.5, w\ = 1.5 and w\ = 0.5. We then have Bs = {0.5,2/3,1}. Figure 5 illustrates the
the graph corresponding to the trade off curve as the solid line. Break points are dotted and
correspond to jobs 1 and 2, jobs 1 and 3, and jobs 2 and 3 switching in the optimal sequence.
Note that the trade off curve is piecewise linear and convex which can also be observed from
the formal expression of Bw(7). Due to the definition of Bs jobs i! and j', Pi'/w, < p^/wy,
can switch positions in the optimal sequence only if w^wj, — wyw\, < 0. Let a and er' be the
sequences before and after the switch. Then,

n i—1 n i—1

J2W«'Ü) - = wi,wf - w?wi' < °-
i=1 j=1 i—1 j=1

Note that for special case l\Bp\^2wiCi we have Bs = 0 which means that each optimal
sequence of jobs for B'p = 0 is optimal for each EP > 0. Hence, in this case finding the
tardeoff curve can be done in O(nlogn).

4,1.2 l\sp — g raph, J2wiCi\Bw

First, we give a brief overview of the aIgorithm for l|gp —graph| Y2wiCi by Lawler [18]. For a
given problem the algorithm does a series of comparisons of values pi/wi. However, the exaet
values are of no importanee as far as sequencing is concerned since it only decides which of
two values is larger. In each Iteration the algorithm may form a composite job (i, j) from two
jobs i and j that is defined by p^j) = Pi +pj and = wt + Wj. This is why, in contrast
to Section 4.1.1, it is not sufficient to consider

B. = ib\b = l^ZJV*>0,i<A
[^ WiWj - WjW? J

to find all values of B"' leading to changing optimal sequences.

13

We pick up the example of Section 4.1.1 and add a single precedence constraint requiring
that 2 can not precede 1. Considering the decom position tree we can see that 2 follows 1
immediately in each optimal sequence. Therefore, only optimal sequences are oi = (1,2,3)
and cr2 = (3,1,2). It turns out that crx = (1,2,3) provides a better schedule for Bw < 0.75
and that <J2 = (1,2,3) provides a better schedule for B>w > 0.75. However, 0.75 0 B3. In
Figure 5 we represent the corresponding trade off curve as dashed line. Note that in the first
section both trade off curves are identical due to identical optimal sequences. However, in
contrast to Section 4.1.1 jobs 1 and 2 can not switch and from this point both trade off curves
are different.
The reason for this effect is that composite job (i,j) replaces simple jobs i and j whenever it
is decided that j follows i immediately. In our case, (1,2) replaces 1 and 2. Then, comparing

Pl + +P2 + w\BW to P3 + w\BW

W1 + W 2 IÜ3

gives the result that 3 should precede (1,2) for 5™ > 0.5. An extension of Bs covering all
sequence changing robustnesses could be defined as

B« =/6|6= PW-Pr-vr > r „ c ,1
[wpuij,, - wr>w°r J

where pr = P%< wr = wi< and wr = Y2iei,wi- However, since \B'S\ E 0(22ra)
we can not sort it in polynomial time.
Taking this into account, our algorithm works in a stepwise manner mimicking the algorithm
by Lawler [18]. We determine JB8'1 which is identical to Bs in S ection 4.1.1 and sort this set
according to non-decreasing values. After having determined (analogue to 6&.) we obtain
a unique ordering of values

+ i6J.i = I

Wi

which allows us to execute at least one step of the algorithm by Lawler [18]. As soon as a
composite job (i,j) is created, we have to consider the modified set ofjobs I2 = I1\ {i,j} U
{(i, j)} starting the procedure all over again. More specifically, the algorithm can be given as
follows.

Algorithm 2

1. I1 «-/

2. for k <— 1

3. repeat

(a) find and sort Bs,k according to Ik

(b) find bl» using binary search on Bs'k and the algorithm by Lawler [18]

(c) having a unique ordering ofjobs in Ik execute one step of the algorithm by Lawler
[18]

(d) if no composite job is created go to Step 3c

(e) if a composite job is created obtain set ofjobs Ik+1 by adding the composite job
and dropping all jobs being contained in the composite job from Ik

14

(f) if only one node is left in the decomposition tree go to Step 4

(g) k <— k +1

4. extract optimal sequence a from the remaining job

5. obtain maximum robustness as Bw(j,a)

Note that determining B3'1, l > 1, takes less effort than determining Bs,x. Since we restrict
ourselves to robustness values within [blfT*1_1,blkZ1[w e consider

r-_ {»I tl,<»= f \

and obtain G O(n).
Correctness of our algorithm follows from correctness of the algorithm for l|sp—graph|
and the fact that sequencing is based only on elementary steps of deciding which of two values
Pi/wi and Pi/wi is larger.
Computational complexity of öur algorithm can be determined as follows. Rinding and sorting
Bs'x takes 0(n2logn). Employing binary search and the algorithm by Lawler [18] to find b*
costs 0(nlog2 n). Since e 0{n), l > 1, computational effort to determine and sort Bs'1

in following iterations is 0(nlogn). Furthermore, finding blk» costs 0{nlog2 n) again. Since
we have no more than n iterations overall complexity is 0(n2log2 n).
Note, that analogue to Section 4.1.1 the optimal sequence of jobs does not change depending
on Bp. To see this, consider two disjoint subsets of jobs I1 and I2. Corresponding composite
jobs have

Etgji Pj J Eigi2 &

Eier ̂
which translates to

EiE/.p.fl+g) Jnd z)epp<(i+m

Eie/i wi Siel2 wi
regarding the reduction of the robust problem to the underlying problem. Hence,

if and only if

zi€ilPi(i+m cE^(i+gp)

EieP wi Etep wi

Eie/i Pi < Eis/2 P*

Eie/i wi Eie/2 Wi

Therefore, we can determine the tradeoff curve trivially by finding the only optimal sequence
in O(nlogn).

4.2

In th is section we first develop properties of optimal Solution. Then, algorithms for 1| Ui\Br'
and 1| E^l^ are proposed.

Lemma 2. In an optimal Solution to 1| Y,Ui\Bw the number of late jobs is exactly7.

15

Proof. First, we show that in an optimal schedule there is at least one tight job. Let a schedule
be given such that all early jobs are scheduled before the first late job and let jobs be numbered
according to this schedule. Suppose no job in the set of early jobs Ie is tight in schedule er.
Then, we can increase B™ by

di — Ci
min = r > 0

which means that er is not optimal.
Now, let assume we have a schedule er with less than 7 late jobs and i is the first tight
job. Moving i to the end of schedule we can start each following job Pi time units earlier.
Considering the above, we increase B™ a nd, therefore, a has not been optimal. •

4.2.1

Note that the problem is not bounded for 7 = n or 7 = n — 1 and there is a job i having
Pi < di. For 7 < n—2, Lemma 2 enables us to develop the following algorithm for 1| Ui\Bm.
Since there is at least one tight job among exactly n — 7 early jobs in an optimal schedule er
there are up to n — 7 — 1 buffers before the first tight job that determines Bm. Hence, the
maximum robustness is

Bm E | i E I,k E {1,..., w — 7 — 1}^ .

Assuming that processing times as well as due dates are integer w. I. o. g., we obtain integer
total buffer before the first tight job. Multiplying processing times and due dates by
we obtain an integer maximum robustness as optimal Solution to 1| Ŷ Ui\Bm. Hence, we can
apply binary search on {l,..., maxj to find maximum robustness. Note that

log (max = O(nlogn).

Considering, that we have to solve the underlying problem 1||^Ui in each step which takes
0(n\ogn) we obtain overall complexity of 0(n2log2 n).

4.2.2 llEt/il-B™

As for 1| YhUi\Bm, the problem is not bounded for 7 = n or 7 = n — 1 and there is a
job i having pi < di. For all other cases we propose an algorithm using the known Solution
algorithm for the underlying problem 1|| in an iterative procedure. The basic idea of
the following algorithm is to focus on a set Bs such that we can find an interval 6&«],
bk*-i,bk* E Bs, of robustness values containing the optimal Solution value and providing a
unique ordering of modified processing times and due dates for all B,w E [bk*-i, bk*].
We consider the set

We can find the smaliest value bk* in Bs such that the optimal Solution value to 1\BW\
with Bw = bk* exceeds 7 using binary search. This can be done in 0(n2\ogn) time since
|£s| E 0(n2). The order of non-decreasing modified processing times p\ = pi + bw\ and

16

non-decreasing modified due dates = di-f-bwf (breaking ties according to non-decreasing
w^) gives two total Orders of the set of jobs for the optimal Solution. Note that the algorithm
by Moore [23] is based on steps dependent on the comparison of processing times or due dates
only.
The basic idea of our algorithm is as follows. Based on the current Solution (and, hence, given
sequence of early jobs) for a given S™ we enlarge robustness as much as possible without one
of the early jobs violating its due date. Let jobs be numbered according to non-decreasing due
dates and let Ie be the set of early jobs. Then, the maximum amount b+ by which robustness
can be increased without the current sequence of early jobs getting infeasible is

b+ = d[— Ci
min
ie/e Y, b'

j€le,j<i Wj

If w e set Bw = B_w + b+ at least one job i G Ie will be tight. If w e further increase robustness
by e, according to the procedure by Moore [23] a job j = arg maxjej=j<j will be chosen to be
late. Note that this does not mean that necessarily the number of late jobs goes up.
In the following we first specify the algorithm and afterwards provide a proof of correctness.

Algorithm 3

1. find b using binary search on Bs

2. solve problem l\Bw\YlUi, Bw = b

3. repeat until the optimal Solution has more than 7 tardy jobs

(a) find b+

(b) b <— b + b+ + e

(c) solve problem 1|Bw\Y,Ui, B<w = b

Let <7 a nd a' be the sequences of jobs before Step 3b and after Step 3c. Let j be the job
having largest processing time p'j among those jobs being on time and scheduled before tight
job i. In the following we neglect the subschedule of late jobs and assume that late jobs are
scheduled after the last early job. Jobs in Ie be numbered according to non-decreasing due
dates.

Lemma 3. If k is the position of j in a, then a(k) < cr'(k) and <j(k') = a'(k') for each
k' < k.

Proof. Since the order of modified processing times and modified due dates is identical, the
algorithm by Moore [23] processes identically for the first a(k) - 1 jobs. To see that, note
that if for a subset I' the largest due date (corresponding to job i' £ /') was violated before
Step 3b, then the same subset violates the largest due date again after Step 3c.

(P'i + wib+) > J2Pi + wi'b+

ier iei'
> d'i, + wbi,b+

Furthermore, let I1'1 C {1,..., «?(&)} be the subset of jobs chosen to be tardy in Iteration l of
the algorithm until cr(k) is scheduled. Since the order of modified processing times does not
change we obtain P'1 C I^+1. The Lemma follows. •

17

Theorem 6. The algorithm terminates after no more than 0(n3) iterations.

Proof. Let jobs be numbered according to non-decreasing due dates. Consider a string of
binary values indicating that job i is early in Iteration l if and only if the corresponding bit
equals 1. Note that the number of ones can never be increased during our algorithm. Regarding
Lemma 3, the fact that in the Solution given by the algorithm by Moore [23] early jobs are
sorted according to non-decreasing due dates, and the unique order of due dates, we can
sketch the behaviour of the bstring like this: For each number of tardy jobs the number of
zeroes is fixed. The zeroes may go from left to right in the string which cannot take more
than n2 steps. So, the overall number of steps is n3. •

Regarding Theorem 6 and the fact that we apply the algorithm of Moore [23] in each Iter
ation we obtain a computational complexity of 0(n4logn) to find the optimal Solution to
1| 2̂ Ui\B'w. To find the trade off curve we have to search Bs sequentially. This cummulates
in run time complexity of

0(n2 • n 4logn) = 0(n6 log n).

This curve is defined only for 7 £ {0,..., n — 2 } and gives the high est b that allowes for a
certain number n — 7 of early jobs.

4.3 l\prec, fmax\Bw

In this section we consider robust counterparts of problem l|prec|/max that is known to be
solvable in 0(n2), see Lawler [17]. First, we focus on the special cases l|prec|Cmax and
l\prec\Lmax. Afterwards, we consider a more general case where is an arbitrary non-
decreasing function in Q. The basic idea is to employ algorithms known for the underlying
problem in a procedure searching the domain of B_.

4.3.1 l\prec,Cmax\Bw and l\prec, Lmax\Bw

Obviously, an arbitrary sequence of jobs (as long as precedence constraints are not vio-
lated) gives an optimal Solution for l|prec|Cmax- The reduction of l\prec, Bw\Cmax to
l\prec, Bm\fmax as proposed in Section 3 leads to p\ = pi + w^Bw and //(C-) = fi{C[—
w\B^) = C\ — w^Bw. The makespan (according to modified processing times) in the reduced
problem is Y îP'i but due to the modification of fo jobs may be differently suitable to be chosen
as the last job. An intuitive explanation is that the buffer corresponding to the last job does
not contribute to the makespan and should be, therefore, chosen as large as possible.
It is easy to see that chosing job

i* = argmjuc{w- | {i, j) £ EVj ^ i}

as the last job provides an optimal Solution for l\prec, Cmax\Bw. This implies that the choice
is arbitrary for l\prec, CmaxfBm. Note in both cases the optimal sequence ofjobs does not
depend on Bw. Furthermore, we do not even need to find the optimal sequence ofjobs to
find the trade off curve. The curve is given as a function

m?) = I" Ei6,g

which means the trade off curve (that is linear in this case) can be found 0(n).

18

For l\prec\Lm3JC we again refer to the reduction of 11prec, Bw\fmax to l|prec|/max as proposed
in Section 3 leading to a modification. We obtain p\ = pi + w\Bw and /[{CdQ = f^Cl —
w\B'w, d^—w^B™) = Cl-dl Therefore, we can apply a modification of the well known earliest
due date rule: We choose the job having largest modified due date among those having no
successor to be the last job. In order to solve 1|prec, Lmax\Bw we consider set of robustness
values

Bs =

Applying binary search to find the b* G Bs that is the smallest value such that 1|prec, BW\Lm„
with B_w = b* leads to an objective value exceeding 7. This gives us the order of modified due
dates for the optimal value of Bw and, hence, enables us to apply the modified due date rule.
This takes takes 0{n2 logn) time since |BS| G 0(n2). After finding the optimal sequence a
we can compute the maximum robustness as

7 + da(i) Ysj<i Pffij) |
JJ-LLJ-L \ 7 / min

in linear time. Hence, overall computational complexity is 0(n2logn).
Of course, by sequential search of Bs we can find all optimal sequences in 0(n3logn). Note
that there may be several break points of the trade off curve for a given sequence er since the
tight job

may change. It is easy to see that if i* is the tight job for 7 and j* is the tight job for
7' > 7 and both optimal sequences are identical, then j > i. Hence, the tight job for a given
sequence of jobs cannot change more than n — 1 times. Since finding the next tight job is in
O(n) finding the whole trade off curve is in 0(n5logn).
The trade off curve Bw(j,a,i*) for given sequence of jobs er and tight job i* is linear and
speeified by

j<f u(j)

Since for given sequence er e ach tight job for larger 7 cannot be a predecessor of i* in er, we
can see that the trade off curve for er is concave.
However, as we illustrate with an example the trade off curve may not be concave in general.
Consider 3 jobs speeified by pi = P2 = Pz — 1. ^I = ^3 = 1- w2 = 2, di = 1, d2 — 2 , and
d3 = 5. We observe that job 1 can be scheduled first in each schedule since d[< min{d'2, d'3}.
Job 2 precedes and follows job 3 if B < 3 and if B > 3, respectively. Note that B = 3
corresponds to 7 = 7. Since Lmax cannot be negative (due to job 1) 5®(7) is defined for
7>0.
We observe that job 2 is tight for 7 G [0,1] while job 3 is tight for 7 6 [1,7]. Note that jobs 2
and 3 switch at B = 3 and 7 = 7, respectively. For B > 3 and 7 > 7 job 2 is tight resulting
into a break point at the switch point, see Figure 6. Clearly, Bw{7) is neither concave nor
convex. However, Bw(7) is concave for both optimal sequences corrseponding to intervals
[0,7] and [7,00[.

19

4.3.2 1| prec,fmax\Bw

Here we consider the more general case where the only restriction on fc is that it is non-
decreasing function in completion time. Here, we distinguish two cases regarding /j.

Theorem 7. If finding max{C |/-1(C) < 7} is NP-hard, then l\prec, fmax\Bm,
l\prec, /max|-Bp, and l\prec, fmax\Bw are NP-hard also.

Proof. We can reduce the problem to find max{C | /_1(C) <7} to l\prec, fmax\Bm as
follows. Let the number ofjobs be 2. Consider both jobs having unit processing time and
functions fi(C) = fj(C) = f{C — 2). The maximum buffer size b between both jobs will obvi-
ously lead to the second job being finished exactly at max{C | /-1(C) < 7}+ 2. Subtracting
overall processing time of 2, we obtain B™ = max{C | /-1(C) < 7} as value of optimal
schedule er. The proof can be done analogously for 1|prec, fmax\Bp and 1|prec, fmax\Bw. •

Theorem 8. If finding max{C | /_1(C) < 7} can be done in polynomial time, then
1|prec, fmax\Bm, 1|prec, fmax\Bp, and 1|prec, fmax\Bw can be solved in polynomial time.

Proof. We reduce l\prec, fmax\Bm, l\prec, fmax\Bp, and l\prec, fmax\Bw to
l\prec,Lmax\Bm, l\prec, Lmax\Bp, and l\prec, Lmax\Bw, respectively. Obviously
dj = max {Ci | /i_1(Ci) <7} gives a due date for job i. Given an instance P of
l\prec, fmax\Bw we create an instance P' of l\prec, Lmax\Bw as follows:

• n' = n

• Pi=Pi

• d'i = dj

*7 = 0

20

It is easy to see, that the optimal Solution to P' provides an optimal Solution to P. •

Consequently, the computational complexity of l\prec, /max|ßm and l\prec, fmax\Bw is
0(C(dJ) + nlogn) and 0(C(dJ) + n2logn), respectively, where C(dJ) gives the comu-
tational complexity to find max{C | /_1(C) <7}. Corresponding trade off curves can be
found in 0(C(dJ) + nlogn) and 0(C(dJ) + n3logn).

5 Conclusions and Outlook

In this paper we propose three Surrogate measures for robustness of a schedule on a single
machine based on time buffers between jobs. We introduce a generic robustness counterpart
for classic single machine scheduling problems and obtain a robust decision problem and three
robust optimization problems corresponding to each classic single machine scheduling problem.
While being reasonable our robustness concept has the advantage over other concepts in the
literature that we do not loose polynomiality of classic problems when considering the robust
counterpart in general. In particular, for the problem to minimize the objective function while
providing a certain robustness level we show exactly in which cases we loose polynomialty. For
the problem to maximize robustness while not exceeding a certain objective value we show for
three problems exemplarily that we can obtain polynomial algorithms. Also trade off curves for
minimizing the objective value and maximizing the robustness are found in polynomial time.
For future research we can think of several variations and extensions of the concept provided in
the paper at hand. First, incontrast to jobs being related with the following buffer each job may
be related to the preceding buffer. This can be motivated by requiring a certain protection level
for each job which is implemented by the preceding job. Furthermore, combinations of both
concepts are possible. Second, the size or importance, respectively, of a buffer may depend on
its position in the sequence. Of course the probability of interruptions before a specific position
is higher for positions being located towards the end of the schedule and, hence, buffers at
the end should be larger than at the beginning tendentially. Third, probabilistic analysis can
be employed to derive the size of a specific buffer. Fourth, the concept proposed here can be
extended to the case with more than one machine.

References

[1] M. Al-Fawzan and M. Haouari. Executing production schedules in the face of uncertain
des: A review and some future directions. International Journal of Production Economics,
96:175-187, 2005.

[2] H. Aytug, M. Lawely, K. McKay, S. Mohan, and R. Uzsoy. Executing production schedules
in the face of uncertainties: A review and some future directions. European Journal of
Operational Research, 161(1):86—110, 2005.

[3] A. Ben-Tal and A. Nemirovski. Robust optimization methodology and applications.
Mathematical Programming, Series B, 92:453-480, 2002.

[4] A. Ben-Tal and A. Nemirovski. Selected topics in robust convex optimization. Mathe
matical Programming, Series B, 112:125-158, 2008.

[5] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):3553,
2004.

21

[6] C. Briand, H. T. La, and J. Erschier. A Robust Approach for the Single Machine Problem.

Journal of Scheduling, 10:209-221, 2007.

[7

[8

[9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

P. Brucker. Scheduling Algorithms. Springer, 2004.

R. L. Daniels and J. E. Carrillo. ß-robust scheduling for single-machine systems with
uncertain processing times. IIE Transactions, 29:977-985, 1997.

R. L. Daniels and P. Kouvelis. Robust Scheduling to Hedge Against Processing Time
Uncertainty in Single-stage Production. Management Science, 41(2), 1995.

A. J. Davenport and J. C. Beck. A Survey of Techniques for Scheduling with Uncertainty.
Working Paper, 2000.

S. Goren and I. Sabuncuoglu. Robustness and stability measures for scheduling: single-
machine environment. IIE Transactions, 40:66 83, 2008.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimisation and
approximation in deterministic sequencing and scheduling: A survey. Annais of Discrete
Mathematics, 5:236-287, 1979.

W. Herroelen and R. Leus. The construction of stable project baseline schedules. Euro
pean Journal of Operational Research, 156(3):550-565, 2004.

P. Kobylanski and D. Kuchta. A note on the paper by M. A. Al-Fawzan and M. Haouari
about a bi-objective problem for robust resource-constrained project scheduling. Interna
tional Journal of Production Economics, 107:496-501, 2007.

P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, 1997.

P. Kouvelis, R. L. Daniels, and G. Vairaktarakis. Robust Scheduling of a Two-Machine
Flow Shop with Uncertain Processing Times. IIE Transactions, 2000.

E. Lawler. Optimal Sequencing of a Single Machine subject to Precedence Constraints.
Management Science, 19:544—546, 1973.

E. Lawler. Sequencing Jobs to Minimize Total Weighted Completion Time Subject To
Precedence Constraints. Annais of Discrete Mathematics, 2:75-90, 1978.

V. J. Leon, S. D. Wu, and R. H. Storer. Robustness Measures and Robust Scheduling
for Job Jobs. IIE Transactions, 26(5):32-43, 1994.

R. Leus and W. Herroelen. The Complexity of Machine Scheduling for Stability with a
Single Disrupted Job. OR Letters, 33:151-156, 2005.

R. Leus and W. Herroelen. Scheduling for stability in s ingle-machine production systems.
Journal of Scheduling, 10(3):223-235, 2007.

S. V. Mehta and R. Uzsoy. Predictable scheduling of a single machine subject to break-
downs. International Journal of Computer-Integrated Manufacturing, 12:15-38, 1999.

J. M. Moore. An n Job, One Machine Sequencing Algorithm for Minimizing the Number
of Late Jobs. Management Science, 15(1):102-109, 1968.

22

[24] Z. Shi, E. Jeannot, and J. J. Dongarra. Robust task scheduling in non-deterministic het-
erogeneous Computing systems. In IEEE International Conference on Cluster Computing,
2006.

[25] S. Van de Vonder, E. Demeulemeester, W. Herroelen, and R. Leus. The Use of BufFers
in Project Management: The Trade-Off between Stability and Makespan. International
Journal of Production Economics, 2005.

[26] S. D. Wu, E. Byeon, and R. H. Storer. A graph-theoretic decomposition of the job shop
scheduling problem to achieve scheduling robustness. Operations Research, 47:113-124,
1999.

23

