
Horbach, Andrei

Working Paper

A boolean satisfiability approach to the resource-
constrained project scheduling problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 644

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Horbach, Andrei (2009) : A boolean satisfiability approach to the
resource-constrained project scheduling problem, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 644, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147562

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147562
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 644

A Boolean Satisfiability Approach to the Resource-Constrained Project
Scheduling Problem

Andrei Horbach1

März 2009

x: Andrei Horbach
Christian-Albrechts-Universität zu Kiel,

Institut für Betriebswirtschaftslehre,
Olshausenstr. 40, 24098 Kiel, Germany

http://www.bwl.uni-kiel.de/bwlinstitute/Prod
horbach@bwl.uni-kiel.de

Abstract

We formulate the resource-constrained project scheduling problem as a satisfiabil-
ity problem and adapt a satisfiability solver for the specific domain of t he problem.
Our solver is lightweight and shows good Performance both in finding feasible Solu­
tions and in proving lower bounds. Our numerical tests allowed us to dose several
benchmark instances of the RCPSP that have never been closed before by proving
tighter lower bounds and by finding better feasible solutions. Using our method we
solve optimally more instances of medium and large size from the benchmark library
PSPLIB and do it faster compared to any other existing solver.

1 Introduction

The resource-constrained project scheduling problem (RCPSP) consists in scheduling ac-
tivities with predefined durations and demands on each of the given renewable resources
subject to partial precedence and resource constraints. The objective is to minimize the
makespan. Due to its general formulation and practical importance the problem has been
the subject of intensive research since the last decades, see for review Brucker et al. [4]
and Herroelen [16].

In this paper we propose a fast and robust method for the RCPSP that is implemented
without use of any proprietary optimization Software. This method is general and can be
applied to many other combinatorial problems. At the same time, it is very efficient. Our
solver outperforms all other complete RCPSP solvers on hard test instances of medium
and large size. For many of the test instances our solver is the first one to solve them to
optimality.

Our method is based on the technique originating from the field of artificial intelligence.
Its key element is a reduction to the conjunctive normal form satisfiability problem (SAT).
The decision version of SAT has been historically the first problem proven to be NP-
complete (Cook [5] a nd Levin [20]).

The SAT solving techniques have been developed to such an extent that for many
combinatorial problems a reduction to SAT and the use of a SAT solver can be a good
alternative to a problem specific solver running on the original problem formulation.

Surprisingly, there are a few if any competitive applications of a SAT solver to optimiza­
tion problems of Operations research described in the literature. One possible explanation
could be some misinterpretation of the famous negative result of Haken [14]. He shows the
non-existence of a complete SAT solver based on the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm that can prove in polynomial time the infeasibility of a trivial variant
of the bipartite matching problem formulated as follows: place n — 1 pigeons into n holes
such that in each hole sits exactly one pigeon. Without contradicting the inefficiency for
this trivial problem, our numerical tests clearly demonstrate the efficiency of an adapted
complete SAT solver for a far less trivial one.

A SAT solver works on a feasible set described by means of a Boolean formula in con­
junctive normal form (CNF). A clause in such a formula can be considered as a 'low-level'
combinatorial constraint. At the same time, many 'high-level' combinatorial constraints
can be represented as the conjunction of such clauses. A difficulty for practical use, how-
ever, can be the number of clauses needed for such representation. This number can be
huge and can grow very fast with the size of the original combinatorial constraint.

Many combinatorial problems contain knapsack constraints in their formulations. Such
constraints can bee seen as 'high-level' ones compared to CNF clauses. Various reductions
of linear constraints Over Boolean variables to CNF have been proposed in the literature,
see for instance Ben and Sörensson [12]. We do not know any polynomial size reduction
of linear constraints that could be shown to be efficient in the numerical tests. If a linear
inequality over Boolean variables contains only positive coefficients, it can be replaced by
a number of cover inequalities. Each of the cover inequalities can be easily transformed
to a CNF clause. The number of cover inequalities and therefore the number of clauses
needed for their representation can grow exponentially with the size of the original linear
constraint. One possible way to overcome this size problem is to generate the clauses 'on
the fly', dynamically adding them to the database while the SAT solver is running, where
and if they are needed. This can be done in a very similar way as it has been done for
a linear solver embedded into a cutting plane framework, where the solver obtains new
inequalities from a Separation routine.

Modern integer linear solvers have an Interface for adding cuts and variables generated
by a procedure which has knowledge about the specific problem domain. A similar Interface
to the SAT solver is needed for the Implementation of our method. Since there is no SAT
solver providing such an Interface, we show here on the example of an open code SAT
solver how it can be adapted in order to obtain cover clauses whenever they are needed.

One of the simplest but very fast and robust implementations of the SAT solver is
MiniSat developed by Ben and Sörensson [11]. MiniSat is an extended C++ Implementa­
tion of the DPLL algorithm. In this paper we adapt MiniSat to achieve efEciency in the
specific domain of the RCPSP. Our method can be used in combination with any SAT
solver based on the DPLL algorithm.

The paper is organized as follows. Section 2 presents a rigorous formulation of the
RCPSP and briefly discusses relevant complete methods used by other researches. Section
3 considers the SAT problem together with the DPLL algorithm, Section 4 formulates
the feasibility Version of the RCPSP as series of SAT problems. Section 5 is devoted to
our adaption of the SAT solver for these specific SAT problems. Section 6 presents our
numerical results and compares them with results of other authors. Section 7 contains
summary and suggestions for future research.

2 The Resource-Constrained Project Scheduling Problem

The resource-constrained project scheduling problem (RCPSP) can be formulated as fol­
lows. Given:

• a set R of renewable resources with limited capacities Rk for each k E R,

• a set V = {0,1,..., n + 1} of activities with integer duration di for each i e V,

• resource demand for each activity i and resource fc,

• a subset E of V x V defining precedence constraints,

• the maximum makespan T, for the feasibility version of the RCPSP.

2

Activity 0 represents the Start of the project and is a predecessor of each other activity.
Activity n + 1 represents the end of the project and is a successor of each other activity.
They both have zero durations and zero resource demands. If Si is the start time of
activity i, we say that i is in process in periods Si, Si + 1,..., S; + di - 1. To determine is
a vector of start times (So, Si,. • •, »Svi+i) s atisfying the following constraints:

• precedence constraints for all (i,j) e E: Si + dj < Sj,

• resource constraints for each period and for each resource k: the cumulated demand
of activities that are in process in the period does not exceed the resource capacity
Rk,

• for the feasibility version of RCPSP: Sn+i < T,

• for the optimization version of RCPSP: the completion time Sn+i is to be minimized.

There are a great number of publications devoted to various extensions of the RCPSP,
see e.g. the review of Hartmann and Briskorn [15]. The variant of the problem we consider
here is apparently the most interesting one because of

• its simple but rather general formulation,

• the existence of challenging instances even of small dimension not solved to optimal-
ity until now,

• the fact that the power of the most methods developed for extensions of the RCPSP
can be evaluated also on the instances of the RCPSP.

To determine the Optimum of an instance of the RCPSP one needs to solve two prob­
lems: construct a feasible Solution and prove, that no better feasible Solution exists. Meth­
ods that are good for the first problem are not necessarily good for the second one and
vice versa.

Good-quality solutions can be obtained by heuristics. Apparently the best existing
results have been reported by Debels and Vanhoucke [8] fo r their genetic algorithm.

Branch and bound algorithms are suitable both for searching and proving optimal!ty.
They can be enforced by methods that prune the search space. These can be techniques
of constraint propagation, see Dorndorf et al. [10] and Liess and Michelon [21]. The
method of Demeulemeester and Herroelen [9] seems to be a very efficient one at least for
the instances of small size. This method uses so called cut sets that help to filter out
dominated nodes of the search tree, if a better node has been already considered.

The search space can be reduced, if an algorithm for Computing lower bounds is avail-
able. Such an algorithm tries to find lower bounds for the distance between a pair of
activities. Relaxing the resource constraints we obtain the critical path lower bounds,
which can be calculated in 0(n2 logn) iterations of a shortest path algorithm. Practically,
the Floyd-Warshall algorithm with the runtime of 0(n3) is usually used. Tighter lower
bounds can be obtained, if the resource constraints are respected at least to some extent.
Klein and Scholl [18] review distinct lower bounds and provide a metastrategy which Com­
bines them in order to produce even better bounds. Klein and Scholl [17] use this method
in a scattered branch and bound framework and report competitive results.

3

Tight lower bounds can be obtained from a linear relaxation of the problem. Mingozzi
et al. [22] propose various integer programming formulation of the RCPSP. They obtain
lower bounds by relaxing some of the constraints in these formulations.

One of their relaxations is based on the replacement of the precedence constraints by
disjunctive constraints and the allowance of preemptions. They define feasible subsets as
subsets of activities that can be processed in parallel. Then for V as the base set and for
the collection of all feasible subsets they formulate the minimum cardinality set multicover
problem with di as the coverage requirement for each activity i. Relaxing the integrality
in the Standard integer linear programming formulation of this set multicover problem,
they obtain a lower bound for the RCPSP.

Brucker et al. [3] make use of this idea in order to compute lower bounds for their
branch and bound scheme. Since the linear problem appearing here has a huge number of
variables, they implement the delayed column generation to solve it. Brucker and Knust [2]
deal further with this formulation and strengthen it by dividing the time horizon [0, T\ into
subintervals. Then they consider for each subinterval only the feasible subsets of activities
that can be in process within the subinterval. They use constraint propagation techniques
to tighten the time windows of the activities. Baptiste and Demassey [1] p ropose valid
inequalities that together with a constraint propagation technique lead to a significant
improvement of the lower bounds for many of hard test instances.

Most of the solvers for the RCPSP have been evaluated on the so called KSD instances
generated by Kolisch et al. [19]. These instances are included in the library PSPLIB
(http://webserver.wi.tum.de/psplib/). The library supports an automatical Submission
and Validation of solutions and contains values for upper and lower bounds. It is apparently
the most extensively searched benchmark library for the RCPSP. There are four sets of
KSD instances with 30, 60, 90 and 120 activities. The instances are generated with the
problem generator ProGen under diverse parameter settings. Each group contains both
easy and hard instances. Despite all efforts applied to solve the instances of the library in
the last decade, up to now only the group with 30 activities has been reported completely
solved to optimality.

3 The Satisfiability Problem

A propositional formula is a formula that is defined over variables that take values in the
set {true, f alse}. A propositional formula is in conjunctive normal form (CNF) if it is a
conjunction (AND, A) of clauses, where each clause is a disjunction (OR, V) of literals.
A literal is either a variable, then it is called a positive literal, or its negation (NOT, ->),
then it is called a negative literal.

The conjunctive normal form satisfiability problem (CNF SAT or just SAT) is defined
as follows. Given a CNF, does there exist an assignment of the variables, such that the
CNF evaluates to true under such assignment? If such a satisfying assignment exists, we
say that the formula is satisfiable and the assignment is called a model. Otherwise the
formula is unsatisfiable.

Many researches contributed to the development of efficient algorithms for SAT making
a great advance in the ability to solve problem instances involving over a million of variables
and several millions of clauses. The results of the annual international SAT competitions

4

http://webserver.wi.tum.de/psplib/

can be found at www.satcompetition.org.
The basic algorithm for SAT has been proposed by Davis and Putnam [6] and Davis

et al. [7], see Algorithm 1. This algorithm not only answers the question of satisfiability
but also finds a satisfying assignment if it exists. Surprisingly, this algorithm happened to
be so good that it is still the basis of the most modern complete SAT solvers. A version
of this algorithm is implemented by Ben and Sörensson [11] in their solver MiniSat.

Algorithm 1 DPLL-Algorithm
decisionJevel = 0
while true do

propagateO
if not conflict then

if all variables assigned then
return Satisfiable

eise
-f+decisionJevel, decideO

eise
analyzeO
if top-level conflict found then

return Unsatisfiable
eise

backtrackQ

The algorithm starts at decision level zero, chooses a literal (a variable and the true or
the false direction) to brauch on, makes the true assignment of the literal and completes it
by unit propagation which is done in propagateO. If a variable is chosen for branching it
is marked as decision variable. If the value is assigned to the variable at unit propagation,
it is a propagated variable. If propagateO returns no conflict, the algorithm steps to
the next decision level and chooses a next literal to branch on. If under the current
partial assignment propagateO determines a conflict (a clause can not be satisfied under
this partial assignment), the conflict is returned. The conflict is analyzed. The result of
analyze O is the backtracking level, the largest level up to that all assignments have to be
canceled such that the last conflict is not false under the current partial assignment. In
the state-of-the-art solvers analyzeO returns also a learnt clause, which is a consequence
of the other clauses in the database and, hence, must be satisfied by each satisfying
assignment and can be considered as a reason of the last conflict. The learnt clause is
added to the database and propagation goes on.

The components of DPLL are:

• branching procedure decideO, which makes choice of the next literal to branch on;

• procedure propagateO, which makes unit propagation and determines conflicts;

• procedure analyzeO, which analyzes conflicts, decides about the level of backtrack­
ing, and generates learnt clauses;

• backtrack procedure, which unwinds all made assignments up to the backtracking
level returned by analyze().

5

http://www.satcompetition.org

Two techniques should be noted as making special contribution to the efficiency of
modern SAT solvers. Clause learning, being involved in unit propagation, speeds up the
recognition of future confiicts and may lead to an impressive rise of Performance. The
watched literals scheme proposed by Moskewicz et al. [23] and first implemented in their
solver zChaff is now a Standard method for efficient constraint propagation. The key idea
behind this scheme is to maintain two special literals for each not yet satisfied clause
that are not false under the current partial assignment. As long as the clause has two
such literals, it cannot be involved in unit propagation. Only if one of these two literals
is assigned to false, propagateO assigns true to the other literal, if the clause is not
satisfied yet. More details on state-of-the-art SAT solvers can be found in Gomes et al.
[13].

4 Reduction of the feasibility RCPSP to SAT

Assume we are given an instance of the feasibility RCPSP. We determine for each activity
i its earliest (e,st) and its latest (lst) start times, its earliest (e/j) and its latest (lft) finish
times, given that activity 0 starts at 0 and activity n + 1 starts at T. These times are
calculated in a Standard way using the critical-path method by Floyd-Warshall algorithm.
As a by-product of this algorithm we obtain for each pair of activities (i,j) the shortest
time interval between them, denoted by dist^ (if i is not a predecessor of j, distij := —oo,
dista .— dj^.

Then, given these start intervals, we define in a straightforward way two types of
Boolean variables of the SAT problem:

» For each i G F and t E {esj,..., Isi} a start variable

_ / true if activity i starts at period t,
Slt \ false otherwise.

• For each i EV and t £ {esi,... ,lfi} a process variable

Hit
j true if activity i is in process at period t,
\ false otherwise.

Next we formulate a CNF over these variables, such that each satisfying assignment of
this CNF encodes a feasible schedule and vice versa. We define the following three classes
of clauses.

To provide a correct combination of start and process variables for each activity we
need the consistency clauses:

—>sn V un i (E.V,t € {eSi,..., Isi}, l £ {t,..., t + di — 1} (1)

If i starts at period it has to be in process in the following dl periods.
To provide the satisfaction of the precedence constraints we need precedence clauses:

6

"""Sit V sjl
l—CSj)...\GS\ ~~dj

(j,i) e E,te {eSi,.. .,lsi} (2)

If % starts at t, all its predecessors start early enough to allow this start of i.
To complete the formulation we adapt the definition of a cover for the knapsack prob­

lem. We call a subset of activities C <E V a cover if there is a resource k £ R such that
£ rik > Rk- A cover C is minimal if C \ {%} is a cover for no i 6 C.
i£Cs

To guarantee the satisfaction of the resource constraints we need the cover clauses:

V t £ {0,..., T — 1}, C C V, C is a minimal cover. (o\
i€C ^ J

The cover clauses guarantee, that no subset of activities with total demand exceeding the
capacity of any resource is in process in any period.

The first two classes are of polynomial size (given the maximum activity duration is
limited and this limit is not a part of the input) and can be easily treated by any modern
SAT solver. The number of clauses in (3) can grow exponentially with the size of the
problem. Therefore, it does not seem to be a very promising approach to generate all
of them in advance. We make use of a technique, which is similar to the cut generation
approach in linear programming. We maintain a database of clauses which contains all of
(1) and (2) and some of (3) clauses and extend it by clauses of (3) that are violated or can
be violated by the current (partial) assignment. In line with the notation used in linear
programming we call this process Separation. We consider the details of the technical
Implementation of this method in the next section.

5 Adaption of the DPLL-Algorithm for the RCPSP

As mentioned above, we have to implement Separation of cover clauses. One option is to
generate all cover inequalities and then to start the SAT solver. Our initial experiments
showed, that this approach works only for small instances. In particular, we could generate
all minimal cover clauses without memory overflow for KSD instances with at most 30
activities.

The second option is to adapt the Standard Separation strategy of the integer linear
programming by generating unsatisfied cover clauses each time as a feasible assignment
is found. If some violated cover clauses have been found, add them to the database and
restart the SAT solver. This way is easy to implement, since all necessary Interfaces are
provided and the SAT solver can be used as a black box. This method has, however, one
essential drawback: the violated cover clauses are found late and the SAT solver usually
has to cancel most of the variable assignments. Our numerical experiments showed, that
this approach is acceptable for easy instances, but stays inefficient comparing to our third
approach.

The approach we develop in this paper separates cover clauses as early as possible. We
do it every time when a process variable is fixed to true. Usually, a SAT solver does not
have an Interface to do this, so we have to adapt function propagateO. This function is

7

called for the current assignment and does some work for each assigned variable that is not
propagated yet. The work is to fix all not assigned variables whose values can be inferred
from the current partial assignment. If a clause is false under the current assignment
(conflict clause), it is returned to the overall search procedure.

We adapt propagateO in such a way, that it tests whether the current literal is a
process variable. If it is the case, it looks which other process variables corresponding to
the same period t are assigned to true, and, if the cumulated demand on any resource at
t exceeds the supply, it generates a minimal cover clause and returns the clause to the
search procedure as a conflict. If such conflicting cover clause is not found, propagateO
Updates the residual value of e ach resource. If the residual value of some resource is less
than the demand of activity j, it infers Ujt — false and adds the corresponding cover
clause to the database.

The behavior of the solver can be influenced by various means. First of a ll, we can use
different SAT formulation of the problem. The formulation considered here is apparently
one of the most straightforward ones. We only performed minor changes of our initial
formulation using the results of some numerical tests. However, we succeeded to find out
a possibility to strengthen this formulation by adding some valid clauses.

Our numerical tests have shown, that the following class of valid clauses improves the
runtime on medium and hard KSD instances of all sizes:

~~*Uit V 1 V Si^—di+l i ^ ^ {efi, . . . , Ifi 1} (4)

The introduction of these clauses has an effect that the period t is fixed as the end pe­
riod of activity i, when the solver fixes two variables uu and Uu+i to true and false,
correspondingly. Then the start time of i, i.e. it — di + 1, is inferred immediately by
propagateO.

It is a well-known fact, that a SAT solver can perform much faster on some formulas
if it succeeds to choose the right variables to branch on early. A right order of branch
variables can significantly improve the runtime also for several optimization problems, see
e.g. Pesch and Teitzlaff [24]. If we deal with formulas of some specific problem domain,
it may be expected, that early branching on variables of some type would lead faster to a
Solution. We may then indicate a higher branching priority for such variables. Our initial
tests have shown, that branching on process variables leads faster to a feasible Solution or
infeasibility.

6 Numerical Experiments

In this section we present the results of our numerical tests on the KSD instances generated
by Kolisch et al. [19], which are a part of the library PSPLIB. The KSD instances contain
four instance sets j30, j60, j90, j 120, where e.g. j30 corresponds to the set with 30 activities
in each instance. Each of the first three sets contains 480 instances generated by ProGen
(see Kolisch et al. [19]) with different parameter settings. Some of the instances (exactly
120 in each set j30, j60 and j90) are trivial in the meaning that an optimal schedule can
be obtained by fixing the start time of each activity i to its earliest start time esl. Set
jl20 contains 600 instances without trivial ones.

8

We compare our results with results reported by other authors:

1. Demeulemeester and Herroelen [9] (DH), obtained on IBM PS/2 Model P75 with a
80486 processor running at 25 MHz under Windows NT.

2. Klein and Scholl [17] (KS), obtained on a Computer with a Pentium 166 processor
running under Windows 95.

3. Sprecher [25] (Sp), obtained on a Computer with a Pentium 166 processor running
under Linux.

4. Brucker et al. [3] (B KST), obtained on SUN/Sparc 20/801 running at 80 MHz under
Unix Solaris 2.5.

5. Dorndorf et al. [10] (DPP), obtained on a Computer with a Pentium Pro 200 under
Windows NT.

6. Liess and Michelon [21] (LM), obtained on NEC PowerMate running at 2GHz under
Debian GNU/Linux.

We also take as a reference the mixed integer solver Ilog CPLEX version 11.0
(www.ilog.com/products/cplex/) running on Compaq 8710 with Intel Core2Duo T7700
2.4 GHz under Windows XP with default parameter settings. The integer programming
model used here can be found in the Appendix.

To make a comparison with the first five solvers we used a Pentium II Computer with
64 MB RAM running at 266 MHz under Windows 98. This Computer is approximately
40% faster than the Pentium Pro used for testing DPP solver, 140% faster than the
Computers Sp and KS solvers were tested on, and 20 times faster than the Computer
used for testing DH solver. These estimations are based on the results of SPECint95 test
(www.specbench.org/cpu95/results/cint95.html).

Further results were obtained on Dell Precision with Intel Core2Duo T6400 2.2GHz
with 1 GB of RAM running under Windows XP. Our solver uses only one of two available
processor kernels. We can roughly estimate that this hardware is two times faster than
the Computer used for testing LM solver. Our code is written in C++ and compiled with
Microsoft Visual C++ 2005 Compiler.

We followed two test scenarios. We exploited the upper bounds listed in PSPLIB as the
start values for the makespan. Each time our solver finds a feasible Solution, we decrease
the makespan by one and try to determine a better Solution or to prove that no Solution
with this new makespan exists. We consider an instance as solved optimally, if the solver
finds a feasible Solution and proves that no feasible Solution with the makespan decreased
by one exists. The same test method and the same upper bounds were used by Liess and
Michelon [21]. In the following, we will refer to this scenario as the good UB scenario.

In other experiments, the authors did not use any given upper bounds. To make a
fair comparison, we also conducted other tests in which the initial upper bounds were set
to the best known upper bound from PSPLIB increased by ten percent. This increase is
not small: the heuristic of Debels and Vanhoucke [8] provides within the average time of
less than 0.2 sec upper bounds that exceed those listed in PSPLIB on average at most by
0.46% for instance sets j30, j60 and j90. In the following, we will refer to this scenario as
the bad UB scenario.

9

http://www.ilog.com/products/cplex/
http://www.specbench.org/cpu95/results/cint95.html

We expect, that corabining our complete solver with a good heuristic in order to de­
termine feasible solutions, would slightly improve the overall results compared to the good
UB scenario. In this case there would be no need to prove the upper bound determined
by the heuristic, which in many cases is the optimal makespan value.

The results of the experiments are summarized in Tables 1-4. The tables contain a
column for each solver, test scenario, and hardware configuration. Each column contains
the percent of the test instances of the respective KSD instance set solved to optimality
within the per instance time limit indicated in the first column. A dash means that for
the corresponding solver and time limit no results have been reported or no experiments
have been made.

time limit this solver LM this solver DPP KS DH CPLEX
sec. good U B good U B bad UB good U B good U B

Core2Duo Pentium II Pentium II Pentium Pro Pentium 80486 Core2Duo
1 94.0 - 78.5 86.0 80.2 - - 69.2
10 97.5 - 90.2 94.0 88.3 - - 74.4
30 98.3 96.0 94.0 96.3 92.7 - - 77.5

300 100 - 97.3 98.5 95.4 - - 84.0
360 97.7 97.5 98.5 - 100 - 84.4
600 - 98.5 98.8 - - -

1800 - 99.4 99.4 97.3 - -
3600 98.1 99.8 100 - 99.8 -

Table 1: Percent of j30 instances solved optimally

time limit this solver LM this solver DPP KS Sp BKST
sec. good U B good U B bad U B good U B

Core2Duo Pentium II Pentium II Pentium Pro Pentium Pentium Spare 20
1 80.0 - 44.0 73.5 73.5 - - -
5 82.3 - 75.8 79.6 - - - -

10 83.1 - 77.7 80.0 75.4 69.6 - -
30 85.2 79.4 79.4 81.0 76.2 - - -
60 85.6 - 81.0 82.9 - - - -

120 86.9 - 82.1 84.4 - - - -
300 88.1 81.2 84.0 85.2 78.5 76.0 72.7 -

1800 89.6 81.9 - - 80.0 80.2 75.8 -
3600 89.6 82.1 - - - 81.9 - 67.9

Table 2: Percent of j60 instances solved optimally

Utilizing the PSPLIB upper bounds (the good UB scenario) our solver needed 1326
seconds on the Intel Core2Duo to solve optimally all instances of j30. Most of the time
(87.3%) was spent for proving the optimality and only 12.7% for initializing the solver and
determining feasible solutions.

10

time limit this solver LM this solver DPP Sp
sec. good U B good U B bad U B good U B

Core2Duo Pentium II Pentium II Pentium Pro Pentium
1 78.3 - 2.1 53.1 71.2 -
5 78.6 - 69.4 76.0 - -

10 79.0 - 75.0 77.1 74.2 -
30 79.6 78.3 77.3 77.5 — -
60 80.2 - 77.9 79.0 75.0 -

300 81.5 78.5 79.0 79.8 76.0 61.5
1800 82.1 78.8 - - - -
3600 82.5 - - - - -

Table 3: Percent of j90 instances solved optimally

time limit this solver LM this solver DPP
sec. good U B good U B bad U B good U B

Core2Duo Pentium II Pentium I I Pentium Pro
10 40.8 - 24.8 34.3 31.0
30 42.5 39.2 32.0 35.7 32.0
60 43.2 - 33.8 39.3 -

300 44.7 39.8 41.2 43.2 33.3
1800 46.0 40.0 - - -

Table 4: Percent of jl20 instances solved optimally

For any instance solved by CPLEX within the time limit of 360 sec our solver needed
at most 0.11 seconds. The Standard integer programming Software seems not to be com-
petitive with any of these solvers on these benchmark instances (at least for our integer
programming model).

The solvers KS and DH outperform our solver on this instance set. DH solver needed
for its most challenging instance j 3013-1 (the only one not solved within an hour and
hence not considered in the table) 7209 sec. This instance was solved by our solver within
39 sec on Pentium II processor. No results of applying the DH solver to larger instances
have been reported. We can, however, compare the results of our solver on instance set
j60 with those of KS solver, see Table 2.

We solved within the time limit of five seconds on the Intel Core2Duo at least as many
instances of this set as any other solver did within any reported time limit (half an hour
or one hour). The results on the other two instance sets can be found in Tables 3 and 4.

We can not compare the runtimes of the solvers on each particular instance. We can,
however, conclude that for each solver each of the sets j60, j90, jl20 contains instances
solved by our solver within by one to two orders of magnitude shorter equivalent CPU
time. Moreover, we solve more instances form each of these sets within the time limit of
10 or more sec. on Pentium II than any other of the solvers does within an equivalent
time limit.

11

Although the runtime on some instances shows considerable fluctuations depending on
the solver parameters, the empirical evidence remains valid: there are hard KSD instances,
which are hard for any parameter settings and there are easy ones, which are easy for any
settings. The solver could solve optimally (find a feasible Solution and prove its optimality)
all j30 instances within the time limit of 300 sec.

In the second part of our numerical tests we tried to close instances still marked
as unclosed in PSPLIB by finding better upper and lower bounds without proving the
upper bounds indicated in PSPLIB. The results are presented in Tables 5 and 6. They
were obtained on Dell Precision with Intel Core2Duo T6400 2.2GHz with 1 GB of RAM
running under Windows XP. The tables contain the instances closed for the first time by
our solver or by LM solver. The optimal makespan and the time needed by each of the
two solvers is indicated for each instance. A dash means that the instance was not closed
by the solver or no result was reported.

Table 5 provides the results for instance set j60. Our solver improved here the upper
bound only for instance j609-10 but could not find out if it is optimal even after 20 hours
of computation, so the instance remains open. Several instances were closed by proving
the tight lower bound. Instance j6014-3 is mistakenly reported by Liess and Michelon
[21] to have a lower bound of 62, however, its optimal value is 61 according to PSPLIB.
This value was also confirmed by our solver. In total, our solver was able to close 80 of
such unclosed instances with 60 activities within a 'soft' time limit of ten hours, while LM
solver closed 41 ones. Our solver was slower only for five easy-to-close instances (runtime
under 0.1 sec) and much faster for the remaining ones. In total, our solver needed factor
298 less time to close these 41 instances than LM solver did.

Similar results were obtained for instance set j90. Our solver could close within the soft
time limit of half an hour 44 instances, which were marked as not closed in PSPLIB. We
found that the results reported by Liess and Michelon [21] contain some inconsistencies.
The lower bounds indicated for instances j9026-8, j9030-5 and j9030-7 conflict with the
upper bounds 82, 83 and 84 listed for them in PSPLIB, These upper bounds are also
confirmed by our solver for instances j9026-8 and j9030-5 after 82 sec and 22 min of
runtime, correspondingly. Although our solver is slower for some easy instances (runtime
under 0.2 sec), it is significantly faster for more challenging ones and does not show
any contradictory results. Assuming the correctness of all other results of LM solver we
conclude that it closed 24 new instances and compare the results in Table 6. LM solver
closed only one instance of set j90 for which our solver needed more than one second.

Our solver found a better feasible Solution for one instance of set j60 (runtime 6.6
hours) and for four instances of set jl20 (within the runtime of 3.6 sec tili 4.4 min). These
and many other solutions can be found on the web page of PSPLIB
(http://webserver .wi.tum.de/psplib/).

12

instance optimal runtime sec. instance optimal runtime sec.
makespan this solver LM makespan this solver LM

j601-7 72 0.06 0.01 j6026-4 67 0.11 225.35
j 603-8 55 0.03 0.01 J6026-6 74 0.03 0
j605-l 76 9.28 - j6026-9 65 0.16 98.81
j605-2 106 16.55 - j6030-3 82 0.02 8.5
j605-3 80 2.13 - j6030-5 76 155.64 -
j605-4 72 16.67 - J6030-7 86 12.44 -
J605-5 108 8.28 4539.4 j6030-10 86 95.30 -
j 605-6 74 0.25 13.57 J6033-6 75 0.03 1.31
J605-7 75 93.33 - J6037-1 97 2.28 83.21
j605-8 78 0.09 27.16 j 6037-2 95 6.30 7121.78
j605-9 83 0.08 0.00 j6037-3 139 2.44 288.9
J605-10 81 615.33 - j6037-4 101 0.25 9.67
j 606-6 55 0.02 1.77 J6037-5 98 0.08 2.16
j609-2 82 37.09 ~ j6037-6 102 155.77 -
j609-3 100 5243 - J6037-7 110 31.13 172.16
j609-4 87 1.74 - j6037-8 93 0.19 8.36
j 609-8 96 19960 - J6037-9 96 0.27 34.23
j609-9 99 6228 - j6037-10 96 0.08 0.09

J6014-1 61 10.75 - J6038-2 76 0.31 652.27
j6014-10 72 1.41 - j6038-8 71 0.02 0.03

j6017-8 85 0.09 - j6038-10 66 0.03 3.38

J6021-1 103 1.02 186.42 J6041-1 122 117.27 -

J6021-2 108 0.16 0.53 J6041-2 113 147.16 —

J6021-3 87 0.22 1.28 j6041-4 133 16.98 2972.55

J6021-4 95 : 2.56 - J6041-6 134 592.45 -

J6021-5 89 1.72 456.92 J6041-7 132 22.16 5726.95

J6021-6 84 0.16 18.8 J6041-8 135 200.39 -

J6021-7 103 1.12 9.92 J6041-9 131 92.02 -

j6021-8 110 1.33 46.23 j6042-3 78 1.63 6360.82

j6021-9 89 52.09 - J6042-4 103 0.09 4.66

J6021-10 80 0.34 3.37 j6042-7 59 0.19 —

j'6022-4 73 0.03 14 J6042-8 82 0.10 602.74

j6025-l 114 9499 - j6046-1 79 0.03 0

j6025-3 113 481.08 - J6046-4 74 6.44 —

j6025-4 108 50861 - j6046-5 91 8.72 —

J6025-5 98 11113 - j6046-6 90 0.05 —

j6025-9 99 446.64 - j6046-7 78 7.58 —

J6025-10 108 16616 - J6046-8 75 0.08 78.72

J6026-2 66 0.03 0.33 J6046-9 69 250.31 -

j6026-3 76 0.22 - J6046-10 88 72.64 —

Table 5: Closing j60 instances: results compared with the reported results of LM solver

13

instance optimal runtime sec. instance optimal runtime sec.
makespan this solver LM makespan this solver LM

j901-l 73 0.09 0.06 j9026-5 85 395.31 -
j901-3 66 0.09 - j9033-1 99 0.17 0.45
j901-4 86 0.28 - J9033-4 92 0.09 0.15
j901-6 74 0.09 8.41 J9033-7 109 0.14 0.05
J901-7 91 0.11 0.03 j9033-8 110 0.17 0.27
J901-8 95 0.24 6.4 J9033-9 95 0.13 -
j901-9 72 0.09 138.5 j9034-5 83 0.06 0.03
J901-10 90 0.13 0.04 j 9037-1 110 133.30 -
j905-l 78 4.13 - j9037-3 132 6.20 -
j905-2 93 5.63 - j9037-4 123 85.25 -
j 906-3 77 0.09 1.08 j9037-5 126 1948.89 -
j906-8 68 0.11 0.00 J9037-7 123 24.31 -
J9017-1 92 0.14 0.03 J9037-9 123 23.64 -
j9017-2 100 0.5 - j9038-1 85 0.05 0.15
J9017-3 89 0.09 0.02 j9038-3 89 0.06 0.00
j9017-9 96 0.16 0.13 j9038-5 86 0.06 0.02
j9017-10 89 0.17 320.73 j9042-2 102 18.19 -
j9021-3 124 120 - j9042-7 87 64.70 -
j9021-4 106 11.75 - j9042-9 83 0.06 0.01
j9021-6 106 1448.08 - j9042-10 90 58.22 -
j9021-10 109 429.84 - j9046-1 104 0.09 0.01
j9026-4 97 32.25 0.00 j9046-3 113 0.16 0.01

Table 6: Giesing j90 instances: results compared with the reported results of LM solver

7 Further Research

Besides the fact that our solver efficiently finds optimal solutions and proves their opti­
mality, even more Important features for its possible practical use are its generality and
extensibility. Without much effort we can implement in our SAT model various kinds of
extensions of the RCPSP, for instance:

• different resource availabilities for each period,

• different modes for each activity resulting in different duration and resource demands
(Multi-Mode RCPSP),

• maximum time lags between activities,

• restrictions of the type 'only one of two selected activities must be scheduled'.

In our opinion, such extensions (at least the last two) would demand a significant
change in any specific heuristic algorithm developed for the RCPSP.

Algorithms hybridizing SAT and linear solvers seem also to be promising for various
combinatorial optimization problems. This is a proven fact, that no complete SAT solver

14

can efficiently deal with several kinds of infeasibilities appearing in combinatorial problems.
The pigeonhole problem is only one example of such infeasibility. At the same time, much
more gener al problems can be efficiently solved by a linear solver.

Therefore, it can be useful to combine a SAT solver and an LP solver in one search
framework with the SAT solver on the top and the LP solver on the lower levels. The
propagate function of the SAT solver should decide if it is worth to call the linear solver
for the current partial assignment. The results of the linear solver can then be used in
various ways:

• if the linear solver detects infeasibility (or the lower bound obtained by the linear
solver is bad), a conflict clause (or a set of clauses) forbidding the current partial
assignment are generated and the backtrack is called,

• variable values and dual prices can be used when making branching decision in the
SAT solver,

• the learnt clauses can be used to generate cut inequalities for the linear solver.

Appendix: Integer Programming Model

Here we describe the integer programming model for the feasibility version of RCPSP used
in our numerical experiments with CPLEX. We use here the notation of Section 2. For
each i E V and for each t E {es,,..., Isi] we dehne a start variable z# such that

_ f 1 if activity i starts at period t,
Xu 0 otherwise.

For each i E V and for each t 6 {es*,..., Ifi} we dehne a process variable such that

_ J 1 if activity i is in process at period t,
Utt [0 otherwise.

The following integer linear problem possesses the desirable properties:

min xn+ltT

X) xu = i % E y

Uu — %it >0 i E V, t E { esi,... , Isi], l E { t,... ,t + di — 1}

xjl > xit (j,i) E E, tE {esi,Isi} (5)
le{esj,...,t~dj}

]C rikuit 5: -^fc t E {0, 1, . . . , T}, k E R
i€V,eSi<t<lsi

ZQO = 1

Xit E {0, 1}

15

If one is the optimal value of (5), then T is the optimal makespan for the RCPSP. If
the optimal value is zero, T - 1 is an upper bound for the RCPSP. If (5) has no feasible
Solution, T + 1 is a lower bound for the RCPSP.

References

[1] P. Baptiste and S. Demassey. Tight LP bounds for resource constrained project
scheduling. OR Spectrum, 26:251-262, 2004.

[2] P. Brucker and S. Knust. A linear programming and constraint propagation-based
lower bound for the RCPSP. European Journal of Operational Research, 127:355-362,
2000.

[3] P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and bound algorithm for
the resource-constrained project scheduling problem. European Journal of Operational
Research, 107:272-288, 1998.

[4] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-constrained
project scheduling: notation, Classification, models, and methods. European Journal
of Operational Research, 112:3-41, 1999.

[5] S. A. Cook. Conf. Record of 3rd STOC, chapter The complexity of theorem proving
procedures, pages 151-158. Shaker Height, OH, May 1971.

[6] M. Davis and H. Putnam. A Computing procedure for quantification theory. Journal
ofthe ACM, 7(3):201-215, 1960. ISSN 0004-5411.

[7] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications ofthe ACM, 5(7):394-397, 1962.

[8] D. Debels and M. Vanhoucke. A decomposition-based genetic algorithm for the
resource-constrained project-scheduling problem. Operations Research, 55(3):457-
469, 2007.

[9] E. L. Demeulemeester and W. S. Herroelen. New benchmark results for the resource-
constrained project scheduling problem. Management Science, 43(11):1485—1492,
1997. ISSN 0025-1909.

[10] U. Dorndorf, E. Pesch, and T. Phan-Huy. A branch-and-bound algorithm for the
resource-constrained project scheduling problem. Mathematical Methods of Opera­
tions Research, 52:413 - 439, 2000.

[11] N. Een and N. Sörensson. Theory and Applications of Satisfiability Testing, chapter
An extensible SAT-solver, pages 502-518. Springer Berlin / Heidelberg, 2004.

[12] N. Een and N. Sörensson. Translating pseudo-boolean constraints into SAT, Journal
on Satisfiability, Boolean Modeling and Computation, 2:1-26, 2006.

[13] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Handbook of Knowledge
Representation, chapter Satisfiability Solvers, pages 89-132. Elsevier, 2008.

16

14] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308,
1985.

15] S. Hartmann and D. Briskorn. A survey of deterministic modeling approaches for
project scheduling under resource constraints. Technical Report 2, Hamburg School
of Business Administration, 2008.

16] W. Herroelen. Project scheduling - theory and practice. Production & Operations
Management, 14(4):413 - 432, 2005.

17] R. Klein and A. Scholl. Scattered branch and bound: an adaptive search strategy
applied to resource-constrained project scheduling. Central European Journal of Op­
erations Research, 7:177-201, 1999.

18] R. Klein and A. Scholl. Computing lower bounds by destructive improvement: An ap-
plication to resource-constrained project scheduling. European Journal of Operational
Research, 112(2):322-346, January 1999.

19] R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation of a general
class of resource-constrained project scheduling problems. Management Science, 41:
1693-1703, 1995.

20] L. Levin. Universal sequential search problem. Problems of Information Transmission,
9:265-266, 1973.

21] O. Liess and P. Michelon. A constraint programming approach for the resource-
constrained project scheduling problem. Annais of Operations Research, 157:25-36,
2008.

22] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for
the resource-constrained project scheduling problem based on a new mathematical
formulation. Management Science, 44:714-729, 1998.

23] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi­
neering an efficient SAT solver. DAC, pages 530-535, 2001.

24] E. Pesch and U. A. W. Teitzlaff. Constraint propagation based scheduling of job
shops. INFORMS Journal on Computing, 8:144-157, 1996.

25] A. Sprecher. Scheduling resource-constrained projects competitively at modest mem-
ory requirements. Management Science, 46:710—723, 2000.

17

