
Elendner, Thomas

Working Paper — Digitized Version

Scheduling and combinatorial auctions: Lagrangean
relaxation-based bonds for the WJISP

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 570

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Elendner, Thomas (2003) : Scheduling and combinatorial auctions: Lagrangean
relaxation-based bonds for the WJISP, Manuskripte aus den Instituten für Betriebswirtschaftslehre
der Universität Kiel, No. 570, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147634

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147634
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 570

Scheduling and Combinatorial Auctions:
Lagrangean Relaxation-based Bounds

for the WJISP

T. Elendner

Abstract

In this paper we consider the following problem: a Company wants to seil consecutive
time slots on a Single machine. It wants to maximize the revenues, whereby market
prizes are not known. Additionally, consider a number of potential buyers of those time
slots providing each at least one job. All th ese jobs can be executed on that machine,
but the number of time slots is not large enough to schedule all jobs. Furthermore
assume, that every customer gains a job-specific profit with the processing of one of his
jobs, whereby this profit is private Information and thus, only known to him. What the
Company faces then is an allocation problem: Which buyer should get what time slot(s)
at what prize in order to maximize the company's revenue. In the following we will
show that this problem is well suited to be solved by a combinatorial auction. Within
combinatorial auctions bidders are enabled to place bids on any subset of items that are
auctioned off. We will focus on the winner determination problem for such an auction.
The winner determination is understood as the assignment of items to bidders after all
bids have been placed, with the objective to maximize the auctioneers outcome. It will
be shown that the winner determination problem here can be described as so-called
Weighted Job hterval Scheduling Problem (WJISP). Since this problem is known to
be AfV-hard, heuristics have become a main research interest. Unfortunately, there has
not been done much research on upper bounds so far. Furthermore, to the best of our
knowledge, no runtime studies are available in the literature yet. Here, we try to close
these gaps. First, we present a Lagrangean heuristic for the WJISP and characterize
relevant test instances. Using this test-bed, the considered upper and lower bounds are
respectively compared to the LP-solution and to a heuristic taken from the literature.

Keywords: Scheduling, combinatorial auctions, winner determination, weighted job interval
scheduling problem, Lagrangean relaxation, heuristics, combinatorial optimization

1 Introduction

In recent years, a new type of auction has become a main research interest, the so-called
combinational or combinatorial auction.
Consider the following Situation: On the one hand there is an individual who owns a number
of items, whereby each item is unique and can thus be sold only once. Assume that the
individual wants to maximize his revenues by selling these items but has no idea of market
prizes. On the other hand think of a number of potential buyers who will gain a profit by
buying these items if the prizes are below their valuations of the items. These valuations are
assumed to be only known to him (private Information); of course, the buyers try to minimize
their expenses for these items. In addition, we presume that the buyers have superadditive
preferences with respect to the items. This implies that receiving a bündle of items would
have a bigger valuation to a buyer than the sum of the individual items in that bündle. For
example consider a particular customer who values item {/!} at 10 currency units (cu), {5}
at 10 cu and the bündle {A, B} at 25 cu.
An eligible allocation would assign the items in such a way to the potential buyers that the sum
of the individual customers' valuations is maximized, which is called an efficient allocation. To
solve this problem and to achieve an efficient allocation, different coordination concepts can
be thought of, as for example bilateral negotiation or allocation rules like first come-first serve.
Negotiation bears the problem of high transaction costs when negotiating with any potential
buyer, because the number of potential buyers can be quite numerous in today's globalized
markets; simple allocation rules on the other hand are more or less arbitrary and, thus, do

1

normally not yield an efficient allocation.
As mentioned above we will focus on the concept of auctions, which were identified to be well-
suited in the environment of unknown market prizes and private Information, see for example
[30]. But applying a "traditional" like a sequential auction in the context of superadditive
valuations, the customers (or bidders) would be left with a forecasting problem: assume that
{^4} is auctioned off before {£?}. To determine the bid for {^4} the bidder has to forecast at
what prize he could get {B} in the later auction. If, for example, he can get item {A} at 15
cu, the bids for {B} must not exceed 10 cu because, otherwise, he will be left with a loss.
In this context, combinatorial auctions have two complementary advantages: first, all items
are auctioned off simultaneously, and second, the bidders can place bids on bundles of items
and, thus, explicitly express combined values to bundles (or subsets). In the above example
the bidder would be able to place three bids - on {>1}, on {B}, and the bündle {A,B} with
some bidding prizes which are assumed to be smaller or equal to his valuation. In the following
we will only consider bids and we will not take care if that is the real valuation or something
below. Hence, mechanism design like the design of truth revelation mechanisms is beyond
the scope of this paper. Also, the derivation of prizes, which is normally part of mechanism
design, will not be the research topic of this paper. The readers interested in these topics are
referred to [15], [19], [20], and [31], for example. Of course, the achievement of the above
mentioned efficient allocation heavily depends on the truthful bidding of the participants of
the auction, but here, we will assume that all bids have been placed.
Given all bids, the question for the seller (or auctioneer) reduces to the following: Which bids
have to be accepted to maximize the outcome of the auction? The answer gives the so-called
winner determination. It assigns the items to participants of the auction in such a way that
the outcome for the auctioneer will be maximized. Given that the bids have all been placed
truthfully, the winner determination will in addition achieve an efficient allocation.
This is a disadvantage of combinatorial auctions, since in the general case the winners are
difficult to be obtained. The general winner determination problem can be stated as follows:
given a set of T elements (items) and a set of J subsets (bids) of T, the problem is to maximize
the positive-weighted subsets, whereby the subsets have to be pairwise disjoint. This denotes
a combinatorial optimization problem and is proven to be MV-hard in the general case (cp.
[14]).
Despite the problems of winner determination, combinatorial auctions have recently been
applied successfully in numerous ways. [22] show an application to airport time slot allocation,
where the bidders have complementarities about a landing and starting slot for each aircraft.
[6], [8], and [17] use the trucking services environment. These auctions have also been applied
in the environment of electricity markets [21], the disposaI of spectrum licenses [16], or the
purchase of airtime for advertising [13], to mention only a few.
The general winner determination problem is tackled in [2], [10], [24], and [25] for example. In
[23] and [28] some special cases are presented that are solvable in polynomial time. A survey
on combinatorial auctions is given in [7].
In this paper, we will apply combinatorial auctions to a specific allocation problem, which will
be presented in the next section. Furthermore, we derive the winner determination problem for
that auction. We will then provide Upper and lower bounds for that specific problem, which
are essential for the successful application of exact methods. Within runtime studies we will
show the quality of our bounds by comparing them to Standard Software and an aIgorithm
taken from the literature, respectively.

2

2 An Allocation Problem

2.1 Assumptions and Notations

In this paper we study the following allocation problem: a Company C has a Single machine
and would like to seil T contiguous time slots, t = l,...,T, on this machine, but it does not
know any market prizes. The goal is to maximize the revenues with the sales. At the same
time we have |/| potential buyers, i € I, of the time slots; each of them provides |Ji| jobs,
j € Jj, and every job can be executed on this machine. In the following, the jobs will be
aggregated as follows:

J = U Ji
iei

Each job j € J can be processed at most once and, once started, cannot be preempted,
whereas only one job at a time can be processed. Job j can be characterized by a release
date rj, a due date dj, and a processing time pj. In addition, a particular customer i' gains
a time-independent positive value Vj, a profit, if job j is one of his, j G Jv, and is scheduled
on the machine. The buyers' goals are to pay as little as possible to get their jobs scheduled
on the machine, or, in other words, they try to maximize their profits.
We assume that

j€J

and hence, not all jobs can be processed.
What is described above is a resource allocation problem. In the literature different approaches
have been proposed to tackle such an allocation problem, for example, the application of multi-
agent systems. There, the potential buyers (or agents) negotiate the resource among each
other where each potential user tries to minimize the costs for executing his jobs. See for
example [1] and the references therein.
In this paper, we will follow a decision theoretic approach similar to [29]. The question is,
which customer should get what time slot(s) at what prize in order to maximize the profit of
the Company owning the machine. As mentioned above, prize determination is not part of
the research presented here. In the following, auctions are assumed to solve the coordination
problem; we will show that we face superadditive preferences within the presented allocation
problem and thus, the application of combinatorial auctions becomes senseful.

2.2 Application of Combinatorial Auctions

In applying auctions to this resource allocation problem the time slots can be interpreted as
items that are auctioned off by the auctioneer, i.e., Company C. The jobs can be interpreted
as bidders, which ask for these items. It is not essential to know, which customer provides
which job, because the jobs of an individual i are not interrelated. Hence, it is possible to
schedule anything between all jobs or no job for any customer i G I.
Since only a time window dj — rj for the execution of job j is given, the job can be scheduled
for different consecutive time slots. These intervals can be interpreted as bids and, to be more
specific, they can be interpreted as so-called XOR-bids: a job only wants to get exactly one
interval of the length pj out of interval [rj\dj], because every job can be processed at most
once. Hence, it asks for the interval

[r,-; rj + Pj] XOR [rj + 1; rj + Pj + 1] XOR ... XOR [dj - pj] dj].

3

The bidding prize bj for subset j € «/, is some positive value which may deviate from the true
valuation Vj of customer i for this subset of time slots, with bj < Vj.
Since the Jobs can have processing times bigger than one and since they are non-preemptive,
the bids for "connected" time slots can be interpreted as superadditive preferences. Applying a
"traditional" auction, e.g., a sequential auction, in presence of these combinational preferences,
again the already mentioned forecasting problem would evolve by auctioning one time slot at a
time. Thus, we will use combinatorial auctions to solve the allocation problem where all time
slots are auctioned off simultaneously and the bidders can place bids on any subset of items.
Consider the following example: the quadruple (rj',dji,Pj>,bj>) = (0,4,2,15) is communicated
by bidder j' to the auctioneer. This means that bidder j' wants to get two consecutive time
slots out of interval [0; 4] and is Willing to pay bf = 15 cu for receiving them. The bids that
he places implicitly can be stated explicitly as shown in table 1.

Bid Slot 1 Slot 2 Slot 3 Slot 4 bj

1 1 1 0 0 15
2 0 1 1 0 15
3 0 0 1 1 15

Table 1: Combined Preferences

Any other subset of at most two time slots he values at 0 cu, because then, the Job could not
be processed and no profit can be gained. Note, that this are superadditive preferences; for
example, his valuation of slot {1} and {2} is 0 each, the bündle of slots {1,2} he values at
15. Of course, if the bidder gets more consecutive time slots than needed, the Job could also
be processed. Since the additional profit for Company C would be zero, C is indifferent in
giving j' two or more consecutive time slots. (This Situation changes if C has positive reserve
prizes for each time slot. Then, bidder j' will receive at most two time slots.)

What we did up to now is to describe the allocation problem as an auction. Since we showed
that the bidders (Jobs) have superadditive preferences to the items (time slots), the application
of combinatorial auctions becomes senseful. In the following we will present a model for the
winner determination problem.

2.3 The Winner Determination Problem

Assume that all bids have been placed. Under the assumption of revenue maximization the
winner determination of the mentioned combinatorial auction can be modelled as Weighted Job
Interval Scheduling Problem {WJISP). Given | J\ positive-weighted Jobs with job-specific
release dates, due dates and processing times, the WJISP assigns |T| time slots in such a
way to the Jobs, that every time slot is assigned at most once to a Job and vice versa, with the
objective of maximizing the sum of the weights for the scheduled Jobs. Apparently, WJISP
is a suitable way to model the winner determination of the presented combinatorial auction.

In this paper, we devise a time-indexed formulation of this problem similar to [11] and [27].
Let ej = Tj + pj denote the earliest finishing times and Tj = [e^; dj] the possible finishing
times for job j. Denoting the decision variables as

4

- { o]
_ . if job j ends in time slot t,

X, t " otherwise,

then, the generic WJISP model can be stated as follows:

4
max E E bi xit (1)

j€J t=ej

min{dj-; t+pj-1}
st J2 £ z,T < i vier (2)

j€J r=max{ej; {}

di
E xi> i1 Wey (3)

t=ej

xjt € {0,1} Vj C= J , V* € T; (4)

The objective function (1) states that the sum of the bidding prizes of the accepted bids has to
be maximized. Constraints (2) State that only one job at a time is scheduled on this machine.
Inequalities (3) ensure that any job is scheduled at most once and (4) denotes the domains of
the decision variables.

2.4 Insights to WJISP

The WJISP has been proven to be MV-hard in the general case as shown in [26]. It can
be reduced to the MV-hard JlSPk which is an unweighted problem where each job asks for
exactly k intervals. Thus, the literature focuses on heuristic algorithms. The State of the art
for heuristics can be found in [3], [4], and [5]. All three present 2-approximation algorithms
for the general WJISP.
In [5], a deterministic two-phase aIgorithm (tp for short), consisting of a sorting, an evaluation
and a selection phase, is proposed. This approach will serve as a benchmark for the heuristic
derived in section 4 within computational studies. [3] apply the local-ratio technique to the
WJISP. In [4], a rounding algorithm starting from the LP-solution is given. They also show
that the LP-solution has a worst-case approximation-ratio of 2. Unfortunately, the authors
do not supply any runtime studies.

Let us now analyze three polynomially solvable special cases of WJISP.

Theorem 1 The special case {r, = r, dj = d, Vj E /} is polynomially solvable.

Proof. Assume the time slots on a real line. This case implies that every bidder likes to
have pj consecutive intervals whereas he is indifferent concerning the location of the time
slot(s) on this line. Hence, he only has to submit the tuple (pj,bj). It is easy to see that
this reduces to the case of combinatorial auctions with identical objects, for which the winner
determination is proven to be in V, cp. [28]. •

5

Theorem 2 The special case {rj — dj < 2pj, Vj G J} /'s polynomially solvable.

Proof. This is just a generalization of the case that each job is characterized by exactly
one interval. The latter is proven to be polynomially solvable by dynamic programming (see
[23] or [28], e.g.). Since all intervals of a job intersect, they are all mutually exclusive. •

Theorem 3 Relaxing constraints (3) in (1) - (4) yields a polynomially solvable subproblem.

Proof. See [23] and [28]. Again, the Optimum Solution can be obtained by dynamic program
ming. •

In the following we will calculate upper bounds by Lagrangean relaxation using the results of
theorem 3.

3 Lagrangean Relaxation

In t his section we are going to apply Lagrangean relaxation to (1) thru (4). Our Intention is to
relax the constraint set (3), which ensures that any job is scheduled at most once. Denoting
the Lagrangean parameters with Xj the relaxation can be stated as follows:

max E E bi xJt + E Ai 1 ~ E xjt (5)
jeJ t—ej jej \ t=ej)

s.t. (2), and (4) (6)

Rearranging the objective function yields

max EDjxJt (+ EXJ) (7)
j€J t—ej \ j'S J)

where

b'j = bj - Xj (8)

According to theorem 3 the subproblem is efficiently solvable by dynamic programming.
The recurrence equations can be stated as follows (see [28], e.g.):

m(t) = max |m(i - 1), max [m(r) + b'T+l t | r < i]} (9)

where

K+I,t = (10)

The parameters b'j T+l t denote the value of job j that starts at r +1 and ends in t, reduced by
Xj. Thus, b'T+11 gives the best bid on the interval [r + 1; t] with processing time t - (r + 1).

The value m{T) gives the Optimum objective function value.

To choose appropriate values for the Lagrangean multipliers Aj we employ subgradient opti-
mization, see for example [9] or [12]. We Start with A7 = 0 and update the multipliers after
each Iteration as follows: let UB and LB denote the current best known upper and lower
bound, respectively, and Z the Iteration counter, then

fax+>-(UB£%'Si} <»)

where

5j = 22 xjt ~~ 1 (12)
t—ej

and 9 denotes the step size parameter which is set to 2 initially. 9 is halved, if the upper
bound could not be improved within the last 5 iterations.

We implemented two stopping rules. The procedure stops, if the number of iterations reaches
the limit of 250 or if the change of multipliers is sufficiently small, that is,

£ l\Z+1 - \?l < « (13)
jeJ

where we chose e = 0.001.

An essential result of duality theory states that the Lagrangean relaxation (7), (2), and (4)
achieves at least the objective function value of the LP-relaxation of (1) - (4). Furthermore,
in the case that the integrality property holds the objective function value of the Lagrangean
relaxation equals that of the LP-relaxation.

Theorem 4 For the subproblem (7), (2), and (4), the integrality property holds.

Proof. The condition that any job can be processed only once having been relaxed, it is easy to
see that the remaining problem has the consecutive ones property. For that case, all extreme
points of the underlying polyhedron are integral, see for example [18]. •

Hence, the best upper bound that we can achieve by the assumed Lagrangean relaxation is
the objective function value of the LP-relaxation. Nevertheless, it is interesting to see the
runtime Performance of the Lagrangean relaxation in comparison to the LP-relaxation.

4 Lagrangean Heuristic

In this section we develop a heuristic which uses the results given by the Lagrangean relaxation.
Recall, that by the chosen relaxation it is possible to schedule jobs more often than once. The
first step of the algorithm is to construct a feasible Solution to WJISP from the Solution of
(9). Any job which has been chosen at least once by the Lagrangean relaxation is considered

7

to be in the initial Solution. For jobs scheduled at least twice, we build a feasible schedule by
randomly choosing one occurrence of this job. Since this job has already been scheduled, we
reduce the number of schedulable jobs and update the available time slots.
A detailed description is given within aIgorithm 1.

Algorithm 1 (Initial Solution)

Input: Solution L of (9), T, J, (rj,dj,pj,bj) Vj e J;
Output: feasible Solution KJ, LB, flag, T', J';

V <- T, J' <- J;
flag = 0;

for (j € L) {
if (ZtXj't > 1) {

:f > 2) {
flag — 1;
choose t' with Xj>t> = 1 at random;

}
K' 4— K ' U {xj>t'};
LB = LB 4- bj>;

T' <— T'\{t', t' — 1,... ,t' — py + 1};
}

}

The result of algorithm 1 is a feasible Solution to WJISP. If it returns flag = 0, we know
that (9) already produced a feasible Solution.
Note that at least one time slot will be empty, if flag = 1 is returned. In that case, the
improvement phase takes over. There, we consider those jobs and time slots that have not
been scheduled and occupied yet, respectively. If we imagine the time slots being on a real
line, and if you remove the time slots already occupied, the real line will become clustered.
The improvement algorithm solves (9) separately on any remaining consecutive time interval
on this line. Of course, only unscheduled jobs are taken into account.
Algorithm 2 gives a description of the improvement phase.
It is possible that the improvement phase yields again a plan where jobs are scheduled at least
twice. Therefore, the Solution of this problem is again transferred to algorithm 1 and so on.
This iterative procedure stops if the parameter flag returns 0 and we get a feasible Solution to
WJISP. The heuristic is solved after each Iteration of the Lagrangean relaxation.

8

Algorithm 2 (Improvement)

Input: flag, T', J';
Output: Solution L of (9), T, J;

if (flag == 1) {
for (all intervals in T') {

solve (9) on J';
obtain new Solution L;

}
}
eise stop

J';

5 Computational Studies

In order to test the Performance of the algorithm, we implemented the Lagrangean relaxation
and heuristic (Ih for short) in GNU C. The relaxation is tested against the LP-relaxation (Ip
for short) of (l)-(4), which is solved by CPLEX 7.0. As mentioned above, the lower bound is
benchmarked against the two-phase algorithm (tp) proposed in [5] which was implemented in
GNU C as well.
The tests are being performed on an AMD Athlon with a 1.8 GHz processor and 768 MB of
RAM running a Linux operating system.

5.1 Test Instances

To the best of our knowledge there have not been any runtime studies on algorithms for the
WJISP in the literature. To close this gap, first we develop an instance generator. The basic
idea stems from an instance generator for general combinatorial auctions which can be found
in [24].
For generating an instance the following parameters need to be defined:

J number of jobs
T number of time slots

lp, up lower and upper bound for processing time
lb, ub lower and upper bound for bidding prize

<j> distribution for bidding prizes

Every particular job j' is assigned a processing time which is chosen out of the interval [lp\ up\.
Then, the release date is determined out of the feasible interval [0; T — p ?]. After that the
due date is generated out of [ry + Pj>; T].
All data are generated randomly and uniformly distributed on the particular intervals. Without
loss of generality we assume all the data to be integer-valued.
We choose two different distributions 4> € $ for the bidding prizes, random (ra) and weighted
random (wra). In both cases at first we draw a random number ry uniformly distributed in
the interval [i6; ub]. For <j> = ra, we directly assign the value as bidding prize, thus, by = ry.
Under the assumption of wra we multiply the random number with the processing time, i. e.,
we calculate bj> = r. The Intention is that the more time slots are requested in a specific

9

bid the higher the bidding prize tends to be. This latter assumption seems to be more realistic.
The Jobs are stored as quadruples as already mentioned. Thus, any instance consists of a value
for T and J, and \ J\ quadruples, one for each generated job.

According to the results of pretests and in order to give an extensive test-bed, we chose the
number ofjobs and time slots as follows:

J e {200,400,600,800,1000}

T € {100,200,400,600,800,1000}

with the assumption of J > T. The number of possible combinations are

2 + 3 + 4 + 5 + 6 = 20.

Furthermore, we chose the possible intervals for the processing times [lp\ up] out of the set I,
where

rp T' r 3Ti
. [i; r),

T 3 T
1;4. J 1; 2.

)
T.

. [i; r),
T.

Finally we picked an interval for the bidding prizes:

[lb-, u b] = [1000; 10000]

Hence, we did not test the influence of different intervals for bidding prizes.
Since we generated 5 instances each for these parameter settings with |$| = 2 distributions,
in total we get

20-5-1-5 2 = 1000

instances.

5.2 Results

Any instance can be characterised by the triple {7 e T]4> 6 $;i 6 /}. Here, 7 is expressed
as joJs, which denotes the number of jobs and time-slots, each divided by 100. Parameter
(j) € $ is expressed as {ra,wra} and therefore denotes the distribution of the bidding prizes,
and i € / represents the interval, from which the processing times of the jobs are drawn.
Since the calculation of our lower bound contains a probabilistic component, the instances
were all executed twice for the Lagrangean heuristic. We observed that for ra (wra) the
deviation of the two runs for the lower bound is about 7% (2%) for the worst and 1% (below
0.01%) for the average case over all double-runs. The deviation of the upper bounds were in
the worst (average) case below 3% (0.1%) for both distributions. Because the Solution for tp
and the derivation of the LP-solution are deterministic, those algorithms were only executed
once.

In order to give an idea of how far Standard Software - in our case CPLEX 7.0 - can reach
for the chosen test environment, we at first applied CPLEX to derive the Solution of the LP-
relaxation for the instances. Table 2 shows how many instances could be solved. Although

10

<t>
7 i Ml Ml

ra
[i;fl [1 -,T] r?;fi Ml Ml

wra
fi;fl [i ;T\ f?;fl

2.1 5 5 5 5 5 1 5 5 5 5 5
2.2 5 5 5 5 5 5 5 5 5 5
4.1 5 5 5 5 5 5 5 5 5 5
4.2 5 5 5 5 5 5 5 5 5 5
4.4 5 5 5 5 5 5 5 5 5 5
6.1 5 5 5 5 5 5 5 5 5 5
6.2 5 5 5 5 5 5 5 5 5 5
6.4 5 5 5 5 5 5 5 5 5 5
6.6 5 5 5 4 - 5 5 5 5 —
8.1 5 5 5 5 5 5 5 5 5 5
8.2 5 5 5 5 5 5 5 5 5 5
8.4 5 5 5 5 5 5 5 5 5 5
8.6 5 - - - - 5 — — — _
8.8 - - - - - - — _
10.1 5 5 5 5 5 5 5 5 5 5
10.2 5 5 5 5 5 5 5 5 5 5
10.4 5 5 4 5 5 5 5 5 5 5
10.6 5 - - - - 5 - — — —
10.8 - - - - - - — _ — __
10.10 - - - - ~ - - - -

z 1 85 75 74 74 70 | 85 75 75 75 70]

Table 2: Number of Solved Instances by CPLEX 7.0

providing 768 MB of RAM, not all instances could be solved. Here, entryindicates that no
instance could be solved. It can be observed, that the distribution 6 does not influence results
significantly. The only thing that can be stated is that {.;[l; could be solved best and

{ > ' [?' } worst. In contrast, the Lagrangean heuristic and the two-phase algorithm both
solved all instances.

Tables 3 and 4 give Information about the runtimes of Ip and Ih within the specific distributions.
min, max, and avg denote the absolute minimum, absolute maximum and average over all
instances within a particular column. Hence, the worst running time of Ip over all 100 instances
of |7 e T;ra; was 39 seconds. An entry "**" indicates that none of the instances
could be solved. Thus, runtimes for that cases could not be suggested for calculation of min,
max, and avg. Nevertheless, it is to see that throughout the instances the runtimes for Ip are
significantly higher.
Focussing on Ih, we can observe a slight decrease of the runtimes by increasing mean of
processing times of the jobs. Since a probabilistic component and two different stopping rules
are included, it is not stringent. Looking at the distributions of the bids, we can see that the
running times for wra are significantly lower than for ra. The reason is that for ra normally
all 250 iterations had to be executed; for wra, the stopping criterion in (13) was reached
often in early iterations. An outlier for wra was an instance {10_10; wra; [1;T]} with about
13 seconds Solution time. Here, all 250 iterations had to be executed.
Next, we study the quality of our upper bound. To do so we compare our upper bound to the
best bound we can achieve with Ih, i.e. the Solution of Ip. As a measure we use the following
expression for this comparison:

11

i [1; ?]
Ih

[i; f] M] [i ;T\ [b 3T]
4 J

7 Ip
?]

Ih ip Ih ip Ih Ip Ih ip Ih

2.1 0.12 0.10 0.13 0.09 0.16 0.08 0.17 0.08 0.14 0.00
2J2 0.42 0.37 0.76 0.36 0.97 0.35 0.85 0.32 0.64 0.00
4.1 0.28 0.15 0.41 0.14 0.44 0.12 0.41 0.12 0.39 0.02
4.2 1.07 0.46 1.56 0.44 1.56 0.43 1.94 0.40 1.52 0.00
4.4 6.22 2.03 8.12 2.21 8.46 2.23 7.26 2.14 6.26 0.04
6.1 0.40 0.21 0.64 0.18 0.79 0.17 0.62 0.16 0.68 0.00
6.2 1.64 0.55 2.20 0.55 2.56 0.48 2.26 0.46 2.36 0.01
6.4 8.00 2.24 9.36 2.54 10.94 2.54 10.86 2.39 10.46 0.03
6.6 20.80 5.63 25.60 5.84 32.20 5.63 28.00 5.18 ** 0.08
8.1 0.61 0.27 0.94 0.24 0.95 0.22 0.88 0.20 0.93 0.01
8J2 2.30 0.66 3.32 0.60 3.10 0.57 3.30 0.52 3.38 0.02
8.4 12.00 2.40 14.60 2.77 13.80 2.85 14.20 2.68 12.40 0.06
8.6 30.40 6.29 ** 6.49 ** 6.22 ** 5.83 ** 0.14
8j ** 10.70 ** 10.51 ** 9.93 ** 9.26 ** 0.24
10.1 0.79 0.34 1.02 0.30 1.16 0.27 1.05 0.24 1.04 0.01
10.2 2.92 0.77 3.88 0.69 4.00 0.67 4.08 0.59 4.04 0.03
10.4 15.00 2.57 19.60 3.06 17.75 3.14 17.60 3.00 16.40 0.13
10.6 34.40 6.90 ** 7.20 ** 6.88 ** 6.36 ** 0.33
10_8 ** 11.62 ** 11.58 ** 10.91 ** 9.96 ** 0.59
10.10 ** 16.31 ** 15.72 ** 14.89 ** 13.67 ** 0.81

min 0.10 0.08 0.10 0.08 0.12 0.07 0.13 0.07 0.12 0.00
avg 8.08 1.60 6.14 1.00 6.44 0.99 5.94 0.92 4.33 0.02
max 39.00 7.01 28.00 6.08 38.00 5.79 32.00 5.30 21.00 0.62

Table 3: Average Runtimes for Ip and Ih, Distribution ra

i [i; ?] M] [i;f] fr3?]
7 ip Ih iP Ih ip Ih Ip Ih Ip Ih
2.1 0.15 0.03 0.20 0.02 0.19 0.01 0.16 0.01 0.15 0.00
2_2 0.58 0.13 0.83 0.14 1.11 0.10 0.78 0.07 0.69 0.00
4.1 0.32 0.03 0.50 0.04 0.57 0.00 0.51 0.00 0.43 0.00
4J2 1.28 0.16 1.60 0.07 1.82 0.18 2.00 0.09 1.66 0.00
4.4 7.64 0.97 8.58 0.46 9.18 1.07 6.34 0.22 6.50 0.01
6.1 0.62 0.04 0.77 0.02 0.80 0.02 0.72 0.01 0.65 0.00
6.2 2.24 0.14 2.24 0.09 2.38 0.16 2.12 0.14 2.24 0.00
6.4 8.08 0.71 11.10 0.61 11.80 0.66 10.96 0.54 9.88 0.01
6.6 27.80 2.03 35.60 1.14 26.40 1.46 26.00 2.29 ** 0.02
8.1 0.67 0.05 1.12 0.02 1.12 0.02 1.01 0.02 0.97 0.00
8.2 3.16 0.20 3.52 0.05 4.02 0.15 3.40 0.11 3.08 0.00
8.4 16.20 0.70 16.60 0.65 18.00 1.00 15.00 0.64 13.00 0.01
8.6 36.60 1.92 ** 1.76 ** 2.75 ** 2.50 ** 0.02
8.8 ** 4.93 ** 3.18 ** 1.30 ** 4.56 ** 0.03
10.1 0.90 0.09 1.38 0.03 1.62 0.04 1.32 0.05 1.20 0.00
10.2 5.00 0.15 4.28 0.07 5.10 0.14 4.32 0.11 3.96 0.00
10.4 19.80 0.72 20.80 0.87 23.80 1.06 20.80 1.12 17.00 O.Ol
10.6 49.60 2.17 ** 1.52 ** 1.88 ** 2.06 ** 0.02
10j} ** 3.63 ** 2.78 ** 1.33 ** 2.68 ** 0.04
10.10 ** 5.57 ** 4.09 ** 3.72 ** 6.15 ** 0.05
min 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
avg 10.78 1.22 7.28 0.88 7.19 0.85 6.36 1.17 4.39 0.01
max 57.00 10.06 45.00 5.77 29.00 6.07 28.00 12.97 18.00 0.06

Table 4: Average Runtimes for Ip and Ih, Distribution wra

12

<t>
7 i [Ml Ml

ra
[i;fl [i;T] r?;fl Ml 1 Ml

wra
1 f i;fl I [i;T] 1 f £;fl

2_1 0.08 0.08 0.11 0.08 0.00 1.19 0.20 0.20 0.00 0.00
2_2 0.04 0.57 0.43 0.01 0.00 1.18 0.23 0.27 0.04 0.00
4_1 0.31 1.28 0.49 0.97 0.03 0.43 0.07 0.00 0.01 0.00
4_2 0.13 0.39 0.35 0.87 0.00 0.44 0.25 0.08 0.03 0.00
4.4 0.07 0.57 0.45 1.23 0.00 0.47 0.16 0.14 0.01 0.00
6.1 0.42 1.18 0.87 0.73 0.00 0.38 0.09 0.10 0.23 0.00
6_2 0.49 0.74 0.74 1.18 0.00 0.39 0.07 0.13 0.28 0.00
6.4 0.27 0.28 0.89 0.57 0.00 0.38 0.09 0.24 0.25 0.00
6.6 0.23 0.67 0.60 0.35 ** 0.41 0.10 0.23 0.26 **
8.1 0.33 0.65 0.88 1.81 0.00 0.16 0.07 0.10 0.14 0.00
8.2 0.45 0.84 1.31 1.65 0.00 0.17 0.06 0.06 0.14 0.00
8.4 0.31 0.37 1.39 1.15 0.00 0.18 0.04 0.09 0.26 0.00
8.6 0.16 ** ** ** ** 0.19 ** ** ** **
8.8 ** ** ** ** ** ** ** ** ** **
10.1 0.41 0.50 1.16 1.69 0.00 0.09 0.06 0.03 0.10 0.00
10.2 0.41 0.95 1.54 2.34 0.00 0.14 0.06 0.04 0.14 0.00
10.4 0.16 0.73 1.26 1.85 0.00 0.11 0.04 0.04 0.16 0.00
10.6 0.24 ** ** ** ** 0.12 ** ** ** **
10.8 ** ** ** ** ** ** ** ** ** **
10.10 ** ** ** ** ** ** ** ** ** **

min
avg
max

0.01
0.23
1.27

0.00
0.49
2.25

0.00
0.62
2.15

0.00
0.82
3.48

0.00
0.00
0.14

0.00
0.32
2.60

0.00
0.08
0.93

0.00
0.09
0.79

0.00
0.10
0.97

0.00
0.00
0.00

Table 5: Average, Best, and Worst Performance of Ih compared to Ip

{UB'h~VB") -100%. (14)
UBih

UBih and UBip respectively denotes the upper bound for the Lagrangean heuristic and the
LP-relaxation. UBih gives the average over the double-runs. Thus, (14) be interpreted as
the deviation of our upper bound to the LP-solution, expressed in percent. In table 5, the
observed deviations are listed, respectively averaged over the number of instances which could
be solved by CPLEX. It can be stated that our upper bound is very tight in comparison to
the Solution of Ip. It ranges from 0.0 to 3.5% in the worst cases and is below 1% on each
average of {.\4> /}. In addition, we can see that wra could normally be solved far
better than ra using Ih.

Now we analyze the quality of our lower bounds and we use tp as a benchmark. For the sake
of completeness, we start with providing some Implementation details and running times of
tp. In tp, a sorting aIgorithm is needed. To this, quicksort was used. As a rule of thumb we
can state that the running time for tp consists at least half of sorting time. Furthermore, the
aIgorithm needs a different representation of the instances; whereas for Ih the aforementioned
implicit bids (quadruples) could be used, tp needs every Single interval, and hence, the explicit
representation of bids as demonstrated in table 1. The times for deriving these intervals were
not taken into consideration.
Table 6 shows the average running times for tp. It becomes obvious, that the running times
for tp are significantly lower than for Ih. But, since Ih also delivers an upper bound, these
times cannot be compared. For tp, there is no big difference in respect of running times for ra

13

0
7 i Ml Ml

ra
[i;fl [i;T] Ml Ml

wra
[i;fl [i ;T] [frfl

2_1 o.oo 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
2.2 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00
4.1 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.00
4.2 0.04 0.03 0.02 0.01 0.01 0.04 0.03 0.02 0.01 0.01
4.4 0.08 0.06 0.04 0.03 0.02 0.08 0.06 0.05 0.03 0.02
6.1 0.03 0.02 0.02 0.01 0.01 0.03 0.02 0.02 0.01 0.01
6.2 0.07 0.05 0.04 0.02 0.02 0.08 0.06 0.04 0.03 0.02
6.4 0.16 0.12 0.09 0.06 0.04 0.18 0.12 0.10 0.06 0.04
6.6 0.27 0.19 0.13 0.09 0.07 0.29 0.19 0.15 0.10 0.06
8.1 0.06 0.04 0.03 0.02 0.02 0.05 0.04 0.03 0.02 0.02
8-2 0.12 0.09 0.06 0.04 0.03 0.13 0.10 0.07 0.05 0.03
8.4 0.29 0.21 0.15 0.09 0.07 0.32 0.22 0.15 0.10 0.07
8.6 0.49 0.34 0.23 0.16 0.12 0.56 0.36 0.25 0.16 0.12
8_8 0.74 0.47 0.33 0.21 0.18 0.81 0.52 0.36 0.24 0.18
10.1 0.08 0.06 0.04 0.03 0.02 0.09 0.07 0.04 0.03 0.03
10.2 0.19 0.13 0.09 0.07 0.05 0.21 0.15 0.10 0.07 0.06
10.4 0.48 0.32 0.22 0.15 0.12 0.54 0.37 0.24 0.16 0.12
10.6 0.83 0.55 0.37 0.23 0.21 0.90 0.64 0.41 0.26 0.21
10.8 1.21 0.80 0.53 0.34 0.32 1.35 0.91 0.58 0.37 0.31
10.10 1.63 1.07 0.72 0.44 0.44 1.82 1.27 0.80 0.48 0.41

min
avg
max

0.00
0.34
1.78

0.00
0.23
1.14

0.00
0.16
0.76

0.00
0.10
0.46

0.00
0.09
0.54

0.00
0.38
2.12

0.00
0.26
1.36

0.00
0.17
0.85

0.00
0.11
0.53

0.00
0.09
0.44

Table 6: Average Runtimes for tp

and wra, since for this algorithm the number of intervals heavily influences the running times.
With respect to the influenae ofset I it can be stated, that the runtime of tp decreases with
increasing mean of the intervals for the processing times.
Focussing the Solution quality of Ih in comparison to tp on average and in the worst case, we
use

(LBlh-LBtp) lQQ% (15)
LBih

Here, LBtp denotes the achieved lower bound by algorithm tp. LB^ is the weighted average
over the double-runs for Ih. Thus, expression (15) can be interpreted as the percentage im
provement of LBih to LBtp. Hence, a positive value implies that on average the Solution of
LBIH was better than that of LBtp. Table 7 shows the observed values.
It can be stated that in general the lower bound derived by Ih is on average better than that
by tp. Only in 7 out of 1000 instances tp performs better than Ih.
Interestingly, all these 7 cases appear under (j> = ra and i = Nevertheless, also for
these instances Ih gives better bounds on average.
The deviation from LBlh to LBtp tends to decrease when the instance size increases. Fur-
thermore, it slightly increases with increasing mean of processing times of the jobs, but this
effect decreases when the instance size grows. An obvious outlier is the case (j) — ra and
i = These instances could be solved by tp quite good as well.
Looking at the overall averages, the increase of the averages becomes more stringent, with the
same outlier. These averages are positive throughout the instances. They are at least above
6% and at most around 16%. The best cases for Ih ränge between 17% and 35%, the worst

14

<p
7 i Ml Ml

ra
1 [i;fl I [i;n [f;fl Ml Ml

wra
fi;fl [1;T] 1 frfl

2.1 9.25 14.80 19.08 15.92 14.78 12.75 12.40 14.12 14.75 15.82
2.2 13.31 13.09 19.29 20.33 13.69 10.86 9.26 12.63 15.69 16.16
4.1 7.50 12.27 14.29 18.27 9.68 11.83 15.70 18.42 14.40 18.35
4.2 12.32 14.14 17.65 16.13 14.25 11.07 13.66 14.97 17.86 19.89
4.4 11.24 14.51 15.57 21.00 7.45 12.18 15.63 15.60 16.44 16.79
6.1 6.93 14.56 12.02 13.09 9.85 12.11 13.42 14.99 13.51 15.64
6.2 5.98 11.81 15.52 14.40 10.03 11.14 14.38 14.47 14.82 19.60
6.4 5.65 12.29 16.14 15.24 7.83 12.30 13.69 17.49 16.79 14.61
6_6 8.02 11.93 14.32 16.13 8.57 10.77 15.86 16.92 16.73 11.97
8-1 6.30 12.43 12.12 13.15 9.13 10.27 13.09 15.42 12.60 17.95
8.2 3.71 14.68 13.52 13.23 11.80 11.94 14.28 14.76 14.61 19.02
8.4 5.07 14.45 12.10 11.41 9.81 12.40 14.78 13.43 16.72 14.52
8.6 3.61 16.70 12.73 13.05 9.92 12.41 14.75 14.86 17.45 14.47
8J5 4.24 14.86 12.27 12.45 9.62 10.28 14.07 14.86 16.45 16.41
10-1 3.99 7.71 9.25 11.26 12.63 11.74 12.90 12.14 12.53 16.93
10.2 3.47 9.14 11.00 11.98 8.31 13.25 14.16 12.07 14.10 17.12
10.4 6.26 11.02 9.49 10.69 10.99 13.19 14.15 12.52 13.38 9.05
10.6 2.94 10.40 12.54 12.41 9.35 13.75 13.89 12.72 12.25 16.16
10.8 2.87 10.66 12.77 12.06 10.18 13.10 14.16 14.84 16.14 15.31
10.10 1.99 10.89 11.45 13.29 8.37 13.01 13.09 12.40 16.49 13.28
min
avg
max

-5.05
6.23

19.92

4.95
12.62
19.76

3.29
13.66
30.75

5.85
14.27
31.59

0.00
10.31
31.00

4.49
12.02
17.86

4.76
13.87
24.20

5.70
14.48
26.54

5.79
15.19
28.29

0.00
15.95
35.50

Table 7: Average, Best, and Worst Performance of Ih compared to tp

between —5% and 6%.
In our opinion the most "realistic" instances for our allocation problem is the case (j) = wra
and i = For these instances the mean deviation for any instance size is about 12%
and above 4% in the worst case.

Up to now we focussed the quality for our lower and upper bounds separately. To give an idea
how far upper and lower bound are apart we will last but not least analyze the deviation of
these bounds for Ih. The quality will be measured by the following expression:

(JJBlh LBlh) iQo % (ig)
UBlh

UBih and LB^ denote the best upper and lower bound that could be found by executing Ih.
Hence, it is the average percentage deviation from upper to lower bound. The deviations can
be found in table 8, averaged over all 10 runs for each entry {7 G T; <]) G $; i G /}.
It becomes obvious, that the increase of the mean of processing times of the jobs is accompa-
nied by a slight decrease of the deviation. For </> = ra, the increase of the instance size tends
to lead to bigger deviations of upper and lower bounds. Surprisingly, for 0 = wra we can
State the contrary Observation. Agäin, the stated propositions do not hold stringently. The
worst average deviation was reached by the instances of (l0_8; ra; [l; 7) with below 20% in
mean.
Focussing on (j) i t can be stated that the quality for wra is significantly better than that for
ra. Note, that all instances {7; wra] ß; j were solved to optimality.

15

7 i Ml Ml

ra
flifl [i;T] Ml Ml

wra
[i;fl [i; T] [f;fl

2_1 8.83 4.72 3.76 5.49 0.00 2.41 0.71 0.36 0.13 0.00

2.2 9.17 6.39 3.89 4.76 0.00 2.12 0.75 0.79 0.19 0.00

4.1 8.87 7.60 7.17 4.38 0.13 0.81 0.71 0.00 0.02 0.00

4_2 7.96 7.18 8.66 6.50 0.20 0.83 0.50 0.56 0.06 0.00

4_4 9.88 9.24 8.88 7.11 0.19 1.36 0.35 0.66 0.01 0.00

6.1 10.28 9.22 8.75 8.63 0.10 0.91 0.19 0.33 0.43 0.00

6.2 13.45 12.37 8.55 10.06 0.10 0.74 0.18 0.36 0.55 0.00

6.4 15.29 12.80 10.33 8.58 0.10 0.56 0.22 0.51 0.30 0.00

6.6 14.91 12.73 11.68 8.36 0.10 1.03 0.20 0.48 0.45 0.00

8.1 10.28 9.02 8.12 9.83 0.10 0.33 0.18 0.19 0.40 0.00

8.2 14.81 10.72 9.41 11.35 0.10 0.48 0.14 0.20 0.44 0.00

8.4 15.76 11.38 12.48 11.49 0.10 0.36 0.08 0.24 0.40 0.00

8.6 17.66 11.18 11.08 10.98 0.10 0.39 0.13 0.32 0.33 0.00

8.8 16.80 11.62 12.89 10.19 0.10 0.40 0.24 0.23 0.64 0.00

10.1 10.01 10.92 10.97 8.01 0.10 0.24 0.17 0.10 0.41 0.00

10.2 16.25 13.14 12.51 10.22 0.10 0.38 0.12 0.24 0.25 0.00

10.4 17.66 12.09 14.16 11.85 0.10 0.26 0.31 0.18 0.65 0.00

10.6 18.79 12.26 13.35 11.81 0.10 0.36 0.15 0.12 0.82 0.00

10.8 19.35 13.16 14.00 10.85 0.10 0.33 0.19 0.06 0.44 0.00

10.10 19.28 13.06 14.52 10.75 0.10 0.36 0.27 0.24 0.36 0.00

min 3.39 1.14 1.74 1.46 0.00 0.01 0.00 0.00 0.00 0.00

avg
max

13.76 10.54 10.26 9.06 0.10 0.73 0.29 0.31 0.36 0.00 avg
max 22.58 18.55 19.27 18.64 0.51 4.02 2.36 1.97 1.92 0.00

Table 8: Average Quality for Ih

Looking at the observed overall worst cases we can State that it ranges between 0 and 22.5%
for ra and 0 and 4% for wra.

6 Conclusions

In this paper we focus on a specific allocation problem which is solved by a combinatorial
auction. We consider the winner determination problem and show that it can be modelled as
WJISP. Thus, a new application for WJISP is pointed out.
We show that the Standard Software package CPLEX is overstrained solving the LP-relaxation
of WJISP for larger instances. Hence, new upper and lower bounds based on Lagrangean
relaxation are derived. We compare the Performance of our bounds to the LP-relaxation and
a heuristic taken from the literature. Therefore, a new instance generator is provided. It
becomes obvious that our upper bound is tight in comparison to the LP-solution and that our
lower bound outperforms that of the algorithm taken from the literature almost always.

Acknowledgement: We like to thank Andreas Drexl for his continuous Support, Birgitta
Elendner, Eike Houben, Alf Kimms, Sonja Kovaleva, and Rudolf Müller for their helpful hints,
and Ingo Strunk, who took over parts of the programming.

16

References

[1] A. AGNETIS, P. B. MIRCHANDANI, D. PACCIARELLI, AND A. PACIFICI, Scheduling
Problems with two competing users, tech. report, Universitä Roma Tre, Dipartimento di
Informatica e Automazione, Rome, 2001.

[2] A. ANDERSSON, M. TENHUNEN, AND F. YGGE, Integer Programming for Com
binatorial Auction Winner Determination, tech. report, Computer Science Department,
Uppsala University, Uppsala, 2000.

[3] A. BAR-NOY, R. BAR-YEHUDA, A. FREUND, J. NAOR, AND B. SCHIEBER, A
unified approach to approximating resource allocation and scheduling, Journal of the
ACM, 48 (2001), pp. 1069-1090.

[4] A. BAR-NOY, S. GUHA, J. NAOR, AND B. SCHIEBER, Approximating the throughput
of multiple machines in real-time scheduling, SIAM Journal on Computing, 31 (2001),
pp. 331-352.

[5] P. BERMAN AND B. DASGUPTA, Multi-phase algorithms for throughput maximization
for real-time scheduling, Journal of Combinatorial Optimization, 4 (2000), pp. 307-323.

[6] C. G. CAPLICE, An Optimization Based Bidding Process: A New Framework for
Shipper-Carrier Relationships, PhD thesis, Massachusetts Institute of Technology, 1996.

[7] S. DE VRIES AND R. VOHRA, Combinatorial Auctions: A Survey, INFORMS Journal
on Computing, 15 (2003). to appear.

[8] T. ELENDNER, B. BURMEISTER, AND T. IHDE, HOW Combinatorial Auctions work
for DaimlerChrysler, in preparation.

[9] M. L. FISHER, The Lagrangian Relaxation Method for Solving Integer Programming
Problems, Management Science, 27 (1981), pp. 1-18.

[10] Y. FUJISHIMA, K. LEYTON-BROWN, AND Y. SHOHAM, Tamingthe Computational
Complexity of Combinatorial Auctions: Optimal and Approximate Approaches, tech. re
port, Computer Science Department, Stanford University, Stanford, 1999.

[11] L. A. HALL, D. B. SHMOYS, AND J. WEIN, Scheduling to minimize average comple-
tion time: Off-Iine and on-line algorithms, in Proceeding of the 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1996, pp. 142-151.

[12] M. H. HELD, P. WOLFE, AND H. D. CROWDER, Validation of subgradient opti
mization, Mathematical Programming, 6 (1975), pp. 62-88.

[13] J. L. JONES, Incompletely Specified Combinatorial Auctions: An Alternative Allocation
Mechanism for Business-to-Business Negotiations, PhD thesis, University of Florida, 2000.

[14] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, eds., 1972, pp. 85-103.

[15] J. K. MACKIE-MASON AND H. R. VARIAN, Generalized Vickrey Auctions, tech.
report, University of Michigan, Department of Economics, July 1995.

17

[16] J. MCMILLAN, Selling Spectrum Rights, Journal of Economic Perspectives, 8 (1994),
pp. 145-162.

[17] E. W. MOORE, J. M. WARMKE, AND L. R. GORBAN, The Indispensable Role of
Management Science in Centralizing Freight Operations at Reynolds Metals Company,
Interfaces, 21 (1991), pp. 107-129.

[18] G. L. NEMHAUSER AND L. A. WOLSEY, Integer and Combinatorial Optimization,
New York, 1988.

[19] D. C. PARKES, Iterative Combinatorial Auctions: Achieving Economic and Computa-
tional Efficiency, PhD thesis, University of Pennsylvania, 2001.

[20] D. C. PARKES AND L. H. UNGAR, Iterative Combinatorial Auctions: Theory and
Practice, in Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-
00), 2000, pp. 74-81.

[21] J. E. QUINTERO, CombinatorialElectricity Auctions, tech. report, Management Science
and Engineering Department, Stanford University, Stanford, 2000.

[22] S. RASSENTI, V. SMITH, AND R. BULFIN, A combinatorial auction mechanism for
airport time slot allocation, The Bell Journal of Economics, 13 (1982), pp. 402-417.

[23] M. H. ROTHKOPF, A. PEKEC, AND R. M. HARSTAD, Computationally Manageable
Combinational Auctions, Management Science, 44 (1998), pp. 1131-1147.

[24] T. SANDHOLM, Algorithm for optimal winner determination in combinatorial auctions,
Artificial Intelligence, 135 (2002), pp. 1-54.

[25] T. SANDHOLM AND S. SURI, Improved Algorithms for Optimal Winner Determination
in Combinatorial Auctions and Generalizations, in Proceedings of the National Conference
on Artificial Intelligence (AAAI), 2000, pp. 90-97.

[26] F. C. R. SPIEKSMA, On the Approximability of an Interval Scheduling Problem, Journal
of Scheduling, 2 (1999), pp. 215-227.

[27] J. M. VAN DEN AKKER, C. A. J. HURKENS, AND M. W. P. SAVELSBERGH,
Time-indexed formulations for single-machine scheduling problems: Column generation,
INFORMS Journal on Computing, 12 (2000), pp. 111-124.

[28] S. VAN HOSSEL AND R. MÜLLER, Optimization in electronic markets: Examples in
combinatorial auctions, Netnomics, 3 (2001), pp. 23-33.

[29] M. P. WELLMAN, W. E. WALSH, P. R. WURMAN, AND J. K. MACKIE-MASON,
Auction Protocols for Decentralized Scheduling, Games and Economic Behavior, 35
(2001), pp. 271-303.

[30] E. WOLFSTETTER, Topics in microeconomics: industrial Organization, auctions and
incentives, Cambridge University Press, Cambridge, 1999.

[31] P. R. WURMAN AND M. P. WELLMAN, AkBA: A Progressive, Anonymous-Price Com
binatorial Auction, in Second ACM Conference on Electronic Commerce, 2000, pp. 21-29.

18

