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Abstract 

In this paper we consider the following problem: a Company wants to seil consecutive 
time slots on a Single machine. It wants to maximize the revenues, whereby market 
prizes are not known. Additionally, consider a number of potential buyers of those time 
slots providing each at least one job. All th ese jobs can be executed on that machine, 
but the number of time slots is not large enough to schedule all jobs. Furthermore 
assume, that every customer gains a job-specific profit with the processing of one of his 
jobs, whereby this profit is private Information and thus, only known to him. What the 
Company faces then is an allocation problem: Which buyer should get what time slot(s) 
at what prize in order to maximize the company's revenue. In the following we will 
show that this problem is well suited to be solved by a combinatorial auction. Within 
combinatorial auctions bidders are enabled to place bids on any subset of items that are 
auctioned off. We will focus on the winner determination problem for such an auction. 
The winner determination is understood as the assignment of items to bidders after all 
bids have been placed, with the objective to maximize the auctioneers outcome. It will 
be shown that the winner determination problem here can be described as so-called 
Weighted Job hterval Scheduling Problem (WJISP). Since this problem is known to 
be AfV-hard, heuristics have become a main research interest. Unfortunately, there has 
not been done much research on upper bounds so far. Furthermore, to the best of our 
knowledge, no runtime studies are available in the literature yet. Here, we try to close 
these gaps. First, we present a Lagrangean heuristic for the WJISP and characterize 
relevant test instances. Using this test-bed, the considered upper and lower bounds are 
respectively compared to the LP-solution and to a heuristic taken from the literature. 

Keywords: Scheduling, combinatorial auctions, winner determination, weighted job interval 
scheduling problem, Lagrangean relaxation, heuristics, combinatorial optimization 

1 Introduction 

In recent years, a new type of auction has become a main research interest, the so-called 
combinational or combinatorial auction. 
Consider the following Situation: On the one hand there is an individual who owns a number 
of items, whereby each item is unique and can thus be sold only once. Assume that the 
individual wants to maximize his revenues by selling these items but has no idea of market 
prizes. On the other hand think of a number of potential buyers who will gain a profit by 
buying these items if the prizes are below their valuations of the items. These valuations are 
assumed to be only known to him (private Information); of course, the buyers try to minimize 
their expenses for these items. In addition, we presume that the buyers have superadditive 
preferences with respect to the items. This implies that receiving a bündle of items would 
have a bigger valuation to a buyer than the sum of the individual items in that bündle. For 
example consider a particular customer who values item {/!} at 10 currency units (cu), {5} 
at 10 cu and the bündle {A, B} at 25 cu. 
An eligible allocation would assign the items in such a way to the potential buyers that the sum 
of the individual customers' valuations is maximized, which is called an efficient allocation. To 
solve this problem and to achieve an efficient allocation, different coordination concepts can 
be thought of, as for example bilateral negotiation or allocation rules like first come-first serve. 
Negotiation bears the problem of high transaction costs when negotiating with any potential 
buyer, because the number of potential buyers can be quite numerous in today's globalized 
markets; simple allocation rules on the other hand are more or less arbitrary and, thus, do 
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normally not yield an efficient allocation. 
As mentioned above we will focus on the concept of auctions, which were identified to be well-
suited in the environment of unknown market prizes and private Information, see for example 
[30]. But applying a "traditional" like a sequential auction in the context of superadditive 
valuations, the customers (or bidders) would be left with a forecasting problem: assume that 
{^4} is auctioned off before {£?}. To determine the bid for {^4} the bidder has to forecast at 
what prize he could get {B} in the later auction. If, for example, he can get item {A} at 15 
cu, the bids for {B} must not exceed 10 cu because, otherwise, he will be left with a loss. 
In this context, combinatorial auctions have two complementary advantages: first, all items 
are auctioned off simultaneously, and second, the bidders can place bids on bundles of items 
and, thus, explicitly express combined values to bundles (or subsets). In the above example 
the bidder would be able to place three bids - on {>1}, on {B}, and the bündle {A,B} with 
some bidding prizes which are assumed to be smaller or equal to his valuation. In the following 
we will only consider bids and we will not take care if that is the real valuation or something 
below. Hence, mechanism design like the design of truth revelation mechanisms is beyond 
the scope of this paper. Also, the derivation of prizes, which is normally part of mechanism 
design, will not be the research topic of this paper. The readers interested in these topics are 
referred to [15], [19], [20], and [31], for example. Of course, the achievement of the above 
mentioned efficient allocation heavily depends on the truthful bidding of the participants of 
the auction, but here, we will assume that all bids have been placed. 
Given all bids, the question for the seller (or auctioneer) reduces to the following: Which bids 
have to be accepted to maximize the outcome of the auction? The answer gives the so-called 
winner determination. It assigns the items to participants of the auction in such a way that 
the outcome for the auctioneer will be maximized. Given that the bids have all been placed 
truthfully, the winner determination will in addition achieve an efficient allocation. 
This is a disadvantage of combinatorial auctions, since in the general case the winners are 
difficult to be obtained. The general winner determination problem can be stated as follows: 
given a set of T elements (items) and a set of J subsets (bids) of T, the problem is to maximize 
the positive-weighted subsets, whereby the subsets have to be pairwise disjoint. This denotes 
a combinatorial optimization problem and is proven to be MV-hard in the general case (cp. 
[14]). 
Despite the problems of winner determination, combinatorial auctions have recently been 
applied successfully in numerous ways. [22] show an application to airport time slot allocation, 
where the bidders have complementarities about a landing and starting slot for each aircraft. 
[6], [8], and [17] use the trucking services environment. These auctions have also been applied 
in the environment of electricity markets [21], the disposaI of spectrum licenses [16], or the 
purchase of airtime for advertising [13], to mention only a few. 
The general winner determination problem is tackled in [2], [10], [24], and [25] for example. In 
[23] and [28] some special cases are presented that are solvable in polynomial time. A survey 
on combinatorial auctions is given in [7]. 
In this paper, we will apply combinatorial auctions to a specific allocation problem, which will 
be presented in the next section. Furthermore, we derive the winner determination problem for 
that auction. We will then provide Upper and lower bounds for that specific problem, which 
are essential for the successful application of exact methods. Within runtime studies we will 
show the quality of our bounds by comparing them to Standard Software and an aIgorithm 
taken from the literature, respectively. 

2 



2 An Allocation Problem 

2.1 Assumptions and Notations 

In this paper we study the following allocation problem: a Company C has a Single machine 
and would like to seil T contiguous time slots, t = l,...,T, on this machine, but it does not 
know any market prizes. The goal is to maximize the revenues with the sales. At the same 
time we have |/| potential buyers, i € I, of the time slots; each of them provides |Ji| jobs, 
j € Jj, and every job can be executed on this machine. In the following, the jobs will be 
aggregated as follows: 

J = U Ji 
iei 

Each job j € J can be processed at most once and, once started, cannot be preempted, 
whereas only one job at a time can be processed. Job j can be characterized by a release 
date rj, a due date dj, and a processing time pj. In addition, a particular customer i' gains 
a time-independent positive value Vj, a profit, if job j is one of his, j G Jv, and is scheduled 
on the machine. The buyers' goals are to pay as little as possible to get their jobs scheduled 
on the machine, or, in other words, they try to maximize their profits. 
We assume that 

j€J 

and hence, not all jobs can be processed. 
What is described above is a resource allocation problem. In the literature different approaches 
have been proposed to tackle such an allocation problem, for example, the application of multi-
agent systems. There, the potential buyers (or agents) negotiate the resource among each 
other where each potential user tries to minimize the costs for executing his jobs. See for 
example [1] and the references therein. 
In this paper, we will follow a decision theoretic approach similar to [29]. The question is, 
which customer should get what time slot(s) at what prize in order to maximize the profit of 
the Company owning the machine. As mentioned above, prize determination is not part of 
the research presented here. In the following, auctions are assumed to solve the coordination 
problem; we will show that we face superadditive preferences within the presented allocation 
problem and thus, the application of combinatorial auctions becomes senseful. 

2.2 Application of Combinatorial Auctions 

In applying auctions to this resource allocation problem the time slots can be interpreted as 
items that are auctioned off by the auctioneer, i.e., Company C. The jobs can be interpreted 
as bidders, which ask for these items. It is not essential to know, which customer provides 
which job, because the jobs of an individual i are not interrelated. Hence, it is possible to 
schedule anything between all jobs or no job for any customer i G I. 
Since only a time window dj — rj for the execution of job j is given, the job can be scheduled 
for different consecutive time slots. These intervals can be interpreted as bids and, to be more 
specific, they can be interpreted as so-called XOR-bids: a job only wants to get exactly one 
interval of the length pj out of interval [rj\dj], because every job can be processed at most 
once. Hence, it asks for the interval 

[r,-; rj + Pj] XOR [rj + 1; rj + Pj + 1] XOR ... XOR [dj - pj] dj]. 
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The bidding prize bj for subset j € «/, is some positive value which may deviate from the true 
valuation Vj of customer i for this subset of time slots, with bj < Vj. 
Since the Jobs can have processing times bigger than one and since they are non-preemptive, 
the bids for "connected" time slots can be interpreted as superadditive preferences. Applying a 
"traditional" auction, e.g., a sequential auction, in presence of these combinational preferences, 
again the already mentioned forecasting problem would evolve by auctioning one time slot at a 
time. Thus, we will use combinatorial auctions to solve the allocation problem where all time 
slots are auctioned off simultaneously and the bidders can place bids on any subset of items. 
Consider the following example: the quadruple (rj',dji,Pj>,bj>) = (0,4,2,15) is communicated 
by bidder j' to the auctioneer. This means that bidder j' wants to get two consecutive time 
slots out of interval [0; 4] and is Willing to pay bf = 15 cu for receiving them. The bids that 
he places implicitly can be stated explicitly as shown in table 1. 

Bid Slot 1 Slot 2 Slot 3 Slot 4 bj 

1 1 1 0 0 15 
2 0 1 1 0 15 
3 0 0 1 1 15 

Table 1: Combined Preferences 

Any other subset of at most two time slots he values at 0 cu, because then, the Job could not 
be processed and no profit can be gained. Note, that this are superadditive preferences; for 
example, his valuation of slot {1} and {2} is 0 each, the bündle of slots {1,2} he values at 
15. Of course, if the bidder gets more consecutive time slots than needed, the Job could also 
be processed. Since the additional profit for Company C would be zero, C is indifferent in 
giving j' two or more consecutive time slots. (This Situation changes if C has positive reserve 
prizes for each time slot. Then, bidder j' will receive at most two time slots.) 

What we did up to now is to describe the allocation problem as an auction. Since we showed 
that the bidders (Jobs) have superadditive preferences to the items (time slots), the application 
of combinatorial auctions becomes senseful. In the following we will present a model for the 
winner determination problem. 

2.3 The Winner Determination Problem 

Assume that all bids have been placed. Under the assumption of revenue maximization the 
winner determination of the mentioned combinatorial auction can be modelled as Weighted Job 
Interval Scheduling Problem {WJISP). Given | J\ positive-weighted Jobs with job-specific 
release dates, due dates and processing times, the WJISP assigns |T| time slots in such a 
way to the Jobs, that every time slot is assigned at most once to a Job and vice versa, with the 
objective of maximizing the sum of the weights for the scheduled Jobs. Apparently, WJISP 
is a suitable way to model the winner determination of the presented combinatorial auction. 

In this paper, we devise a time-indexed formulation of this problem similar to [11] and [27]. 
Let ej = Tj + pj denote the earliest finishing times and Tj = [e^; dj] the possible finishing 
times for job j. Denoting the decision variables as 
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- { o] 
_ . if job j ends in time slot t, 

X, t " otherwise, 

then, the generic WJISP model can be stated as follows: 

4 
max E E bi xit (1) 

j€J t=ej 

min{dj-; t+pj-1} 
st J2 £ z,T < i vier (2) 

j€J r=max{ej; {} 

di 
E xi> i1 Wey (3) 

t=ej 

xjt € {0,1} Vj C= J , V* € T; (4) 

The objective function (1) states that the sum of the bidding prizes of the accepted bids has to 
be maximized. Constraints (2) State that only one job at a time is scheduled on this machine. 
Inequalities (3) ensure that any job is scheduled at most once and (4) denotes the domains of 
the decision variables. 

2.4 Insights to WJISP 

The WJISP has been proven to be MV-hard in the general case as shown in [26]. It can 
be reduced to the MV-hard JlSPk which is an unweighted problem where each job asks for 
exactly k intervals. Thus, the literature focuses on heuristic algorithms. The State of the art 
for heuristics can be found in [3], [4], and [5]. All three present 2-approximation algorithms 
for the general WJISP. 
In [5], a deterministic two-phase aIgorithm (tp for short), consisting of a sorting, an evaluation 
and a selection phase, is proposed. This approach will serve as a benchmark for the heuristic 
derived in section 4 within computational studies. [3] apply the local-ratio technique to the 
WJISP. In [4], a rounding algorithm starting from the LP-solution is given. They also show 
that the LP-solution has a worst-case approximation-ratio of 2. Unfortunately, the authors 
do not supply any runtime studies. 

Let us now analyze three polynomially solvable special cases of WJISP. 

Theorem 1 The special case {r, = r, dj = d, Vj E /} is polynomially solvable. 

Proof. Assume the time slots on a real line. This case implies that every bidder likes to 
have pj consecutive intervals whereas he is indifferent concerning the location of the time 
slot(s) on this line. Hence, he only has to submit the tuple (pj,bj). It is easy to see that 
this reduces to the case of combinatorial auctions with identical objects, for which the winner 
determination is proven to be in V, cp. [28]. • 
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Theorem 2 The special case {rj — dj < 2pj, Vj G J} /'s polynomially solvable. 

Proof. This is just a generalization of the case that each job is characterized by exactly 
one interval. The latter is proven to be polynomially solvable by dynamic programming (see 
[23] or [28], e.g.). Since all intervals of a job intersect, they are all mutually exclusive. • 

Theorem 3 Relaxing constraints (3) in (1) - (4) yields a polynomially solvable subproblem. 

Proof. See [23] and [28]. Again, the Optimum Solution can be obtained by dynamic program­
ming. • 

In the following we will calculate upper bounds by Lagrangean relaxation using the results of 
theorem 3. 

3 Lagrangean Relaxation 

In t his section we are going to apply Lagrangean relaxation to (1) thru (4). Our Intention is to 
relax the constraint set (3), which ensures that any job is scheduled at most once. Denoting 
the Lagrangean parameters with Xj the relaxation can be stated as follows: 

max E E bi xJt + E Ai 1 ~ E xjt (5) 
jeJ t—ej jej \ t=ej ) 

s.t. (2), and (4) (6) 

Rearranging the objective function yields 

max EDjxJt (+ EXJ) (7) 
j€J t—ej \ j'S J ) 

where 

b'j = bj - Xj (8) 

According to theorem 3 the subproblem is efficiently solvable by dynamic programming. 
The recurrence equations can be stated as follows (see [28], e.g.): 

m(t) = max |m(i - 1), max [m(r) + b'T+l t | r < i]} (9) 

where 

K+I,t = (10) 

The parameters b'j T+l t denote the value of job j that starts at r +1 and ends in t, reduced by 
Xj. Thus, b'T+11 gives the best bid on the interval [r + 1; t] with processing time t - (r + 1). 



The value m{T) gives the Optimum objective function value. 

To choose appropriate values for the Lagrangean multipliers Aj we employ subgradient opti-
mization, see for example [9] or [12]. We Start with A7 = 0 and update the multipliers after 
each Iteration as follows: let UB and LB denote the current best known upper and lower 
bound, respectively, and Z the Iteration counter, then 

fax+>-(UB£%'Si} <») 

where 

5j = 22 xjt ~~ 1 (12) 
t—ej 

and 9 denotes the step size parameter which is set to 2 initially. 9 is halved, if the upper 
bound could not be improved within the last 5 iterations. 

We implemented two stopping rules. The procedure stops, if the number of iterations reaches 
the limit of 250 or if the change of multipliers is sufficiently small, that is, 

£ l\Z+1 - \?l < « (13) 
jeJ 

where we chose e = 0.001. 

An essential result of duality theory states that the Lagrangean relaxation (7), (2), and (4) 
achieves at least the objective function value of the LP-relaxation of (1) - (4). Furthermore, 
in the case that the integrality property holds the objective function value of the Lagrangean 
relaxation equals that of the LP-relaxation. 

Theorem 4 For the subproblem (7), (2), and (4), the integrality property holds. 

Proof. The condition that any job can be processed only once having been relaxed, it is easy to 
see that the remaining problem has the consecutive ones property. For that case, all extreme 
points of the underlying polyhedron are integral, see for example [18]. • 

Hence, the best upper bound that we can achieve by the assumed Lagrangean relaxation is 
the objective function value of the LP-relaxation. Nevertheless, it is interesting to see the 
runtime Performance of the Lagrangean relaxation in comparison to the LP-relaxation. 

4 Lagrangean Heuristic 

In this section we develop a heuristic which uses the results given by the Lagrangean relaxation. 
Recall, that by the chosen relaxation it is possible to schedule jobs more often than once. The 
first step of the algorithm is to construct a feasible Solution to WJISP from the Solution of 
(9). Any job which has been chosen at least once by the Lagrangean relaxation is considered 
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to be in the initial Solution. For jobs scheduled at least twice, we build a feasible schedule by 
randomly choosing one occurrence of this job. Since this job has already been scheduled, we 
reduce the number of schedulable jobs and update the available time slots. 
A detailed description is given within aIgorithm 1. 

Algorithm 1 (Initial Solution) 

Input: Solution L of (9), T, J, (rj,dj,pj,bj) Vj e J; 
Output: feasible Solution KJ, LB, flag, T', J'; 

V <- T, J' <- J; 
flag = 0; 

for (j € L) { 
if (ZtXj't > 1) { 

:f > 2) { 
flag — 1; 
choose t' with Xj>t> = 1 at random; 

} 
K' 4— K ' U {xj>t'}; 
LB = LB 4- bj>; 

T' <— T'\{t', t' — 1,... ,t' — py + 1}; 
} 

} 

The result of algorithm 1 is a feasible Solution to WJISP. If it returns flag = 0, we know 
that (9) already produced a feasible Solution. 
Note that at least one time slot will be empty, if flag = 1 is returned. In that case, the 
improvement phase takes over. There, we consider those jobs and time slots that have not 
been scheduled and occupied yet, respectively. If we imagine the time slots being on a real 
line, and if you remove the time slots already occupied, the real line will become clustered. 
The improvement algorithm solves (9) separately on any remaining consecutive time interval 
on this line. Of course, only unscheduled jobs are taken into account. 
Algorithm 2 gives a description of the improvement phase. 
It is possible that the improvement phase yields again a plan where jobs are scheduled at least 
twice. Therefore, the Solution of this problem is again transferred to algorithm 1 and so on. 
This iterative procedure stops if the parameter flag returns 0 and we get a feasible Solution to 
WJISP. The heuristic is solved after each Iteration of the Lagrangean relaxation. 
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Algorithm 2 (Improvement) 

Input: flag, T', J'; 
Output: Solution L of (9), T, J; 

if (flag == 1) { 
for (all intervals in T') { 

solve (9) on J'; 
obtain new Solution L; 

} 
} 
eise stop 

J'; 

5 Computational Studies 

In order to test the Performance of the algorithm, we implemented the Lagrangean relaxation 
and heuristic (Ih for short) in GNU C. The relaxation is tested against the LP-relaxation (Ip 
for short) of (l)-(4), which is solved by CPLEX 7.0. As mentioned above, the lower bound is 
benchmarked against the two-phase algorithm (tp) proposed in [5] which was implemented in 
GNU C as well. 
The tests are being performed on an AMD Athlon with a 1.8 GHz processor and 768 MB of 
RAM running a Linux operating system. 

5.1 Test Instances 

To the best of our knowledge there have not been any runtime studies on algorithms for the 
WJISP in the literature. To close this gap, first we develop an instance generator. The basic 
idea stems from an instance generator for general combinatorial auctions which can be found 
in [24]. 
For generating an instance the following parameters need to be defined: 

J number of jobs 
T number of time slots 

lp, up lower and upper bound for processing time 
lb, ub lower and upper bound for bidding prize 

<j> distribution for bidding prizes 

Every particular job j' is assigned a processing time which is chosen out of the interval [lp\ up\. 
Then, the release date is determined out of the feasible interval [0; T — p ?]. After that the 
due date is generated out of [ry + Pj>; T]. 
All data are generated randomly and uniformly distributed on the particular intervals. Without 
loss of generality we assume all the data to be integer-valued. 
We choose two different distributions 4> € $ for the bidding prizes, random (ra) and weighted 
random (wra). In both cases at first we draw a random number ry uniformly distributed in 
the interval [i6; ub]. For <j> = ra, we directly assign the value as bidding prize, thus, by = ry. 
Under the assumption of wra we multiply the random number with the processing time, i. e., 
we calculate bj> = r. The Intention is that the more time slots are requested in a specific 
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bid the higher the bidding prize tends to be. This latter assumption seems to be more realistic. 
The Jobs are stored as quadruples as already mentioned. Thus, any instance consists of a value 
for T and J, and \ J\ quadruples, one for each generated job. 

According to the results of pretests and in order to give an extensive test-bed, we chose the 
number ofjobs and time slots as follows: 

J e {200,400,600,800,1000} 

T € {100,200,400,600,800,1000} 

with the assumption of J > T. The number of possible combinations are 

2 + 3 + 4 + 5 + 6 = 20. 

Furthermore, we chose the possible intervals for the processing times [lp\ up] out of the set I, 
where 

rp T' r 3Ti 
. [i; r), 

T 3 T 
1;4. J 1; 2. 

) 
T. 

. [i; r), 
T. 

Finally we picked an interval for the bidding prizes: 

[lb-, u b] = [1000; 10000] 

Hence, we did not test the influence of different intervals for bidding prizes. 
Since we generated 5 instances each for these parameter settings with |$| = 2 distributions, 
in total we get 

20-5-1-5 2 = 1000 

instances. 

5.2 Results 

Any instance can be characterised by the triple {7 e T]4> 6 $;i 6 /}. Here, 7 is expressed 
as joJs, which denotes the number of jobs and time-slots, each divided by 100. Parameter 
(j) € $ is expressed as {ra,wra} and therefore denotes the distribution of the bidding prizes, 
and i € / represents the interval, from which the processing times of the jobs are drawn. 
Since the calculation of our lower bound contains a probabilistic component, the instances 
were all executed twice for the Lagrangean heuristic. We observed that for ra (wra) the 
deviation of the two runs for the lower bound is about 7% (2%) for the worst and 1% (below 
0.01%) for the average case over all double-runs. The deviation of the upper bounds were in 
the worst (average) case below 3% (0.1%) for both distributions. Because the Solution for tp 
and the derivation of the LP-solution are deterministic, those algorithms were only executed 
once. 

In order to give an idea of how far Standard Software - in our case CPLEX 7.0 - can reach 
for the chosen test environment, we at first applied CPLEX to derive the Solution of the LP-
relaxation for the instances. Table 2 shows how many instances could be solved. Although 
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<t> 
7 i Ml Ml 

ra 
[i;fl [1 -,T] r?;fi Ml Ml 

wra 
fi;fl [i ;T\ f?;fl 

2.1 5 5 5 5 5 1 5 5 5 5 5 
2.2 5 5 5 5 5 5 5 5 5 5 
4.1 5 5 5 5 5 5 5 5 5 5 
4.2 5 5 5 5 5 5 5 5 5 5 
4.4 5 5 5 5 5 5 5 5 5 5 
6.1 5 5 5 5 5 5 5 5 5 5 
6.2 5 5 5 5 5 5 5 5 5 5 
6.4 5 5 5 5 5 5 5 5 5 5 
6.6 5 5 5 4 - 5 5 5 5 — 
8.1 5 5 5 5 5 5 5 5 5 5 
8.2 5 5 5 5 5 5 5 5 5 5 
8.4 5 5 5 5 5 5 5 5 5 5 
8.6 5 - - - - 5 — — — _ 
8.8 - - - - - - — _ 
10.1 5 5 5 5 5 5 5 5 5 5 
10.2 5 5 5 5 5 5 5 5 5 5 
10.4 5 5 4 5 5 5 5 5 5 5 
10.6 5 - - - - 5 - — — — 
10.8 - - - - - - — _ — __ 
10.10 - - - - ~ - - - -

z 1 85 75 74 74 70 | 85 75 75 75 70 ] 

Table 2: Number of Solved Instances by CPLEX 7.0 

providing 768 MB of RAM, not all instances could be solved. Here, entryindicates that no 
instance could be solved. It can be observed, that the distribution 6 does not influence results 
significantly. The only thing that can be stated is that {.;[l; could be solved best and 

{ > ' [ ?' } worst. In contrast, the Lagrangean heuristic and the two-phase algorithm both 
solved all instances. 

Tables 3 and 4 give Information about the runtimes of Ip and Ih within the specific distributions. 
min, max, and avg denote the absolute minimum, absolute maximum and average over all 
instances within a particular column. Hence, the worst running time of Ip over all 100 instances 
of |7 e T;ra; was 39 seconds. An entry "**" indicates that none of the instances 
could be solved. Thus, runtimes for that cases could not be suggested for calculation of min, 
max, and avg. Nevertheless, it is to see that throughout the instances the runtimes for Ip are 
significantly higher. 
Focussing on Ih, we can observe a slight decrease of the runtimes by increasing mean of 
processing times of the jobs. Since a probabilistic component and two different stopping rules 
are included, it is not stringent. Looking at the distributions of the bids, we can see that the 
running times for wra are significantly lower than for ra. The reason is that for ra normally 
all 250 iterations had to be executed; for wra, the stopping criterion in (13) was reached 
often in early iterations. An outlier for wra was an instance {10_10; wra; [1;T]} with about 
13 seconds Solution time. Here, all 250 iterations had to be executed. 
Next, we study the quality of our upper bound. To do so we compare our upper bound to the 
best bound we can achieve with Ih, i.e. the Solution of Ip. As a measure we use the following 
expression for this comparison: 
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i [1; ?] 
Ih 

[i; f] M] [i ;T\ [b 3T] 
4 J 

7 Ip 
?] 

Ih ip Ih ip Ih Ip Ih ip Ih 

2.1 0.12 0.10 0.13 0.09 0.16 0.08 0.17 0.08 0.14 0.00 
2J2 0.42 0.37 0.76 0.36 0.97 0.35 0.85 0.32 0.64 0.00 
4.1 0.28 0.15 0.41 0.14 0.44 0.12 0.41 0.12 0.39 0.02 
4.2 1.07 0.46 1.56 0.44 1.56 0.43 1.94 0.40 1.52 0.00 
4.4 6.22 2.03 8.12 2.21 8.46 2.23 7.26 2.14 6.26 0.04 
6.1 0.40 0.21 0.64 0.18 0.79 0.17 0.62 0.16 0.68 0.00 
6.2 1.64 0.55 2.20 0.55 2.56 0.48 2.26 0.46 2.36 0.01 
6.4 8.00 2.24 9.36 2.54 10.94 2.54 10.86 2.39 10.46 0.03 
6.6 20.80 5.63 25.60 5.84 32.20 5.63 28.00 5.18 ** 0.08 
8.1 0.61 0.27 0.94 0.24 0.95 0.22 0.88 0.20 0.93 0.01 
8J2 2.30 0.66 3.32 0.60 3.10 0.57 3.30 0.52 3.38 0.02 
8.4 12.00 2.40 14.60 2.77 13.80 2.85 14.20 2.68 12.40 0.06 
8.6 30.40 6.29 ** 6.49 ** 6.22 ** 5.83 ** 0.14 
8j ** 10.70 ** 10.51 ** 9.93 ** 9.26 ** 0.24 
10.1 0.79 0.34 1.02 0.30 1.16 0.27 1.05 0.24 1.04 0.01 
10.2 2.92 0.77 3.88 0.69 4.00 0.67 4.08 0.59 4.04 0.03 
10.4 15.00 2.57 19.60 3.06 17.75 3.14 17.60 3.00 16.40 0.13 
10.6 34.40 6.90 ** 7.20 ** 6.88 ** 6.36 ** 0.33 
10_8 ** 11.62 ** 11.58 ** 10.91 ** 9.96 ** 0.59 
10.10 ** 16.31 ** 15.72 ** 14.89 ** 13.67 ** 0.81 

min 0.10 0.08 0.10 0.08 0.12 0.07 0.13 0.07 0.12 0.00 
avg 8.08 1.60 6.14 1.00 6.44 0.99 5.94 0.92 4.33 0.02 
max 39.00 7.01 28.00 6.08 38.00 5.79 32.00 5.30 21.00 0.62 

Table 3: Average Runtimes for Ip and Ih, Distribution ra 

i [i; ?] M] [i;f] fr3?] 
7 ip Ih iP Ih ip Ih Ip Ih Ip Ih 
2.1 0.15 0.03 0.20 0.02 0.19 0.01 0.16 0.01 0.15 0.00 
2_2 0.58 0.13 0.83 0.14 1.11 0.10 0.78 0.07 0.69 0.00 
4.1 0.32 0.03 0.50 0.04 0.57 0.00 0.51 0.00 0.43 0.00 
4J2 1.28 0.16 1.60 0.07 1.82 0.18 2.00 0.09 1.66 0.00 
4.4 7.64 0.97 8.58 0.46 9.18 1.07 6.34 0.22 6.50 0.01 
6.1 0.62 0.04 0.77 0.02 0.80 0.02 0.72 0.01 0.65 0.00 
6.2 2.24 0.14 2.24 0.09 2.38 0.16 2.12 0.14 2.24 0.00 
6.4 8.08 0.71 11.10 0.61 11.80 0.66 10.96 0.54 9.88 0.01 
6.6 27.80 2.03 35.60 1.14 26.40 1.46 26.00 2.29 ** 0.02 
8.1 0.67 0.05 1.12 0.02 1.12 0.02 1.01 0.02 0.97 0.00 
8.2 3.16 0.20 3.52 0.05 4.02 0.15 3.40 0.11 3.08 0.00 
8.4 16.20 0.70 16.60 0.65 18.00 1.00 15.00 0.64 13.00 0.01 
8.6 36.60 1.92 ** 1.76 ** 2.75 ** 2.50 ** 0.02 
8.8 ** 4.93 ** 3.18 ** 1.30 ** 4.56 ** 0.03 
10.1 0.90 0.09 1.38 0.03 1.62 0.04 1.32 0.05 1.20 0.00 
10.2 5.00 0.15 4.28 0.07 5.10 0.14 4.32 0.11 3.96 0.00 
10.4 19.80 0.72 20.80 0.87 23.80 1.06 20.80 1.12 17.00 O.Ol 
10.6 49.60 2.17 ** 1.52 ** 1.88 ** 2.06 ** 0.02 
10j} ** 3.63 ** 2.78 ** 1.33 ** 2.68 ** 0.04 
10.10 ** 5.57 ** 4.09 ** 3.72 ** 6.15 ** 0.05 
min 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
avg 10.78 1.22 7.28 0.88 7.19 0.85 6.36 1.17 4.39 0.01 
max 57.00 10.06 45.00 5.77 29.00 6.07 28.00 12.97 18.00 0.06 

Table 4: Average Runtimes for Ip and Ih, Distribution wra 
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<t> 
7 i [Ml Ml 

ra 
[i;fl [i;T] r?;fl Ml 1 Ml 

wra 
1 f i;fl I [ i;T] 1 f £;fl 

2_1 0.08 0.08 0.11 0.08 0.00 1.19 0.20 0.20 0.00 0.00 
2_2 0.04 0.57 0.43 0.01 0.00 1.18 0.23 0.27 0.04 0.00 
4_1 0.31 1.28 0.49 0.97 0.03 0.43 0.07 0.00 0.01 0.00 
4_2 0.13 0.39 0.35 0.87 0.00 0.44 0.25 0.08 0.03 0.00 
4.4 0.07 0.57 0.45 1.23 0.00 0.47 0.16 0.14 0.01 0.00 
6.1 0.42 1.18 0.87 0.73 0.00 0.38 0.09 0.10 0.23 0.00 
6_2 0.49 0.74 0.74 1.18 0.00 0.39 0.07 0.13 0.28 0.00 
6.4 0.27 0.28 0.89 0.57 0.00 0.38 0.09 0.24 0.25 0.00 
6.6 0.23 0.67 0.60 0.35 ** 0.41 0.10 0.23 0.26 ** 
8.1 0.33 0.65 0.88 1.81 0.00 0.16 0.07 0.10 0.14 0.00 
8.2 0.45 0.84 1.31 1.65 0.00 0.17 0.06 0.06 0.14 0.00 
8.4 0.31 0.37 1.39 1.15 0.00 0.18 0.04 0.09 0.26 0.00 
8.6 0.16 ** ** ** ** 0.19 ** ** ** ** 
8.8 ** ** ** ** ** ** ** ** ** ** 
10.1 0.41 0.50 1.16 1.69 0.00 0.09 0.06 0.03 0.10 0.00 
10.2 0.41 0.95 1.54 2.34 0.00 0.14 0.06 0.04 0.14 0.00 
10.4 0.16 0.73 1.26 1.85 0.00 0.11 0.04 0.04 0.16 0.00 
10.6 0.24 ** ** ** ** 0.12 ** ** ** ** 
10.8 ** ** ** ** ** ** ** ** ** ** 
10.10 ** ** ** ** ** ** ** ** ** ** 

min 
avg 
max 

0.01 
0.23 
1.27 

0.00 
0.49 
2.25 

0.00 
0.62 
2.15 

0.00 
0.82 
3.48 

0.00 
0.00 
0.14 

0.00 
0.32 
2.60 

0.00 
0.08 
0.93 

0.00 
0.09 
0.79 

0.00 
0.10 
0.97 

0.00 
0.00 
0.00 

Table 5: Average, Best, and Worst Performance of Ih compared to Ip 

{UB'h~VB") -100%. (14) 
UBih 

UBih and UBip respectively denotes the upper bound for the Lagrangean heuristic and the 
LP-relaxation. UBih gives the average over the double-runs. Thus, (14) be interpreted as 
the deviation of our upper bound to the LP-solution, expressed in percent. In table 5, the 
observed deviations are listed, respectively averaged over the number of instances which could 
be solved by CPLEX. It can be stated that our upper bound is very tight in comparison to 
the Solution of Ip. It ranges from 0.0 to 3.5% in the worst cases and is below 1% on each 
average of {.\4> /}. In addition, we can see that wra could normally be solved far 
better than ra using Ih. 

Now we analyze the quality of our lower bounds and we use tp as a benchmark. For the sake 
of completeness, we start with providing some Implementation details and running times of 
tp. In tp, a sorting aIgorithm is needed. To this, quicksort was used. As a rule of thumb we 
can state that the running time for tp consists at least half of sorting time. Furthermore, the 
aIgorithm needs a different representation of the instances; whereas for Ih the aforementioned 
implicit bids (quadruples) could be used, tp needs every Single interval, and hence, the explicit 
representation of bids as demonstrated in table 1. The times for deriving these intervals were 
not taken into consideration. 
Table 6 shows the average running times for tp. It becomes obvious, that the running times 
for tp are significantly lower than for Ih. But, since Ih also delivers an upper bound, these 
times cannot be compared. For tp, there is no big difference in respect of running times for ra 
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0 
7 i Ml Ml 

ra 
[i;fl [i;T] Ml Ml 

wra 
[i;fl [i ;T] [frfl 

2_1 o.oo 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
2.2 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 
4.1 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.00 
4.2 0.04 0.03 0.02 0.01 0.01 0.04 0.03 0.02 0.01 0.01 
4.4 0.08 0.06 0.04 0.03 0.02 0.08 0.06 0.05 0.03 0.02 
6.1 0.03 0.02 0.02 0.01 0.01 0.03 0.02 0.02 0.01 0.01 
6.2 0.07 0.05 0.04 0.02 0.02 0.08 0.06 0.04 0.03 0.02 
6.4 0.16 0.12 0.09 0.06 0.04 0.18 0.12 0.10 0.06 0.04 
6.6 0.27 0.19 0.13 0.09 0.07 0.29 0.19 0.15 0.10 0.06 
8.1 0.06 0.04 0.03 0.02 0.02 0.05 0.04 0.03 0.02 0.02 
8-2 0.12 0.09 0.06 0.04 0.03 0.13 0.10 0.07 0.05 0.03 
8.4 0.29 0.21 0.15 0.09 0.07 0.32 0.22 0.15 0.10 0.07 
8.6 0.49 0.34 0.23 0.16 0.12 0.56 0.36 0.25 0.16 0.12 
8_8 0.74 0.47 0.33 0.21 0.18 0.81 0.52 0.36 0.24 0.18 
10.1 0.08 0.06 0.04 0.03 0.02 0.09 0.07 0.04 0.03 0.03 
10.2 0.19 0.13 0.09 0.07 0.05 0.21 0.15 0.10 0.07 0.06 
10.4 0.48 0.32 0.22 0.15 0.12 0.54 0.37 0.24 0.16 0.12 
10.6 0.83 0.55 0.37 0.23 0.21 0.90 0.64 0.41 0.26 0.21 
10.8 1.21 0.80 0.53 0.34 0.32 1.35 0.91 0.58 0.37 0.31 
10.10 1.63 1.07 0.72 0.44 0.44 1.82 1.27 0.80 0.48 0.41 

min 
avg 
max 

0.00 
0.34 
1.78 

0.00 
0.23 
1.14 

0.00 
0.16 
0.76 

0.00 
0.10 
0.46 

0.00 
0.09 
0.54 

0.00 
0.38 
2.12 

0.00 
0.26 
1.36 

0.00 
0.17 
0.85 

0.00 
0.11 
0.53 

0.00 
0.09 
0.44 

Table 6: Average Runtimes for tp 

and wra, since for this algorithm the number of intervals heavily influences the running times. 
With respect to the influenae ofset I it can be stated, that the runtime of tp decreases with 
increasing mean of the intervals for the processing times. 
Focussing the Solution quality of Ih in comparison to tp on average and in the worst case, we 
use 

(LBlh-LBtp) lQQ% (15) 
LBih 

Here, LBtp denotes the achieved lower bound by algorithm tp. LB^ is the weighted average 
over the double-runs for Ih. Thus, expression (15) can be interpreted as the percentage im­
provement of LBih to LBtp. Hence, a positive value implies that on average the Solution of 
LBIH was better than that of LBtp. Table 7 shows the observed values. 
It can be stated that in general the lower bound derived by Ih is on average better than that 
by tp. Only in 7 out of 1000 instances tp performs better than Ih. 
Interestingly, all these 7 cases appear under (j> = ra and i = Nevertheless, also for 
these instances Ih gives better bounds on average. 
The deviation from LBlh to LBtp tends to decrease when the instance size increases. Fur-
thermore, it slightly increases with increasing mean of processing times of the jobs, but this 
effect decreases when the instance size grows. An obvious outlier is the case (j) — ra and 
i = These instances could be solved by tp quite good as well. 
Looking at the overall averages, the increase of the averages becomes more stringent, with the 
same outlier. These averages are positive throughout the instances. They are at least above 
6% and at most around 16%. The best cases for Ih ränge between 17% and 35%, the worst 
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<p 
7 i Ml Ml 

ra 
1 [ i;fl I [ i;n [f;fl Ml Ml 

wra 
fi;fl [1;T] 1 frfl 

2.1 9.25 14.80 19.08 15.92 14.78 12.75 12.40 14.12 14.75 15.82 
2.2 13.31 13.09 19.29 20.33 13.69 10.86 9.26 12.63 15.69 16.16 
4.1 7.50 12.27 14.29 18.27 9.68 11.83 15.70 18.42 14.40 18.35 
4.2 12.32 14.14 17.65 16.13 14.25 11.07 13.66 14.97 17.86 19.89 
4.4 11.24 14.51 15.57 21.00 7.45 12.18 15.63 15.60 16.44 16.79 
6.1 6.93 14.56 12.02 13.09 9.85 12.11 13.42 14.99 13.51 15.64 
6.2 5.98 11.81 15.52 14.40 10.03 11.14 14.38 14.47 14.82 19.60 
6.4 5.65 12.29 16.14 15.24 7.83 12.30 13.69 17.49 16.79 14.61 
6_6 8.02 11.93 14.32 16.13 8.57 10.77 15.86 16.92 16.73 11.97 
8-1 6.30 12.43 12.12 13.15 9.13 10.27 13.09 15.42 12.60 17.95 
8.2 3.71 14.68 13.52 13.23 11.80 11.94 14.28 14.76 14.61 19.02 
8.4 5.07 14.45 12.10 11.41 9.81 12.40 14.78 13.43 16.72 14.52 
8.6 3.61 16.70 12.73 13.05 9.92 12.41 14.75 14.86 17.45 14.47 
8J5 4.24 14.86 12.27 12.45 9.62 10.28 14.07 14.86 16.45 16.41 
10-1 3.99 7.71 9.25 11.26 12.63 11.74 12.90 12.14 12.53 16.93 
10.2 3.47 9.14 11.00 11.98 8.31 13.25 14.16 12.07 14.10 17.12 
10.4 6.26 11.02 9.49 10.69 10.99 13.19 14.15 12.52 13.38 9.05 
10.6 2.94 10.40 12.54 12.41 9.35 13.75 13.89 12.72 12.25 16.16 
10.8 2.87 10.66 12.77 12.06 10.18 13.10 14.16 14.84 16.14 15.31 
10.10 1.99 10.89 11.45 13.29 8.37 13.01 13.09 12.40 16.49 13.28 
min 
avg 
max 

-5.05 
6.23 

19.92 

4.95 
12.62 
19.76 

3.29 
13.66 
30.75 

5.85 
14.27 
31.59 

0.00 
10.31 
31.00 

4.49 
12.02 
17.86 

4.76 
13.87 
24.20 

5.70 
14.48 
26.54 

5.79 
15.19 
28.29 

0.00 
15.95 
35.50 

Table 7: Average, Best, and Worst Performance of Ih compared to tp 

between —5% and 6%. 
In our opinion the most "realistic" instances for our allocation problem is the case (j) = wra 
and i = For these instances the mean deviation for any instance size is about 12% 
and above 4% in the worst case. 

Up to now we focussed the quality for our lower and upper bounds separately. To give an idea 
how far upper and lower bound are apart we will last but not least analyze the deviation of 
these bounds for Ih. The quality will be measured by the following expression: 

(JJBlh LBlh) iQo % (ig) 
UBlh 

UBih and LB^ denote the best upper and lower bound that could be found by executing Ih. 
Hence, it is the average percentage deviation from upper to lower bound. The deviations can 
be found in table 8, averaged over all 10 runs for each entry {7 G T; <]) G $ ; i G /}. 
It becomes obvious, that the increase of the mean of processing times of the jobs is accompa-
nied by a slight decrease of the deviation. For </> = ra, the increase of the instance size tends 
to lead to bigger deviations of upper and lower bounds. Surprisingly, for 0 = wra we can 
State the contrary Observation. Agäin, the stated propositions do not hold stringently. The 
worst average deviation was reached by the instances of (l0_8; ra; [l; 7 ) with below 20% in 
mean. 
Focussing on (j) i t can be stated that the quality for wra is significantly better than that for 
ra. Note, that all instances {7; wra] ß; j were solved to optimality. 
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7 i Ml Ml 

ra 
flifl [i;T] Ml Ml 

wra 
[i;fl [i; T] [f;fl 

2_1 8.83 4.72 3.76 5.49 0.00 2.41 0.71 0.36 0.13 0.00 

2.2 9.17 6.39 3.89 4.76 0.00 2.12 0.75 0.79 0.19 0.00 

4.1 8.87 7.60 7.17 4.38 0.13 0.81 0.71 0.00 0.02 0.00 

4_2 7.96 7.18 8.66 6.50 0.20 0.83 0.50 0.56 0.06 0.00 

4_4 9.88 9.24 8.88 7.11 0.19 1.36 0.35 0.66 0.01 0.00 

6.1 10.28 9.22 8.75 8.63 0.10 0.91 0.19 0.33 0.43 0.00 

6.2 13.45 12.37 8.55 10.06 0.10 0.74 0.18 0.36 0.55 0.00 

6.4 15.29 12.80 10.33 8.58 0.10 0.56 0.22 0.51 0.30 0.00 

6.6 14.91 12.73 11.68 8.36 0.10 1.03 0.20 0.48 0.45 0.00 

8.1 10.28 9.02 8.12 9.83 0.10 0.33 0.18 0.19 0.40 0.00 

8.2 14.81 10.72 9.41 11.35 0.10 0.48 0.14 0.20 0.44 0.00 

8.4 15.76 11.38 12.48 11.49 0.10 0.36 0.08 0.24 0.40 0.00 

8.6 17.66 11.18 11.08 10.98 0.10 0.39 0.13 0.32 0.33 0.00 

8.8 16.80 11.62 12.89 10.19 0.10 0.40 0.24 0.23 0.64 0.00 

10.1 10.01 10.92 10.97 8.01 0.10 0.24 0.17 0.10 0.41 0.00 

10.2 16.25 13.14 12.51 10.22 0.10 0.38 0.12 0.24 0.25 0.00 

10.4 17.66 12.09 14.16 11.85 0.10 0.26 0.31 0.18 0.65 0.00 

10.6 18.79 12.26 13.35 11.81 0.10 0.36 0.15 0.12 0.82 0.00 

10.8 19.35 13.16 14.00 10.85 0.10 0.33 0.19 0.06 0.44 0.00 

10.10 19.28 13.06 14.52 10.75 0.10 0.36 0.27 0.24 0.36 0.00 

min 3.39 1.14 1.74 1.46 0.00 0.01 0.00 0.00 0.00 0.00 

avg 
max 

13.76 10.54 10.26 9.06 0.10 0.73 0.29 0.31 0.36 0.00 avg 
max 22.58 18.55 19.27 18.64 0.51 4.02 2.36 1.97 1.92 0.00 

Table 8: Average Quality for Ih 

Looking at the observed overall worst cases we can State that it ranges between 0 and 22.5% 
for ra and 0 and 4% for wra. 

6 Conclusions 

In this paper we focus on a specific allocation problem which is solved by a combinatorial 
auction. We consider the winner determination problem and show that it can be modelled as 
WJISP. Thus, a new application for WJISP is pointed out. 
We show that the Standard Software package CPLEX is overstrained solving the LP-relaxation 
of WJISP for larger instances. Hence, new upper and lower bounds based on Lagrangean 
relaxation are derived. We compare the Performance of our bounds to the LP-relaxation and 
a heuristic taken from the literature. Therefore, a new instance generator is provided. It 
becomes obvious that our upper bound is tight in comparison to the LP-solution and that our 
lower bound outperforms that of the algorithm taken from the literature almost always. 
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