
Nikulin, Yury

Working Paper — Digitized Version

Solving the robust shortest path problem with interval
data using a probabilistic metaheuristic approach

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 597

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Nikulin, Yury (2005) : Solving the robust shortest path problem with
interval data using a probabilistic metaheuristic approach, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 597, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147655

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147655
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 597

Solving the robust shortest path problem with interval data using a probabilistic
metaheuristic approach

Yury Nikulin

Working Paper, August 2005

Christian-Albrechts-Universität zu Kiel,
Institut für Betriebswirtschaftslehre,

Olshausenstr 40, 24118 Kiel, Germany,
nkln@lycos.com

Abstract

This paper addresses the robust shortest path problem with interval data, i.e. the
case of classical shortest path problem with given source and sink when arc weights
are not fixed but take their values from some intervals associated with arcs. The
problem consists in finding a shortest path that minimizes so called robust deviation,
i.e. deviation from an optimal Solution under the worst case realization of interval
weights. As it was proven in [9], the problem is NP-hard, therefore it is of great interest
to tackle it with some metaheuristic approach, namely simulated annealing, in order to
calculate an approximate Solution for the large scale instances efficiently. We describe
theoretical aspects and present the results of computational experiments. To the best
ofour knowledge, this is the first attempt to develop metaheuristic approach for solving
the robust shortest path problem.

Keywords: shortest path problem, simulated annealing, uncertainty, robustness.

1 Introduction

The special interest motivated by telecommunications applications induces not to solve the
interval shortest path problem itself, but to hedge against the worst-case realization (scenario)
of problem parameters, which can be interpreted as given with uncertainty. Playing against
worst-case scenario is commonly known as robust optimization (see, e.g. [16]). As it was indi-
cated in [9], in many cases the robust equivalent of a polynomially solvable problem becomes
NP-hard. This is true also for the problem considered in this paper.
We consider the special case of a shortest path problem on directed graphs where the arc
costs (weights) are not fixed but take their values from some positive intervals. No stochastic
distribution is given inside intervals. The interval function is defined as the sum of interval
weights over all arcs of feasible shortest path. Our goal is to find a relative robust shortest path
from start node (source) to destination node (sink) which minimizes the maximum deviation
from the optimal shortest path over all realizations of arc costs. This case is principally
different from the absolute robust shortest problem [9] which is to select a path for which
the maximum path length taken across all possible scenarios is minimal - a variant which can
be easily solved in case of interval data. In the remainder of the present paper only relative
robustness is considered, and the problem is commonly referred to as the robust shortest path
problem. This problem is significantly harder than the conventional shortest path problem that
deals with fixed and static positive values of weights associated with every arc.
Contrary to the classical shortest path problem, which can be easily solved by Dijkstra's
algorithm [4] in strongly polynomial time (for a survey of other algorithms see e.g. [1]), the
robust shortest path problem depends on the realization of arc weights. As it was proven in
[19], the robust shortest path problem with scenario representation, i.e. where the set of arc
weight realizations is defined, is strongly NP-hard. In [19] the authors conjectured that the
robust shortest path problem with interval data is also NP-hard, what has been later proven
in [20]. Simultaneously, in [2] it was proven that the robust shortest path problem is NP-hard
even if the bounds of all intervals of uncertainty belong to (0,1). The interval data minmax
regret shortest path problem is NP-hard even if the network is directed, acyclic, and has a
layered structure. Nevertheless it was shown that the problem is polynomially solvable in
the practically important case where the number of arcs with uncertain lengths is fixed or is
bounded by the logarithm of a polynomial function of the total number of arcs.
The basic theoretical background for the robust shortest problem has been presented in [6].
A reformulation of the robust shortest path problem as a special mixed integer program and

2

a preprocessing technique based on weak path concept were presented. The concept of weak
paths was first defined in [3]. In [6] it was shown how this concept can be efficiently used in
a preprocessing stage for solving the robust shortest path problem. We will shortly sketch out
the main results of [6] in section 2.
A branch and bound procedure extending of some previous results as well as some other
innovations is presented in [12], [13]. The computational results obtained by the new branch
and bound algorithm are presented and analyzed with respect to various benchmarks. The
results were compared with earlier results obtained by solving a mixed integer program in
[6], It was shown that the algorithm is extremely efficient on random graphs, but has no
good Performance on layered acyclic graphs (mainly due to their specifics). Nevertheless, the
proposed algorithm can solve problem instances on random graphs with the number of nodes
n ~ 500 in reasonable time.
In [14] a new exact method based on Benders decomposition was described with regard to the
robust shortest path problem. It was shown that this approach gives very good computational
results on many classes of networks. The study of impact of arc density and network structure
is additionally presented. It was concluded that the method based on Benders decomposition
is the best one for networks with low arc density, while the branch and bound methods are the
most promising ones in the case arc density essentially increases.
The rest of the paper is organized as follows. In section 2 we introduce the basic notation
and formulate the problem. The main well-known theoretical results are also presented. How
to apply the simulated annealing metaheuristic to the problem is described in section 3. The
results of computational experiments are presented in section 4. Final remarks and conclusions
appear in section 5.

2 Problem description and theoretical background

Let G = (V,A) be a digraph, where V, \V\ = n, is the set of nodes and A, \A\ — m,
m < n(n — 1), is the set of arcs. With each arc (i,j) E A we associate a cost interval
[lij,Uij], 0 < kj < Uij < c, i.e. for each arc (i, j) £ A its cost % is not fixed and belongs to
[lij,Uij], The cost upper bound c is given and fixed. No probability distribution is given inside
the cost interval. A realization of all arc costs is called a scenario s. The set S is the set of
all possible scenarios. The source node 1 and the destination node n are given. An ordered
chain from 1 to n of alternating nodes and arcs such that every two neighboring nodes vk and
Vk+i are connected with arc (%, %+i) G A is said to be a path p from 1 to n. Moreover, if
all the nodes in a chain are different, the path is called simple. Let P be the set of all paths
from 1 to n. If p € P contains all the nodes of V, then it is called Hamiltonian. Let s be a
realization of arc costs, i.e. 6 [4, , %%?]. W e denote by csp the total cost of path p in scenario
s, which is defined as:

(iJ)€.Ap

where Ap is the set of arcs that the path p consists of.
For every scenario s G S the shortest path problem is to find a path from 1 to n of minimum
total cost over all paths p £ P. This problem can be easily solved by Dijkstra's algorithm [4],
which processes nodes in nondecreasing order of their actual distances from the source node.
At the beginning all nodes are given an infinite distance except the source which is given a
distance 0. At each step we choose the next unlabelled node which is nearest to the source

3

and mark it, while updating the optimal distance to all its neighbors. The optimal distance
of a neighbor is updated only if reaching it from the current labelling node gives a total path
length that is shorter then its current distance. Döing so the aIgorithm constructs the so-called
shortest path tree, which is a spanning tree rooted at source node where the shortest paths
to all other nodes are determined. The shortest path to each node is then found by tracing
the predecessor iteratively back to the source. One of the best implementations of Dijkstra's
algorithm uses priority queue structure and has time complexity 0(n log{n + m)). Observe
that Dijkstra's algorithm can be correctly applied to the problem that has no negative arc
costs, otherwise it terminates but does not provide the fitness of the algorithm, i.e. a proper
optimal Solution is unlikely to be found. In o ur case any possible scenario has only positive arc
costs, so the Dijkstra algorithm can be used to calculate the shortest path for a particular arc
cost realization.
The interval representation of arc costs may be interpreted as some sort of uncertainty for
input data of the classical shortest path problem. The presence of uncertainty may be caused
by different reasons: inaccuracy of initial data, non-adequacy of models to real processes,
errors of numerical methods, errors of rounding off and other factors. So it appears to be
important to identify a Solution which is flexible under all realizations of problem parameters.
It is of special interest to find a Solution which provides the smallest changes of the result
under worst possible scenario of distribution of problem parameters. The model with such a
nice property is called robust counterpart problem, and a Solution of the robust counterpart
problem is generally known as robust Solution.
First it seems to be natural to give a definition of a robust Solution as follows: an optimal
Solution is robust if it remains optimal under any realization of the input data. But this
definition can hardly be regarded as desirable, because it is too restrictive. Most unlikely such
a Solution exists. Another definition may be considered more appropriate: our goal is to find
a robust Solution which minimizes maximum regret or relative deviation (minimizes possible
consequences of worst-case scenario with respect to objective function).
Thus, for each path p E P in a scenario s the difference between the total cost c* and the
cost of the shortest path in s represents the deviation for p in scenario s:

devt ••= ci- min cL.
p p p'eP p

For a given path p 6 P the worst-case scenario sp is a scenario for which the deviation for p
is maximum over all scenarios s £ S, i.e.

sp := axgmaxdeVp.

Then the difference
deviv := et" - min cj

p p j/eP p

represents the robust deviation of p.
A path p° is said to be a robust shortest path if it has the smallest robust deviation

p° := arg min dev^v

peP y

among all paths from 1 to n.
In o rder to keep the paper self-contained we Start with some theoretical background, originally
presented in [6],
The following proposition gives a worst-case scenario for a given path.

4

Proposition 1 [6] The scenario in which the costs of every arc on a path t € T is at its
upper bound and the cost of every other arcs is at its lower bound is a worst-case scenario,
i.e. c-J = Uij V(i,j) G Ap and c-J = ltj V(i,j) G A \ Ap.

In other words, for any path p € P the worst-case scenario sp is uniquely determined and
minimizes the robust deviation devpv over all possible scenarios. It means that we need to
consider only a finite number of scenarios. However, the number of paths in a graph may grow
exponentially with the number of nodes in the network.

Definition 1 [6] A path p is a weak path if it is a shortest path for s ome (at least one)
realization s of arc costs.

The following theorem gives a characterization of weak paths.

Theorem 1 [6] A path p G P is a weak path if and only ifit is a shortest path when the cost
of every arc on this path corresponds to its lower bound and the cost of all the remaining arcs
correspond to their upper bounds.

The following statements give us an idea about the construction of a robust shortest path.

Proposition 2 [6] A robust shortest path is a weak path.

Definition 2 [6] An arc (i,j) is a weak arc if it is on one of the weak paths.

In other words, every robust shortest path uses only weak arcs, i.e. all non-weak arcs are not
considered at all. This Observation leads to:

Proposition 3 [6] A non-weak arc a E A can be deleted from graph G when solving a robust
shortest path problem.

Unfortunately, the last result cannot be used efficiently in a preprocessing stage of any al­
gorithm solving the robust shortest path problem for arbitrary graph G due to the following
result.

Proposition 4 [6] Deciding whether a given arc is weak or not is NP-complete.

In [6] the authors proposed a polynomial-in-time procedure to decide whether a given arc is
weak or not for very specific classes of layered graphs. Later in [12] it was shown that the
procedure essentially decreases calculation complexity on layered graphs however, evidently,
cannot be extended on arbitrary graphs.

3 Simulated Annealing

Simulated annealing (SA) or hill climbing is a generic probabilistic heuristic approach originally
proposed in [7] and [8] for global optimization. Usually, SA locates a "good" approximation of
the global Optimum of a given objective function z in a large search space. At each Iteration,
SA considers some neighbors of the current Solution (search point) n, and probabilistically
chooses either to accept a new Solution or keeping 7r. The probabilities are chosen so
that the problem ultimately tends to move to solutions with better objective function value.
Typically this process is repeated until a Solution which is "good enough" has been determined,

5

or until a given time limit has been reached. SA uses several basic concepts: neighborhood,
probabilistic acceptance of a new neighborhood Solution, parameter (temperature) dependent
acceptance probability, cooling schedule, termination criterion.
In order to apply SA to a particular problem, we must specify the search Space, the neigh­
borhood search moves, the acceptance probability function, the cooling schedule and the
termination criterion. These choices can significantly affect the method's effectiveness. Un-
fortunately, there is no unique choice that will be good for all problems, and there is no general
way to find the best choice for a given problem [10].
Now let us precisely describe how to apply SA to the robust shortest path problem with interval
data.

• Search space. Any subset of the arc set A can be represented by a boolean vector
7r G {0, l}m, such that 7Tj = 1 if arc % belongs to the current subset and 7q = 0
otherwise. Thus, a vector 7r represents a current point in the search space. Obviously,
the search space of the algorithm is now presented by the variety of subsets of arcs
describing a graph that has a path from the source node 1 to the destination node
n. The subsets which describe graphs such that there exists no path from 1 to n are
not feasible. We have to exclude such points from the search space by defining their
objective values Z(K) = oo. It is necessary to emphasize that in each iteration we do
not check whether the search point represents a simple path. The reason for this is the
following. As far as any feasible graph contains a shortest path from 1 to n, and the
value of objective of such graph is always greater then the value of the shortest path
itself, then this shortest path will be most likely detected later during execution of SA.
The only condition that has to be satisfied for any search point is that it should always
describe a graph with at least one path from 1 to n.

• Initial Solution. Initially, we find a shortest path in the scenario where every arc (i,j)
has its largest cost in order to determine a good starting point 7r° for SA algorithm.
Alternatively, an initial search point can be generated randomly, but nevertheless the
feasibility of the graph described by the point has to be guaranteed.

• Neighbourhood search moves. Let 7r b e the current search point. We randomly chose i
from the list of arcs available for selection. This list contains all the arcs which are in the
current Solution as well as all arcs adjacent to them. Then we construct the neighbor
search point 7r' by inverting 7rif i.e. n' = (71^,7^,... , 7r̂) where n'j = 7rJ, if j ^ i, and
7Tj = 1 — 7Tj otherwise.

This formalization is quite natural and best suited for probabilistic and evolutionary
metaheuristics like SA and GA that allow small deterioration of the current Solution in
order to get amelioration afterwards (see e.g. [18]).

Two cases are possible: 1) we invert 0 to 1, and 2) we invert 1 to 0. Let us consider
these two cases in detail.

Case 1. Let A represent an arc subset describing the current Solution TT. Case 1
corresponds to adding arc := («, 3) to the arc set of graph h := (V, A) described by the
current search point TT. Obviously, a new search point 7r' represents graph h! := (V., *4')«
where A' := A U {a*}. Since h is a feasible graph, h' also contains at least one
path from 1 to n, therefore additional checking for path existence is not necessary.

6

According to Proposition 1, the worst-case scenario for Solution 7r is the following:
cs^ = mj V(i,j) G A and c\= kj V(z, j) G A \ A, whereas Solution 7r' has the
following worst-case scenario shr. c"-' = Uij G -4' and qj1' = kj V(i,j) £ A\A'.
In other words, can be obtained from Sh by replacing cost c~ = 1^ of arc a* with
new cost c~' = ttjj. Then the cost charge A of performing a neighbourhood search
move can be calculated as:

:= -z(TT) =

= ckY — min - cshh + min cSh =
h PZP p n peP p

= na + min cth — min cih'.
J peP p peP p

Thus, in order to calculate the cost Charge A we have to calculate the difference of the
cost of minimum shortest path in scenarios and .sv-

Gase 2. This case corresponds to deleting arc a* := (t, j) from the arc set of graph
h := (V,A) described by the current search point 7r. Obviously, a new search point
7r' represents graph h' := (V, A'), where A! := A \ {o,}. Additional checking for
path existing of b! is necessary. If h! does not contain any path from 1 to n, then the
neighbourhood search move fails. Otherwise, similar to Case 1, worst-case scenario
can be obtained from Sh by replacing cost c~ = u-x-3 of arc at with new cost c~ — k j.
Then the cost charge A of performing a neighbourhood search move can be calculated
as:

Aw_^ := z(ir') - z(7r) =

= chY — m in cth' — cshh + min cih =
n peP p n peP p

— —un + min cih — min cih'.
peP p peP p

As in Case 1, in order to calculate A we have to calculate the difference of the costs of
shortest pathes in scenarios Sh and shi.

Note that graph feasibility can be easily examined using breadth-first search.

• Acceptance probability rule. We will accept a new Solution n' instead of 7r with proba-
bility

P(ir,-K',Tg) =min|l,exp ^_^(7r)^ *00^ j

• Cooling schedule. The initial cooling temperature To depends on cp a nd the largest
possible arc cost cmax := max u^, namely T0 := 100 • n • C moz- Annealing schedule is

defined according to the following rule: Tq := aq • To , where a := 0.95.

• Termination criterion. One has the freedom to introduce different stopping criteria.
Typically, SA is repeated until the system reaches a State which is "good enough",
or until a given time limit has been reached. The annealing temperature decreases
to (nearly) zero short before termination. For computational purposes we define the
termination criterion: Tq < 7, where 7 is equal to 0.001.

7

In order to improve efficiency of the algorithm for practica! calculation we used gradient descent
method incorporated into simulated annealing. Let L be the parameter that determines the
number of successful moves that will be considered at each temperature level. A larger value
increases the optimization time, but tends to yield solutions with a narrower spread around the
global optimum. The main idea of gradient descent method is very simple: among L possible
moves we choose the one with minimal value of A. The suitable value of L is determined
experimentally.

4 Computational experiments

An experimental version of the SA algorithm has been coded using Java Development Kit
(JDK), version 5.0, Update 2.0, and implemented on a Pentium IV machine with 1.5 GHz
clockpulse and 512 Mb RAM.1

Benchmark description. In order to evaluate the algorithm we use the family of benchmarks
similar to [12] - [13]. Nevertheless, the instances considered are not identical due to random
creation of parameters. We consider the family of random graphs R — n — c — S that contain n
vertices and [5 • n(n — 1)J arcs. Arcs are generated between randomly chosen pairs of vertiees
and interval costs are randomly set up in such a way that 0 < 4, < Uij < c € A. We
generate the lower bound uniformly at random from interval (0, [fj], and the upper bound

from (lij,c).
Running time of SA. We compare the running time with the results of [6], [12], [13] and [14],
where the fastest exact algorithms recently known have been presented.
The correlated running time r (average value) in seconds is presented in Table 1. The first
column represents the network. In the second column KPYMIP the original running time of
the algorithm (mixed integer program reformulation and direct solving with CPLEX) described
in [6] is presented, while columns MGBB and MGDIBB summarize the Performance of the
major and improved methods based on branch and bound strategy proposed in [12] and [12],
respectively. The two columns MGBD and MGIBD are devoted to the running time of the
two most powerful exact algorithms which are based on Benders decomposition and reported in
[14]. The last column N$A presents the result of simulated annealing metaheuristic algorithm
discussed in this paper.

Networks KPYMIP MGDBB MGDIBB MGBD MGIBD NSA
R - 500 - 100 - 0.01 1.668 0.789 0.465 0.444 0.444 1.4
R — 500 - 100 - 0.10 7.215 2.052 0.204 1.614 1.495 2.1
R — 900 - 1000 - 0.50 857.155 - 48.316 862.168 140.141 15.3
R - 900 - 1000 - 0.90 - - 185.648 - 266.799 26.7

Table 1: Running time

Efficiency of SA. Due to the stochastic nature of our algorithm, a Single run of it on a given
instance is meaningless. A big number of repetitions is needed to give a representative view
of the efficiency. The other complication is that the optimal Solution of the problem is not
known for large instances. Therefore we used three different benchmarks which have relatively
small number of nodes and their construction is similar to the graph depicted in [6], We first
solve these benchmarks with CPLEX in order to get an exact optimal Solution. Then we apply
SA with Standard parameters to these benchmarks. After running the SA algorithm (= 100

1The code and the benchmark in stances can be obtained from the author upon req uest.

8

times, we caiculate the number Ci o f successful runs of SA, i.e. where the approximate Solution
is very dose to optimal one (the gap between lower bound and approximate values of objective
is less than the mean cost of one arc in the robust path; for large instance the gap defines
2% — 5% relative error of objective calculation). Then p = gives a probability of success
given a time measure T. Thus, the pairs (r,p) characterize efficiency of the algorithm with
given parameters. These data are summarized in Table 2.

\V\ C Ci (2 T
10 100 63 9 0.15 sec 72%
20 100 45 20 0.18 sec 65%
30 100 36 32 0.2 sec 68%

Table 2: SA efficiency

5 Conclusion

In this paper we propose a simulated annealing metaheuristic for the robust shortest path
problem where arc costs are not fixed but take their values from predefined intervals. For the
simulated annealing algorithm we use boolean vector representation of the arc set and 1-1 flip
of vector components as search moves. We compare our algorithm with the best procedures
currently known. In spite of SA is generally to be used to find solutions of high quality in
long runs and it is not oriented on quick Performance, the algorithm we proposed is intended
on speed as well as on quality of the Output. It seems that the algorithm can be treated as
quite effective (in most cases it finds a Solution which represents a good approximation to the
optimal one) and fast enough (the number of iterations and running time of the algorithm
are reasonable). We are convinced that our approach can be considered as rather efficient to
be used for large instances (networks with a thousand nodes and more as well as very dense
graphs with 6 greater than 0.5) when finding optimal Solution with exact methods takes too
much time.

Acknowledgements. The author is grateful to Andreas Drexl for useful suggestions and
valuable remarks. The author is also thankful to Harm Brand for algorithm encoding.

References

[1] R. Ahuja, T. Magnanti and J. Orlin, Network flows: theory, algorithms and applications,
Prentice-Hall, New Jersey, 1993.

[2] I. Averbakh and V. Lebedev, Interval data minmax regret network optimization problems.
Discrete Applied Mathematics 138 (2004) 289 - 301.

[3] M. Demir, B. Tansel and G. Scheuenstuhl, The network 1-median location with Interval
Data: A parameter space approach, IIE T ransactions (to appear).

[4] E.W. Dijkstra, A note on two problems in connection with graphs. Numerische Mathe­
matik 1 (1959) 269 - 271.

[5] M. Garey and D. Johnson, Computers and intractability. A guide to the theory of NP-
completeness, Freeman and Co, San Francisco 1979.

9

[6] O. Karasan, M. Pinar and H. Yaman, The robust shortest path problem with in­
terval data, Computers and Operations Research (revised, 2004: available online:
www.optimization — online.org/DB-HTML/2001/08/361.html).

[7] S. Kirkpatrick, Optimization by simulated annealing - quantitative studies. Journal of
Stat. Phys. 34 (1984) 975 - 986.

[8] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing. Science
220 (1983) 671 - 680.

[9] P. Kouvelis and G.Yu, Robust discrete optimization and its applications. Kluwer Academic
Publishers, Norwell, M.A. 1997.

[10] P. van Laarhoven and E. Aarts. Simulated annealing: theory and applications. Reidel,
Dordrecht, Holland 1987.

[11] E.Q.V. Martins and J.L.E. dos Santos. A new shortest paths ranking algorithm. Investi-
gacao Operacional 20 (2000) 47 - 62.

[12] R. Montemanni and L.M. Gambardella, An exact algorithm for the robust shortest path
problem with interval data. Computers and Operations Research 31 (2004) 1667 - 1680.

[13] R. Montemanni, L.M. Gambardella and A.V. Donati, A branch and bound algorithm
for the robust shortest path problem with interval data, Operations Research Letters 32
(2004) 225 - 232.

[14] R. Montemanni and L.M. Gambardella, The robust shortest path problem with interval
data via Benders decomposition. 40R (to appear).

[15] Y. Nikulin, Robustness in combinatorial optimization and scheduling theory: an
annotated bibliography, Manuskripte aus den Instituten für Betriebswirtschaftslehre
No. 583, Christian-Albrechts-Universität zu Kiel, Germany 2004. (available online:
www.optimization — online, or g / DB JFILE /2004/11/995.pdf)

[16] Y. Nikulin, Simulated annealing algorithm for the robust spanning tree problem,
Manuskripte aus den Instituten für Betriebswirtschaftslehre No. 591, Christian-Albrechts-
Universität zu Kiel, Germany 2005.

[17] K. Thulasiraman and M.N.S. Swamz, Graphs: theory and algorithms, Wiley, New York,
1992.

[18] I. Wegen er, Simulated annealing beats metropolis in combinatorial optimization. Elec­
tronic Colloquium on Computational Complexity, Report No. 8, Dortmund, Germany
2004.

[19] G. Yu and J. Yang, On the robust shortest path problem, Computers and Operations
Research 25 (1998) 457 - 468.

[20] P. Zielinski, The computational complexity of the relative robust shortest path problem
with interval data, European Journal of Operational Research 158 (2004) 570 - 576.

10

