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Abstract 

This paper addresses the robust shortest path problem with interval data, i.e. the 
case of classical shortest path problem with given source and sink when arc weights 
are not fixed but take their values from some intervals associated with arcs. The 
problem consists in finding a shortest path that minimizes so called robust deviation, 
i.e. deviation from an optimal Solution under the worst case realization of interval 
weights. As it was proven in [9], the problem is NP-hard, therefore it is of great interest 
to tackle it with some metaheuristic approach, namely simulated annealing, in order to 
calculate an approximate Solution for the large scale instances efficiently. We describe 
theoretical aspects and present the results of computational experiments. To the best 
ofour knowledge, this is the first attempt to develop metaheuristic approach for solving 
the robust shortest path problem. 

Keywords: shortest path problem, simulated annealing, uncertainty, robustness. 

1 Introduction 

The special interest motivated by telecommunications applications induces not to solve the 
interval shortest path problem itself, but to hedge against the worst-case realization (scenario) 
of problem parameters, which can be interpreted as given with uncertainty. Playing against 
worst-case scenario is commonly known as robust optimization (see, e.g. [16]). As it was indi-
cated in [9], in many cases the robust equivalent of a polynomially solvable problem becomes 
NP-hard. This is true also for the problem considered in this paper. 
We consider the special case of a shortest path problem on directed graphs where the arc 
costs (weights) are not fixed but take their values from some positive intervals. No stochastic 
distribution is given inside intervals. The interval function is defined as the sum of interval 
weights over all arcs of feasible shortest path. Our goal is to find a relative robust shortest path 
from start node (source) to destination node (sink) which minimizes the maximum deviation 
from the optimal shortest path over all realizations of arc costs. This case is principally 
different from the absolute robust shortest problem [9] which is to select a path for which 
the maximum path length taken across all possible scenarios is minimal - a variant which can 
be easily solved in case of interval data. In the remainder of the present paper only relative 
robustness is considered, and the problem is commonly referred to as the robust shortest path 
problem. This problem is significantly harder than the conventional shortest path problem that 
deals with fixed and static positive values of weights associated with every arc. 
Contrary to the classical shortest path problem, which can be easily solved by Dijkstra's 
algorithm [4] in strongly polynomial time (for a survey of other algorithms see e.g. [1]), the 
robust shortest path problem depends on the realization of arc weights. As it was proven in 
[19], the robust shortest path problem with scenario representation, i.e. where the set of arc 
weight realizations is defined, is strongly NP-hard. In [19] the authors conjectured that the 
robust shortest path problem with interval data is also NP-hard, what has been later proven 
in [20]. Simultaneously, in [2] it was proven that the robust shortest path problem is NP-hard 
even if the bounds of all intervals of uncertainty belong to (0,1). The interval data minmax 
regret shortest path problem is NP-hard even if the network is directed, acyclic, and has a 
layered structure. Nevertheless it was shown that the problem is polynomially solvable in 
the practically important case where the number of arcs with uncertain lengths is fixed or is 
bounded by the logarithm of a polynomial function of the total number of arcs. 
The basic theoretical background for the robust shortest problem has been presented in [6]. 
A reformulation of the robust shortest path problem as a special mixed integer program and 
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a preprocessing technique based on weak path concept were presented. The concept of weak 
paths was first defined in [3]. In [6] it was shown how this concept can be efficiently used in 
a preprocessing stage for solving the robust shortest path problem. We will shortly sketch out 
the main results of [6] in section 2. 
A branch and bound procedure extending of some previous results as well as some other 
innovations is presented in [12], [13]. The computational results obtained by the new branch 
and bound algorithm are presented and analyzed with respect to various benchmarks. The 
results were compared with earlier results obtained by solving a mixed integer program in 
[6], It was shown that the algorithm is extremely efficient on random graphs, but has no 
good Performance on layered acyclic graphs (mainly due to their specifics). Nevertheless, the 
proposed algorithm can solve problem instances on random graphs with the number of nodes 
n ~ 500 in reasonable time. 
In [14] a new exact method based on Benders decomposition was described with regard to the 
robust shortest path problem. It was shown that this approach gives very good computational 
results on many classes of networks. The study of impact of arc density and network structure 
is additionally presented. It was concluded that the method based on Benders decomposition 
is the best one for networks with low arc density, while the branch and bound methods are the 
most promising ones in the case arc density essentially increases. 
The rest of the paper is organized as follows. In section 2 we introduce the basic notation 
and formulate the problem. The main well-known theoretical results are also presented. How 
to apply the simulated annealing metaheuristic to the problem is described in section 3. The 
results of computational experiments are presented in section 4. Final remarks and conclusions 
appear in section 5. 

2 Problem description and theoretical background 

Let G = (V,A) be a digraph, where V, \V\ = n, is the set of nodes and A, \A\ — m, 
m < n(n — 1 ), is the set of arcs. With each arc (i,j) E A we associate a cost interval 
[lij,Uij], 0 < kj < Uij < c, i.e. for each arc (i, j) £ A its cost % is not fixed and belongs to 
[lij,Uij], The cost upper bound c is given and fixed. No probability distribution is given inside 
the cost interval. A realization of all arc costs is called a scenario s. The set S is the set of 
all possible scenarios. The source node 1 and the destination node n are given. An ordered 
chain from 1 to n of alternating nodes and arcs such that every two neighboring nodes vk and 
Vk+i are connected with arc (%, %+i) G A is said to be a path p from 1 to n. Moreover, if 
all the nodes in a chain are different, the path is called simple. Let P be the set of all paths 
from 1 to n. If p € P contains all the nodes of V, then it is called Hamiltonian. Let s be a 
realization of arc costs, i.e. 6 [4, , %%?]. W e denote by csp the total cost of path p in scenario 
s, which is defined as: 

(iJ)€.Ap 

where Ap is the set of arcs that the path p consists of. 
For every scenario s G S the shortest path problem is to find a path from 1 to n of minimum 
total cost over all paths p £ P. This problem can be easily solved by Dijkstra's algorithm [4], 
which processes nodes in nondecreasing order of their actual distances from the source node. 
At the beginning all nodes are given an infinite distance except the source which is given a 
distance 0. At each step we choose the next unlabelled node which is nearest to the source 
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and mark it, while updating the optimal distance to all its neighbors. The optimal distance 
of a neighbor is updated only if reaching it from the current labelling node gives a total path 
length that is shorter then its current distance. Döing so the aIgorithm constructs the so-called 
shortest path tree, which is a spanning tree rooted at source node where the shortest paths 
to all other nodes are determined. The shortest path to each node is then found by tracing 
the predecessor iteratively back to the source. One of the best implementations of Dijkstra's 
algorithm uses priority queue structure and has time complexity 0(n log{n + m)). Observe 
that Dijkstra's algorithm can be correctly applied to the problem that has no negative arc 
costs, otherwise it terminates but does not provide the fitness of the algorithm, i.e. a proper 
optimal Solution is unlikely to be found. In o ur case any possible scenario has only positive arc 
costs, so the Dijkstra algorithm can be used to calculate the shortest path for a particular arc 
cost realization. 
The interval representation of arc costs may be interpreted as some sort of uncertainty for 
input data of the classical shortest path problem. The presence of uncertainty may be caused 
by different reasons: inaccuracy of initial data, non-adequacy of models to real processes, 
errors of numerical methods, errors of rounding off and other factors. So it appears to be 
important to identify a Solution which is flexible under all realizations of problem parameters. 
It is of special interest to find a Solution which provides the smallest changes of the result 
under worst possible scenario of distribution of problem parameters. The model with such a 
nice property is called robust counterpart problem, and a Solution of the robust counterpart 
problem is generally known as robust Solution. 
First it seems to be natural to give a definition of a robust Solution as follows: an optimal 
Solution is robust if it remains optimal under any realization of the input data. But this 
definition can hardly be regarded as desirable, because it is too restrictive. Most unlikely such 
a Solution exists. Another definition may be considered more appropriate: our goal is to find 
a robust Solution which minimizes maximum regret or relative deviation (minimizes possible 
consequences of worst-case scenario with respect to objective function). 
Thus, for each path p E P in a scenario s the difference between the total cost c* and the 
cost of the shortest path in s represents the deviation for p in scenario s: 

devt ••= ci- min cL. 
p p p'eP p 

For a given path p 6 P the worst-case scenario sp is a scenario for which the deviation for p 
is maximum over all scenarios s £ S, i.e. 

sp := axgmaxdeVp. 

Then the difference 
deviv := et" - min cj 

p p j/eP p 

represents the robust deviation of p. 
A path p° is said to be a robust shortest path if it has the smallest robust deviation 

p° := arg min dev^v 

peP y 

among all paths from 1 to n. 
In o rder to keep the paper self-contained we Start with some theoretical background, originally 
presented in [6], 
The following proposition gives a worst-case scenario for a given path. 
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Proposition 1 [6] The scenario in which the costs of every arc on a path t € T is at its 
upper bound and the cost of every other arcs is at its lower bound is a worst-case scenario, 
i.e. c-J = Uij V(i,j) G Ap and c-J = ltj V(i,j) G A \ Ap. 

In other words, for any path p € P the worst-case scenario sp is uniquely determined and 
minimizes the robust deviation devpv over all possible scenarios. It means that we need to 
consider only a finite number of scenarios. However, the number of paths in a graph may grow 
exponentially with the number of nodes in the network. 

Definition 1 [6] A path p is a weak path if it is a shortest path for s ome (at least one) 
realization s of arc costs. 

The following theorem gives a characterization of weak paths. 

Theorem 1 [6] A path p G P is a weak path if and only ifit is a shortest path when the cost 
of every arc on this path corresponds to its lower bound and the cost of all the remaining arcs 
correspond to their upper bounds. 

The following statements give us an idea about the construction of a robust shortest path. 

Proposition 2 [6] A robust shortest path is a weak path. 

Definition 2 [6] An arc (i,j) is a weak arc if it is on one of the weak paths. 

In other words, every robust shortest path uses only weak arcs, i.e. all non-weak arcs are not 
considered at all. This Observation leads to: 

Proposition 3 [6] A non-weak arc a E A can be deleted from graph G when solving a robust 
shortest path problem. 

Unfortunately, the last result cannot be used efficiently in a preprocessing stage of any al­
gorithm solving the robust shortest path problem for arbitrary graph G due to the following 
result. 

Proposition 4 [6] Deciding whether a given arc is weak or not is NP-complete. 

In [6] the authors proposed a polynomial-in-time procedure to decide whether a given arc is 
weak or not for very specific classes of layered graphs. Later in [12] it was shown that the 
procedure essentially decreases calculation complexity on layered graphs however, evidently, 
cannot be extended on arbitrary graphs. 

3 Simulated Annealing 

Simulated annealing (SA) or hill climbing is a generic probabilistic heuristic approach originally 
proposed in [7] and [8] for global optimization. Usually, SA locates a "good" approximation of 
the global Optimum of a given objective function z in a large search space. At each Iteration, 
SA considers some neighbors of the current Solution (search point) n, and probabilistically 
chooses either to accept a new Solution or keeping 7r. The probabilities are chosen so 
that the problem ultimately tends to move to solutions with better objective function value. 
Typically this process is repeated until a Solution which is "good enough" has been determined, 
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or until a given time limit has been reached. SA uses several basic concepts: neighborhood, 
probabilistic acceptance of a new neighborhood Solution, parameter (temperature) dependent 
acceptance probability, cooling schedule, termination criterion. 
In order to apply SA to a particular problem, we must specify the search Space, the neigh­
borhood search moves, the acceptance probability function, the cooling schedule and the 
termination criterion. These choices can significantly affect the method's effectiveness. Un-
fortunately, there is no unique choice that will be good for all problems, and there is no general 
way to find the best choice for a given problem [10]. 
Now let us precisely describe how to apply SA to the robust shortest path problem with interval 
data. 

• Search space. Any subset of the arc set A can be represented by a boolean vector 
7r G {0, l}m, such that 7Tj = 1 if arc % belongs to the current subset and 7q = 0 
otherwise. Thus, a vector 7r represents a current point in the search space. Obviously, 
the search space of the algorithm is now presented by the variety of subsets of arcs 
describing a graph that has a path from the source node 1 to the destination node 
n. The subsets which describe graphs such that there exists no path from 1 to n are 
not feasible. We have to exclude such points from the search space by defining their 
objective values Z(K) = oo. It is necessary to emphasize that in each iteration we do 
not check whether the search point represents a simple path. The reason for this is the 
following. As far as any feasible graph contains a shortest path from 1 to n, and the 
value of objective of such graph is always greater then the value of the shortest path 
itself, then this shortest path will be most likely detected later during execution of SA. 
The only condition that has to be satisfied for any search point is that it should always 
describe a graph with at least one path from 1 to n. 

• Initial Solution. Initially, we find a shortest path in the scenario where every arc (i,j) 
has its largest cost in order to determine a good starting point 7r° for SA algorithm. 
Alternatively, an initial search point can be generated randomly, but nevertheless the 
feasibility of the graph described by the point has to be guaranteed. 

• Neighbourhood search moves. Let 7r b e the current search point. We randomly chose i 
from the list of arcs available for selection. This list contains all the arcs which are in the 
current Solution as well as all arcs adjacent to them. Then we construct the neighbor 
search point 7r' by inverting 7rif i.e. n' = (71^,7^,... , 7r̂ ) where n'j = 7rJ, if j ^ i, and 
7Tj = 1 — 7Tj otherwise. 

This formalization is quite natural and best suited for probabilistic and evolutionary 
metaheuristics like SA and GA that allow small deterioration of the current Solution in 
order to get amelioration afterwards (see e.g. [18]). 

Two cases are possible: 1) we invert 0 to 1, and 2) we invert 1 to 0. Let us consider 
these two cases in detail. 

Case 1. Let A represent an arc subset describing the current Solution TT. Case 1 
corresponds to adding arc := («, 3) to the arc set of graph h := (V, A) described by the 
current search point TT. Obviously, a new search point 7r' represents graph h! := (V., *4')« 
where A' := A U {a*}. Since h is a feasible graph, h' also contains at least one 
path from 1 to n, therefore additional checking for path existence is not necessary. 
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According to Proposition 1, the worst-case scenario for Solution 7r is the following: 
cs^ = mj V(i,j) G A and c\= kj V(z, j) G A \ A, whereas Solution 7r' has the 
following worst-case scenario shr. c"-' = Uij G -4' and qj1' = kj V(i,j) £ A\A'. 
In other words, can be obtained from Sh by replacing cost c~ = 1^ of arc a* with 
new cost c~' = ttjj. Then the cost charge A of performing a neighbourhood search 
move can be calculated as: 

:= -z(TT) = 

= ckY — min - cshh + min cSh = 
h PZP p n peP p 

= na + min cth — min cih'. 
J peP p peP p 

Thus, in order to calculate the cost Charge A we have to calculate the difference of the 
cost of minimum shortest path in scenarios and .sv-

Gase 2. This case corresponds to deleting arc a* := (t, j) from the arc set of graph 
h := (V,A) described by the current search point 7r. Obviously, a new search point 
7r' represents graph h' := (V, A'), where A! := A \ {o,}. Additional checking for 
path existing of b! is necessary. If h! does not contain any path from 1 to n, then the 
neighbourhood search move fails. Otherwise, similar to Case 1, worst-case scenario 
can be obtained from Sh by replacing cost c~ = u-x-3 of arc at with new cost c~ — k j. 
Then the cost charge A of performing a neighbourhood search move can be calculated 
as: 

Aw_^ := z(ir') - z(7r) = 

= chY — m in cth' — cshh + min cih = 
n peP p n peP p 

— —un + min cih — min cih'. 
peP p peP p 

As in Case 1, in order to calculate A we have to calculate the difference of the costs of 
shortest pathes in scenarios Sh and shi. 

Note that graph feasibility can be easily examined using breadth-first search. 

• Acceptance probability rule. We will accept a new Solution n' instead of 7r with proba-
bility 

P(ir,-K',Tg) =min|l,exp ^_^(7r)^ *00^ j 

• Cooling schedule. The initial cooling temperature To depends on cp a nd the largest 
possible arc cost cmax := max u^, namely T0 := 100 • n • C moz- Annealing schedule is 

defined according to the following rule: Tq := aq • To , where a := 0.95. 

• Termination criterion. One has the freedom to introduce different stopping criteria. 
Typically, SA is repeated until the system reaches a State which is "good enough", 
or until a given time limit has been reached. The annealing temperature decreases 
to (nearly) zero short before termination. For computational purposes we define the 
termination criterion: Tq < 7, where 7 is equal to 0.001. 
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In order to improve efficiency of the algorithm for practica! calculation we used gradient descent 
method incorporated into simulated annealing. Let L be the parameter that determines the 
number of successful moves that will be considered at each temperature level. A larger value 
increases the optimization time, but tends to yield solutions with a narrower spread around the 
global optimum. The main idea of gradient descent method is very simple: among L possible 
moves we choose the one with minimal value of A. The suitable value of L is determined 
experimentally. 

4 Computational experiments 

An experimental version of the SA algorithm has been coded using Java Development Kit 
(JDK), version 5.0, Update 2.0, and implemented on a Pentium IV machine with 1.5 GHz 
clockpulse and 512 Mb RAM.1 

Benchmark description. In order to evaluate the algorithm we use the family of benchmarks 
similar to [12] - [13]. Nevertheless, the instances considered are not identical due to random 
creation of parameters. We consider the family of random graphs R — n — c — S that contain n 
vertices and [5 • n(n — 1)J arcs. Arcs are generated between randomly chosen pairs of vertiees 
and interval costs are randomly set up in such a way that 0 < 4, < Uij < c € A. We 
generate the lower bound uniformly at random from interval (0, [fj], and the upper bound 

from (lij,c). 
Running time of SA. We compare the running time with the results of [6], [12], [13] and [14], 
where the fastest exact algorithms recently known have been presented. 
The correlated running time r (average value) in seconds is presented in Table 1. The first 
column represents the network. In the second column KPYMIP the original running time of 
the algorithm (mixed integer program reformulation and direct solving with CPLEX) described 
in [6] is presented, while columns MGBB and MGDIBB summarize the Performance of the 
major and improved methods based on branch and bound strategy proposed in [12] and [12], 
respectively. The two columns MGBD and MGIBD are devoted to the running time of the 
two most powerful exact algorithms which are based on Benders decomposition and reported in 
[14]. The last column N$A presents the result of simulated annealing metaheuristic algorithm 
discussed in this paper. 

Networks KPYMIP MGDBB MGDIBB MGBD MGIBD NSA 
R - 500 - 100 - 0.01 1.668 0.789 0.465 0.444 0.444 1.4 
R — 500 - 100 - 0.10 7.215 2.052 0.204 1.614 1.495 2.1 
R — 900 - 1000 - 0.50 857.155 - 48.316 862.168 140.141 15.3 
R - 900 - 1000 - 0.90 - - 185.648 - 266.799 26.7 

Table 1: Running time 

Efficiency of SA. Due to the stochastic nature of our algorithm, a Single run of it on a given 
instance is meaningless. A big number of repetitions is needed to give a representative view 
of the efficiency. The other complication is that the optimal Solution of the problem is not 
known for large instances. Therefore we used three different benchmarks which have relatively 
small number of nodes and their construction is similar to the graph depicted in [6], We first 
solve these benchmarks with CPLEX in order to get an exact optimal Solution. Then we apply 
SA with Standard parameters to these benchmarks. After running the SA algorithm ( = 100 

1The code and the benchmark in stances can be obtained from the author upon req uest. 
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times, we caiculate the number Ci o f successful runs of SA, i.e. where the approximate Solution 
is very dose to optimal one (the gap between lower bound and approximate values of objective 
is less than the mean cost of one arc in the robust path; for large instance the gap defines 
2% — 5% relative error of objective calculation). Then p = gives a probability of success 
given a time measure T. Thus, the pairs (r,p) characterize efficiency of the algorithm with 
given parameters. These data are summarized in Table 2. 

\V\ C Ci (2 T 
10 100 63 9 0.15 sec 72% 
20 100 45 20 0.18 sec 65% 
30 100 36 32 0.2 sec 68% 

Table 2: SA efficiency 

5 Conclusion 

In this paper we propose a simulated annealing metaheuristic for the robust shortest path 
problem where arc costs are not fixed but take their values from predefined intervals. For the 
simulated annealing algorithm we use boolean vector representation of the arc set and 1-1 flip 
of vector components as search moves. We compare our algorithm with the best procedures 
currently known. In spite of SA is generally to be used to find solutions of high quality in 
long runs and it is not oriented on quick Performance, the algorithm we proposed is intended 
on speed as well as on quality of the Output. It seems that the algorithm can be treated as 
quite effective (in most cases it finds a Solution which represents a good approximation to the 
optimal one) and fast enough (the number of iterations and running time of the algorithm 
are reasonable). We are convinced that our approach can be considered as rather efficient to 
be used for large instances (networks with a thousand nodes and more as well as very dense 
graphs with 6 greater than 0.5) when finding optimal Solution with exact methods takes too 
much time. 

Acknowledgements. The author is grateful to Andreas Drexl for useful suggestions and 
valuable remarks. The author is also thankful to Harm Brand for algorithm encoding. 
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