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Abstract 

In com binatorial auctions the pricing problem is of main concern since it is the means 
by which the auctioneer signals the result of the auction to the participants. In order 
for the auction to be regarded as fair among the various participants the price signals 
should be such that a participant that has won a subset of items knows why his bid was a 
winning bid and that agents that have not acquired any item easily can detect why they 
lost. The problem in t he combinatorial auction setting is that the winner determination 
problem is a hard integer programming problem and hence in general there does not 
exist a linear pricing scheme supporting the optimal allocation. This means that single 
item prices, that support the optimal allocation can in general not be found. In this 
article we present an alternative. 

From integer programming duality theory we know that there exist non-Iinear anony-
mous price functions that support the optimal allocation. In this paper we will provide 
a means to obtain a simple form of a non-Iinear anonymous price system that supports 
the optimal allocation. Our method relies on the fact that we separate the Solution 
of the winner determination problem and the pricing problem. This Separation yields a 
non-Iinear price function of a much simpler form compared to when the two problems 
are solved simultaneously. The pure pricing problem is f ormulated as a mixed-integer 
program. If solving this program is too demanding computationally a heuristic can be 
used which essentially requires us to solve a sequence of linear programming relaxations 
of a new mixed-integer programming formulation of the pricing problem. The procedure 
is computationally tested using instances of the combinatorial auctions test suite [17]. 

Keywords: Combinatorial auctions, set packing, duality theory, non-Iinear anonymous 
prices 

1 Introduction 

Auctions have been used for a long term to generale an efficient market mechanism to trade 
goods and services. The most common auction format is a single unit auction in which the 
goods are auctioned off in some predetermined sequence using either an English or a Dutch type 
auction (see, e.g., Klemperer 2002, McAfee and McMillan 1987, Milgrom 1989, Wolfstetter 
1999). However, in many auctions/markets a participants valuation of an object depends 
significantly on which other objects the participant acquires. Objects can be Substitutes or 
complements and the valuation of a particular bündle of items may not equal the sum of the 
individual items in the bündle. In order to design an efficient auction in such situations a 
non sequential auction format is required. Auctions in which agents are allowed to bid on 
bundles of items and the auctioneer sells the whole set of items in one single auction are 
named combinatorial auctions. 

Recently, the interest in the design of combinatorial auction mechanisms has been booming. 
The design of such mechanisms requires among others to address a couple of issues: (a) 
settlement of the auction rules and who is in Charge of Controlling them, (b) which agents 
are allowed to take part in the auction, (c) which bidding formats are allowed, (d) how are 
the winners to be determined, (e) how much are the winners to be charged, (f) how much 
Information is provided to the participants, (g) is the auction format of a single round or an 
iterative, multiple round type? In this paper we will focus on issue (f), that is, on the price 
Information given by the auctioneer to the participating agents. 

1 



The pricing problem in combinatorial auctions has two important aspects: (i) In an iterative 
combinatorial auction the prices presented to the agents should provide means for an agent to 
revise his bid properly knowing that the price Information given by the auctioneer in each round 
contains Information on the potential winner valuation in the current round and Information 
that the agent can use in order to decide whether to rise/lower his bid on a certain bündle 
or withdraw from the auction. (ii) When the auction is terminated the prices provided by 
the auctioneer should be such that it is easy for the agents having obtained winning bids to 
understand why their bid won and how much they will be charged. For the losers in the auction 
the prices provided should be such that it is easy to detect why the bid was not high enough to 
obtain the particular bündle and provide means for the agents to determine that the auction 
was fair. 

Since the winner determination problem in a combinatorial auction is an integer program we 
know that in general there do not exist linear prices on the single items that clear the market, 
i.e. support the optimal allocation of bundles to winning agents. In the literature this problem 
of non-existence of linear market Clearing prices has been resolved in various ways. The most 
common Solution is to generate so-called pseudo-dual prices which are in some sense a best 
possible approximation to linear prices that can be obtained. Other means of tackling the 
pricing problem in combinatorial auctions are to use non-anonymous/discriminatory prices or 
non-linear anonymous prices. 

Subsequently we will present a way to generate a non-linear extension of linear prices for 
combinatorial auctions that makes it easy for the agents to analyse their current bids and to 
understand why they have won or why they have lost in the auction. The way that the mixed-
integer pricing program is solved can be interpreted as constructing sets of restricted auctions 
from the original auction each of which has the integrality property. Since the algorithm is 
constructing linear prices such that the union of these sets of restricted auctions spans the 
original auction we have constructed a set of extreme linear prices and each agent should be 
capable of handling all prices that can be generated as a convex combination of the extreme 
prices. 

The paper is organized as follows: In section 2 we present the mathematical programming 
formulation of the winner determination problem and discuss the pricing problem briefly. In 
section 3 we provide a linear programming formulation for the determination of pseudo-dual 
prices and discuss their properties. A review of related work is given in section 4. Section 5 is 
dedicated to the new pricing model. In section 6 we discuss the relationship between the pricing 
model and so-called reduced combinatorial auctions. In section 7 we present computational 
results based on auctions generated from the combinatorial auctions test suite [17]. A couple 
of research opportunities are discussed in section 8. Section 9 concludes the paper. 

2 Winner determination problem 

Let us assume for simplicity that only one unit of each object is available. Let / = {1,..., m} 
denote the set of items, and let J = {1,..., n} be the set of bids. Then the model reads as 
follows: 
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z = max bjXj 
jeJ 

s.t. J2 aijxj < 1 V z e / / (1) 
jeJ 
xj e {0,1} \/j e J J 

The parameter bj is the bid price for bündle j from bidder i. The binary parameter equals 
1, if item i is contained in bid j (0, otherwise). The variable Xj indicates whether bid j is 
accepted (xj = 1) or not (xj = 0). 

The winner determination problem (1) is an integer programming problem. In g eneral solving 
the linear programming relaxation of the winner determination problem will result in a Solution 
in which some of the variables have non-integral values. In such cases where the integer 
programming problem has a duality gap which is strictly greater than zero, we know from 
theory (see, e.g., IMemhauser and Wolsey 1988) that there does not exist a linear price function 
that supports the optimal allocation of winning bundles. 

It is obvious that if bidders submit their true values on the various bundles, the Solution to the 
winner determination problem gives an efficient allocation of indivisible objects in an exchänge 
economy. The formulation above is valid for the winner determination problem in the case of 
subadditive and superadditive bids, however, in the latter case it is of special interest. If it ems 
are Substitutes a more general winner determination problem based on so-called XOR bids is 
needed (see, e.g., Xia et al. 2004). 

Model (1) is the most widely studied single-unit (each item is unique and there is only one unit 
for sale each), single-sided (one seller and multiple buyers) case. It is the set packing problem, a 
well-known NP-complete optimization problem (Garey and Johnson 1979). Exact and heuristic 
algorithms for solving the set packing problem have been developed by, e.g., Borndörfer (1998), 
Delorme et al. (2004), Harche and Thompson (1994), Hoffmann and Padberg (1993) and 
Sandholm et al. (2005). Special cases of the set packing problem, which can be solved in 
polynomial time, have been studied in, e.g., Rothkopf et al. (1998) and van Hoesel and Müller 
(2001). 

A recent survey of combinatorial auctions is provided by de Vries and Vohra (2003). Combi­
natorial auctions can be useful in many environments and have been considered for problems 
including selling spectrum rights (McMillan 1994, Milgrom 2000), airport take-off & land-
ing time slot allocation (Rassenti et al. 1982), railroad segments (Brewer 1999), and delivery 
routes (Caplice and Sheffi 2003). Other applications are surveyed in, for instance, Kwon et 
al. (2005). 

If the linear programming relaxation of the winner determination problem has variables that 
are fractional in the optimal Solution the dual prices if used as Information will overcharge the 
agents and hence might lead to that some agents withdraw from the auction too early leading 
to an inferior outcome. In accordance with this Observation several authors, starting from the 
seminal work of Rassenti et al. (1982), have suggested the use of approximate pseudo-dual 
prices which can be thought of as prices that are approximately fulfilling the requirements of 
dual feasibility, primal complementary slackness and dual complementary slackness given the 
optimal, and thus feasible, Solution to the winner determination problem. The pseudo-dual 
prices are anonymous but do not fulfill the requirement that the bid on a non-winning bündle 
is less than the sum of the prices of the individual items in the bündle. 
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3 Basic properties and definitions 

First, we define the linear programming relaxation of the winner determination problem, that 
is, the problem 

z = max ^2 bjXj 
je; 

s.t. aijXj <1 Viel 
jeJ 
Xj> 0 Vj € J 

and the corresponding dual 

z = min Ylui 
iei 

S.t. Y! aijui > bj VjeJ 
ie/ 
Ui > 0 V i e I 

1 

(2) 

(3) 

where u = («,) is the vector uf dual variables. 

For the linear programming relaxation of (1) we know that an optimal primal Solution x* = (äy) 
of (2) and the corresponding optimal dual Solution u* = (u?) of (3) have the properties 
provided below. 

Property 1 (primal feasibility) 

An optimal primal Solution x* = (x*) satisfies the constraints 

Zoijx;< i Viel 
j€J 

> 0 V; € y 

and is said to be primal feasible. 

Property 2 (dual feasibility) 

An optima! dual Solution ü* = (ü*) satisfies the constraints 

T,aijui>bj VjeJ 
iei 
u* >o Viel 

and is said to be dual feasible. 

Property 3 (primal complementary slackness) 

If an optimal primal Solution (x*) and the corresponding optimal dual Solution (u*) satisfy the 
constraints 

x*j =0 Vj e J, 

then the primal complementary slackness condition is assured. 
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Property 4 (dual complementary slackness) 

If an optimal primal Solution (x*) and the corresponding optimal dual Solution (u*) satisfy the 
constraints 

u* OijXj - 1J = 0 V i G I, 

then the dual complementary slackness condition is assured. 

Finally, we define the meaning of anonymous vs. non-anonymous prices. 

Definition 1 (anonymous/non-anonymous prices) 

A price is called anonymous if all agents face the same price. If agents face different prices we 
have a non-anonymous price system. 

4 Related work 

Over time several suggestions have been made to address the problem of finding interpretable 
dual prices for integer and mixed-integer programming problems. Two streams of research 
can be distinguished. First, research related to duality theory for general purpose integer 
programming problems. Second, work dedicated specifically to the set packing problem. 

Integer programming We review this branch of research too, because our approach in some 
sense relies on integer programming duality theory. 

For a primal integer programming problem 

Z = max ^2 CjXj 
j=i 
n 

s.t. aixj ^ b a.j, b € 
j-1 
Xj > 0 and integer j = 1,. ,n 

(4) 

where we assume that {aj}j=1 and b are integer vectors, there exists a dual 

W = min F(b) 

s.t. F(a.j) >Cj j = 1,..., n 

F € F 

(5) 

where F = {F G F.'™ : F is superadditive and F(0) > 0} and F™ denotes the set of 
nondecreasing functions F : R m -» M* = R U {—oo, +oo}. The set F is the set of dual price 
functions. We adopt the Standard Convention that Z = —oo if (4) is infeasible and Z = -foo 
if (4) has feasible solutions of arbitrarily large value and a similar Convention for (5). 

The primal dual pair (4) and (5) have the same properties as in Standard linear programming 
duality, hence given an optimal primal dual pair (x*,F*) the solutions are primal and dual 
feasible, respectively, and primal complementary slackness is satisfied. 
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In the decisive work of Gomory and Baumol (1960) dual prices and their relationship to the 
marginal values of scarce resources have been discussed. Alcaly and Klevorick (1966) address 
the problem encountered with the approach of Gomory and Baumol that "free goods" might 
have nonzero prices. Wolsey (1981) gives a concise description of this theory, and shows that 
in the integer programming case we need to expand our view of prices to price-functions in 
order to achieve interpretable and computable duals (see also Scarf 1990, Williams 1996 and 
Sturmfels 2004). 

Wolsey (1981) shows that different algorithmic approaches for solving the primal integer pro­
gram lead to different characterisations of the optimal price functions. Specifically the cutting 
plane approach shows that there is always an optimal price function of the form 

m r 
F'(b) = ^jrji.i + ̂ 1rm+ifi(b) (6) 

i=l i=l 

where 

m t—1 
F'( b) = WM 

,1=1 1=1 
(7) 

with TT = (Tri,..., 7Tm+r) > 0, A( 1 = (A$ \..., A^+t_x) > 0, t = 1,..., r, where r is the 
number of cutting planes, and [7J denotes the largest integer less than or equal to 7. 

If a linear programming based branch and bound algorithm terminates on problem (4), and 
(4) has a finite optimal value, then (5) has an optimal Solution of the form 

F*( b) = max [at(f) + u'b] (8) 

with u* = (u\,..., u^) > 0, t = 1,..., r, where t Indexes the terminal fathomed nodes for 
some finite value of r. (u\ ü*) > 0 is the dual feasible Solution associated with node t 
and a(t) = —utgt + tfh* reflects the bounds gj < Xj < h*• on variables Xj obtained through 
branching. 

In o rder to calculate reduced cost we only have to evaluate each column F*(a.j) — Cj > 0. 

Apparently, the dual price function given in the dual above yields a non-linear anonymous price 
function for every combinatorial auction with the winner determination problem (1). Obviously, 
the problem with this approach is that the derivation of the price function is very complicated. 
Recently, Klabjan (2003) has developed an algorithm for Computing the subadditive dual 
function which seems to be practica! for the set partitioning problem. 

Set packing Another stream of research frequently used in the combinatorial auction setting 
is to impute pseudo-dual prices, that is, prices that are in some sense dose to the prices 
obtained for a pure linear program. The way these pseudo-dual prices are constructed is based 
on the following ideas: (i) The winning bundles should have reduced cost equal to zero. A 
Standard requirement for a linear program based on linear programming duality theory is that 
a basic variables reduced cost should be equal to zero. (ii) For the non-winning bids the 
item prices should ideally have the property that all non-winning bids are priced out, i.e. the 
reduced costs for these bids should be non-negative. However, in the general case when the 
linear programming relaxation does not yield an integral Solution this is unachievable. The 
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approximation made in these cases in order to obtain an approximate linear price function is 
to require that as many as possible of the non-winning bids are priced out or, alternatively, 
that the maximum deviation for a linear price to price out the non-winning bids is minimal, 
(iii) As in linear programming it is often required that prices for constraints that have slack in 
the optimal Solution yield an item price of zero. 

All these requirements can be interpreted as requiring primal feasibility, primal complementary 
slackness, dual feasibility, and dual complementary slackness (see properties 1 to 4). 

In a combinatorial auction the auctioneer is trying to get a good and hopefully optimal Solution 
to the winner determination problem. Assume that the optimal integer Solution x* = (x^) 
to the winner determination problem (1) has been found and that the linear programming 
relaxation (2) does not have the integrality property. Then we know that there does not exist 
a linear price system that can be interpreted as an equilibrium market Clearing mechanism. 

The underlying assumptions made when constructing a set of approximate pseudo-dual prices 
are: (a) The Solution x* = (x*) is primal feasible. (b) At least one of the properties dual 
feasibility, primal complementary slackness or dual complementary slackness must be relaxed. 

The 'normal' approach taken in the procedures that have been developed to construct pseudo­
dual prices is that: (i) Primal complementary slackness should be required. This means that 
we make sure that the winning bids for the different bundles of items all have reduced cost 
equal to zero. (ii) Dual complementary slackness should be required. This means that the 
price for an unsold item should be equal to zero. 

Hence the 'normal' relaxation used is to relax the requirement of dual feasibility leading to 
the fact that some of the loosing bids for a particular bündle of items will have a negative 
reduced cost when faced with the pseudo-dual price system making the agents that have 
submitted these bids suspicious and wondering why their bid has not been successful. This is 
the approach taken by Rassenti et al. (1982) and by DeMartini et al. (1999), among others. 

Assume that the winner determination problem (1) has been solved to optimality and that 
(x*j) is the corresponding optimal integer Solution. Let «70 := 0 € J : Xj = 0} and J\ := 
{j € J : x*j = 1} denote the set of loosing and winning bids, respectively. Apparently, we 
have JonJi=0 and JQU Ji = J. 

In the following we will sketch the approach by DeMartini et al. (1999) and Kwasnica et 
al. (2005) (other approaches can be found in, e.g., Parkes 2001, Bikhchandani and Ostroy 
2002 and Xia et al.2004). The main component is to solve the linear program (9). 

min w (9a) 

s.t. ^2 aiju% + Vj > bj Vj € Jo (9b) 
jej 

^ ^ OyUj — bj Vj 6 </i (9c) 

w > yj Vj G J0 " (9d) 

Ui> 0 Viel (9e) 

Vi >0 Vj € J0 (9f) 

At the prices (ttj) there may be some losing bids for which "%2jeJaijUi < bj, falsely signaling 
a possible winner, which is by virtue the nature of package bidding. Of course, such bids can 
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be resubmitted if (bj — J 2jejaijui) 's 'arge enough'. The objective (9a) has been designed 
to minimize the number of such bids. If "ideal" prices exist, they will be the Solution with 
Uj = 0 for all j G JQ an d, hence w will be equal to zero. If t he prices from (9a) are not unique 
a sequence of iterations each of which requires to solve the linear program (9) is performed 
(for details see DeMartini et al. 1999 and Kwasnica et al. 2005). 

Recently, Dunford et al. (2003) have shown that pseudo-dual, linear pricing algorithms pro-
duce non-monotonity between rounds, something that is expected to disturb bidders in itera­
tive combinatorial auctions. The non-linear anonymous pricing methodology presented in the 
following section gives the chance to overcome this deficiency. 

5 Pricing model 

Since we have separated the Solution of the winner determination problem and the pricing 
problem we know the optimal primal Solution. Let (xj) denote an optimal integer Solution of 
(1) and let J0 := {j € J : Xj = 0} and J\ := {j € J : x* = 1} be the corresponding set 
of loosing and winning bids, respectively. Then the constraints of the pricing problem can be 
written as follows: 

Y = | (y, u) G aijUi - bm >0 Vi G J0 (10a) 
l iU 

T. aijUj = bj Vi G Ji (10b) 
iei 
yjG{0,l} Vj G J0 (10c) 

Ui Z n 'f ^ < 1 ) Vi G / \ (lOd) 
Mi > 0, otherwise J J 

Constraints (10a) in conjunction with the second branch of (lOd) assure dual feasibility. Con­
straints (10b) assure primal complementary slackness. Constraint (10c) requires the variables 
corresponding to the loosing bids to be binary. Finally, the first branch of (lOd) addresses 
dual complementary slackness. Hence, overall the constraints assure that any feasible Solution 
of the mixed-integer pricing model has the properties 1 to 4. 

Note that both constraints (10a) and (10b) originate from the same (in-)equality. In particular, 
(10b) is the result of fixing yj to 1 for all bids j G J with x^ = 1, that is, the original winning 
bids are also winning bids in the pricing problem. The equality sign assures that these bids 
have reduced cost of zero. 

Now we are ready to formulate the pricing model as follows: 

max < : (y, u) G Y 1 (11) 
IjeJo ) 

The objective function of (11) aims at maximizing the number of loosing bids being covered in 
the optimal Solution. We will show now that this objective is the primary choice (see section 8, 
too). An important property of dual prices is to assure that as many loosing bids j G Jo as 
possible are priced out, that is, have non-positive reduced cost bj := bj — J^ iei aijui — 0 The 
following corollary states that the objective of our pricing model takes care of this characteristic. 
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Corollary 1 The mixed-integer pricing model prices out as many loosing bids as possible. 

Remark 1 The objective of (11) guarantees that in the case that the winner determination 
problem has the integrality property only one price will be generated, that is optimal linear 
programming shadow prices. 

Apparently, solving model (11) produces one price vector which has the desired properties. But 
the question is how to compute other prices to which the max operator can be applied. This can 
be achieved easily by adding cover cuts to (11) as follows. Assume that (11) has been solved 
to optimality and let (y*) denote the optimal binary variables. Let KQ = {j € JQ : y* = 0} 
and Ki = {j G J0 : y* = 1} denote the subset of loosing and winning bids, respectively. If 
we define 

y' = | (y, u) € Y : yj > 11 
l jeK0 J 

and solve max {£)y6t/o Vj '• ( y, u) G Y'} instead of (11) we get another price vector. Iterating 
this way produces a sequence of up to | JQ \ + 1 prices. The following corollary highlights the 
fact that the procedure generates a non-Iinear anonymous price system. 

Corollary 2 The price system has the form 

F*(d) = max* [u'd]. 

In case of d = 1 we get the optimal objective function value, in case of d = aj we get the 
reduced cost for column j by evaluating F*(a.j) — bj > 0. 

In practice | J0| + 1 might be too large to be handled by the agents and, hence, we propose to 
proceed as follows. Again assume that (11) has been solved to optimality and let (yj) denote 
the optimal binary variables. Let 

and 
ar=#r' u {; e ' = %; = i) 

indicate that we move bids that currently are priced out. Initially, we have KQ = {j G Jo '• 
= 0} and Kl = {j G Jo '• y^ = 1}- Then we solve in iteration n = 2,3,... the optimization 

problem 

max | e ^ %+ y, : (y, u) G Y 1 (12) 

where e = The objective function of (12) aims at letting as many as possible so far 
loosing bids win. This objective, in particular the choice of e, lexicographically search for 
alternative optimal solutions in which bids loosing in the previous iteration become winning 
bids in the current one. The iteration terminates once we have \K± \ = \K±~l\ yielding in 
total q < |Jo| + 1 prices. 
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In the following section we will illustrate by means of a computational study that this approach 
is effective and efficient. Before doing so we would like to notice that the non-linear anonymous 
price system is fairly simple. Whether this price system is efficient in practical use remains to 
be tested experimentally. 

An example with 6 items and 21 bids taken from Parkes (2001) illustrates the idea. The bid 
prices (bj) and the coeficient matrix (a^) are provided in Table 1. Note that the bids 4, 12, 
14 and 20 are superadditive. 

3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
bj 60 50 50 200 100 110 250 50 60 50 110 200 100 255 50 50 75 100 125 200 250 

Ol j 1 1 1 1 1 1 1 1 1 1 1 1 
a2j 1 1 1 1 1 1 1 1 1 1 1 1 
a3? 1 1 1 1 1 1 1 1 1 1 1 1 

j 1 1 1 1 1 1 1 
a5j 1 1 1 1 1 1 1 
ÜQj 1 1 1 1 1 1 1 

Table 1: Instance - Parkes (2001) 

integer program (1) linear program (2) h yh uA 

3-4 — -^17 ~ 1 
OPV = 275 

x\ = x*l2 — ^20 — 0 .5 
OPV = 300 

1 
2 Ii 

Ii 
o

 o
 

(125,75, 75, 0, 0, 0) 
(60, 140, 75, 0, 0, 0) 

Table 2: Instance - results Table 3: Bids selected and price system 

Table 2 provides the Solution (xj) of the integer program (1) and the Solution (x^) of the 
linear programming relaxation (2) for this instance. Variables not given there have value 0. 
OPV abbreviates optimal objective function value. Our pricing model generates the vectors 
yh and uh (h = 1,2) displayed in table 3 (variables % not given explicitely have value 1). 

One might ask why items 4, 5 and 6 have price 0 in all three cases. The reason is as follows. 
Consider, for instance, bids 4 and 17. Bid 17 complements bid 4 in the sense that two of the 
three items not contained in bid 4 are chosen. Bid 7, on the other hand, contains item 3, 
which is not contained in bid 4, at the bid price 250. If we look now at bids 3 and 10 we can 
easily detect that their bids price of 50 is attributed to item 3 only. As a consequence, the 
price of items 4 and 5 equals 0. 

bid reduced cost 
4 max (200, 200) - 200 = 0 

12 max (215, 135) - 200 = 15 
20 max (135, 215) - 200 = 15 

Table 4: Reduced cost 

In a planned experimental study we will try to find out how agents behave when facing these 
non-linear prices as compared with alternatives such as pseudo-dual prices or discriminatory 
prices. However, before leaving the example we would like to point out, that alternative sets 
of prices exist, for instance the two extreme prices (60, 140, 75, 0, 0, 0) and (140, 60, 75, 0, 
0, 0). The calculation of the reduced cost for the bids 4, 12 and 20 is displayed in table 4, 
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indicating that for bids 12 and 20 a rise of more than 15 in bid price must be done by the 
agents. For our method to generate this price system we have to revise the objective function 
as outlined in section 8. 

6 Pricing model and reduced combinatorial auctions 

In the following we establish relations between the mixed-integer pricing model and what we 
call reduced combinatorial auction. 

Definition 2 (reduced combinatorial auction) 

A reduced combinatorial auction is an auction where some bids have been eliminated such 
that the integrality property holds and, hence, a linear price system exists. 

Recall that (x1j) is an optimal integer Solution of (1) and that J\ := {j € J : Xj = 1} 
and J0 •'= J\ Ji is the corresponding set of winning and loosing bids, respectively. Moreover, 
assume that (11) has been solved to optimality and let (yj) denote the optimal binary variables. 
Furthermore, let Ki — {j E JQ : = 1} denote the subset of winning bids. 

The following corollary establishes a close relationship between the pricing model and reduced 
combinatorial auctions. 

Corollary 3 Given a Solution of the pricing model (11) only containing bids Ji U Kx the 
corresponding reduced auction restricted to the bids J\ U K\ has the integrality property. 
Moreover, the optimal Solution of the reduced auction with objective function value z is an 
optimal Solution of the original winner determination problem (1), too. 

It is easy to see that this is true also for the subsequent solutions to the pricing model (12). 
Hence, the sequential Solution to the pricing model corresponds to the construction of a set 
of reduced auctions each of which has the integrality property. 

For illustrative purposes look at the example of Parkes (2001) given above. The two reduced 
auctions are one auction with all bids but bid 12 and one auction with all bids but bid 20. 

7 Computational results 

In the following we will present numerical results which have been obtained with model (12) for 
a set of randomly generated instances. We decided to use the well motivated and universally 
accepted combinatorial auction generator CATS (combinatorial auction test suite; see [17]) 
which provides a set of distributions for modeling realistic bidding behavior. In particular, 
we have generated instances using the built-in distributions arbitrary, matching, paths, 
regions, and scheduling, respectively. 

The methods described earlier have been imlemented using the CPLEX callable library (version 
9.0) on an AMD Athlon with 1 GB RAM and 2.1 Ghz clockpulse. 

The results of the numerical experiments are given in tables 5 to 9. Each of the tables is 
structured as follows: 
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• Column 1 displays the number of items m. 

• In c olumn 2 the number of bids n = m- p with p £ {2,3,, 10, 20,, 100} is given. 
For each combination of m and n we have generated 10 instances. 

• Columns 3 to 5 provide the minimum (Min), average (Avg) and maximum (Max) number 
of prices q calculated. 

• Columns 6 to 8 show the minimum, average and maximum CPU time in seconds required 
for solving the sequence of mixed-integer programs (12).1 

• Column 9 displays the number of instances (# LP) for which the linear programming 
relaxation of the set packing problem (1) had the integrality property, that is, the number 
of cases in which there was no need to solve our mixed-integer pricing model (12). 

• Finally, column 10 displays the number of instances (# MIP) for which we had to solve 
our mixed-integer pricing model (12). 

Note that columns 9 and 10 complement each other, that is, sum up to the number 10 of 
instances generated for each combination of m and n. Furthermore, the number of prices 
q Covers only the subset of instances for which the integrality property was not observed. 
Otherwise the minimum number of prices generated is, of course, one (in this case columns 3 
to 8 show "-"). 

The results presented in tables 5 to 9 indicate the following: 

• The instances of the distribution type arbitrary are hard in the sense that the inte­
grality property shows up rarely and that the mixed-integer pricing problems are difficult 
to solve. This is the reason why we did not consider the füll ränge of m and n values 
in table 5 and why we have solved only 2 instances with 40 items and 120 bids. "n.a." 
means not available. 

• As can be observed from table 6 the instances of the distribution type matching2 are 
easy. On the one hand most of the instances have the integrality property. On the other 
hand the mixed-integer pricing problems can be solved quickly. Most important, the 
number of prices generated upon termination of our algorithm never exceeds three. 

• Instances of the distribution type paths are also easily accessible by our methodology 
(see table 7). Although the integrality property cannot be observed as oftenly as for the 
previous type the pricing problems can be soved quickly. The number of prices which 
have to be generated is very small, too. 

• For the distribution type regions there is much greater variety (see table 8). In case 
of 40 items and 240 to 400 bids some mixed-integer programs are challenging from a 
computational point of view (in each case only one instances requires excessive CPU 
time). Fortunately, however, the number of prices generated remains small. 

iNotice that the time needed in order to solve the original combinatorial auction (1) is n ot included. 
^Note that due to some reasons for m = 30 no instance can be generated at all. 
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m n 
q (# of prices) 
Min Avg Max 

time (pricing, sec) 

20 40 3.00 3.12 4.00 
60 3.00 3.10 4.00 
80 3.00 3.20 4.00 

100 3.00 3.60 4.00 
120 3.00 3.20 4.00 
140 3.00 3.40 4.00 
160 3.00 3.40 4.00 
180 3.00 3.10 4.00 
200 3.00 3.30 4.00 

30 60 3.00 3.50 4.00 
90 3.00 3.60 4.00 

120 n.a. n.a. n.a. 
40 80 3.00 3.70 5.00 

120 3.00 4.00 5.00 
160 n.a. n.a. n.a. 

Min Avg Max # LP # MIP 
0.11 0.26 
0.20 6.29 
0.34 634.47 
3.94 1387.08 
0.20 352.75 
0.12 5465.71 
0.20 6998.41 
0.48 3030.19 
0.50 3009.56 
0.34 22.36 
4.60 5604.50 
n.a. n.a. 
5.08 2140.82 

1102.67 30277.41 
n.a. n.a. 

0.49 
37.07 

6162.70 
5324.35 
1939.47 

51556.56 
46212.63 
28071.66 
16238.22 

97.24 
24664.21 

n.a. 
9784.77 

59452.15 
n.a. 

2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

n.a. 
0 
0 

n.a. 

8 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

n.a. 
10 

2 
n.a. 

Table 5: Distribution type arbitrary 

m n 
"20 40" 

60 
80 

100 
120 
140 
160 
180 
200 
400 
600 
800 

1000 
1200 
1400 

40 80 
120 
160 
200 
240 
280 

800 
1200 

q (# of prices) time (pricing, sec) 
# MIP Min Avg Max Min Avg Max # LP # MIP 

3.00 3.00 3.00 0.01 0.01 0.01 9 1 
_ __ — 10 0 

_ — - 10 0 
3.00 3.00 3.00 0.01 0.01 0.02 7 3 
3.00 3.00 3.00 0.02 0.02 0.02 8 2 

— — — - 10 0 
3.00 3.00 3.00 0.04 0.04 0.04 9 1 

_ — — - 10 0 
3.00 3.00 3.00 0.02 0.03 0.05 8 2 

— — — - 10 0 
3.00 3.00 3.00 0.12 0.12 0.12 9 1 

_ _ — 10 0 
_ _ — — 10 0 

3.00 3.00 3.00 0.24 0.24 0.24 9 1 
— — - 10 0 

and so on for n G {1600, 1800, 2000} 

2.00 2.20 3.00 0.01 0.01 0.02 5 5 
2.00 2.00 2.00 0.01 0.01 0.01 8 2 
2.00 2.00 2.00 0.01 0.01 0.01 8 2 
2.00 2.33 3.00 0.01 0.02 0.05 7 3 
2.00 2.00 2.00 0.01 0.01 0.01 9 1 

__ — — - 10 0 
and so on for n 6 {320, 360, 400} 

3.00 3.00 3.00 0.18 0.18 0.18 9 1 
_ — — - 10 0 

and so on for n E {1600,... ,4000} 

Table 6: Distribution type matching 
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q (# of prices) time (pricing, sec) 
n Min Avg Max Min Avg Max # LP # MIP 

40 2.00 2.33 3.00 0.00 0.00 0.01 4 6 
60 2.00 2.00 2.00 0.00 0.00 0.01 5 5 
80 2.00 2.40 3.00 0.00 0.01 0.02 5 5 

100 2.00 2.00 2.00 0.00 0.00 0.01 5 5 
120 2.00 2.00 2.00 0.00 0.00 0.01 3 7 
140 2.00 2.14 3.00 0.01 0.01 0.02 3 7 
160 2.00 2.00 2.00 0.01 0.01 0.02 4 6 
180 2.00 2.00 2.00 0.00 0.00 0.01 2 8 
200 2.00 2.00 2.00 0.01 0.01 0.02 1 9 
400 2.00 2.00 2.00 0.02 0.02 0.03 0 10 
600 2.00 2.00 2.00 0.04 0.04 0.05 0 10 
800 2.00 2.00 2.00 0.05 0.06 0.08 2 8 

1000 2.00 2.00 2.00 0.08 0.09 0.11 0 10 
1200 2.00 2.00 2.00 0.11 0.12 0.15 0 10 
1400 2.00 2.00 2.00 0.14 0.17 0.22 0 10 
1600 2.00 2.00 2.00 0.17 0.20 0.25 0 10 
1800 2.00 2.00 2.00 0.17 0.23 0.30 0 10 
2000 2.00 2.00 2.00 0.23 0.27 0.32 0 10 

60 2.00 2.16 3.00 0.00 0.00 0.01 4 6 
90 2.00 2.20 3.00 0.01 0.01 0.02 5 5 

120 2.00 2.10 3.00 0.01 0.01 0.03 0 10 
150 2.00 2.12 3.00 0.00 0.01 0.02 2 8 
180 2.00 2.16 3.00 0.01 0.01 0.02 4 6 
210 2.00 2.00 2.00 0.01 0.01 0.02 1 9 
240 2.00 2.00 2.00 0.01 0.01 0.02 1 9 
270 2.00 2.11 3.00 0.01 0.01 0.04 1 9 
300 2.00 2.00 2.00 0.01 0.02 0.03 1 9 
600 2.00 2.00 2.00 0.04 0.04 0.06 0 10 
900 2.00 2.00 2.00 0.07 0.07 0.09 0 10 

1200 2.00 2.00 2.00 0.10 0.12 0.14 0 10 
1500 2.00 2.00 2.00 0.17 0.18 0.20 0 10 
1800 2.00 2.00 2.00 0.23 0.24 0.27 0 10 
2100 2.00 2.00 2.00 0.28 0.32 0.39 0 10 
2400 2.00 2.00 2.00 0.34 0.39 0.44 0 10 
2700 2.00 2.00 2.00 0.43 0.48 0.53 0 10 
3000 2.00 2.00 2.00 0.52 0.59 0.66 0 10 

80 2.00 2.20 3.00 0.00 0.01 0.02 5 5 
120 2.00 2.20 3.00 0.00 0.01 0.03 0 10 
160 2.00 2.12 3.00 0.01 0.01 0.03 2 8 
200 2.00 2.37 3.00 0.00 0.01 0.05 2 8 
240 2.00 2.50 3.00 0.01 0.03 0.05 2 8 
280 2.00 2.20 3.00 0.01 0.02 0.07 0 10 
320 2.00 2.12 3.00 0.02 0.02 0.05 2 8 
360 2.00 2.20 3.00 0.02 0.03 0.07 0 10 
400 2.00 2.37 3.00 0.03 0.04 0.08 2 8 
800 2.00 2.00 2.00 0.07 0.08 0.10 2 8 

1200 2.00 2.00 2.00 0.13 0.14 0.15 0 10 
1600 2.00 2.00 2.00 0.21 0.22 0.24 0 10 
2000 2.00 2.00 2.00 0.29 0.32 0.36 0 10 
2400 2.00 2.00 2.00 0.38 0.45 0.50 0 10 
2800 2.00 2.00 2.00 0.55 0.62 0.74 0 10 
3200 2.00 2.00 2.00 0.62 0.73 0.84 0 10 
3600 2.00 2.00 2.00 0.82 0.90 1.00 0 10 
4000 2.00 2.00 2.00 0.95 1.06 1.21 0 10 

Table 7: Distribution type paths 
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q (# of prices) time (pricing, sec) 
n Min Avg Max Min Avg Max # LP # MIP 

40 3.00 3.00 3.00 0.02 0.03 0.05 8 2 
60 3.00 3.00 3.00 0.06 0.06 0.06 9 1 
80 3.00 3.00 3.00 0.04 0.06 0.10 5 5 

100 3.00 3.00 3.00 0.09 0.12 0.17 5 5 
120 3.00 3.00 3.00 0.03 0.18 0.60 1 9 
140 3.00 3.00 3.00 0.09 0.26 0.57 4 6 
160 3.00 3.00 3.00 0.07 0.45 1.18 6 4 
180 3.00 3.33 4.00 0.16 7.10 20.88 7 3 
200 3.00 3.00 3.00 0.13 0.77 1.64 5 5 
400 3.00 3.00 3.00 0.17 0.62 1.69 3 7 
600 3.00 3.00 3.00 0.28 0.80 2.25 6 4 
800 3.00 3.00 3.00 0.45 0.92 1.95 4 6 

1000 3.00 3.00 3.00 0.50 1.56 4.66 3 7 
1200 3.00 3.00 3.00 0.93 4.01 7.10 8 2 
1400 3.00 3.00 3.00 1.75 2.59 4.23 7 3 
1600 3.00 3.00 3.00 0.86 0.86 0.86 9 1 
1800 3.00 3.00 3.00 0.72 1.79 4.92 5 5 
2000 3.00 3.00 3.00 1.40 1.40 1.40 9 1 

60 3.00 3.00 3.00 0.06 0.19 0.44 5 5 
90 3.00 3.00 3.00 0.09 0.70 1.85 4 6 

120 3.00 3.00 3.00 0.09 1.53 4.15 3 7 
150 3.00 3.00 3.00 0.14 41.99 198.52 4 6 
180 3.00 3.14 4.00 0.06 6.35 33.57 3 7 
210 3.00 3.00 3.00 0.22 14.92 83.06 4 6 
240 3.00 3.11 4.00 0.09 13.58 91.91 1 9 
270 3.00 3.10 4.00 0.10 48.82 434.61 0 10 
300 3.00 3.00 3.00 0.26 36.77 244.83 0 10 
600 3.00 3.00 3.00 0.75 96.38 572.69 1 9 
900 3.00 3.00 3.00 1.60 4.49 12.10 3 7 

1200 3.00 3.00 3.00 0.94 1.78 2.21 5 5 
1500 3.00 3.00 3.00 1.55 5.18 12.82 5 5 
1800 3.00 3.00 3.00 2.11 3.60 6.41 3 7 
2100 3.00 3.00 3.00 1.54 7.98 15.43 6 4 
2400 3.00 3.00 3.00 2.09 4.46 7.92 6 4 
2700 3.00 3.00 3.00 2.09 5.33 10.27 5 5 
3000 3.00 3.00 3.00 1.90 1.90 1.90 9 1 

80 3.00 3.00 3.00 0.21 11.83 46.38 4 6 
120 3.00 3.00 3.00 0.09 1.69 4.36 2 8 
160 3.00 3.20 4.00 0.17 1375.57 7357.25 0 10 
200 3.00 3.10 4.00 2.36 2468.21 9385.06 0 10 
240 3.00 3.00 3.00 0.18 7178.26 59318.16 0 10 
280 3.00 3.00 3.00 0.45 5640.98 48675.48 1 9 
320 3.00 3.00 3.00 2.63 3007.33 24661.61 1 9 
360 3.00 3.11 4.00 2.42 6948.36 57075.97 1 9 
400 3.00 3.00 3.00 6.67 3443.83 14722.23 2 8 
800 3.00 3.11 4.00 1.87 31.09 162.88 1 9 

1200 3.00 3.00 3.00 3.06 21.25 68.06 2 8 
1600 3.00 3.00 3.00 1.32 30.97 224.24 0 10 
2000 3.00 3.00 3.00 1.95 14.07 55.11 3 7 
2400 3.00 3.00 3.00 2.59 12.51 19.44 3 7 
2800 3.00 3.00 3.00 1.94 20.66 63.03 6 4 
3200 3.00 3.00 3.00 22.15 25.36 29.46 6 4 
3600 3.00 3.00 3.00 5.40 13.88 33.20 5 5 
4000 3.00 3.00 3.00 3.16 13.14 26.30 6 4 

Table 8: Distribution type regions 

15 



180 
200 
400 
600 
800 

1000 
1200 
1400 
1600 
1800 
2000 

60 
90 

120 
150 
180 
210 
240 
270 
300 
600 
900 

1200 
1500 
1800 
2100 
2400 
2700 
3000 

80 
120 
160 
200 
240 
280 
320 
360 
400 
800 

1200 
1600 
2000 
2400 
2800 
3200 
3600 
4000 

q (# of prices) time (pricing, sec) 
Min Avg Max Min Avg Max # LP # MIP 
2.00 2.20 3.00 0.00 0.00 0.02 5 5 
2.00 2.66 3.00 0.00 0.03 0.10 4 6 
2.00 2.50 3.00 0.00 0.01 0.02 6 4 
2.00 2.50 3.00 0.00 0.04 0.15 4 6 
2.00 2.75 3.00 0.01 0.04 0.09 6 4 
2.00 2.87 3.00 0.02 0.37 2.18 2 8 
2.00 2.00 2.00 0.01 0.01 0.01 9 1 
2.00 3.00 4.00 0.00 0.05 0.20 5 5 
2.00 2.60 3.00 0.00 0.03 0.07 5 5 
2.00 2.33 3.00 0.00 0.05 0.12 7 3 
2.00 2.50 3.00 0.04 0.17 0.30 8 2 
2.00 2.33 3.00 0.05 0.15 0.35 7 3 
3.00 3.00 3.00 0.28 0.28 0.29 8 2 

— — - - - - 10 0 
2.00 2.50 3.00 0.05 0.47 0.89 8 2 
2.00 2.00 2.00 0.07 0.10 0.14 8 2 
2.00 2.50 3.00 0.12 0.13 0.15 8 2 

- - - - - - 10 0 
2.00 2.00 2.00 0.00 0.00 0.01 2 8 
2.00 2.37 3.00 0.00 0.05 0.22 2 8 
2.00 2.60 3.00 0.01 0.13 0.52 0 10 
2.00 2.88 3.00 0.01 0.47 1.51 1 9 
2.00 2.71 3.00 0.00 0.41 1.14 3 7 
2.00 2.85 3.00 0.02 1.96 8.05 3 7 
2.00 2.60 3.00 0.01 0.66 3.06 5 5 
3.00 3.00 3.00 0.08 2.18 10.61 4 6 
2.00 2.80 3.00 0.03 0.10 0.22 5 5 
2.00 2.62 3.00 0.04 0.63 3.21 2 8 
2.00 2.83 4.00 0.02 1.08 3.69 4 6 
2.00 2.88 3.00 0.08 19.31 165.30 1 9 
2.00 2.66 4.00 0.04 0.22 0.92 4 6 
2.00 2.80 3.00 0.06 0.66 1.75 5 5 
3.00 3.16 4.00 0.11 0.98 3.42 4 6 
2.00 2.50 3.00 0.09 0.95 2.20 4 6 
2.00 2.25 3.00 0.11 0.71 2.30 6 4 
2.00 3.00 4.00 0.19 0.76 2.91 5 5 
2.00 2.14 3.00 0.00 0.02 0.14 3 7 
2.00 2.28 3.00 0.00 0.02 0.09 3 7 
2.00 2.55 3.00 0.00 21.19 182.54 1 9 
2.00 2.42 3.00 0.02 168.52 646.28 3 7 
2.00 2.75 3.00 0.01 78.24 583.91 2 8 
2.00 2.88 4.00 0.01 4941.79 44388.71 1 9 
2.00 2.90 3.00 0.02 78.16 715.99 0 10 
2.00 2.66 3.00 0.02 302.71 2330.65 1 9 
2.00 2.66 3.00 0.03 0.86 4.27 4 6 
2.00 2.88 3.00 0.03 0.55 2.51 1 9 
2.00 2.85 3.00 0.05 10.22 54.68 3 7 
2.00 2.57 3.00 0.13 0.44 0.91 3 7 
2.00 2.83 3.00 0.19 270.47 1609.03 4 6 
2.00 2.66 3.00 0.08 3.98 21.15 4 6 
2.00 3.00 4.00 0.15 2.89 13.90 3 7 
2.00 2.57 4.00 0.14 1319.30 9230.70 3 7 
2.00 2.71 3.00 0.34 48.14 323.08 3 7 
2.00 2.66 3.00 0.17 4.45 15.60 4 6 

Table 9: Distribution type scheduling 
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• For the distribution type scheduling the picture is very much the same as for the 
previous type (see table 9). Again, for 40 items and 280 bids one instances requires 
excessive CPU time. 

Note that excessive computation times for some instances are due to the objective function 
chosen in the pricing model (12). Restricted experiments with a variant of the objective cut 
down computation times drastically. However, our Impression was that the prices then did not 
contain that much Information as for the case reported above. 

Summarizing the computational study has shown that the methodology developed is effective 
and efficient in calculating a non-Iinear, anonymous price system containing only a few prices. 
Despite the distribution type arbitrary (which is supposed to be not that important from a 
practica! point of view) the pricing problem in general can be solved quickly. 

8 Research opportunities 

In this paper we have provided a means to obtain a simple form of a non-Iinear anonymous 
price system that supports the optimal allocation of bids to bidders in a combinatorial auction. 
Our method essentially requires to solve a few mixed-integer programs. The procedure has 
been shown to be effective and efficient by means of experiments using instances of the 
combinatorial auctions test suite [17]. The methodology developed in this paper opens up 
many research opportunities which will be sketched in the following. 

Algorithms For large-size instances it might be too demanding from a computational point 
of view to solve the mixed-integer programs (11) and (12), that is, fast and reliable heuristics 
are needed. The following observations might serve as starting point for the development of 
special purpose heuristics. 

• If the original combinatorial auction (1) has the integrality property then the optimal 
Solution of the linear programming relaxation of the mixed-integer program (11) has an 
optimal Solution (y*, u*) with all variables j € Jo equal to one and thus yielding the 
shadow prices to the linear program. 

• If the original combinatorial auction (1) does not have the integrality property, i.e. 
x* 7^ Xj for some j, the optimal objective function value for the mixed-integer pricing 
problem (11) will be less than the cardinality of J0. Hence, some of the binary variables 
2/j, j € Jo, have fractional values. 

Due to the structure of the mixed-integer pricing problem (11) we can round down all fractional 
variables % to zero and produce a feasible Solution to the mixed-integer program. Then we 
have produced a price vector with the required property to price out all non-winning bids 
except the bids the corresponding binary variables of which have been rounded down to zero. 

This gives rice to a nice heuristic for finding the non-Iinear price function we are looking for 
which is based on the successive Solution of various linear programming relaxations of the 
mixed-integer pricing problem (11). More precisely, the linear prices that are determined when 
solving the mixed-integer pricing problem are the partial prices needed to build up a non-Iinear 
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anonymous price system for a combinatorial auction. In o rder to get a non-linear price system 
that is as simple as possible for a given problem the goal is to minimize the number of prices 
that need to be generated from the mixed-integer pricing problem in order to price out all 
loosing bids. A sketch of the algorithm can be given as follows: 

1. Solve the linear programming relaxation of the pricing problem (11). Round down all 
binary variables that are fractional and resolve the linear program with these variables 
fixed to zero. 

2. Based on the prices («j) derived in step 1 cheque by scanning the bids greedily if o ne or 
more of the variables that are rounded down can be added with value 1 without changing 
the dual prices. If so add these variables. 

3. For the remaining, say k, variables generate a new linear programming relaxation in 
which all these k variables are required to take on value 1. If this problem is feasible 
(which usually is not the case) we have found a linear price system that clears the market 
consisting of the prices derived in s teps 1 and 3. The price system consists of two linear 
prices on which the max operator can be applied in order to produce reduced cost. 

4. If t he relaxation in step 3 is infeasible create an alternative relaxation by enforcing that 
at least one of the remaining k variables must take the value 1 and resolve the linear 
program. Using the prices derived check if some of the remaining k — 1 variables can be 
added with value 1 without changing the price system. If s o do it. Repeat step 4 until 
the Stack of variables that are not priced out is eliminated. Overall in this step k linear 
programs have to be solved. 

5. The result is a price function consisting of q + 1 linear prices if t he number of repetitions 
in step 4 is q. The non-linear price function sought for is obtained by applying the max 
operator to these q + 1 prices. 

Note that it is beyond the scope of this paper to implement this algorithm and to evaluate 
the results. 

Other objective Functions First of all one might ask whether the objective function of 
model (11) is a good or not? Three alternatives which come into mind quickly are as follows: 

Compared to (11) the objective (13) takes into account the value of the loosing bids to be 
included. Objective (14) looks at the number of items covered by the loosing bids. Finally, 

(15) 

(14) 

(13) 
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objective (15) aims at minimizing the sum of the "distances" of the item prices from their bid 
price. A generalization of the objective of our pricing model (15) is as follows: 

(16) 

(16) is a general metric which contains the Ii-norm of (15) as special case. Note that both 
(15) and (16) are related to the question which we raised at the end of section 5. 

Other application domains In the short run we will taylor the approach to models with 
binary variables and semi-assignment constraints such as, for instance, the uncapacitated 
facility location problem and the generalized assignment problem, respectively. Combinatorial 
exchange auctions with multiple buyers and sellers are on the agenda as well (see Parkes et al. 
2005, Xia et al. 2005). In the long run, of course, the aim is to generalize the methodology 
to general purpose binary or mixed-integer programming problems. 

Experimental economics In order to make the methodology useful for practice experiments 
have to be conducted. Such experiments should, for instance, show how many prices, prob-
ably supported with their convex combinations, can be handled by agents. Presumably such 
experiments first should be done by means of a computational study (using, e.g., BidPots, the 
intelligent-agent auction Simulator of Dunford et al. 2003) and later on with "real" agents 
(such as, e.g., students in a lab). 

Miscellaneous The following constraint forces the sum of prices to make-up the optimal 
objective function value z of the winner determination problem (1). 

This can be looked upon as an aggregate of the constraints (10b). If t he constraints (10b) 
are deleted from the pricing model and replaced by constraint (17) we get more freedom in 
the selection of item prices at the expense that winning bids might have reduced cost different 
from zero. If this is an attractive alternative needs to be tested. Note that the pricing problem 
so obtained corresponds to an auction in which all winning bids have been aggregated into 
one single bid; see Drexl and J0rnsten (2005). 

In this paper we have provided a means to obtain a simple form of a non-Iinear anonymous 
price system that supports the optimal allocation of bids to bidders in a combinatorial auc­
tion. The computational tests show that the number of prices needed does not grow with 
increasing problem size. Our method essentially requires to solve a sequence of mixed-integer 
programming formulations of the pricing problem. 

Interestingly, Dunford et al. (2003) have shown that dual-based linear pricing a Igorith ms pro-
duce non-monotonity between rounds - something that bidders might find disturbing. There 
is serious hope that the non-Iinear anonymous price system provided by our methodology will 
overcome this deficiency. 

(17) 

9 Conclusions 
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