
Briskorn, Dirk; Drexl, Andreas

Working Paper — Digitized Version

A branching scheme based on First-Break-Then-
Schedule decomposition

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 623

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Briskorn, Dirk; Drexl, Andreas (2007) : A branching scheme based on First-Break-
Then-Schedule decomposition, Manuskripte aus den Instituten für Betriebswirtschaftslehre der
Universität Kiel, No. 623, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147676

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147676
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 623

A Branching Scherns Based on First-Break—Then-Schedule Decomposition

Dirk Briskorn, Andreas Drexl

March 2007

Dirk Briskorn, Andreas Drexl
Christian-Albrechts-Universität zu Kiel,

Institut für Betriebswirtschaftslehre,
Olshausenstr. 40, 24098 Kiel, Germany,

http://www.bwl.uni-kiel.de/bwlinstitute/Prod
briskorn@bwl.uni-kiel.de, andreas.drexl@bwl.uni-kiel.de

mailto:briskorn@bwl.uni-kiel.de

Abstract

Single round robin t ournaments are a well known class of s ports leagues schedules.
We consider leagues with a set T of n teams where n is even. Costs are associated to
each possible match. The goal is t o find the minimum cost tournament among those
having the minimum number of breaks. We pick up structural properties of home-
away-pattern sets having the minimum number of breaks. An branching idea using
these properties is developed in o rder to guide branching steps on the first levels of a
branch-and-bound tree in order to avoid nodes corresponding to infeasible subproblems.

Keywords: Sports league scheduling, round robin tournaments, home-away-pattern
set, break, branch-and-bound

1 Introduction

Round robin tournaments (RRT) cover a huge variety of different types of sports league
schedules arising in practice. A set of teams T, |T"| = n even, competes such that each team
plays exactly once against each other team, either at home or away. Furthermore, a team
i G T has to play exactly once in each period and, hence, we have a set P of n — 1 periods
altogether. Therefore, a set of periods P, \P\ = n — 1, is given.

An illustrative example for a Single RRT where n = 6 is given in table 1. Here i-j denotes
that team i plays at home against team j.

1 2 3 4 5
match 1 3-4 4-5 2-4 4-6 6-5
match 2 5-2 1-3 5-1 3-5 4-1
match 3 6-1 2-6 6-3 1-2 2-3

Table 1: Single RRT for n = 6

Since each match has to be carried out at one of the venues of both opponents breaks come
into play. We say team i has a break in period p if and only if i plays twice at home or away,
respectively, in periods p — 1 and p. For the sake of fairness among teams the most common
goal concerning breaks is to minimize the number of their occurences. It is well known from
de Werra [9] that the number of breaks can not be less than n — 2 in a Single RRT. The Single
RRT provided in table 1 has 4 breaks for 6 teams and, therefore, has the minimum number
of breaks.

Models for sports league scheduling have been the topic of extensive research. A whole stream
of papers is based on the analogy between sports league scheduling and edge coloring of
complete graphs. Examples are de Werra [9, 10, 11, 12, 13], de Werra et al. [14], and Drexl and
Knust [15]. Brucker and Knust [8] and Drexl and Knust [15] analyze the relationship between
sports league scheduling and multi-mode resource constrained project scheduling. Briskorn
et al. [7] line out the similarity of structures of Single RRTs and planarthree index assignments.
Bartsch [2], Bartsch et al. [3], and Schreuder [19, 20] examine particular formulations.

A common approach in order to schedule a sports league is to decompose the decision problem
into two subproblems to be solved sequentially. First, the venue (home/away) for each team

1

is fixed in each period. The result can be represented as a home-away-pattern (MAP) set
h E {0, i}nXn-1. The entry of hi}P corresponding to line i and coiumn p equals 0 or 1 if t eam
i is fixed to play at home or away, respectively, in period p. The second step is to schedule
matches according to the given MAP set h which means a match between teams i and j in
period p is possible if a nd only if h itP ^ hjtP. Then, this match is carried out at team % s home
if and only if hi<p = 0. Obviously, an arbitrary HAP set h does not necessarily allow a single
RRT to be arranged. In the remainder a HAP set h is called feasible if a single RRT can
be arranged based ort h. There is no sufficient condition known for a HAP set to be feasible
which can be checked in polynomial time. However, Miyashiro et al. [16] provide a strong
necessary condition for HAP sets with the minimum number of breaks which can be checked
in polynomial time. Briskorn [4] propose a necessary condition for general HAP sets and proof
it to be stronger than the one in Miyashiro et al. [16]. Moreover, the condition can be checked
in polynomial time and is conjectured to be sufficient.

The remainder of this paper is organized as follows. In section 2 we define a sports league
scheduling problem and represent it by means of IP models. In se ction 3 we develop a guiding
scheme to be employed in a branching framework in order to solve the sports league schedul­
ing problem. In section 4 we line out computational results and, finally, section 5 contains
conclusions.

2 Problem Definition and Model

We associate cost CjJ)P to the match between teams i und j in period p at i s home. Cost
of a specific match can be seen in a rather abstract way here. However, there are

several application of CijtP with practica! relevance, see Briskorn et al. [7], We define the
cost of a tournament as the sum of arranged matches' cost and consider the problem to find
the minimum cost single RRT having the minimum number of breaks. This problem can be
represented by an IP model as introduced in Briskorn and Drexl [6].

We use binary variable Xij,p, i E T, j E T, j ^ i, p E P, equaling 1 if and only if team i
plays at home against team j in period p. Then, objective function (1) represents the goal of
cost minimization. Constraints (2) and (3) assure the single RRT structure. Restriction (2)
forces each pair of teams to meet exactly once. Constraint (3) ensures that each team plays
exactly once per period. In order to consider breaks we employ binary variables briiP, i E T ,
p E P-2, being equal to 1 if and only if team i has a break in period p. Then, constraints
(4) or (5) force briiP to equal 1 if team i plays twice at home or twice away, respectively, in
periods p — 1 and p. Restriction (6) limits the number of breaks to the minimum number.
Note that combining (4), (5), and (6) leads to bri}P, i ET, p E P-2, equaling 1 if and only
if i has a break in p.

3 Branch-and-Bound Algorithm

This section focuses on a branching scheme in line with decomposition schemes following
the first-break-then-schedule idea as sketched in section 1. We consider the LP relaxation of
the problem at hand, solve it to optimality, and branch on the venue of team i in period p.
Accordingly, we construct a branching tree where a path from the root node to a leaf either
can be pruned or represents a HAP set.

2

m^n 53 53 53 Ci<j>pXi'i'P
i£T j€T\{i} P&P

(1)

V i,j eT,i < j

\fieT,peP

s-t- ^ ^ (xi,j,p + xj,i,p) ~ 1
peP

jer\W

^ i "t" xi,j,p) ~~ b ri,p — 1 V z G T , p G P -

^ y {xj,i,p—l "t" Xj,i,p) ~ ^ri,p — 1 V i € T,p £ P-
j£T\{i}

Y1 E bri>p - n~2

«eT pgp>2

>2

>2

X «J,P
6r, t,p

€ {0,1} V i,j eT,i ^ ;',p G P

G {0,1} ViGT,p€P^

(2)

(3)

(4)

(5)

(6)

(7)

(8)

3.1 Basic Idea

Branching on a subset of variables to have values' sum in {0,1}, respectively, is a well known
generalization of {0, l}-branching on binary variables. Here, we choose a subset QitP of
variables such that the venue of team i is fixed in p by forcing Yhx&Qi p x ~ 1 or p x — 0-
Hence, Qi>p := {xijiP | j G T\{z}}. Deciding the venue of a specific team in a specific period
is part of the Solution process for the problem introduced in s ection 2. Furthermore, solutions
to LP relaxations to this problem do not imply a consistent decision about venues (which
means there probably is a i G T and a p G P such that J2x(=Qipx & {0,1}). Therefore, the
branching idea is applicable as well as reasonable, here.

Defining a HAP set by branching can not guarantee binary solutions to the problem's LP
relaxation. Table 2 represents a fractional Solution on the left hand side. Each match in
periods 1 and 2 has corresponding variable's value 0.5. Matches in period 3 have variable's
value 1. The unique corresponding HAP set (having the minimum number of breaks) is shown
on the right hand side. Hence, neither a J2x<=Qi x 0 {0,1}, i G T, p G P, is given nor an
integer Solution is provided. However, we refuse to develop a füll branching scheme in order
to emphasize the power of the branching idea as a guiding scheme for the first levels of a
branching tree. Consequently, if a node providing a füll HAP set can not be pruned we solve
the corresponding IP problem using the Standard solver Cplex.

Period 1 2 3

MDs 1-2 1-4 2-1 2-3 2-4 MDs
3-4 3-2 4-3 4-1 1-3

Variable 0.5 0.5 0.5 0.5 1

Team 1 2 3
1 0 1 0
2 1 0 0
3 0 1 1
4 1 0 1

Table 2: Fractional Solution Without Candidate for HAP set branching

3

Consider an IP problem corresponding to a HAP set where the path from the root node could
not be pruned. In Briskorn [4] the corresponding LP relaxation is conjectured not to be able
to provide a larger number of matches than the IP problem does. If t his conjecture holds the
LP relaxation corresponding to an infeasible HAP set is proofed infeasible and, consequently,
the node is pruned before the IP problem is solved. Then, no IP problem corresponding to an
infeasible HAP set has to be solved.

Let QiiP := {xjti}P \ j ET\ {%}}. Then, QitP + QiiP = 1 due to (3) and, hence, QitP = 1 <=*•
Qi,P — 0. Consequently, we implement each branching step by fixing subsets of variables QitP

and QitP, respectively, to 0.

According to Miyashiro et al. [16] in a single RRT with the minimum number of breaks each
team has no more than one break. If team i has no break at all we say it has a break in t he first
period which is justified by the fact that the first and the last entry of the corresponding HAP
are identical. Therefore, we can specify each team's HAP by venue and period of its unique
break. Consequently, we branch on venue and period of a specific team's break. Branching
candidates are teams whose break is not fully specified by the optimal Solution to the current
node's LP relaxation.

We implement a specific break by setting match variables to 0 according to the break's venue
and period. If we branch on team i to have a home-break in period p then we can set to zero
half the match variables corresponding to i as follows.

Qi,p' = 0 Vp' E P, ((p' < p Ap — p' even) V (p' > p Ap' — p o dd))

= 0 Vp' E P, ((p' < p Ap — p' odd) V (p ' > p Ap' — p even))

Consequently, setting variables according to an away-break for team i in period p is done the
other way round.

Qi.p' = 0 Vp' E P, ((p' < p Ap — p' even) V(p'>pAp'-p odd))

Qi,P> = 0 Vp'G P, ((p' < pAp — p' odd) V (p ' > p Ap' — p even))

While we can represent team % having a break in p by fixing match variables (as seen above) we
can not represent i not having a break in p by fi xing match variables. Therefore, we propose
a branching strategy where each subproblem is represented by a fixed break. Consequently,
given a c hosen branching candidate i ET we create a child node for each single break (defined
by venue and period) which can be assigned to i. Taking into account that each team has
exactly one break in a feasible Solution we obtain a partition of Solution space corresponding
to the current node into Solution spaces corresponding to its child nodes. Obviously, as lined
out in Briskorn and Drexl [6] this means a number of up to 2(n — 1) child nodes.

3.2 Achieving Feasible Home-Away-Pattern Sets

Avoiding infeasible HAP sets is substantial in o rder to save run times. As lined out in section 1
HAP sets can not easily proofed either feasible or infeasible. There is no simple characterization
of feasible HAP sets. Below we propose several strategies to calculate the set of possible breaks
(each defined by period and venue) for a g iven branching candidate i E T. Since we construct
a child node for each break the challenging part is to keep this set as small as possible without
neglecting possible breaks.

4

No Restrictions: Here, we simply create a child node for each period and venue without
consideration of breaks already fixed for other teams. Therefore, each node has 2(n — 1)
children if it is not pruned.

No Break Twice: The set of possible breaks can be reduced by taking into account the
breaks already assigned to teams on the path from the root node to the current node. Two
teams having identical breaks imply both teams having identical HAPs. A feasible HAP set
can not contain two identical HAPs because the corresponding teams are not able to play
against each other. Therefore, no break is assigned to more than one team. Consequently,
the set of possible breaks can be reduced by all breaks being already assigned to a team on
the path from the root node to the current node.

Break Sequences: It is known from, e.g., Miyashiro et al. [16] that there are either no or
two breaks in each period. Hence, we have to choose | — 1 periods (additional to the first
period) where breaks occur and assign teams to both breaks corresponding to one of these
periods in order to construct a HAP set. We refer to these periods as break periods in the
remainder.

Given a HAP set a specific assignment of each HAP to a team does not influence the HAP
set's feasibility. A HAP set with a minimum number of breaks is fully specified by a set of |
break periods as far as feasibility is concerned. The set of break periods in ascending order is
referred to as break sequence in t he remainder. In d e Werra [9] break sequences corresponding
to the special class of canonical 1-factorizations are studied. Here, we aim at identifying
feasible general break sequences according.

In analogy to Briskorn and Drexl [6], let k and Vk denote the current node of the branching
tree and the path from the root node to the current node. Additionally, let nbp ^ and Pp

be the number of breaks fixed in period p on 14 and the set of periods already chosen as
break periods on Vk, respectively. Then, we can apply the following rules I t o III as outlined
in Briskorn and Drexl [6] in order to decide which breaks must be considered possible.

I A home-break (away-break) in the first period is possible if and only if no home-break
(away-break) has been set in the first period on Vk.

II If nb p = 1 we can set a home-break (away-break) in period p if and only if the existing
one is an away-break (home-break).

We can set a break in period p e {2,..., n — 1}, nbp ^ = 0 if an d only if Pp \ {1}

!"!•

<

Rule I states that a break in t he first period is possible if t his specific break has not been set on
Vfc. Rule II t akes care of the fact that in each period either two or no breaks are set. Hence,
if ex actly one break has been arranged in period p on VJt th e complementary break is possible
in p. Rule III d ecides whether a break can occur in a period where no break is arranged on Vk
yet. Since there can be no more than | periods having breaks (including the first period) a
break in a period having no break so far is possible if less than | — 1 periods (excluding the
first period) have breaks already. Clearly, rules I an d II co ver "No Break Twice".

No Three Consecutive Breaks: As shown in Briskorn and Drexl [6] and Miyashiro et al. [17]
we can further restrict the set of possible breaks: no three consecutive periods can be break

5

periods in a feasible HAP set with the minimum number of breaks. Therefore, we modify rule
III of "Break Sequences" to rule III'.

III' We can set a break in period p € {2, — 1}, n^pvk =

0 if a break is possible in period p according to III and

(("^-2,3 = 0 V % = o) A = 0 V ^ = o) A

Rule III' c hecks whether a sequence of three consecutive break periods would be arranged if a
break is fixed in period p. Note that we can further slightly strengthen III' as III".1 to III".5
by t aking into account that there must be two breaks in the first period in the final HAP set
no matter whether they are already set on Vk or not.

IHM We can set a break in period p £ {4, ...,n —4}, = 0 if a break is possible in
period p according to III'.

III".2 We can set a break in period p = 3 if n b3y^ = 0 and if a break is possible in period 3

according to III and [{nb2 ^ = 0^ A (nbAy* = 0 V nb5^ = o))-

III".3 We can set a break in period p = 2 if n &2^ = 0 and if a break is possible in period 2

according to III a nd ^ = 0 A nb3 y> = 0^.

III".4 We can set a break in period p = n — 1 if nbn_1^ = 0 and if a break is possible in

period n — 1 according to III and {nbn2 ^ = 0 A nb2 ^ = oj.

III".5 We can set a break in period p = n — 2 if nbn_2^ = 0 and if a break is possible in

period n — 2 according to III and ^ = 0^ A (nbn_3 ^ = 0 V nbn_i ^ = oj j.

Rule III".1 directly corresponds to III' for p e {4,n — 4}. Special cases are periods 3, 2,
n— 1, and n — 2 in rules III".2 to III".5 being strengthened in c omparison to III'. Here, the first
period is not checked for breaks because in a complete HAP set with the minimum number of
breaks there are exactly two breaks in it.

Feasible Sequence: In the following we generalize the basic idea of "No Three Consecutive
Breaks". First, we give the necessary condition for HAP sets to be feasible given in Miyashiro
et al. [16]:

VT^CT (9)
p€P ^ '

Condition (9) states that each subset T' of teams must be allowed to play ('^ ') matches
against each other. The number of matches between teams of T' in each period is restricted
to the minimum of numbers of teams in V playing at home and away, respectively. Choosing
l G {l,..., |} break periods means fixing 21 HAPs. In order to check (9) we have to take
care of 22i — 2 1 — 1 s ubsets of HAPs. Note that \T'\ = 2 and \T'\ = 3 are checked inherently

6

by "No Break Twice" and "No Three Consecutive Breaks", respectively. Here, we propose an
efficient way to check all T' having exactly l HAPs and, therefore, (2;') subsets of HAPs.

In o rder to establish a common notation we first introduce parts of the one in Miyashiro et al.
[16]. We sort the given 21 HAPs as follows: We arrange two blocks of l HAPs each. The
first (second) one consists of HAPs having 0 (1) in the last slot. Both blocks are ordered by
ascending HAPs' break periods. An example with 21 = 6 HAPs is shown on the left hand of
table 3.

period 1 2 3 4 5 period 1 2 3 4 5
HAP 1 0 1 0 1 0 HAP 1 1 1 1 1 1
HAP 2 1 0 0 1 0 HAP 2 0 0 1 1 1
HAP 3 1 0 1 1 0 HAP 3 0 0 0 1 1
HAP 4 1 0 1 0 1 HAP 4 0 0 0 0 0
HAP 5 0 1 1 0 1 HAP 5 1 1 0 0 0
HAP 6 0 1 0 0 1 HAP 6 1 1 1 0 0

Table 3: Example for ordered HAP set and equivalent representation

The right hand side of table 3 provides an equivalent representation of the ordered (partial)
HAP set as proposed in Miyashiro et al. [16]. The construction of this representation is done
as follows.

• For HAPs having 0 in the last slot set all entries ahead of the break period to 0. Set
the entry in the break period and all entries behind to 1.

• For HAPs having 1 in the last slot set all entries ahead of the break period to 1. Set
the entry in the break period and all entries behind to 0.

Note that min{c0(T",p), ci(T',p)} is equivalent in corresponding columns p for each ordered
set of HAPs T' and its equivalent representation, see Miyashiro et al. [16].

As special cases of T" Miyashiro et al. [16] introduce cyclically consecutive sets of HAPs and
narrow sets of HAPs. A set of HAPs T' is narrow if and only if there is at least one period
where all HAPs' entries are identical. Miyashiro et al. [16] show that given a HAP set for each
subset of HAPs V which is not narrow there is a narrow subset of HAPs T" such that (9)
is at least as tight for T" as it is for T. Consequently, checking (9) is restricted to narrow
subsets of a HAP set.

Suppose a set BP C P, \BP\ = l — 1, of break periods has been chosen on Vk- In order to
decide whether to consider an additional break period p € P\ {1}, nbp y* = 0, to be possible
or not we propose to check (9) for each subset of HAPs of cardinality l based on the set of
break periods BP U {p}. Let Tl be the set of subsets of HAPs having exactly l HAPs and let
T1' C Tl be the set of narrow subsets of HAPs having exactly one HAP for each break period.

Theorem 1. For each T' € Tl there is a T" 6 Tv such that (9) is at least as tight forT" as
itis forT'.

7

Proof. Given an arbitrary T G T l\T1' we construct T" G T1' such that (9) is at least as tight
for T" as it is fo r V. Circulate columns of V such that there is no break in the first period.
Consider the equivalent representation of T' as shown on the right hand side of table 3. Then,
c0(T', 1) = ci(T", n — 1) and ci{T, 1) = c0(T',n - 1). If l is even there is a t least one break
period p such that c0(T",p — 1) — 1 = c0(T',p) = \ or co(T',p — 1) + 1 = c0(T",p) =
If l is odd there is at least one break period p such that min{co(T",p — 1),ci(T' ,p — 1)} =
min (co(T',p), Ci(T',p)} = [|J. Now, we construct T" as follows:

• If l is even set | ones and | zeros in period p. Additionally, set | + 1 ones and | - 1
zeros in period p— 1 by copying the pattern of p and exchanging one 0 by 1. If l is odd
set |~|] zeros and [|J ones in p. Additionally, set [|] ones and |_|J zeros in p - 1 by
copying the pattern of p and exchanging one 0 by 1.

• Going backward from p — 1 set a break in break period p' for an arbitrary HAP i having
0 in p' (then, % s entry in each period p" G . ,p' — 1} is 1). Thus, the number of
zeros is decreased by 1 at the predecessor of each break period. Proceed until the first
period is reached or there is no 0 left in a ny HAP. If the re is no 0 left in break period p'
proceed by setting a break for an arbitrary HAP j not having a break yet in each break
period (then, j's entry in each period p" G {!,... ,p' — 1} is 0). Thus, the number of
zeros is increased by 1 at the predecessor of each break period p" G {1,... ,p' — 1}.

• Going forward from p set a break in break period p' for an arbitrary HAP i having 1 in
p' — 1 (then, i's entry in each period p" G {1,... ,p' — 1} is 0). Thus, the number of
zeros is i ncreased by 1 in each break period. Proceed until the last period is reached or
there is no 1 left in any HAP. If th ere is no 1 left in break period p' proceed by setting
a break for an arbitrary HAP j not having a break yet in each break period (then, j's
entry in e ach period p" G {1,... ,p' — 1} is 1). Thus, the number of zeros is decreased
by 1 in each break period p" G {p',..., n — 1}.

First, we show that T" G Tl. Obviously, T" G Tl. Let op be the ordinal of p within the break
sequence (after circulating). If o p is greater or equal co(T',p) then there is at least one period
p' S {1,... ,p — 1} having no 0. If o p is lower or equal c0(T",p) then l — o p is greater or equal
than ci(r». Therefore, there is at least one period p' G {p + 1,.... n — 1) having no 1.
Thus, T" G T1'.

Second, we show that (9) is a t least as tight for T" as it is fo r T'.

Obviously, due to construction

min {co(r, p), %(r, p)} = min {co(T", p), %(T", p)} .

Note that, depending on T the minimization term of (9) is increased by 1 , is decreased by
1, or is not changed at all at each break period. The latter case appears at break period p' if
two complementary HAPs with breaks in p' are contained in V.

T does not contain any complementary HAPs by construction and, therefore, the minimization
term of (9) is increased by 1 or is decreased by 1, respectively, at each break period. Hence,

min{co(T',p + k),Cl(T',p + k)} > min {c0(T",p + k), cx{T",p + &)}

Ä e 'H' 44

8

(indices taken modulo n — 1) since going backward and forward from p, respectively, the
number of zeros or ones is strictly lowered to zero in T" at each break period. •

In order to illustrate the construction as done in the proof above we provide tables 4 to 6.

period 1 2 3 4 5 6 7 period 7 1 2 3 4 5 6
HAP 1 0 0 1 0 1 0 1 HAP 1 1 0 0 1 0 1 0
HAP 2 0 1 0 1 1 0 1 HAP 2 1 0 1 0 1 1 0
HAP 3 0 1 0 1 0 1 0 HAP 3 0 0 1 0 1 0 1
HAP 4 1 0 1 1 0 1 0 HAP 4 0 1 0 1 1 0 1

Min(0,l) 1 2 2 1 2 2 2 Min(O.l) 2 1 2 2 1 2 2

Table 4: V before (left) and after (right) circulating

A HAP set (and, therefore, a subset of HAPs) T" is given on the left hand side of table 4.
The HAPs' break periods differ from each other and, moreover, V is not narrow. Therefore,
T' G Tl \ T1' with l = 4. First, we circulate periods until we have no break in the first period.
This results into the set of HAPs shown on the right hand side of table 4 and does not affect
the sum in term (9).

period 7 1 2 3 4 5 6 period 7 1 2 3 4 5 6
HAP 1 0 0 1 1 1 1 1 HAP 1 1 1 1 1 0 0 0
HAP 2 0 0 0 0 0 1 1 HAP 2 1 1 0 0 0 0 0
HAP 3 1 0 0 0 0 0 0 HAP 3 1 0 0 0 0 0 0
HAP 4 1 1 1 1 0 0 0 HAP 4 1 1 1 1 1 0 0

Min(O.l) 2 1 2 2 1 2 2 Min(O.l) 0 1 2 2 1 0 0

Table 5: Equivalent representation of T" (left) and T" (right)

The left hand side of table 5 shows the equivalent representation of V. We choose break period
p = 2 since c0(T', 2 —1)4-1 = c0(T', 2) = |. Then, we construct T" by reducing the number of
zeros at each break period going backward from p to the first period and reducing the number
of ones at each break period going forward from p to the last period. The result is shown on the
right hand side of table 5. Note that min {c0(T", 2), ci(T", 2)} = min {c0(T", 2), c^T", 2)}.
Since the minimization term's value in (9) is strictly reduced at each break period going
backward and forward from p = 2 in T" min {c0(T',p),Ci(T',p)} > min {c0(T",p), Ci(T",p)}
for each p G P .

On the left hand side of table 6 we illustrate the Interpretation of the equivalent representation
of T" as a subset of HAPs. On the right hand side the set of HAPs is recirculated which
finishes the construction of T".

Thus, given a set of l break periods we can implicitly check condition (9) for each T' € Tl by
checking condition (9) for each T" G T 1' according to theorem 1. Note that \Tl\ = (2/) =

= 111=1 ^ > 2' if Z > 1 and \Tl'\ = 21 whic h makes this reduction extremely useful.

Since each T G T1' is narrow there exists a period p? such that from pT to the following
break period all HAPs of T have identical entries. Therefore, T G T 1' can be specified by pr

9

period 7 1 2 3 4 5 6 period 1 2 3 4 5 6 7

HAP 1 1 0 1 0 0 1 0 HAP 1 0 1 0 0 1 0 1
HAP 2 1 0 0 1 0 1 0 HAP 2 0 0 1 0 1 0 1
HAP 3 1 1 0 1 0 1 0 HAP 3 1 0 1 0 1 0 1
HAP 4 1 0 1 0 1 1 0 HAP 4 0 1 0 1 1 0 1

Min(O.l) 0 1 2 2 1 0 0 Min(O.l) 1 2 2 1 0 0 0

Table 6: T" before (left) and after (right) recirculating

and the singleton entry in these periods. We can further reduce T1' by eliminating subsets of
HAPs being complementary to each other: condition (9) is equally tight for two subsets of
HAPs Ti e T1' and T2 E T1' with px1 = PT2 and different entries in period PTX as shown in
Miyashiro et al. [16]. Therefore, we check only the l subsets of HAPs having entry zero in
periods where all entries are identical. As shown in Miyashiro et al. [17] each check can be
done in linear time.

The test above is applied in addition to "No Three Consecutive Breaks". We apply it only for
l > 4 since "No Three Consecutive Breaks" covers l < 4.

Feasible Subsequences: Note that Tl C 2T. Hence, checking condition (9) for each T' 6 Tl

as proposed by "Feasible Sequence" can not ensure condition (9) for each T' C T. For an
example consider the partial HAP set h illustrated in table 7.

period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HAP 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
HAP 2 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1
HAP 3 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1
HAP 4 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1

Table 7: Infeasible subsequence

Checking break sequence {6, 9,10,11} according to "Feasible Sequence" does not identify h
to be infeasible. Clearly, break sequence {9,10,11} would be identified as infeasible but is
never checked according to "Feasible Sequence" if p = 11 is the break period being added
last (in the course of our branching scheme). In order to fix this flaw we propose to check
subsequences of break sequences, as well.

According to Miyashiro et al. [16] not each subset of HAPs must be checked if t he minimum
number of breaks is required. We have to check only those subsets having no more than |
HAPs and exclusively containing cyclically consecutive HAPs. We aim at implicitly checking all
these subsets of HAPs by checking subsequences. We need to check only cyclically consecutive
subsequences of break periods since subsequences not being cyclically consecutive correspond
to sets of HAPs not being cyclically consecutive. Note that there exist exactly two narrow and
cyclically consecutive sets of HAPs corresponding to a given cyclically consecutive subsequence
of break periods. These two sets of HAPs are complementary to each other and, hence, we
have to check only one set of HAPs for each subsequence.

According to our branching scheme we add break periods step by step. Therefore, we can
restrict checking subsequences to subsequences incorporating the new break period in each

10

step. Subsequences not containing the new break period have been checked before. Again,
checking a specific (sub-)sequence of break periods is done according to Miyashiro et al. [17]
in linear time.

3.3 Choice of Branching Candidates

The branching scheme prescribes to create child nodes corresponding to each possible break
of a specific team. Consequently, branching candidates correspond to teams. We propose
several strategies to choose the branching candidate below. First, we define a fractional break
value br'i:P = |1 -]Cjer\{i} fcw-i + Hj,P) I wh ere xiJt0 means for each team i 6 T
and period p £ P according to the current node's optimal Solution.

Random Choice: Choosing the branching team randomly minimizes computational effort.
Here, we implement a (pseudo-)random selection by choosing the team having index dk + 1
where dk is the depth of the current node k.

Largest Fractional Break: We choose team i' = argmaxj {maxp | brr'iv < l}} with
largest fractional break value as branching team. The motivation for this strategy is as follows.
First, the current node's optimal Solution is cut by fixing i"s break. Second, i' having this
specific break is likely to enable low cost tournaments due to cost orientation of the LP
relaxation.

Most Infeasible 1: Among all teams we choose the one having the most infeasible con-
stellation of break values. The common idea is to enforce feasibility for those teams first
where least tendency is given by t he Solution to the LP relaxation which break to choose, see
Achterberg et al. [1]. Note that not each team must have at least one break (including those
in the first period) in a feasible Solution to the LP relaxation. Accordingly, a feasible Solution
to the LP relaxation might provide a team i with YhPepbri,p > Since this effect severely

contradicts the structure of a feasible IP Solution we choose team i' = argmax* |23pep^ri,p}

as branching team if Y^Pep^ri',P > 1- Otherwise, we choose the branching team according to
"Largest Fractional Break".

Most Infeasible 2: We choose team i' = argmirij {maxp{6r- p}}. The basic idea is the same
as for "Most Infeasible 1" but infeasibility is measured differently. There can be two reasons
for the maximum fractional break value being small. First, J2p^p^ri',p ls sma" (In particular
SpeP^I'.p < !)• Second, J2P^p^ri',P = 1 but fractional break values br'ilp are Iarger than 0
for many periods p. Both effects contradict the structure of a feasible IP Solution.

3.4 Node Order Strategy

We consider "Depth First Search" and "Breadth First Search" as node order strategies. We
observe that "Breadth First Search" is significantly more efficient due to less nodes being
explored for instances with less than 10 teams. For larger instances our list of nodes grows that
large that administrative effort uses up this advantage. Therefore, we propose a compromise
between a short node list guaranteed by "Depth First Search" and a small number of nodes
being explored guaranteed by "Breadth First Search" based on the father node's optimal LP
Solution.

11

First, we obtain v^ as normalized current node's Solution value dividing it by the lower bound.
Second, we calculate the fraction of match variables having binary values in the current
node's optimal Solution. Then, we sort the node list in as cending order of i>raT — w • Xbi n where
u/gl. The idea is to explore a node earlier if its father s optimal Solution provides many
binary variables. In preliminary tests w = 1.5 proofed to be a good choice as far as running
times are concerned.

According to the strategies proposed above all children of a single node are considered identical.
Therefore, we additionally have to decide in which order nodes having the same father are
explored. We propose several strategies hereafter.

Pseudo Cost: We calculate pseudo cost c£p and c%p representing average cost of matches
being possible if i is branched to have a home-break or away-break, respectively, in period p.

(n -l)2

1
(n -l)2

ra — 1
^ (n -l)2

1

y, •
j€T\{i} y P'=i

/rvi

p'=1

\

-2p' +

j£T\{i} p'=l P'=l

(7% - 1): .. j£T\{i}

p'=1

1

P'=i

\
+

P'=i

L^J

P'=i
i,p-l+2p'

(10)

(11)

Child nodes are explored in asc ending order of pseudo cost c£p and c" corresponding to breaks
at home and away, respectively, of branching team i in period p. Since cf and c£p are static
we calculate them once before the B&B procedure starts and, therefore, computational effort
is small.

Pseudo Cost Revisited: If we branch on team i to have a specific break pseudo costs
according to other teams may be altered in the resulting branching subtree. Suppose, for
example, team i is branched to have a home-break in period 2 and j is chosen as branching
candidate in the corresponding subtree. In pseudo-cost ca-4 cost Cj>it2 and Cjj)3 should not be
considered (in contrast to calculation in (11)) since these matches are not possible due to the
fixed break of i.

More generally, suppose team i is branched to have a break in period p. Additionally, a break
for branching candidate j in period p' is considered in t he subtree. We eliminate

• cost according to a match between teams i and j in period p" 6
{min{p,p },..., max{p,p'} — 1} from pseudo cost according to j and period p' if ei ther
i s and j s break venues are identical and \p-p'\ is odd or the break venues differ and
\p-p'\ is even,

12

* cost according to a match between teams i and j in period p" £
{1,..., min{p,p'} — l}U{max{p,p'},... ,n — 1} from pseudo cost according to j and
period p' if e ither i's and j's break venues are identical and \p — p'\ is even or the break
venues differ and |p — p'\ is odd.

Then, child nodes are explored in ascending order of revisited pseudo cost.

Largest Fractional Break First: We first explore the child node corresponding to the
branching team i's break (defined by period and venue) which implies the largest fractional
break value 6r-p according to the father node's optimal Solution. The remaining child nodes
are explored in ascending order of "Pseudo Cost" or "Pseudo Cost Revisited", respectively.
The idea is here that a large fractional break value might indicate a profitable break due to
the LP problem's objective of cost minimization.

4 Computational Results

First, we evaluate the strategies in order to avoid infeasible HAP sets. We choose branching
candidates according to "Random Choice". Furthermore, we employ depth first search and
insert child nodes in ascending order of the corresponding breaks' periods. Since the resulting
branching scheme is static and has no cost orientation, differences in the number of nodes being
explored as well as run times are exclusively caused by decisions whether a node corresponding
to a specific break is constructed or not.

Strategies "No Restrictions", "No Break Twice", "Break Sequences", and "No Three Consec­
utive Breaks" are carried out for 8 teams since the run times grow too high for instances with
more teams as long as no more efficient strategy is employed. Results are given in relation
to results obtained using "No Restrictions". Evaluation of strategy "Feasible Sequence" as
described in section 3.2 and a special case, namely "Four Breaks in Five Periods", is done
solving instances with 10 teams. Here, results are given in relation to results obtained using
"No Three Consecutive Breaks" for n — 10. Each strategy is employed in addition to the
previous ones except "Four Breaks in Five Periods" replacing "Feasible Sequence". We focus
on the decreasing number of LP problems to be solved (LP red.) and infeasible LP problems
(i.LP red.), respectively. Furthermore, the reduction of average run times (r.t. red.) is given
in table 8.

As we can see the number of nodes being explored is strictly decreased by each strategy. Using
"No Break Twice" and "Break Sequences" reduces the number of LP problems by 50%. More
remarkably, the number of infeasible LP problems is reduced by more than 85%. Note that
both strategies avoid constructing infeasible (partial) HAPs which would immediately result
into an infeasible LP problem. "No Three Consecutive Breaks" takes a step further by avoiding
infeasible (partial) HAPs not corresponding to an infeasible LP problem but corresponding to
an infeasible subtree. Here, we omit solving these LP problems and, possibly, further child
nodes. Applying "No Three Consecutive Breaks" we do not obtain a Single infeasible LP
problem. The overall number of LP problems and run times are reduced by more than 70%
and more than 50%, respectively.

Considering 10 teams nearly each infeasible LP problem is avoided if "Feasible Sequence" is
applied. Here, we recognize a special case for 10 teams. Four break periods in a sequence
of five periods (without three consecutive break periods) is not infeasible in general but for

13

Strategy LP red. i.LP red. r.t. red.

No Restrictions (n = 8) — —

No Break Twice (n = 8) 26.1% 48.7% 6.7%
Break Sequences (n = 8) 49.4% 87.3% 22.9%
No Three Consecutive
Breaks (n = 8) 72.7% 100.0% 54.6%

No Three Consecutive
Breaks (n = 10) — • —

Feasible Sequence (n = 10) 30.0% 99.5% 28.9%
Four Breaks in
Five Periods (n = 10) 33.0% 100.0% 32.1%

Table 8: Comp. Results for Branching Strategies

n = 10. The fifth break period can not be feasibly chosen according to "Feasible Sequence".
In order to fine-tune our approach we consider strategy "Four Breaks in Five Periods" and
observe that no infeasible LP problem remains to be solved. Both the overall number of LP
problems and run times are reduced by more than 30%. Note that "Feasible Subsequences"
is not evaluated, here, since this strategy takes effect only for problems with more than 10
teams. However, tests for larger problems are not possible due to run times. For the sake of
completeness we line out that the average number of IP problems which are solved for each
problem instance is 0.9 for n = 8 and 4.7 for n = 10.

Among strategies to choose the branching candidate "Most Infeasible 1" turned out to be
the most efficient. Additionally, we employ "Breadth First Search" considering the number of
binary variables and "Pseudo Cost Revisited" as node order strategies. Out of the strategies
evaluated above "No Three Consecutive Breaks" combined with "Four Breaks in Five Periods"
is applied here. Run times are given in table 9.

n B&B Cplex
6 0.15 0.23
8 12.62 26.79

10 7841.14 —

Table 9: Comp. Results for Minimum Number of Breaks

Clearly, our B&B approach outperforms Cplex using default settings for n < 10. Cplex runs
out of memory after about 12 hours for n = 10. Note that Cplex was employed using "Depth
First Search to overcome lack of memory in Briskorn and Drexl [5, 6]. Not even a feasible
Solution is found within 6 days of running time, then. Accordingly, proofing optimality in 2.2
hours on average clearly indicates superiority of our approach. The optimal Solution was found
in less than 24 minutes on average.

14

5 Conclusion

We propose a branch-and-bound approach in o rder to find minimum cost RRT schedules. The
basic idea originates from a decomposition scheme fixing each team's venue in each period,
first, and arranging matches, afterwards. An outstanding step towards run times savings is
to anticipate infeasible HAP sets on the basis of partial HAP sets as done by "No Three
Consecutive Breaks" and following strategies.

Since fixing each team's venue in each period by b ranching on breaks can not guarantee integer
solutions we have to handle the case where no branching candidate is given for a fractional
Solution. We propose to solve the corresponding IP problem using Cplex. Since solving IP
Problems is significantly more time consuming than solving LP problems we emphasize that
for all test instances only a very small number of IP problems had to be solved. Our branching
scheme is likely to obtain HAP sets that are feasible. Consequently, most probably only IP
problems corresponding to feasible HAP sets have to be solved. In fact, no infeasible IP
problem was solved in our test runs.

For further research we can think of incorporating several aspects having relevance in real
world tournaments and being related to HAP sets. For example, Stadium availability can not
be taken for granted since most stadiums are home venue of more than one team. Additionally,
teams have preferences when to play at home and when to play away. There are leagues where
no break must occur in specific periods. It is easy to see, that such requirements can be
considered in the set of possible breaks.

Beside integer programming constraint programming and hybrid approaches have been suc-
cessfully applied in order to solve sports leagues problems, see Rasmussen and Trick [18] for
example. In m any approaches choosing a HAP set is critical since feasibility can not be checked
immediately. Here, our tests of our strategies might provide tools in o rder to efficiently ensure
several necessary conditions.

References

[1] T. Achterberg, T. Koch, and A. Martin. Branching Rules Revisited. European Journal
of Operationa! Research, 33:42-54, 2005.

[2] T. Bartsch. Sportligaplanung - Ein Decision Support System zur Spielplanerstellung (in
German). Deutscher Universitätsverlag, Wiesbaden, 2001.

[3] T. Bartsch, A. Drexl, and S. Kröger. Scheduling the Professional Soccer Leagues of
Austria and Germany. Computers & Operations Research, 33:1907-1937, 2006.

[4] D. Briskorn. Feasibility of Home-Away-Pattern Sets: A Necessary Condition. Working
Paper, 2007.

[5] D. Briskorn and A. Drexl. Scheduling Sports Leagues using Branch-And-Price. Working
Paper, 2006.

[6] D. Briskorn and A. Drexl. Branching Based on Home-Away-Pattern Sets. In GOR
Proceedings 2006. Springer, Berlin, Germany. Forthcoming.

15

[7] D. Briskorn, A. Drexl, and F. C. R. Spieksma. Round Robin Tournaments and Three
Index Assignment. Working Paper, 2006.

[8] P. Brucker and S. Knust. Complex Scheduling. Springer, Berlin, 2006.

[9] D. de Werra. Geography, Games and Graphs. Discrete Applied Mathematics, 2:327-337,
1980.

[10] D. de Werra. Scheduling in Sports. In P. Hansen, editor, Studies on Graphs and Discrete
Programming, pages 381-395. North-Holland, Amsterdam, The Netherlands, 1981.

[11] D. de Werra. Minimizing Irregularities in Sports Schedules Using Graph Theory. Discrete
Applied Mathematics, 4:217-226, 1982.

[12] D. de Werra. On the Multiplication of Divisions: The Use of Graphs for Sports Scheduling.
Networks, 15:125-136, 1985.

[13] D. de Werra. Some Models of Graphs for Scheduling Sports Competitions. Discrete
Applied Mathematics, 21:47-65, 1985.

[14] D. de Werra, T. Ekim, and C. Raess. Construction of Sports Schedules with Multiple
Venues. Discrete Applied Mathematics, 154:47-58, 2006.

[15] A. Drexl and S. Knust. Sports League Scheduling: Graph- and Resource-Based Models.
Omega, 35:465-471, 2007.

[16] R. Miyashiro, H. Iwasaki, and T. Matsui. Characterizing Feasible Pattern Sets with a
Minimum Number of Breaks. In E. Burke and P. de Causmaecker, editors, Proceedings of
the 4th International Conference on the Practice and Theory of Automated Timetabling,
Lecture Notes in Computer Science 2740, pages 78-99. Springer, Berlin, Germany, 2003.

[17] R. Miyashiro, H. Iwasaki, and T. Matsui. Characterizing Feasible Pattern Sets with a
Minimum Number of Breaks. In E. Burke and P. de Causmaecker, editors, Proceedings of
the 4th International Conference on the Practice and Theory of Automated Timetabling,
pages 311-313. Springer, Berlin, Germany, 2003.

[18] R. V. Rasmussen and M. A. Trick. A Benders Approach for the Constrained Minimum
Break Problem. European Journal of Operational Research, 177:198-213, 2007.

[19] J. A. M. Schreuder. Constructing Timetables for Sport Competitions. Mathematical
Programming Study, 13:58-67, 1980.

[20] J. A. M. Schreuder. Combinatorial Aspects of Construction of Competition Dutch Pro­
fessional Football Leagues. Discrete Applied Mathematics, 35:301-312, 1992.

16

