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Abstract

We introduce the tractable buffer stock savings setup of Carroll and Toche (2009 NBER
Working Paper) into an otherwise conventional New-Keynesian dynamic stochastic general equi-
librium model with financial frictions. The introduction of a precautionary saving motive arising
from an uninsurable risk of permanent income loss, affects the model’s properties in a number of
interesting ways: it produces a more hump-shaped reaction of consumption in response to both
supply (technology) and demand (monetary) shocks, and more pronounced reactions in response
to demand shocks. Adoption of the buffer stock savings setup thus offers a more microfounded
way, compared to, e.g., habit preferences in consumption, to introduce Keynesian features into
the model, serving as a device to curbing excessive consumption smoothing, and to attributing
a higher role to demand driven fluctuations. We also discuss steady state effects, determinacy
properties as well as other practical issues.
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1 Introduction

We introduce Carroll and Toche’s (2009) tractable buffer stock setup into an otherwise standard
Dynamic Stochastic General Equilibrium (DSGE) model with monopolistic competition, nominal
rigidities as well as equilibrium saving and borrowing along the lines of Kiyotaki and Moore (1997).
In this setup, the household faces an uninsurable risk of permanent income loss, which gives rise to
a precautionary savings motive. A large literature following the seminal contributions of, among
others, Aiyagari (1994) as well as Krusell et al. (1998) has to heavily rely on computationally inten-
sive numerical methods to study the effect of precautionary motives on macroeconomic variables.
The tractability of Carroll and Toche’s setup, however, allows to sustain the use of standard local
approximation methods, as still predominantly used in the DSGE literature, especially in medium-
scale, estimated, policy-oriented models. The aim of the present paper is to provide the reader
with an understanding how the buffer stock precautionary motive alters and affects the charac-
teristics of an otherwise conventional DSGE model, and to serve as a user guide for researchers
interested in adopting the precautionary saving setup into general equilibrium models.1 The model
with Carroll and Toche’s buffer stock mechanism (referred to as precautionary model hereafter) is
nested and converges to a standard New-Keynesian model (referred to as the conventional model)
in the limit as the risk of permanent income loss vanishes. Whenever the uninsurable risk of in-
come loss is substantial, the precautionary model displays a consumption behavior, that deviates
from the permanent income hypothesis: in response to supply (technology) shocks, the consump-
tion path displays a more hump-shaped pattern, and the effect of demand (monetary) shocks is
more pronounced compared to the conventional model. We also document that the determinacy-
indeterminacy properties of the model (Taylor principle) are (mildly) affected by the presence of
the precautionary motive.2

The standard certainty-equivalence life-cycle consumption theory as popularized by Modigliani
and Brumbergh (1954) and Friedman (1957) predicts excessive consumption smoothing has long
been criticized in the empirical literature (Flavin 1981). It has been challenged by its inability to
sufficiently capture the co-movement of current income and consumption. On the one hand, there
exists persuasive evidence suggesting that temporary income shocks considerably affect consump-
tion (cf. Souleles 1999, Stephens 2003). One approach seeking to address this puzzle is to introduce,
to the life-cycle consumption theory, various forms of uncertainty, for instance, regarding the length
of life, income or required expenses such as medical services in the context of incomplete insurance
markets (Hubbard et al. 1994, 1995). Due to an uninsurable risk households choose to accumulate
precautionary savings. In a seminal line of research Carroll (1997), Carroll and Jeanne (2009),
Carroll and Toche (2009) have shown that sufficiently impatient consumers facing an exogenous
risk of permanent income loss attempt to accumulate a target wealth-income ratio in equilibrium
in order to hedge against the case of damage. Then, the Euler equation of the household’s inter-
temporal problem implies consumption to depend on current income. For a significant share of the
population, precautionary saving motives seem to be a relevant factor for wealth accumulation (cf.

1Unlike in the original setup of Carroll and Toche (2009), the tractable buffer stock setup here is cast in general
equilibrium, which implies that the interest rate is affected by the presence of the precautionary motive, and thus
nonconstant.

2There exists a literature documenting that the Taylor principle may be affected when deviating from constant
relative risk aversion preferences, e.g. in the presence of habit-preferences or with rule-of-thumb consumers, see, e.g.
Bilbiie (2008), Gali et al. (2004a), Motta and Tirelli (2010).
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Dardanoni 1991, Carroll and Samwick 1998, Kazarosian 1997, Zhou 2003, Mishra et al. 2012).3 De-
spite the downsides of life-cycle consumption theory and the existence of alternative consumption
theories, standard New-Keynesian business cycle models still largely rely on the former (cf. Smets
and Wouters 2003, Woodford 2005).4 Understating the role of current income for the determination
of consumption, however, may lead to understate an important source of business fluctuations. The
aim of the present paper is thus to fill this gap.

The present paper is related to Challe et al. (2015) who introduce a precautionary saving motive
to an estimated medium-scale DSGE model with involuntary unemployment. Precautionary saving
arises from incomplete insurance against labor income risk. Their model differs in two crucial
aspects which come at the cost of tractability: First, the uninsurable risk inducing households to
accumulate buffer savings is endogenous. Second, the model exhibits wealth heterogeneity across
households. In contrast to that, the aim of the present paper is to introduce the Carroll and Toche
(2009) setup to the DSGE literature.

The remainder of the paper is organized as follows: Section 2 presents the model, with the
focus on the household sector. Section 3 discusses parameterization and solution method. Section
4 discusses results: section 4.1 provides insights into the workings of the buffer stock setup in a
general equilibrium model by comparing and contrasting steady state results, section 4.2 turns to
impulse responses of precautionary and conventional model. Section 4.3 studies how determinacy
regions and the Taylor principle are affected by the presence of the precautionary motive. Section
4.4 performs extensive sensitivity analysis with respect to key parameters. Section 5 concludes.

2 The model

The model versions ‘conventional’ and ‘precautionary’ share a common model structure, in all
aspects but the buffer stock savings setup. Both model economies comprise a household sector
that consists of saving and borrowing households, a final good firm, intermediate good firms,
capital producers, and the government (the monetary authority). Intermediate good firms are
monopolistically competitive; they each produce a variety of similar goods, and set an optimal
price facing nominal rigidities in the form of Rotemberg (1982) quadratic price adjustment costs.
The final good firm is competitive, and combines varieties of the intermediate goods into a final

3Dardanoni (1991) study a cross section of British households and find that about 60% of savings are due to
precautionary savings motives. Hubbard et al. (1994) find that introducing a precautionary saving motive contributes
considerably in explaining important short-run time series properties of consumption and saving. Carroll and Samwick
(1998) approximate income risk by the variance of observed income processes and argue that up to 50% of the
wealth in their sample originates from income uncertainty differentials. Kazarosian (1997) finds that precautionary
saving motives are more relevant for farm households than for households engaging in occupations with less income
uncertainty. Lusardi (1998) finds for Italian households that the variance of income contributes to explaining wealth
accumulation mainly for individuals close to retirement. Income variance cannot explain the saving of the very
rich. Zhou (2003) attributes about 65% of the wealth accumulation of households in occupations with high income
volatility to a precautionary saving motive. Mishra et al. (2012) find that precautionary savings account for over
50% of total wealth accumulation. Other studies attribute only low significance to precautionary saving in explaining
wealth accumulation. See, for instance, Skinner (1988), Guiso et al. (1992), Lusardi (1998), Arrondel (2002), Jensen
and Pope (2004), Kennickell and Lusardi (2004).

4Standard medium-scale DSGE models designed to match core moments of macroeconomic time series, however,
introduce a considerable income sensitivity of consumption by assuming that a share of households is liquidity
constrained (Gali et al. 2004b).
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good, which is used for consumption and investment, the latter carried out by capital producers.
The monetary authority follows a standard Taylor rule, reacting to contemporaneous inflation. The
household sector in both economies, consists of patient households who own the intermediate goods
firms and of impatient households who own the capital stock. In equilibrium, patient households end
up being savers, while impatient households, who value consumption early on, become equilibrium
borrowers, similar to Kiyotaki and Moore (1997). Impatient households are restricted in their
ability to borrow by the expected next period’s value of the collateral they pledge. Inclusion of
such a financial friction allows us to pin down a well-defined level of savings and borrowings even
in the conventional model, where a precautionary motive is absent.5 Household borrowers are
modeled identically in the precautionary and conventional version.

The key difference across the two model varieties lies in the modeling of the patient, saving
households. While in the conventional model version patient households have standard constant
relative risk aversion preferences and are employed over their entire (infinite) lifetime, in the pre-
cautionary model we adopt Carroll and Toche’s (2009) tractable buffer stock saving setup. Patient
households consist of so-called active households, that earn wage and profit income but each period
face a constant probability U to drop out of the labor force permanently and lose both wage and
profit income, and thus become inactive households. It should be emphasized that this risk of
permanent income loss is assumed to be uninsurable. Inactive households consume out of their
previously accumulated wealth until they die.

The economy exhibits constant exogenous growth over time, arising from labor augmented
productivity increases. In particular, denote the period t level of labor productivity by Zt, which
grows at deterministic rate Zt

Zt−1
= Γ.6

In the following, we discuss in detail the household sector and continue with a brief overview of
firm behavior and policy which are standard features shared by both model versions.

2.1 Patient households

This section documents the modeling of patient households. Section 2.1.1 presents the setup for
the conventional model, with the standard representative agent problem of an infinitely-lived agent
that is always employed. Section 2.1.2 then turns to the precautionary model: in this case, members
of the patient household are subject to Carroll and Toche’s setup of tractable buffer stock savings,
where agents face a risk of permanent income loss.

5Introducing a mechanism that induces households to save in equilibrium poses the question who acts as the
provider of these assets. In the basic New Keynesian model, the Modigliani and Miller (1958)-theorem applies and
the supply of assets is indeterminate. This is why the baseline model adapted here features patient as well as impatient
households similar to Kiyotaki and Moore (1997). The financial frictions in this model variant imply a well-defined
financial structure of the borrower, and thus has well-defined asset-holdings of the saver, both in the precautionary
and in the conventional model.

6In order to solve a stationary version of the model, we will thus need to deflate all growing variables by the level
of labor productivity. See appendix A for details.
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2.1.1 Patient households in the conventional model

In case of the conventional model, there is a representative patient household with standard pref-
erences over consumption, cs

t , and labor, nt. The patient household finances its consumption
expenditure, and its next period asset holdings, bs

t+1
Πt+1

Rt
, from labor income, Wtnt, past asset

holdings, bs
t , and dividends or profits, dt, from the intermediate goods firms it owns. The problem

reads

max
cs

t ,bs
t+1,nt

E0

∞∑
t=0

(βs)t

(
(cs

t )1−ρ

1 − ρ
− Z1−ρ

t ψ
n1+η

t

1 + η

)
,

s.t. bs
t+1

Πt+1
Rt

= bs
t +Wtnt + dt − cs

t

where βs is the patient household’s discount factor, ρ the coefficient of relative risk aversion, ψ is
a scaling parameter, η the inverse of the Frisch elasticity, Πt the gross inflation rate, and Rt the
gross interest rate. The aggregated and normalized optimality conditions are

ΓB̃s
t+1

Πt+1
Rt

= B̃s
t + W̃tNt + D̃t − C̃s

t , (CV-01)(
C̃s

t

)−ρ
= Γ−ρβsEt

[(
C̃s

t+1

)−ρ Rt

Πt+1

]
, (CV-02)

ψNη
t = W̃t

(
C̃s

t

)−ρ
. (CV-03)

Note that X̃t ≡ Xt
Γt for any aggregated variable Xt. Eqs. (CV-01) to (CV-04) are the aggregated

budget constraint, the aggregated consumption Euler equation derived from combining the FOCs
w.r.t. consumption and assets, the aggregated labor supply equation derived from combining the
FOCs w.r.t. consumption and labor, and the stochastic discount factor of the patient households,
respectively.

2.1.2 Patient households in the precautionary model

In the precautionary model, the patient household sector is more complex. The household sectors
follows loosely Carroll (1997), Carroll and Jeanne (2009), Carroll and Toche (2009). A detailed
derivation of an individual patient household’s problem in the precautionary model, as well as
aggregation, is discussed in appendix A. Let Θa

t and Θi
t denote the population sizes of active and

inactive households, respectively. Active households are born into generations of size one and face
a per-period risk U of becoming inactive. This poses an uninsurable risk. Once the household is
inactive, i.e. has left the labor force, it cannot return. The law of motion of the active population
size then is Θa

t − Θa
t−1 = 1 −UΘa

t−1. Inactive households face a per-period risk D of dying. Hence,
the law of motion of the inactive population size is Θi

t − Θi
t−1 = UΘa

t−1 −DΘi
t−1. The steady-state

size of each household type is then Θa = 1/U and Θi = 1/D, respectively.

Inactive households Let us derive the first order conditions (FOCs) and budget constraint of
an individual inactive household. Inactive households do not obtain labor or profit income, face a
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per-period probability, D, of death and have access to a Blanchard (1985) insurance market. As
shown in Appendix A, the problem of a single inactive household reads

max
ci

t,bi
t+1

E0

∞∑
t=0

(βs(1 −D))t (ci
t)1−ρ

1 − ρ
,

s.t. bi
t+1 = Rt

Πt+1

1
1 −D

(
bi

t − ci
t

)
.

Combining the FOCs w.r.t. consumption and wealth leads to

(ci
t)−ρ = βEt

Rt

Πt+1
(ci

t+1)−ρ.

In contrast to the setting in Carroll (1997), Carroll and Jeanne (2009), Carroll and Toche (2009),
the inactive household does not face a perfect-foresight problem with constant interest rate, but,
in our setting, accumulates wealth that earns the general equilibrium real interest rate, which is
generally time-varying. Thus, the inactive household equates the marginal utility of consumption
today, with the expected marginal utility tomorrow times the real interest rate (discounted to today).
Nevertheless, up to a first order approximation and under certainty equivalence, one can, similarly
to the perfect-foresight case of Carroll, link the inactive household’s consumption to its wealth
level. As shown in the appendix, iterating forward the budget constraint, using the consumption
Euler equation, aggregating over inactive households and normalizing by productivity yields7(

C̃i
t

)ρ
= 1
κ̌t
B̃i

t, (PS-01)

where κ̌t ≡ κt

(
Θi

Γt

)1−ρ
can be recursively defined as

κ̌t = (C̃i
t)1−ρ + (1 −D)βΓ1−ρEtκ̌t+1. (PS-02)

The aggregation of the inactive households’ budget constraint requires some caution. On the one
hand, one needs to sum over all inactive households, so we define Bi

t ≡ Θibi
t and Ci

t ≡ Θici
t for

period t aggregate wealth and consumption. On the other hand, one needs to take into account
that tomorrow’s aggregate wealth of inactive households is diminished by a share D of inactive
households that dies; and is fed by the aggregated wealth of households which were active at the
beginning of t and inactive at the end of t, denoted Bai

t+1. The aggregate budget constraint of
inactive households then reads (after normalization by productivity)

B̃i
t+1 = Rt

Πt+1

1
Γ

(
B̃i

t − C̃i
t

)
+ B̃ai

t+1. (PS-03)

Active households Each member of the active household maximizes its lifetime expected dis-
counted stream of utilities. Period utility is given by

U(ca
t , nt) = (ca

t )1−ρ

1 − ρ
− Z1−ρ

t ψ
n1+η

t

1 + η

7In the case of perfect-foresight, the relation between current consumption and wealth is given by C̃i
t = 1

κt
B̃i

t, and

the propensity to consume out of wealth, 1
κt

, is given by the constant 1
κt

= 1
κ

= 1 − (βR)1/ρ(1−D)
R

(cf. Carroll and
Toche 2009).
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and the budget constraint is

ba
t+1 = Rt

Πt+1
(Wtnt + dt + ba

t − ca
t − τa

t )

where τa
t represents a transfer from non-newborn to newborn (which is born without any wealth)

active households, such that both have an identical level of wealth (cf. Carroll and Jeanne 2009).
The presence of this transfer simplifies aggregation of active households (see the appendix). The
household faces a risk U of permanent income loss. We assume that the active household cannot
loose income, i.e. become inactive, and die in the same period. It is convenient to set up the
household’s problem as a dynamic program:

va
t (ba

t ) = max
ca

t ,ba
t+1,nt

[
(ca

t )1−ρ

1−ρ − Z1−ρ
t ψ

n1+η
t

1+η +
+β(1 − U)Etv

a
t+1(ba

t+1) + βUEtv
i
t+1(ba

t+1)

]

where va
t (ba

t ) is the value function in t. Note that vi
t+1(ba

t+1) is the value function of a household in
t+ 1 that has become inactive between t and t+ 1. Substituting out ca

t using the budget constraint
and taking the FOC w.r.t. wealth, bt+1, implies,

va′
t = βEt

[
Rt

Πt+1

(
(1 − U)va′

t+1 + Uvi′
t+1

)]
,

where from the envelope condition

va′
t = (ca

t )−ρ

vi′
t = (ci

t)−ρ.

Because vi′
t = (ci

t)−ρ denotes the marginal utility of a person that was active in period t but has
become inactive in period t+ 1and because for the newly inactive household

(
ci

t

)ρ = 1
κt
ba

t , we can
write the active household’s Euler equation (after aggregation) as:

(C̃a
t )−ρ = βEt

[
Rt

Πt+1

(
(1 − U)(Ca

t+1)−ρ + U
κ̌t+1

B̃a
t+1

(
D

U

)−ρ
)]

. (PS-04)

The aggregated FOC w.r.t. nt reads

ψUρ+ηNη
t = W̃t

(
C̃a

t

)−ρ
. (PS-05)

Let us turn to deriving the active households’ aggregate budget constraint: we can derive aggregate
wealth of active households at period t, of both newborn and non-newborn members as Ba

t ≡
Θa(ba

t − τaba
t ), where the transfer is assumed to be proportional to wealth τa

t = τaba
t , and which

ensures that every active household has the same stock wealth. Further define aggregate profits
Dt ≡ Θadt. Period t + 1 aggregate wealth of active households’ requires accounting for a share U
of active households that become inactive, diminishing aggregate wealth of active households, and
carrying over wealth Bai

t+1 to inactive households in the aggregate. Hence, Ba
t+1 = Θaba

t+1 − Bai
t+1.

Solving this equation for Θaba
t+1 and substituting it into the left hand side of the aggregated budget

constraint above, yields (after normalizing by productivity)

B̃a
t+1 = Rt

Πt+1

1
Γ

(
W̃tNt + D̃t + B̃a

t − C̃a
t

)
− B̃ai

t+1. (PS-06)
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Bai
t+1, the aggregate wealth of those active households which become inactive at the beginning of

t+ 1, is

B̃ai
t+1 = U

Rt

Πt+1

1
Γ

(
W̃tNt + D̃t + B̃a

t − C̃a
t

)
. (PS-07)

Having in hand expressions for aggregate active and inactive households’ consumption and wealth
positions, let us define the total aggregate consumption and wealth of patient households in the
precautionary model as

C̃s
t ≡ C̃a

t + C̃i
t , (PS-08)

B̃s
t ≡ B̃a

t + B̃i
t. (PS-09)

2.2 Impatient households

Impatient households are assumed to be the owners of the economy’s capital stock and, for sim-
plicity, do not earn labor income. At the end of each period, they sell the old non-depreciated
capital to capital producers, and buy the repaired and newly installed capital at the beginning of
the period. To finance the acquisition of the capital stock they can, in addition to using their own
resources, borrow from patient households. Impatient households face a collateral constraint that
limits the amount of loans they can take out by the value of their pledgable collateral.

Facing budget and borrowing constraints, the impatient household chooses inter-temporal paths
for consumption, cb

t , loans, bb
t+1, and capital, kt+1, to maximize expected discounted future utility.

The problem reads

max
cb

t ,bb
t+1,kt+1

E0

∞∑
t=0

(
βb
)t


(
cb

t

)1−ρ

1 − ρ

 ,
s.t. bb

t − bb
t+1

Πt+1
Rt

= RKtkt −QKt (kt+1 − (1 − δ) kt) − cb
t ,

bb
t ≤ mEt

(
QKt+1kt+1

Πt+1
Rt

)
where RKt is the gross rental rate of capital, QKt is the shadow price of capital, δ the rate of
capital depreciation, and m the collateralizable fraction of capital. We will assume that impatient
households discount future utility more heavily than patient households, so that βb < βs. Solv-
ing this optimization problem, aggregating and normalizing by labor productivity, the optimality
conditions of the impatient households can be obtained as

B̃b
t − ΓB̃b

t+1
Πt+1
Rt

= Rk
t K̃t −QKt

(
ΓK̃t+1 − (1 − δ) K̃t

)
− C̃b

t , (1)

B̃b
t+1 = mEt

[
QKt+1K̃t+1

Πt+1
Rt

]
, (2)

QKt

(
C̃b

t

)−ρ
= Γ−ρβbEt

[(
C̃b

t+1

)−ρ
(RKt+1 +QKt+1 (1 − δ))

]
+ µtmEtQKt+1, (3)(

C̃b
t

)−ρ
= Γ−ρβbEt

[(
C̃b

t+1

)−ρ Rt

Πt+1

]
+ µt

Rt

Πt+1
, (4)
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where µt is the Lagrangian multipliers of the borrowing constraint. Eqs. (1) and (2) are the
aggregated budget constraint and borrowing constraints. Eq. (3) results from the FOC w.r.t.
consumption and capital, and (4) from the FOC w.r.t. consumption and loans.

2.3 Final good firm

A perfectly competitive firm produces final good, Yt, used for consumption and investment. It does
so by aggregating differentiated intermediate goods, Yt (j), into a final good according to a constant
elasticity of substitution (CES) production function.

Yt =
∫ 1

0

[
Yt (j)

ε−1
ε dj

] ε
ε−1

.

Taking the price, Pt (j), as given, profit maximization implies for the demand for variety j,

Yt (j) =
(
Pt (j)
Pt

)−ε

Yt.

2.4 Intermediate good firms

There is a continuum of intermediate good firms which we assume to be owned by the patient
households. Each firm produces a quantity, Yt (j), of a differentiated good j using capital and
labor as inputs, and selling it on a monopolistically competitive market. In setting its optimal
price, firm j faces quadratic costs of price adjustment a la Rotemberg (1982). Production follows
a Cobb-Douglas production function which, after aggregation and normalization, reads

Ỹt = AtK̃
α
t N

1−α
t , (5)

where At is total factor productivity following a first-order autoregressive process in logs, i.e.

logAt = ρA logAt−1 + εA,t, (6)

where ρA captures the persistence of the technology process and εA,t its exogenous innovations
which are distributed as N

(
0, σ2

A

)
.

We can decompose the intermediate good firm’s optimization problem into a static cost mini-
mization and an intertemporal profit maximization part. Cost minimization, choosing optimally the
labor and capital demands, Nt (j) and Kt (j), results, after aggregation, in the following expressions
for the real wage rate, Wt, and the real rate of return on capital, RKt:

W̃t = MCt (1 − α) Ỹt

Nt
, (7)

RKt = MCtα
Ỹt

K̃t
, (8)

where MCt are real marginal costs. With the cost-minimizing choice of inputs, firm j maximizes
expected discounted intertemporal profits by setting an optimal path of future prices, {Pt (j)},
taking as given the demand for its product and facing quadratic Rotemberg (1982) price adjustment
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costs, ZtPt
ϕp

2

(
Pt(j)

Pt−1(j) − 1
)2

. The FOC with respect to the price decision, after imposing that all
firms are identical and after aggregation and normalization, can be written as

Ỹt ((ε− 1) − εMCt) + ϕp (Πt − 1) Πt = EtΛs
t,t+1ϕp (Πt+1 − 1) Πt+1 (9)

where

Λs
t,t+1 = Γ−ρβsEt

(
C̃s

t+1
C̃s

t

)−ρ

(CV-04)

is the stochastic discount factor in the conventional model and

Λs
t,t+1 = Γ−ρβsEt

(1 − U)(Ca
t+1)−ρ + U κ̌t+1

B̃a
t+1

(
D
U

)−ρ

(
C̃a

t

)−ρ (PS-10)

in the precautionary model. We define real profits as

D̃t = Ỹt −RKtK̃t − W̃tNt − ϕp

2
(Πt − 1)2 . (10)

2.5 Capital producers

Capital producers add final goods to the existing capital stock in order to produce new capital
goods, It. Capital production is subject to quadratic adjustment costs. Capital producers choose
the level of It that maximizes their profits, QKtIt −

(
It + ϕk

2

(
It
Kt

− (Γ − (1 − δ))
)2
Kt

)
, where ϕk

governs the slope of the capital producers adjustment cost function. From profit maximization, the
relative price of capital, QKt, is

QKt = 1 + ϕk

(
Ĩt

K̃t
− (Γ − (1 − δ))

)
. (11)

In the absence of investment adjustment costs, QKt is constant and equal to one. The usual capital
accumulation equation holds, i.e.

ΓKt+1 = (1 − δ)Kt + It. (12)

2.6 Monetary authority

Monetary policy is assumed to follow a Taylor rule, by which the nominal interest rate, Rt, responds
to deviations of inflation from its target value. Mt is an unexpected disturbance to the monetary
rule, following an exogenous first-order autroregressive process:

Rt

R
=
(Πt

Π

)ϕπ

Mt, (13)

logMt = ρM logMt−1 + εM,t. (14)
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2.7 Market clearing and equilibrium

In equilibrium, labor, capital, asset and goods market clear. Asset market clearing is given by
B̃s

t = B̃b
t which then implies the goods market to clear as well. Adding over the budget constraints

in our model yields

Ỹt = C̃t + Ĩt (15)

where

C̃t = C̃s + C̃b. (16)

Overall, the conventional model comprises 20 equations ((1)-(16) and (CV-01)-(CV-04)) in 20
variables (Ỹ , C̃, Ĩ, C̃s, C̃b, N , K̃, B̃, B̃s, B̃b, D̃, W̃ , R, Π, QK , µ, Λs, MC, A, M). The
precautionary model comprises 26 equations ((1)-(16) and (PS-01)-(PS-10)) in 26 variables (Ỹ , C̃,
Ĩ, C̃s, C̃b, N , K̃, B̃, B̃s, B̃b, D̃, W̃ , R, Π, QK , µ, Λs, MC, A, M , C̃a, C̃i, B̃a, B̃i, B̃ai, κ̌).

3 Parameterization and solution method

Table 1 summarizes the choice of baseline parameters. We first focus on the production side. Pa-
rameter α = 0.33 implies a share of capital in output equal to one third, the quarterly depreciation
rate of capital, δ, is set to 0.025. The elasticity of substitution between varieties of intermediate
goods, ε, of 6, implies a (net) markup of prices over costs, ε

ε−1 − 1, of 20%. The gross rate of ex-
ogenous, labor-augmenting growth, Γcv, is set to 1.004 per quarter. Parameter ϕk in the quadratic
capital adjustment cost function is set to 0 in the baseline. Finally, the parameter of the quadratic
Rotemberg price adjustment costs, ϕp, is taken to be 50. This choice roughly translates into a
Calvo parameter of 0.75 in the setup of price stickiness a la Calvo (1983), to which the Rotemberg
price adjustment cost setup is equivalent up to a first order approximation.8 A Calvo parameter
of about 0.75 in turn implies that prices remain constant for an average of 1

1−0.75 = 4 quarters, a
standard value in the literature.

We now turn to the preference side. The coefficient of relative risk aversion, ρ, is set to 2,
which implies that the elasticity of intertemporal substitution, the inverse, is equal to 1/2. This
lies well in the range typically used in the macroeconomic literature, where it takes on values
between 1 and 1/5. The coefficient on labor in the utility function, equal to the inverse of the
Frisch elasticity of labor supply, is set to 1. Parameter ψ pins down the steady state labor supply,
and is set such that workers use one third of their time endowment for supplying their labor to
the labor market. The discount factors of patient and impatient households are set to 0.99 and
0.975, respectively. Note that the requirement βb < βs is fulfilled, so that impatient households
discount future consumption more heavily, thus have a preference for consumption early on and
for becoming equilibrium borrowers, with binding borrowing constraint.9 In a conventional DSGE

8In particular, the precise mapping between Calvo parameter, ξ, and ϕP is given by ϕP = ξ(ε−1)Y
(1−ξ)(1−ξβs) .

9Strictly speaking, βb < βs, only guarantees that the borrowing constraint binds at the non-stochastic steady
state. We follow a large literature in assuming that the stochastic shocks hitting the economy are small enough, such
that the borrowing constraint also continues to bind in the stochastic setting, so that standard first-order perturbation
methods can be applied to solve the model.

11



Table 1: Parameterization

Parameters common to conventional and precautionary model
Cobb-Douglas coefficient on capital α 0.33
Depreciation rate of capital stock δ 0.025
Elasticity of subst., intermed. goods ϵ 6
Capital adj. cost parameter ϕk 0
Rotemberg price adj. cost parameter ϕp 50
Coeff. of relative risk aversion ρ 2
Coeff. on labor in utility function η 1
Steady state share of time in labor mkt. N̄ 0.33
Discount factor, patient households βs 0.99
Discount factor, impatient households βb 0.975
Borrowing constraint parameter m 0.50
Inflation coeff., Taylor rule ϕπ 1.50
Autocorrelation, prod. ρA 0.979
Standard Deviation, prod. σA 0.007
Autocorrelation, mon. ρM 0.500
Standard Deviation, mon. σM 0.005

Parameters specific to conventional model
Growth rate in conventional model Γcv 1.004

Parameters specific to precautionary model
Probability of permanent income loss U 0.015
Probability of death D = U/0.2 0.075
Growth rate of expected permanent income Γps = Γcv/(1 − U) 1.019
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model without precautionary motive, the choice of the saver’s discount factor, together with the
economy’s growth rate, directly pin down the steady state interest rate at the non-stochastic steady
state. In particular, from Euler equation (CV-02) it follows that the steady state gross quarterly
real interest rate in the conventional model is given by Γρ

βs , which is equal to 1.018 under the
parameterization reported here. Note that this is slightly higher than the annual interest rate of
4% often targeted in the macroeconomics literature. However, we rather target the interest rate in
the precautionary model – because of the presence of a precautionary savings motive, the interest
rate in the precautionary model is lower and close to a rate of 4% annually. We discuss steady
state results in detail in the next section. The borrowing constraint parameter, m, is set to 0.5,
which implies that impatient agents can take out loans up to 50% of the value of the collateral they
pledge.

Monetary policy is described by a Taylor rule, targeting inflation with coefficient ϕΠ = 1.5, a
standard value. Autocorrelations of the productivity and monetary shock processes are 0.979 and
0.5, the standard deviation of their innovations equal 0.007 and 0.005 respectively.

Finally, we discuss the parameters that are specific to the buffer stock savings mechanism in the
precautionary model. Parameter U , the parameter that governs the risk of permanent income loss,
is set to 0.015 per quarter. This parameter choice is somewhat higher than the calibration in Carroll
and Jeanne (2009), who set U = 0.025 in an annual calibration. Taking U strictly as the risk of
permanent income loss, this value would imply an average duration of active households remaining
active of 1/0.015 quarters, which implies an average duration in the workforce of 16.7 years before
becoming inactive. We choose to, instead of sticking strictly to this interpretation, see U mostly
as a device to introduce more realistic consumption patterns into DSGE models, that are less
subject to excessive consumption smoothing as conventional agents with CRRA preferences that
are infinitely-lived and infinitely-working.10 In addition, section 4.1 performs sensitivity analysis
with respect to this crucial parameter. Parameter D, the per quarter probability of an inactive
household dying, is set in proportion to the parameter choice of U . In particular, D is set equal
to U times the inverse of the old-age dependency ratio which is about 0.2. Our parameter choice
for U then implies an average length of 13.3 quarters of being inactive before death. Finally, the
relevant growth rate of the economy Γps in the precautionary model is equal to the growth rate Γcv

in the conventional model, elevated by factor 1/(1 − U), so that while labor income will grow by
factor Γps = Γcv/(1 −U), the expected labor income growth factor for employed consumers is equal
to Γcv, as would be the case in the no-risk perfect foresight case (cf. Carroll and Jeanne 2009).11

The model is solved with a standard first order perturbation method (log-linearization). The
big advantage of Carroll’s tractable buffer stock saving approach is that one can separate the risk
of permanent income loss, that gives rise to precautionary motives from other, aggregate macro,
shocks. This is in contrast to the large existing literature that heavily relies on numerical methods
to understand the role of precautionary saving motives for macroeconomics (cf. Aiyagari 1994
and Krusell et al. 1998), as precautionary motives are typically captured in higher order moments,
for which one needs accurate (global or higher order) methods. Adoption of Carroll’s tractable
buffer stock setup allows integrating a role for precautionary motives in macroeconomic dynamics,

10An example of a more ad hoc device is, e.g., the assumption of habit preferences, widely used in macroeconomics.
11This means that an increase in U is a pure increase in risk with no effect on the present discounted value of

expected labor income; thus, any change in behavior that results from a change in U can be interpreted solely as
reflecting an effect on uncertainty, and not as an effect of a change in human wealth (cf. Carroll and Jeanne 2009).
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where standard methods, such as (log-)linearization, still widely used in macroeconomics, especially
medium-scale (estimated) policy models that, because of a large number of state variables are still
hard or infeasible to solve with global methods, suffice.

4 Results

4.1 Implications of the precautionary saving mechanism and steady state re-
sults

Table 2 summarizes results for the non-stochastic steady state, under the baseline parameterization
discussed in section 3, for both precautionary and conventional model. The word ’non-stochastic’
for the precautionary model, may need additional clarification: in particular, ’non-stochastic’ refers
to the fact that the economy’s uncertainty coming from the aggregate shock processes is shut down,
i.e. that the level of total factor productivity, At, and the shift term in the Taylor rule, Mt, are
constant and take on their mean values. It does, however, not imply that the risk of permanent
income loss is shut down; since the latter is independent of the stochastics of aggregate shocks of
the DSGE model, we, however, continue to refer to it as the ’non-stochastic’ steady state.

Several findings on the steady state results are noteworthy. One, as we let U become increas-
ingly smaller, the steady state of the precautionary model converges to the steady state of the
conventional model. That is, the conventional model is indeed a special case of the precautionary
model, or, the latter is nested in the former. Two, we want to provide intuition for what explains
the differences in steady state values across models, with a focus on the steady state (real) interest
rate and consumption variables. To do so, we summarize the main mechanism and intuition of
Carroll’s buffer stock mechanism. For this reason, it is illustrative to consider the growth-deflated
consumption Euler equations of the patient (in the precautionary model, patient active) households.
They are, respectively, for conventional and precautionary model:(

C̃s
t

)−ρ
= Γ−ρβsEt

[
Rt

Πt+1

(
C̃s

t+1

)−ρ
]
,

(C̃a
t )−ρ = Γ−ρβsEt

[
Rt

Πt+1

(
(1 − U)

(
C̃a

t+1

)−ρ
+ U

(
C̃i

t+1

)−ρ
(Θa

Θi

)−ρ
)]

.

At the non-stochastic steady state, Rt
Πt+1

is constant, and, since we consider a model without steady
state inflation (with Π = 1), equal to R. We can then follow Carroll in defining the growth patience
factor, ÞΓ, as , ÞΓ ≡ (Rβs)

1
ρ /Γ. This is the factor by which growth-deflated consumption would

grow in absence of labor income risk. In particular, in the conventional model, a steady state in
which the gross (net) consumption growth rate equals one (zero), C̃s

t+1/C̃
s
t = C̃s/C̃s = 1, implies a

growth patience factor equal to one (ÞΓ = 1) and a steady state interest rate that is equal to Γρ/βs,
which under the baseline parameterization is equal to 1.018, as shown in the right column of Table
2. Instead, a steady state consumption of (active) households in the precautionary model is reached
as a result of two offsetting forces; on the one hand, the (active) consumer needs to be sufficiently
impatient, and her growth impatience factor will thus be smaller than 1 (or, more precisely, smaller
than (1 − U)− 1

ρ , (cf. Carroll and Jeanne 2009)). This condition implies that a consumer would be
sufficiently impatient to want to consume early on and to run down her growth-deflated wealth over
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time, implying a consumption growth rate that is falling over time. Table 2 shows that, indeed,
this is the case, and the growth patience factor in the precautionary model lies, with ÞΓ = 0.981,
below one. On the other hand, the balancing force to growth impatience is the consumer’s desire
to accumulate wealth for precautionary reasons, which is reflected in the second term on the right
hand side of the (rewritten) steady state consumption Euler equation of the active household below
having to be larger than one at steady state:

C̃a
t+1
C̃a

t

= ÞΓ

(
(1 − U) + U

(
C̃a

t+1

C̃i
t+1

)ρ (Θa

Θi

)−ρ
) 1

ρ

.

The term in parenthesis shows that the consumption growth rate depends on the employment
outcome: since consumption next period if the household remains active, C̃a

t+1, is greater than
consumption if the consumer becomes unemployed the next period, C̃i

t+1, the term in parenthesis is
larger than one.12 This means that the presence of unemployment risk boosts consumption growth,
and tends to lead to a consumption growth rate that increases over time. The two offsetting forces,
growth impatience which tends to lead to consumption growth rates of the active households that
are falling over time, and the precautionary motive coming from uninsurable risk of income loss,
which tends to lead to consumption growth rates that are increasing over time, exactly balance at
the steady state, such that consumption growth is constant and C̃a

t+1 = C̃a
t = C̃a. As shown in

Table 2, the tendency of a higher consumption growth rate coming from the precautionary motive,
goes in hand with a lower consumption level, so that C̃s is found to be lower in the precautionary
compared to the conventional model. Also, in line with the broader precautionary savings literature
(when there are precautionary motives other than arising from risk of permanent income loss such
as in Carroll’s tractable buffer stock savings setup), the steady state interest rate is below the rate
it would take on in the model version as U −→ 0. This finding was first observed by Aiyagari
(1994), who argued that, as a result of the motives to hold precautionary buffer asset, when the
gross interest rate would be at its certainty equivalent level, Γρ/βs, there would be an excess
demand for savings. Under uncertainty (or, respectively, in Carroll’s setup, under positive risk
of permanent income loss), therefore, the asset price needs to be higher relative to its certainty-
equivalent level to clear the asset market, or, equivalently, the real interest rate needs to be lower
than in a non-stochastic world.

Finally, we want to comment on practical issues when taking the Carroll tractable buffer stock
savings setup into a dynamic stochastic general equilibrium model. In particular, we find that,
numerically, multiplicity of steady states exists. This issue can best be seen, when reducing the
steady state system of the precautionary model (evaluated at the non-stochastic steady state) to a
single equation in the steady state interest rate, R. This single equation is a polynomial equation,
whose zeros can be solved for numerically. Figure 1 shows the corresponding plot for our baseline
parameterization. The figure shows that, in practice, when the interest rate is not constant and
taken as given, as in the partial equilibrium setup of Carroll and Jeanne (2009), but has to be solved
for in a general equilibrium setting, one has to be careful in selecting the ’economically meaningful’
steady state. The steady state reported in Table 2 is the, we claim, economically meaningful one:
it, in particular, is the one consistent with the above described properties of a precautionary motive

12Note that this line of argumentation holds despite the term
(

Θa

Θi

)−ρ being < 1. In particular, it holds as long
as for an individual household consumption while being active, ca

t is higher that her consumption when inactive, ci
t,

which is always the case in Carroll’s buffer stock savings setup.
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Table 2: Steady state results

Variable precautionary model conventional model
Ỹ 0.689 0.768
Ĩ 0.133 0.121
C̃ 0.556 0.647
C̃b 0.070 0.064
C̃s 0.485 0.583
C̃a 0.467
C̃i 0.019
K̃ 3.010 4.162
B̃b 1.489 2.044
B̃s 1.489 2.044
B̃a 1.306
B̃i 0.182
MC 0.833 0.833
W̃ 1.160 1.293
RK 0.064 0.051
Π 0.115 0.128
R 1.011 1.018
Absolute Patience Factor, Þ 1.000 1.004
Return Patience Factor, ÞR 0.990 0.986
Growth Patience Factor, ÞΓ 0.981 1.000

16



Figure 1: Multiplicity of steady state interest rate
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present, and is the one that one obtains when starting at the steady state of the conventional model
(when U = 0) and increasing U in small steps.13

4.2 Impulse response analysis

This section progresses to illustrate the effects of the tractable buffer stock savings setup on the
dynamics of our macroeconomic model. To this reason, figure 2 plots responses of the model
economies to a one percent positive productivity shock. All variables are expressed in terms of
percentage deviations from steady state. Responses for both model economies are shown for out-
put, Ỹt, aggregate consumption, C̃t, investment, Ĩt, the nominal interest rate, Rt, consumptions
of patient and impatient agent, C̃s

t and C̃b
t , inflation, Πt, and asset holdings, B̃s

t . In addition, for
the precautionary model, the subcomponents of aggregate consumption of savers, consumption of
active households, C̃a

t , and consumption of inactive households, C̃i
t , are reported, and similarly

for asset holdings, B̃a
t and B̃i

t. As figure 2 shows, macroeconomic dynamics are broadly similar
across the two model versions. Output increases, as a direct result of the higher productivity,
and, because the technology improvement is persistent, as a result of the additional capital stock
that is built up. Part of the output increase is consumed, but since agents care about a smooth
consumption path, a part of the output increase also leads to increased savings, both in the form of
investments in building up the capital stock, or savings in issuing loans to borrowing households.
Patient households’ asset holdings increase both because patient households want to accumulate

13In particular, other steady states that a numerical solver may obtain with more arbitrarily chosen initial values,
may imply cases with growth patience factors larger than one, and counterfactually high interest rates.
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Figure 2: Impulse responses to a one percent productivity increase
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savings as a device to transfer consumption to later periods, but also because impatient house-
holds see the value of their collateral, the capital stock, increase, which allows them to increase
their loans from patient households. The broadly similar dynamics across the two model versions
are hardly surprising, given that the model versions are identically specified and parameterized in
all aspects but for the buffer stock savings part. However, as can be expected, some noticeable
differences in the consumption dynamics arise. In response to the positive productivity shock, we
observe a more hump-shaped consumption pattern in the precautionary model compared to the
conventional model without buffer stock savings. This is because the positive technology shock
has increased the active households’ income relative to their wealth position (which, as a state
variable, is predetermined at the impact of the shock). Thus its wealth-to-income ratio target is,
now, temporarily too low. To realign the ratio with its target, the active household thus has to
temporarily save more, to increase its wealth; to achieve this, it is allowed only a smaller consump-
tion increase relative to the model without a precautionary motive present. That means that the
consumption response in the precautionary model is, on impact, less pronounced compared to a
conventional model. After a few periods, additional wealth has been accumulated (and in addition,
the temporarily higher income is converging back to normal as the technology shock declines out),
so the wealth-to-income target is re-reached. The higher level of accumulated wealth now enables
the household to consume more compared to the conventional case. Overall, the presence of the
precautionary motive works to increase the humpshapedness of the consumption response. Since
the active household’s consumption is the predominant part of aggregate consumption, the pattern
of the active households’ consumption dynamics translates also into a more hump-shaped response
of aggregate consumption. The presence of the tractable buffer stock savings mechanism thus gives
rise to similar effects on the consumption impulse response to technology shock as, e.g., the as-
sumption of habit-preferences in consumption. The tractable buffer stock setup may thus be seen
as a, compared to the ad-hoc assumption of habit preferences, more microfounded mechanism to
generate more realistic consumption patterns which are less susceptible to excessive consumption
smoothing.

Figure 3 presents impulse response for the same set of variables in response to an expansionary
monetary shock that implies a decrease in the monetary shock variable in the Taylor rule, Mt, by
one standard deviation. Again, broadly speaking, the macroeconomic dynamics triggered by the
shock are similar across the two model versions. Because of frictions in price adjustment, prices are
lower and increase only gradually compared to a flexible price world, and the monetary expansion
works to increase output and its components, consumption and investment. Because of the strong
positive inflation response, the nominal interest rate increases despite the decrease in Mt, however
keeps its expansionary effect.14 However, we again observe that the consumption response in the
precautionary model is different: we find the consumption response to be both more pronounced
and, as with the productivity shock, more hump-shaped than in the conventional model. As
before, we interpret the increased humpshapedness as a successful device to curb the excessive
consumption smoothing behavior implied by infinitely-lived and infinitely working agents in more
standard settings. In addition, the more pronounced consumption response can be interpreted as
the model becoming, for a same given level of price rigidity, more demand-determined, i.e. more
’Keynesian’. The next section documents that this also has implications for the Taylor principle
and determinacy issues, particularly when nominal rigidities are large.

14Note that this is a result of the assumption of the impatient household owning all of the economy’s capital stock
and no capital adjustment costs.
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Figure 3: Impulse responses to an expansionary monetary shock
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Figure 4: Determinacy regions, precautionary and conventional model
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4.3 Determinacy regions

For the precautionary and conventional models, the plots in Figure 4 show the determinacy regions
for the inflation coefficient in the Taylor rule ϕπ against the coefficient of relative risk aversion ρ
(upper panels) and against the Rotemberg coefficient of price stickiness ϕp (lower panels). The
red, green and blue areas indicate parameter combinations for which no unique equilibrium exists,
one unique equilibrium exists and infinitely many equilibria exist, respectively. For the baseline
calibration, the standard Taylor principle holds. In the precautionary set up the the monetary
policy response has to be slightly more pronounced than in the conventional model for low ρ’s.
For high levels of price rigidity, the inflation coefficient in the monetary policy rule has to increase
considerably for a unique solution to exist.

Note that the green region with a low inflation coefficient and high price rigidity present in
both the precautionary and conventional setup involves a complex eigenvalue causing the impulse
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Figure 5: Sensitivity analysis with respect to variations in the risk of permanent income loss, U.
Row 1: technology shock, row 2: monetary shock
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responses to oscillate.

4.4 Sensitivity analysis

Figure 5 presents sensitivity with respect to variations in parameter U , the risk of permanent income
loss. The size of U thus directly governs the strength of the precautionary motive and is the key
parameter behind the buffer stock savings motive. The figure reports the output, (aggregate)
consumption, and investment response to both a technology shock (row 1) and a monetary shock
(row 2), of the same size as reported in section 4.2. Sensitivity is shown with respect to three
different values of the risk of permanent income loss: U = 0.01, U = 0.015 (baseline), and U = 0.03.
Unsurprisingly, the humpshapedness of the consumption response becomes more pronounced, the
higher parameter U , as the mechanism discussed in section 4.2 increases in importance.

Figure 6 presents sensitivity with respect to another key parameter, varying the coefficient of
relative risk aversion, ρ. Unlike in the previous figure, variations in ρ affect responses in both
the precautionary and conventional model. The differences across the two model versions increase
for higher ρ, as the role of the precautionary motive is intensified. This can be seen also from
the consumption Euler equation of the precautionary model, equation (PS-04), where the term(

C̃a
t+1

C̃i
t+1

)ρ

is raised by a higher power for increasing ρ. This directly implies that the force giving
rise to consumption growth rates that are increasing over time becomes more important.
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Figure 6: Sensitivity analysis with respect to variations in coefficient of relative risk aversion, ρ.
Row 1: technology shock, row 2: monetary shock
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5 Conclusion

The paper documents and analyzes the effects of adopting Carroll’s and Toche’s (2009) setup of
tractable buffer stock savings into a standard New-Keynesian dynamic stochastic general equilib-
rium model with financial frictions. For that reason, we compare and contrast two model versions
of an otherwise identical model: one with buffer stock savings setup (’precautionary model’), one
without (’conventional model’). We find that the presence of a precautionary motive, that stems
from an uninsurable risk of permanent income loss, has both interesting steady state and dynamic
effects on the models’ properties. As for the steady state effects, consistent with Carroll’s find-
ings, the precautionary motive, which implies that consumption growth rates are higher over time
compared to a conventional model without such motive, leads to a lower steady state consumption
level. Also, because of the general equilibrium nature of the model, the precautionary motive is
also reflected in a higher price for savings (asset holdings), or a lower equilibrium interest rate,
consistent with the broader precautionary savings literature. Macroeconomic dynamics are also
affected in nontrivial ways: Carroll’s buffer stock saving setup translates into a more hump-shaped
reaction of consumption in response to both supply (technology) and demand (monetary) shocks,
and produces more pronounced reactions in response to demand shocks. Adoption of the buffer
stock savings setup thus offers a more microfounded way, compared to, e.g., habit preferences in
consumption, to introduce Keynesian features into the model, serving as a device to curbing exces-
sive consumption smoothing, and to attributing a higher role to demand driven fluctuations. With
the aim of serving as a user guide to researchers interested in adopting this setup, we also discuss
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determinacy properties as well as other practical issues.
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A Appendix A: The patient household problem in the precaution-
ary model

A.1 Inactive households

The problem of the inactive household is

max
ci

t,bi
t+1

E0

∞∑
t=0

(β(1 −D))t (ci
t)1−ρ

1 − ρ

s.t. bi
t+1 = Rt

Πt+1

(
τ i

t + bi
t − ci

t

)
where β, ρ, ci

t, bi
t, Rt and Πt are the discount rate, the inverse of the elasticity of intertemporal

substitution of consumption, real consumption of the inactive household, real wealth of the inactive
household, the gross nominal interest rate and the gross inflation rate, respectively. The zero-profit
condition of a Blanchard (1985) insurance company implies

0 = D

(
Rt

Πt+1
(τ i

t + bi
t − ci

t)
)

− Rt

Πt+1
τ i

t

Solving for τ i
t and substituting into the inactive household’s budget constraint yields

bi
t+1 = Rt

Πt+1

1
1 −D

(
bi

t − ci
t

)
.

The Lagrangian characterizing this problem is

L = E0

∞∑
t=0

(β(1 −D))t

(
(ci

t)1−ρ

1 − ρ
+ λi

t

(
Rt

Πt+1

1
1 −D

(
bi

t − ci
t

)
− bi

t+1

))
.

The FOCs w.r.t. consumption and wealth are

λi
tEt

Rt

Πt+1

1
1 −D

= (ci
t)−ρ

and

λi
t = β(1 −D)Et

Rt+1
Πt+2

1
1 −D

λi
t+1,

respectively. Combining the two FOCs leads to

(ci
t)−ρ = βEt

Rt

Πt+1
(ci

t+1)−ρ

(ci
t)−ρ = βnEt

n−1∏
k=0

Rt+k

Πt+k+1
(ci

t+n)−ρ
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The budget constraint can be rearranged and iterated forward and, then, the previous result can
be used to get

bi
t = (1 −D)

(
Rt

Πt+1

)−1
bi

t+1 + ci
t

=
∞∑

n=0
(1 −D)n

n−1∏
k=0

(
Rt+k

Πt+k+1

)−1
ci

t+n

=
∞∑

n=0
(1 −D)n

n−1∏
k=0

(
Rt+k

Πt+k+1

)−1
ci

t+nβ
nEt

n−1∏
k=0

Rt+k

Πt+k+1
(ci

t+n)−ρ(ci
t)ρ

=
∞∑

n=0
(1 −D)nβnEt(ci

t+n)1−ρ(ci
t)ρ

bi
t = κt(ci

t)ρ

bi
t

Θi

Γt
= κt

(
Θi

Γt

)1−ρ(
ci

t

Θi

Γt

)ρ

B̃i
t = κ̌t(C̃i

t)ρ

where

κt = (ci
t)1−ρ + (1 −D)βEtκt+1

κt

(
Θi

Γt

)1−ρ

=
(
ci

t

Θi

Γt

)1−ρ

+ (1 −D)βΓ1−ρEtκt+1

(
Θi

Γt+1

)1−ρ

κ̌t = (C̃i
t)1−ρ + (1 −D)βΓ1−ρEtκ̌t+1

Note that we have assumed
∏n−1

k=0

(
Rt+k

Πt+k+1

)−1
ci

t+nEt
∏n−1

k=0
Rt+k

Πt+k+1
(ci

t+n)−ρ = Et(ci
t+n)1−ρ which

holds only up to a first-order approximation ∀k = 0, . . . , n and ∀n because of certainty equivalence.
The aggregation of the inactive household’s budget constraint requires some caution. Summing
over all inactive households, the budget constraint reads

Θibi
t+1 = Rt

Πt+1

(
Θiτ i

t +Bi
t − Ci

t

)
where we define Bi

t ≡ Θibi
t and Ci

t ≡ Θici
t. Note, however, that, in general, Bi

t+1 ̸= Θibi
t+1. This

is because the evolution of Bi
t needs to take into account that a share U of active households

becomes inactive and a share D of inactive households dies, whereas the individual evolution of
bi

t is conditional on staying alive. Hence, Θibi
t+1 is the aggregated wealth of inactive households

tomorrow before a share D of them dies. When they die, DΘibi
t+1 = DRt/Πt+1(Θiτ i

t +Bi
t −Ci

t) of
wealth goes to the insurance company as accidental bequests which, due to the zero profit condition,
are fully transferred to the remaining inactive households. Hence, Rt/Πt+1Θiτ i

t = DRt/Πt+1(Θiτ i
t +

Bi
t −Ci

t). Using this equation to substitute out Θiτ i
t from the aggregated budget constraint above,

we get, similar to the individual budget constraint,

Θibi
t+1 = Rt

Πt+1

1
1 −D

(
Bi

t − Ci
t

)
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The aggregated wealth in t+1 of the households which have been inactive in t and are still inactive
in t + 1, i.e. have not died, is (1 − D)Θibi

t+1. Yet, note that Bi
t+1 ̸= (1 − D)Θibi

t+1 either, as
tomorrow’s inactive wealth needs to include the wealth of those households which were active in t
and become inactive in t + 1, as well. Let Bai

t denote the aggregated wealth of households which
were active at the beginning of t and inactive at the end of t. Then, Bi

t+1 = (1 −D)Θibi
t+1 +Bai

t+1.
Solving this equation for Θibi

t+1 and substituting it into the left hand side of the aggregated budget
constraint above, yields

1
1 −D

(Bi
t+1 −Bai

t+1) = Rt

Πt+1

1
1 −D

(
Bi

t − Ci
t

)
Bi

t+1 = Rt

Πt+1

(
Bi

t − Ci
t

)
+Bai

t+1

B̃i
t+1 = Rt

Πt+1

1
Γ

(B̃i
t − C̃i

t) + B̃ai
t+1.

A.2 Active households

The active household’s problem is

max
ca

t ,ba
t+1,nt

E0

∞∑
t=0

βt

(
(ca

t )1−ρ

1 − ρ
− Z1−ρ

t ψ
n1+η

t

1 + η

)

s.t. ba
t+1 = Rt

Πt+1
(Wtnt + dt + ba

t − ca
t − τa

t )

where nt, Wt, ut, dt, τa
t , ψ, and η denote labor supply, the real wage, the unemployment rate,

distributed profits, a non-distortionary transfer, a scaling parameter and the inverse of the Frisch
elasticity, respectively. The variable τa

t needs some clarification (cf. Carroll and Jeanne 2009): Note
that without any transfer from non-newborn to newborn active households, the latter will not have
any wealth. The older households are, the more wealth they will have accumulated. This makes
aggregation impossible. To simplify, we assume τa

t to be such that wealth is distributed equally
across active households at any point in time. Let us interpret the budget constraint as seen from a
newborn household: It receives a transfer of ba

t − τa
t . Now, as seen from a non-newborn household,

the budget constraint states that it must give away τa
t of its wealth. The crucial implication is

that both newborn and non-newborn households face the same budget constraint after the transfer.
Assuming that the transfer is financed by a tax on wealth, i.e. τa

t = τaba
t , the required tax rate

can be shown to be τa = U . This follows from the fact that the payments aggregated over all
non-newborn active households with mass 1/U − 1 must equal the receipts aggregated over all
newborn active households with mass one, i.e. (1/U − 1)τaba

t = ba
t − τaba

t .

The household faces a risk U of permanent income loss. We assume that the active household
cannot loose income and die in the same period. It is convenient to set up the household’s problem
as a dynamic program:

va
t (ba

t ) = max
ca

t ,ba
t+1,nt

[
(ca

t )1−ρ

1−ρ − Z1−ρ
t ψ

n1+η
t

1+η +
+β(1 − U)Etv

a
t+1(ba

t+1) + βUEtv
i
t+1(ba

t+1)

]

s.t. ba
t+1 = Rt

Πt+1
(Wtnt + dt + ba

t − ca
t − τa

t )
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where va
t (ba

t ) is the value function in t. vi
t+1(ba

t+1) is the value function of a newly inactive household.
Substituting out ca

t using the budget constraint and, the FOC w.r.t. to wealth, bt+1, implies after
applying the envelop condition,

va′
t = βEt

Rt

Πt+1

(
(1 − U)va′

t+1 + Uvi′
t+1

)
va′

t (ΘaΘi)−ρ = βEt
Rt

Πt+1

(
(1 − U)va′

t+1(ΘaΘi)−ρ + Uvi′
t (ΘaΘi)−ρ

)
va′

t

(
ΘaΘi

Γt

)−ρ

= βΓ−ρEt
Rt

Πt+1

(1 − U)va′
t+1

(
ΘaΘi

Γt+1

)−ρ

+ Uvi′
t

(
ΘaΘi

Γt+1

)−ρ


ṽa′
t (Θi)−ρ = βΓ−ρEt

Rt

Πt+1

(
(1 − U)ṽa′

t+1(Θi)−ρ + Uṽi′
t+1(Θa)−ρ

)
ṽa′

t = βΓ−ρEt
Rt

Πt+1

(
(1 − U)ṽa′

t+1 + U

(Θa

Θi

)−ρ

ṽi′
t+1

)

ṽa′
t = βΓ−ρEt

Rt

Πt+1

(
(1 − U)ṽa′

t+1 + U

(
D

U

)−ρ

ṽi′
t+1

)

where

va′
t = (ca

t )−ρ

va′
t =

(
Ca

t

Θa

)−ρ

va′
t (Θa)−ρ = (Ca

t )−ρ

va′
t

(Θa

Γt

)−ρ

=
(
Ca

t

Γt

)−ρ

ṽa′
t = (C̃a

t )−ρ

with ṽa′
t ≡ va′

t

(
Θa

Γt

)−ρ
, and, using the FOC of the inactive household as well as recalling that vi

t is
the value function of the newly inactive household,

vi′
t = (ci

t)−ρ

vi′
t =

(
Ci

t

Θi

)−ρ

vi′
t (Θi)−ρ =

(
Ci

t

)−ρ

vi′
t

(
Θi

Γt

)−ρ

=
(
Ci

t

Γt

)−ρ

ṽi′
t = (C̃a

t )−1

ṽi′
t = (κB̃a

t )−1

with ṽi′
t ≡ vi′

t

(
Θi

Γt

)−ρ
. To derive the active household’s aggregate budget constraint note that we

have assumed a transfer which ensures that every active household has the same stock wealth.
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Aggregation of wealth over newborn and non-newborn households allows us to define Ba
t ≡ ba

t −
τaba

t + (1/U − 1)(ba
t − τaba

t ) = (1/U)(ba
t − τaba

t ) = Θa(ba
t − τaba

t ). Summing over all inactive
households, the budget constraint reads

Θaba
t+1 = Rt

Πt+1
(WtNt +Dt +Ba

t − Ca
t )

where we define Nt ≡ Θant, Dt ≡ Θadt and Ca
t ≡ Θaca

t . Again, Ba
t+1 ̸= Θaba

t+1 as a share U
of the active household will become inactive carrying over wealth Bai

t+1 in the aggregate. Hence,
Ba

t+1 = Θaba
t+1 −Bai

t+1. Solving this equation for Θaba
t+1 and substituting it into the left hand side

of the aggregated budget constraint above, yields

Ba
t+1 = Rt

Πt+1
(WtNt +Dt +Ba

t − Ca
t ) −Bai

t+1

B̃a
t+1 = Rt

Πt+1

1
Γ

(W̃tNt + D̃t + B̃a
t − C̃a

t ) − B̃ai
t+1.

What is B̃ai
t+1? It is the aggregate wealth of those active households which become inactive at the

beginning of t+ 1. Hence,

B̃ai
t+1 = U

Rt

Πt+1

(
W̃tNt + D̃t + B̃a

t − C̃a
t

)
The FOC of the active household w.r.t. labor supply implies

Z1−ρ
t ψnη

t = λtEt
Rt

Πt+1
Wt

Γt(1−ρ)ψnη
t = (ca

t )−ρWt

Γt(1−ρ)ψ

(
Nt

Θa

)η

=
(
Ca

t

Θa

)−ρ

Wt

ψ(Θa)−(ρ+η)Nη
t = (C̃a

t )−ρW̃t

ψUρ+ηNη
t = (C̃a

t )−ρW̃t.
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