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Abstract

When considering long-haul transport requests, the durations of rest periods and
breaks highly influence the overall time needed for fulfillment. In the European Union,
Regulation (EC) No 561/2006 defines the rules for the number, duration and time in-
tervals when rest periods and breaks have to be taken. The present study proposes
two mixed integer linear programming models and optimization strategies that, to-
gether with a transformation algorithm, allow to plan driver activities in compliance
with this regulation for a given sequence of customer locations and other stops to be
visited. One of the models considers all rules, including extended rules, while the
other takes into account the regular requirements. Each customer location has one or
multiple time windows among which a choice has to be made. A special feature is the
consideration of "soft" time windows which has not been studied in this context so far.
If time windows cannot be met, the resulting schedule gives important information to
the dispatcher that is necessary to set up a better schedule. In online re-planning,
lateness can be revealed at an early stage such that it is possible to reorganize the
schedule or to negotiate arrival times with customers before communication effort
and costs increase and further delays or cancellations are unavoidable. In addition to
the mathematical models, a myopic algorithm was developed that can only "see" the
route until the next customer stop and the corresponding customer time window in
advance and plans driver activities accordingly. Simple strategies were chosen to also
integrate the optional rules. Test instances were derived from real data and include
vehicle routes for one week. The numerical results obtained with the mathematical
models and the myopic algorithm are analyzed and compared in terms of the run time,
lateness and overall travel time.

Keywords: road transportation, driver scheduling, rest periods, breaks, driving
hours, Regulation (EC) No 561/2006, mixed integer linear programming models
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1 Introduction 1

1 Introduction

EU legislation aims at ensuring road safety, adequate working conditions and undistorted
competition in the road haulage sector (European Commission (2014)). Regulation (EC)
No 561/20061 regulates driving time and rest periods and Directive 2002/15/EC2 the work-
ing time of drivers in road transport. While Regulation (EC) No 561/2006 on driving time
and rest periods of drivers in road transport is itself obligatory in all member countries, for
Directive 2002/15/EC additional national regulations also have to be taken into account.

To control the compliance with the above regulations also referred to as European social
legislation, the European Parliament and Council of the European Union (2006a) deter-
mines the minimum level of enforcement. The rules provide for checks by authorized
inspection officers in the range of 3 to 4% of days worked by drivers. They determine the
minimum proportion of checks on the roadside (30%) and at the premises of undertakings
(50%). Road side checks shall be performed at any time and for example take place at
service stations or at any other safe locations along motorways with the goal to cover the
road network sufficiently. In addition to planned checks at premises in accordance with
experience of the past, serious infringements detected are a reason for checks at premises
of the corresponding undertakings. To expand and simplify checks, the introduction of the
digital tachograph as recording equipment for driver activities was an important step. Its
installation is obligatory in all new vehicles that have a mass of more than 3.5 tonnes since
2006. Its application is regulated by Regulation (EU) No 165/2014 (European Parliament
and Council of the European Union (2014))3.

Transport companies have to organize the work of drivers and instruct them such that they
can comply with the social legislation. In particular, Regulation (EC) No 561/2006 stresses
the responsibility of all members involved in the transportation process: "Undertakings,
consignors, freight forwarders, tour operators, principal contractors, subcontractors and
driver employment agencies shall ensure that contractually agreed transport time sched-
ules respect this Regulation" (European Parliament and Council of the European Union
(2006b)). For infringements, drivers as well as transport companies may be held responsible
and fined severely - and not without reason.

According to the European Road Safety Observatory, in 2013, more than 26,000 people
died on the roads of the European Union and more than 1.4 million people were injured.
More than 15% of people who died in road accidents in 2013 died in accidents that involved
heavy goods vehicles with more than 3.5 tons maximum permissible gross weight (European
Road Safety Observatory (2015)). Driver fatigue is involved in 10% to 20% of all road
accidents and several studies suggest that it leads to an increased crash risk. Tired drivers
tend to be unfocused, reaction times are increased and keeping distance to the vehicle in
front can be difficult (SafetyNet (2009)). Sufficient rest periods and breaks help to keep
the number of accidents as a consequence of driver fatigue low.

1 amended by European Parliament, Council of the European Union (2009) and European Parliament and Council
of the European Union (2014)

2 European Parliament and Council of the European Union (2002) amended by European Commission (2009) and
European Commission (2009)

3 repealing Council Regulation (EEC) No 3821/8 (Council of the European Union (1985))
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In the transport business, quality of service is an important key factor (European Com-
mission (2014)) that includes punctuality at customer locations. In the EU, converging
cost structures will more and more urge transport undertakings to "[. . . ] improve their
efficiency and quality of service" (European Commission (2014)). Lateness may be cru-
cial, as it may cause contractual penalties and may lower customer satisfaction that has
a significant impact on future requests and thus on the economic viability of a haulage
company. The increase in just-in-time management practices even raises the pressure on
truck drivers, dispatchers and their transport companies. Besides contractual penalties, a
driver that arrives too late at a customer location and thus misses the planned time win-
dow may have to wait for several hours until loading or unloading is possible. Additionally,
re-planning ties up resources at the transport company and the customer. An unnecessary
early arrival time at a customer location is undesirable as well.

Considering long-haul transport requests, the durations of rest periods and breaks highly
influence the overall time needed for fulfillment. They have to be considered when deter-
mining arrival times and planning time windows at customer locations and it is important
to not only consider their duration but also their time slot in the schedule. For example,
daily rest periods and breaks may be split in two parts, but these may not be further
divided. At least nine uninterrupted hours are necessary for a daily rest period in which
the driver is not allowed to drive or to perform other work. If the schedule only does
consider resting activities in the form of a fixed proportion of the overall traveling time,
deviations from planned arrival times will occur frequently as rest periods and breaks can
not be interrupted or split arbitrarily to serve customers and this will lead to the problems
described above, especially if narrow time windows are involved.

2 Motivation

In commercial road transport, typically dispatchers are responsible for planning vehicle
routes, instructing the drivers with respect to the sequence in which customer locations
should be visited and to plan arrival times at customer locations. To avoid lateness is
essential in this context.

When planning arrival times of long-haul trips that require several days, Regulation (EC)
No 561/2006 concerning driving and working hours of drivers in road transport is obligatory
in all member countries of the EC. The regulation aims at improving safety and working
conditions of drivers in road transport and has a high influence on the execution time of
a transport request. Disregarding corresponding rules may be fined severely. So, despite
the rules being rather complex in their application as often many different possibilities to
plan driver activities have to be evaluated, a dispatcher has to set up his plans assuring
that drivers are able to strictly comply with the regulation.

Today, vehicle telematics can be used to provide dispatchers with up-to-date information
on current vehicle positions and often give further information, for example, on the driver
status concerning driving times, rest periods and breaks, but still the problem of planning
arrival times remains non-trivial to be solved. If the consideration of rest periods and
breaks is not integrated in a direct way into the planning process, the dispatcher may
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choose to use rough time buffers when estimating possible arrival times and negotiating
time windows with customers. In many cases though it may be the case that time buffers
have been chosen too large or too short which will result in lateness and/or unnecessary
waiting times. On the one hand, repeated lateness may lead to a loss of customer requests.
On the other hand, the execution time may be prolonged artificially by unnecessary waiting
times which may result in more costs for the freight forwarding company.

Thus, it seems worthwhile to precisely schedule driver activities when planning arrival times
at customer locations. As there are plenty of information and possibilities to evaluate,
models and algorithms considering restrictions on working hours that are embedded in
decision support and planning tools can be an important value added to help dispatchers
to plan vehicle movements and to estimate arrival times at customer locations.

We study a problem motivated by the truckload shipping services offered by a medium sized
company operating in Europe. A significant part of the shipping orders of the company
result from fixed contracts, whereas several partner companies pass on requests as well.
Additionally, requests are acquired at freight exchanges to supplement partial loads and
to use the load capacity of the vehicles as efficiently as possible. Vice versa, shipping
orders may be passed on to subcontractors as well. An on-site process analysis gave
detailed insights into the planning of vehicle routes and the distribution of responsibilities
among dispatchers and drivers. Dispatchers decide about transport requests and plan
vehicle routes, arrival times at customer locations and time windows. Each request for
transportation consists of a pickup and a corresponding delivery location. These locations
are often far apart and only a few customers can be serviced during the same week. Often,
the fulfillment of a transport request extends to the following week. Then, the driver does
not return home but takes his weekly rest period somewhere near to the route. Many
drivers return home only after several weeks.

A feature observed and that is common in long-haul freight transportation is that customer
orders are placed with several alternative time windows. Hence, the construction of routes
also involves the choice of time windows.

In a manual planning phase, the dispatchers assign transportation requests to vehicles and
determine the sequence in which customer locations shall be visited. Only a part of the
transportation requests are known at the start of the week. As the time unfolds, additional
requests are accepted and assigned to vehicles. The estimated duration of travel between
locations includes a time buffer for rest periods and breaks that is proportional to the
distance traveled. Arrival times at customer locations are planned accordingly and drivers
are informed. Drivers are responsible to plan rest periods and breaks and may negotiate
arrival times with the dispatcher. Several large customers propose time windows for loading
or unloading among which dispatchers have to choose. Favorable time windows may be
occupied if not chosen early enough but a reliable estimation of arrival time is necessary.
Therefore, exact time windows are not necessarily scheduled when accepting transport
requests, they are chosen when the arrival time at the customer location is predictable, i.e.
one or two days in advance depending on the demand.
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3 Objective

The initial situation is described by a sequence of stops that are planned to be visited during
the current week by a vehicle, each having one or multiple alternative time windows.1

Distances between consecutive stops and estimated durations for loading, unloading and
handling activities are given. Planning may start at the beginning of the week but is also
possible during the week. The time management of a driver since the end of the last weekly
rest period influences his future activities and is therefore accumulated to the driver status
and serves as input for the current (re-)planning phase. This also allows the consideration
of online re-planning, i.e adjustments of the original schedule to dynamically respond to
unforeseen events.

The goal is to construct a driver schedule that simultaneously considers the choice among
possible customer time windows and plans necessary rest periods and breaks to minimize
inefficiencies that arise from the distributed decision making of drivers and dispatchers to
increase punctuality and to avoid unnecessary time buffers. In some particular cases, it
may not be possible to meet any of the available time windows at a given location. As
the dispatcher often has the possibility to negotiate the arrival time of the vehicle with the
customer at an early stage, we consider soft time windows that can be violated at a penalty.
Another reason for taking soft time windows is that we want to give detailed information
even if time windows cannot be met to help dispatchers in the re-planning phase.

For this task, we developed two mixed integer linear programming (MILP) models consid-
ering a maximum planning horizon of one week. In one of the MILP models, the optional
rules of Regulation (EC) No 561/2006 are taken into account, in the other one, the optional
rules are disabled. The main objective of the two multiciteria optimization problems con-
sidered is to minimize the sum of the overall lateness. With less emphasis the completion
time, i.e. the overall schedule duration until the last customer is serviced and the last stop
is reached2 is the second optimization criterion. These two criteria form the first set of opti-
mization criteria. Other criteria that are important for the quality of a solution in practice
are taken into account in a second set. As the first set (i.e. lateness and completion time)
is considered to be more important than the second one, a lexicographic solution strategy
was chosen by creating two objective functions, the first one for the first set, the second
one for the second set. Using a trade-off strategy within each of the two sets, in each of
the objective functions the criteria were provided with different weights. Test instances
were derived from real life data. The two MILP models were solved to optimality using a
state-of-the-art commercial solver and driver schedules were created from optimal model
solutions with the help of a transformation algorithm. Test results were analyzed.

The effort to integrate an optimization solver must be worthwhile. A myopic algorithm
was also implemented that runs without such software as an alternative in order to identify
advantages and disadvantages of the MILP models and a solver.

1 If a stop corresponds to a customer location with given opening hours, then time windows covering the opening
hours reflect this situation.

2 Stops that do not correspond to a customer location are possible. For example, the last stop may be a depot or
a rest area that is chosen for the weekly rest period.
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The following sections are structured as follows. In Section 4 the rules implied by regulation
Regulation (EC) No 561/2006 are described. Section 5 gives a short review of literature that
deals with scheduling driver activities in compliance with Regulation (EC) No 561/2006.
In Section 6 the MILP models with and without consideration of the optional rules are
introduced, thereby a short digression on modeling techniques used is presented. After-
wards, in Section 7 the derivation of test instances is described and different approaches
for solving the MILP model with consideration of the optional rules are discussed. Run
times for a set of instances based on real-life data are analyzed depending on the number
of stops and the number and length of time windows. To examine the influence of the
optional rules, the two MILP models are compared with each other considering run times,
lateness and completion time. Then, the myopic algorithm is presented in Section 8. With
the test instances presented before, tests are repeated with the short-sighted algorithm
and a comparison to the former test results is made in Section 9. Section 10 gives a short
summary and suggestions for future research.

4 Rules

Regulation (EC) No 561/2006 aims at improving working conditions and safety of drivers in
road transport laying down provisions concerning maximum driving periods and necessary
breaks and rest periods. It applies to the carriage of goods where the maximum permissible
mass of the vehicle exceeds 3.5 tonnes or of passengers by vehicles that may carry more
than nine persons. It affects all transports exclusively within the European Community
or between the European Community, Switzerland and the countries that are part of the
Agreement on the European Economic Area. The regulation comprises rules for single
drivers and multi-manning.

For all possible driver activities, Regulation (EC) No 561/2006 defines several time periods
with specific rules (see Meyer and Kopfer (2008) and Figure 1). The rules can be divided in
standard rules and optional rules, where adhering to the standard rules suffices to observe
the law, while the optional rules allow for more freedom providing alternatives for some of
the standard rules.

Before introducing the rules, we give some basic definitions for time periods.

Definitions:

• A rest period is any uninterrupted period of time during which a driver may freely dispose
of his or her time. Daily rest periods and weekly rest periods are rest periods.

• A break is a time period exclusively designed for recuperation, during which a driver may
not carry out any driving or any other work. Other work comprises various activities
such as loading or unloading, cleaning, technical maintenance, administrative formalities,
ensuring safety of the vehicle and its load, etc. Waiting times that are not known in
advance are also considered as other work, as the driver cannot dispose freely of his time
and is required to be at his workstation. A break has a duration of at least 45 minutes.
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Figure 1: Relation of the different time horizons (Meyer and Kopfer (2008))

• Driving time is the duration of driving and includes all activities related to driving, even
when the vehicle is temporarily not in motion, for example, when waiting at traffic lights
or in a traffic jam.

• A week means the period of time between 00:00 on Monday and 24:00 on Sunday.

Standard rules:

1. A break has a duration of at least 45 minutes.

2. A daily rest period has a duration of at least 11 hours.

3. A weekly rest period has a duration of at least 45 hours.

4. The accumulated driving time between a rest period or a break and another rest
period or break is restricted to a maximum of 4.5 hours.

5. The daily driving time, i.e. the total accumulated driving time between the end of one
rest period and the beginning of the following rest period, is restricted to a maximum
of 9 hours.

6. Within each period of 24 hours after the end of the previous rest period a driver
must have taken a new daily rest period. This means that a driver must take a daily
rest period at most 13 hours after he has completed the previous daily or weekly rest
period.

7. A weekly rest period shall start no later than 144 hours (six 24-hour periods) after
the end of the previous weekly rest period.

8. The weekly driving time, i.e. the total accumulated driving time between 00:00 on
Monday and 24:00 on Sunday, is not allowed to exceed 56 hours.

9. The total accumulated driving time during any two consecutive weeks must not
exceed 90 hours.

10. In any two consecutive weeks a driver has to take at least two weekly rest periods.
Weekly rest periods that fall in two weeks may be counted in either week, but not in
both.
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11. The maximum weekly working time is not allowed to exceed 60 hours.

12. Over four months, the average weekly working time should not exceed 48 hours.

The last two regulations 11 and 12 on the weekly working time stem from Directive
2002/15/EC (European Parliament and Council of the European Union (2002)), as Reg-
ulation (EC) No 561/2006 refers to Directive 2002/15/EC for laying down the maximum
weekly working time.

Optional rules:

1. A break may be taken in two parts, the first part having a duration of at least 15
minutes followed by the second one of at least 30 minutes.

2. A regular daily rest period may also be split into two parts with the first one having
a duration of at least 3 hours and the second one having a duration of at least 9
hours.

3. The duration of a daily rest period may be reduced to at least 9 hours at most 3
times between two weekly rest periods. In the case that the next daily rest period is
planned to be a reduced one, that rest period has to start at most 15 hours after the
completion of the previous daily or weekly rest period.

4. The daily driving time may be extended to at most 10 hours not more than twice
during a week, where a week means the period of time between 00:00 on Monday
and 24:00 on Sunday.

5. In two consecutive weeks, the duration of one of the two weekly rest periods may be
reduced to 24 hours. However, the reduction has to be compensated by an equivalent
period of rest taken at a time before the end of the third week following the week
containing the reduced weekly rest period. Any rest taken as compensation for a
reduced weekly rest period should be attached to another rest period of at least 9
hours.

Deviating from the standard rules 2 and 6 and making the optional rules 2 and 3 needless, a
driver engaged in multi-manning must have taken a new daily rest period with a duration
of at least 9 hours within 30 hours of the end of a daily or weekly rest period. In the
following, we will focus on the single truck driver case.

Furthermore, additional rules apply for special cases as for example for accompanying
vehicles transported by ferry or train, the traveling to a location to take charge of a
vehicle, for driving times not falling in the scope of Regulation (EC) No 561/2006 or
special vehicles.

For transport between EU and non-EU countries (third countries) the AETR agreement
(see United Nations Economic Commission for Europe (2006)) regulates the work of drivers
engaged in international transport and covers 49 contracting parties including all EU
Member States (European Commission (2016)). The implementation into national law
is mandatory. Its provisions concerning rest periods and breaks are similar to Regulation
(EC) No 561/2006, with the difference that drivers engaged in multi-manning are exempted
from standard rule 10 and optional rule 5.
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5 Literature review

In the past few years, research on including regulations concerning rest periods and breaks
in operational transportation planning has attracted increasing attention especially in com-
bination with vehicle routing. The following review concentrates on literature that deals
with Regulation (EC) No 561/2006 and the single truck driver case.

Zäpfel and Bögl (2008) and Bartodziej et al. (2009) consider some of the rules implied by
Regulation (EC) No 561/2006 in their rich vehicle routing problems set up in real case
studies.

Goel and Gruhn (2006) and Goel (2009) present a large neighborhood search algorithm to
solve the combined problem of vehicle routing with time windows and scheduling driver
activities in consideration of Regulation (EC) No 561/2006 for single manned vehicles and
for a planning horizon of one week. For the scheduling sub-problem Goel (2009) introduces
a naive labeling algorithm and a multilabeling algorithm to plan driver activities according
to a subset of the regulations. The naive method only schedules breaks and rest periods if
the accumulated driving time is exhausted or enough idle time before the lower boundary
of the time window at a customer is available, whereas the multilabeling method allows
for earlier breaks and rest periods. It is shown that in some cases it may be beneficial to
schedule breaks or rest periods before the corresponding accumulated driving time reaches
its maximum to be able to reach narrow time windows. Optional regulations are excluded
and the regulation that there has to be a daily rest period within 24 hours after the end
of the previous daily rest period (standard rule 6) is only considered in a post processing
step by Goel (2009), who presents a repair method. New benchmark instances based on
the well-known instances by Solomon (1987) for the vehicle routing problem with time
windows (VRPTW) are set up.

Derigs et al. (2011) extend the work of Bartodziej et al. (2009) and present a checking
procedure for route feasibility that is motivated by Goel (2009). Splitting of daily rest
periods and breaks, reduced daily rest periods and the possibility to extend the daily
driving time are considered in the procedure.

In addition to Goel (2009), Kok et al. (2010) consider all optional rules and also Directive
2002/15/EC that supplements the rules laid down in Regulation (EC) No 561/2006 with
additional restrictions for the working time of persons engaged in road transportation, ex-
tending the naive labeling method presented by Goel (2009). They incorporate the EC
social legislation in a restricted dynamic programming algorithm by adding state dimen-
sions. Breaks are scheduled in constant time by using a constructive solution method with
a break scheduling algorithm that decides locally when breaks have to be scheduled. Their
test results show significant improvements concerning the number of vehicles needed and
the distance traveled even though they allow less computation time than Goel (2009). In
particular, Kok et al. (2010) show that including the optional rules of Regulation (EC)
No 561/2006 allows for additional flexibility and can reduce costs significantly. However,
similar to Goel (2009), they cannot guarantee to find a feasible driver schedule for a route,
even when one exists.
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Given a sequence of locations to be visited within specified time windows, Goel (2010)
presents a method for scheduling driving and working hours of truck drivers with respect
to Regulation (EC) No 561/2006. The feature of this approach is the guarantee to find a
schedule complying with the regulation if such a schedule exists. Goel (2010) introduces
conditions for pseudo-feasibility which relax the conditions for feasibility and gives dom-
inance criteria, thus reducing the number of partial schedules that have to be explored.
However, he neglects the possibility of extending daily driving times and of reducing the
duration of daily rest periods.

Drexl and Prescott-Gagnon (2010) describe an exact and two heuristic approaches for
considering European rules for rest periods and breaks in shortest path problems with
resource constraints. The labeling algorithms are based on the idea of so-called resource
extension functions to expand labels to plan rest periods and breaks.

Prescott-Gagnon et al. (2010) present a large neighborhood search method for the vehicle
routing problem with time windows and driver regulations. In this method, the neighbor-
hoods are explored using a column generation heuristic that relies on a tabu search algo-
rithm. This tabu search algorithm allows two possible route modifications, the deletion or
the insertion of a customer. While route feasibility is maintained if a customer is removed,
the insertion of a new customer requires a feasibility check. Therefore, Prescott-Gagnon
et al. (2010) develop a heuristic procedure that uses labels with resource components and
resource extension functions. Numerical results show that significant improvements can be
achieved compared to the procedures proposed by Kok et al. (2010) and Goel (2009).

Kopfer et al. (2007) analyze the influence of the European social legislation on vehicle rout-
ing and scheduling and are the first ones to consider a modeling approach. Later, Kopfer
and Meyer (2009), Kopfer and Meyer (2010), and Meyer (2011) develop a MILP formula-
tion to map Regulation (EC) No 561/2006. Kopfer and Meyer (2009) use a position-based
formulation of the traveling salesman problem with time windows (TSPTW) to integrate
the rules of the regulation. Kopfer and Meyer (2010) and Meyer (2011) continue with
an extension for the VRPTW, also including Directive 2002/15/EC. They solve randomly
generated test instances with CPLEX. Unfortunately, if long distances have to be traveled
between two consecutive customers, the model is not applicable, as it is presumed that
driving between two customer locations will not require more than one daily rest period.
The constraints that are used to model the restriction that there has to be a daily rest pe-
riod in each 24 hours time interval only demand a number of daily rest periods proportional
to the overall travel duration and thus are problematic if daily rest periods are scheduled
earlier than required. The solution specifies the number of breaks and rest periods between
two consecutive customers. The transformation algorithm that is necessary to determine
a driver schedule that includes the timing and the sequencing of rest periods and breaks
is not described in detail.

Kok et al. (2011b) present a model for departure time optimization as a post-processing
step of the VRPTW that incorporates the European driving hours regulations and time-
dependent travel times. They assume that breaks have to be taken at customer locations.
Here, a planning horizon of a working day is considered and computational results are
discussed. Additional constraints to model a planning horizon of multiple days and the
possibility to take breaks at parking lots are proposed, but the option of splitting daily rest
periods into two parts is neglected. No test results for the extended model are presented.



6 Mathematical formulation 10

Kok et al. (2011a) propose a restricted dynamic programming heuristic for the VRPTW
with time-dependent travel times and EC social legislation that is restricted to a planning
horizon of one day.

Goel (2012) presents a mixed integer programming formulation for a variant of the truck
driver scheduling problem in which drivers only may rest at customer locations and rest
areas and shows how to model rules commonly found in different hours of service regu-
lations. Rest areas are modeled as dummy locations with zero duration for loading and
unloading and unbounded time windows. A dynamic programming approach is proposed
that is able to solve the problem efficiently and it is shown how additional rules like the
optional rules of Regulation (EC) No 561/2006 for splitting breaks and daily rest periods
can be incorporated. However, it is assumed that rest areas are roadside, as no detours are
considered. Test instances are randomly generated for a planning horizon of one work week
that ends on Friday, rest areas are randomly distributed, and up to 4 time windows per
customer location with time windows from 6:00 to 20:00 or from 6:00 to 12:00 and 14:00
to 20:00 on one or two days are considered. It is shown that the availability of suitable
rest areas has a significant impact on the number of instances for which feasible schedules
could be found.

Goel and Vidal (2014) use a hybrid genetic search with advanced diversity control for
solving the combined vehicle routing and truck driver scheduling problem. Truck driver
scheduling is done for route evaluations with adjustments of the forward labeling algorithms
developed for the rules applied in different countries and areas, among these the rules of
the European Union. Considering Directive 2002/15/EC, the authors include the same
set of rules as Prescott-Gagnon et al. (2010). They consider multiple time windows and
allow penalized lateness with respect to the time window constraints. However, lateness
is only allowed to facilitate transition between structurally different solutions during the
search and there, any voluntary increase in lateness at a customer location for the purpose
of reducing lateness at subsequent customers is forbidden. Furthermore, Goel and Vidal
(2014) give an international comparison of the economic impact of different hours of service
regulations.

6 Mathematical formulation

We start by describing the initial situation. A dispatcher has assigned transportation
requests to a vehicle. Each request consists of a pickup and a corresponding delivery
location (customer locations). The dispatcher has determined a sequence in which the
customer locations have to be visited (see for example Figure 2).

Each customer location has at least one time window, i.e. a time interval in which the
loading and/or unloading of goods should start. In contrast to Kopfer and Meyer (2010),
we consider multiple customer time windows, as in reality, a dispatcher often has the
possibility to choose among a set of time windows proposed by a customer. Loading or
unloading does not have to be finished before the end of the chosen time window. This
is just a modeling decision. If in practice the loading and unloading should take place
within the time window, the estimated duration is subtracted from the end of the interval
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Figure 2: Example of a sequence of vehicle stops over a time horizon of one week
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to narrow the time window accordingly. Note that a time window that lies beyond the
maximum time interval of 6 · 24 h = 144 h, that starts with the end of the last weekly rest
period, will avoid finding a feasible schedule, as standard rule 7 cannot be met. This can
be checked in advance.

Modeling time windows as hard constraints like it is done in the literature (recall Section
5) has one major drawback. If no schedule can be found because time windows cannot
be met, the dispatcher only gets the information that there is "no solution". We use soft
time windows, that means that we penalize lateness but do not prohibit it (see objective
function 6.184 and constraints 6.77) which has the advantage that still a schedule may be
returned even if time windows cannot be met. Unavoidable lateness is revealed and the
dispatcher is given a schedule that may help him to re-plan or re-negotiate time windows
with the customers.

Only the constraints that take care of the maximum time interval between two consecutive
weekly rest periods may avoid that a schedule can be found (see constraints 6.78 on page
43). In such a case, constraints 6.78 can be removed and the MILP model can be re-solved
to obtain a solution that is not feasible in practice, but may be an important information
for the dispatcher.

The current vehicle position or starting point of the tour and all customer locations are
represented by vertices, where vertex 0 denotes the vehicle position at the start of the
planning horizon (depicted as a green point in Figure 2) and vertices 1, . . . , r − 2 denote
the customer locations (customer vertices) that are numbered in the order they have to
be visited (see Figure 3). As drivers do not necessarily return to a specific location like a
central depot when doing long-haul trips, the last vertex represents the last known customer
location to be visited or, if known in advance, the location where the driver will take the
weekly rest period (red point in Figure 2). That may be a rest area near to the route to
the subsequent customer location or near to a customer location, if loading or unloading
should start after the weekly rest period.

Figure 3: Vertices

In each customer vertex1, the driver may wait, take a break or a daily rest period before
loading or unloading. If the daily working time still left when entering a vertex does not
suffice to also carry out the loading/unloading, a daily rest is scheduled. An interruption
by daily rests is thus avoided. Generally, rest periods and breaks may be taken to reduce or

1 For ease of reference, and to connect modeling aspects to the real life application, the term "vertex" is used in
association with customer locations. Analogously, the term "arc" is used, when talking about the route between
customer locations and activities on this route.
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eliminate the waiting time. This also includes a first part of a splitted break or rest if this
helps to reduce the time needed for resting activities on subsequent arcs and in vertices.
Figure 4 summarizes the activities that can be performed at a vertex.

Figure 4: Driver time management activities in a vertex

Possible activities on an arc comprise driving, taking breaks and daily rest periods (see
Figure 5). Note that the first part of a split break may only be scheduled in vertices
to compensate waiting time, whereas the first part of a daily rest period may also be
scheduled as last resting activity on an arc instead of a break. The first part of a daily rest
period similar to a break resets the 4.5 hours driving contingent. If a first part of a daily
rest period is taken, an additional break is only necessary if a driving time extension is
considered. In some cases, it may be advantageous to take a first partial daily rest period
instead of a break as last resting activity on an arc (for more details see Section 6.4.2 et
seq.). Reduced daily rest periods and breaks needed for a driving time extension may be
scheduled on arcs and vertices as well.

Figure 5: Driver time management activities on an arc

Similar to the literature presented in Section 5, we consider a planning horizon of at most
one week that ends with the start of the next weekly rest period and concentrate on single
manned vehicles. As the overall driving and working time needed is already given with the
input data, a check can be made if the weekly driving (see standard rule 8) and working
time (see standard rule 11) allowed suffice to fulfill all scheduled customer requests.1 The

1 Note that waiting time known in advance is not considered as working time.
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biweekly working time (standard rule 9) can be considered by adding the working time of
the last week to the planned working time for the current week and testing whether the
result is less than 90 hours. Similarly, compliance with the average weekly working time
over four months (standard rule 12) can be checked. Standard rule 10 and optional rule
5 are not considered by the MILP models and compliance with them has to be ensured
externally when concatenating two planning horizons with the first one ending before the
start of a weekly rest period and the other one starting after the end of the weekly rest
period.

Usually, depending on the countries visited, it is advantageous to include Sundays in weekly
rest periods because of the ban on movement of goods vehicles on Sundays in many coun-
tries of the European Union. Therefore, we assume that the time between two weekly rest
periods does not range across more than one week, i.e. the time between 00:00 on Monday
and 24:00 on Saturday.

Drivers may help when loading and unloading the vehicle but this does not have to be the
case. At least, they have to perform handling activities. We assume that the drivers have
to be present when loading or unloading takes place and consequently do not interpret this
time as a break and do not allow it to be used as a part of a daily rest period.

In our models, no use is made of constraints which give a lower bound on the number
of rest periods and breaks needed for every number of consecutive arcs as it is done in
Kopfer et al. (2007). Instead, status variables are introduced which map the driver status
when entering and leaving a vertex and thus link activities on different arcs and in different
vertices. These status variables reflect, for example, the amount of time left for different
activities without taking a break or daily rest when entering or leaving a vertex:

• Edt
i , Ldt

i : driving time left until the next break or daily rest when entering vertex i or
leaving, respectively.

• Eddt
i , Lddt

i : daily driving time left until the next daily rest when entering vertex i or
leaving, respectively.

• Et
i , Lt

i: overall time left until the next daily rest when entering vertex i or leaving,
respectively.

Other status variables keep track of driving time extensions and reduced daily rest periods
that were previously scheduled. Moreover, if a break or a daily rest period is split into two
parts, status variables keep track if a first part has already been taken.

Dependencies between activities on arcs and the status variables are shown in Figure 5.
Figure 4 depicts the dependencies when entering and leaving a vertex.

The models allow setting start values for the status variables. Thus, online re-planning
during the week with updated tour information including remaining stops of the original
schedule and new ones can take place. If there are deviations from the original plan, e.g.
an increased travel time due to traffic congestion, and time windows cannot be met or the
time left does not suffice to visit all locations planned, with online re-planning dispatchers
get the possibility to recognize such deviations early and to re-negotiate time windows or
remove stops from the vehicle schedule.
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The models explore the possibility of taking a break or a daily rest period earlier than
after 4.5 h of driving. This is advantageous if the time for a break or a rest period in a
subsequent node or arc can be saved thus preventing a time window from being violated.
This is illustrated in Figure 7. For an explanation of the symbols used, see Figure 6. The
first schedule leads to a lateness of 15 minutes, whereas in the second schedule with an
early daily rest the time window at customer i+ 1 is met.

Figure 6: Symbols

Figure 7: With vs. without early daily rest

Figure 8 shows an example, where taking a break in a vertex is necessary to be on time at
the subsequent customer location.

With regard to an application in international freight transportation, where often long
distances have to be traveled, we wish to exactly determine the time intervals for each
planned driver activity. Therefore, an algorithm was developed to transform the model
solution into a detailed driver schedule that gives information to both, the driver and the
dispatcher. This algorithm can be found in the appendices (see appendix A).

The remainder of this section is structured as follows. After a short digression on modeling
techniques, model parameters and variables will be introduced. Then, the MILP model
with consideration of the optional rules is presented, whereby the description of the objec-
tive functions and the constraints is split into several subsections. How to switch off the
optional rules is described at the end of this section. Note that all durations and lengths
of time intervals are expressed in minutes.
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Figure 8: With vs. without a break in vertex i

6.1 Modeling techniques - A digression on modeling logical

conditions with binary variables

For modeling different kinds of decisions such as taking a daily rest period or making
use of one of the optional rules, and modeling different kinds of driver states that will be
introduced later, binary (zero-one) decision variables will be used. For example, αrest

i is a
binary variable that takes the value 1 if a daily rest period should be taken at customer
location i, and 0 otherwise.

As described in the previous section, allowed driver activities in a vertex depend on former
decisions about activities on the previous arc. The latter in turn depend on activities
scheduled for the previous vertex, and so on. To express these dependencies in the model,
status variables link the activities in successive arcs and vertices. Activities are modeled
by indicator and integer variables, whereas continuous variables reflect their duration. The
goal here is to link the continuous status variables to indicator variables for activities.

Depending on the relation of several driver status variables to other driver status variables
for entering or leaving a vertex i, the values of driver status variables for leaving vertex i
or entering vertex i+ 1, respectively are determined. A good example is the daily driving
time left Lddt

i when leaving vertex i (see pages 61 et seq.). Here, indicator variables are
used to determine if other status variables set up lower and upper bounds on Lddt

i .

Generally, when formulating conditions, we can differentiate between the following two
possibilities that reflect the direction of dependency:
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• the value of a variable (continuous or integer) is derived from the value of one or several
binary variables.

• the value of a binary variable is derived from other variables (binary, integer or continuous
variables) and their relation to each other.

We will now go into further detail for the possibilities mentioned above. A more general
description of transforming logical conditions into linear constraints by the usage of binary
variables can be found in Williams (2013).

6.1.1 Binary variables inducing the value of other variables

We start by addressing the simple case that from the binary variable δ being equal to 1 it
follows that the variable x is equal to y. y itself may be a linear expression. That means,
we wish to state that

δ = 1⇒ x = y (a)

Therefore, we first reformulate (a) by (b):

δ = 1⇒ x ≤ y and
δ = 1⇒ x ≥ y (b)

Now, the condition can be induced by two linear constraints:

x ≤ y + M1 (1− δ) (c)
x ≥ y −M2 (1− δ) (d)

M1 has to be chosen as an upper bound on x−y such that constraint (c) becomes redundant
in case that δ = 0. Similarly, M2 has to be chosen as a lower bound on x − y. It is
important not to choose M1 and M2 too small as this will introduce constraints on the
difference between x and y that we do not want to model. In turn, taking very large values
for M1 and M2 may result in numerical problems. Therefore, Williams (2013) recommends
to choose upper bounds as small as possible and lower bounds as large as possible.

If more than one binary variable needs to take on 0 or 1 in order that x equals y, several
"big-M terms" have to be added. As an example, we address the combination of two binary
decision variables.

First of all, let us consider the case that the given values of two variables (example: δ1 = 1
and δ2 = 0) induce that x = y. The logical conditions

(δ1 = 1 ∧ δ2 = 0)⇒ x = y (e)

can be split into

(δ1 = 1 ∧ δ2 = 0)⇒ x ≤ y (e1)
(δ1 = 1 ∧ δ2 = 0)⇒ x ≥ y (e2)
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This now can be modeled by the following linear constraints

x ≤ y + M1 (1− δ1) + M1 δ2 (e3)
x ≥ y −M2 (1− δ1)−M2 δ2 (e4)

with M1 and M2 being appropriate upper and lower bounds, respectively.

If y itself is already an upper bound or lower bound on x, no additional constraint with a
big-M term needs to be added to the model. If additionally to (e), it is known that already
δ1 = 1 induces x ≤ y, condition (e3) is substituted by

x ≤ y + M1 (1− δ1) (e3’)

Analogously, this can be done if δ1 = 1 induces x ≥ y or if δ2 = 0 induces x ≤ y or x ≥ y.

The "exclusive or" in (δ1 = 1 ∨̇ δ2 = 1)⇒ x = y is equal to the combination of

(δ1 = 1 ∧ δ2 = 0)⇒ x = y and
(δ1 = 0 ∧ δ2 = 1)⇒ x = y

and can therefore be expressed by using the scheme described above. In case that

δ1 + δ2 ≤ 1

the following two additional inequalities suffice.

x ≤ y + M1 (1− δ1 − δ2)
x ≥ y −M2 (1− δ1 − δ2)

This will be used when deriving the daily driving time left Lddt
i when leaving vertex i on

pages 61 et seq.

6.1.2 Binary variables derived from other variables

Now, the opposite direction is considered. The value of binary variables is determined
depending on the value of other variables being either integer or continuous. A dependency
we will often need later (see for example pages 61 for λ1i to λ3i ) is the following one: in case
x is greater than y, the binary variable δ should be equal to 1 if x is less than y, δ is set
to be equal to 0. If x = y, we do not care about the value of δ.1

1 In principle, in the cases we have to consider, we have to model a piecewise linear continuous function depending
on x. In the simplest case, this function f is composed of two parts with

f(x) =

{
g(x) if x ≤ y

h(x) if x > y

For x = y it does not matter which function is evaluated (g or h) to determine f(x), as g(y) = h(y), because f is
continuous.
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This means that we wish to state that

x > y ⇒ δ = 1

x < y ⇒ δ = 0

This can be done by using the following constraints:

M1 δ ≥ x− y (f1)
M2 (δ − 1) ≤ x− y (f2)

where (f1) induces x > y ⇒ δ = 1 and (f2) induces x < y ⇒ δ = 0. M1 has to be an
upper bound on x − y whereas −M2 has to be a lower bound on x − y. This procedure
is used for determining the value of the binary variables λki , k = 1, . . . , 6 which depend
on several continuous status variables and activities in vertex i and arc (i, i + 1) (see for
example pages 61 et seq. for λ1i , λ2i and λ3i ).

Sometimes, we need to express that a binary variable δ is equal to one if and only if the
integer variable x ∈ N0 is greater than zero and δ is equal to zero, else.

x > 0⇔ δ = 1

This is ensured by

M δ ≥ x (f1’)
δ ≤ x (f2’)

whereM is an upper bound on x. This is required, for example, for determining the binary
decision variable αrest

(i,i+1) which depends on the integer variable ∆rest
(i,i+1) and vice versa on

page 44.

The modeling techniques introduced will be used to develop the MILP models.

6.2 Parameters of the model

r ∈ N Total number of vertices. The vertices are numbered from 0 to
r − 1 according to the sequence of customer locations to be
visited. The first vertex (0) represents the start position, the
last vertex (r − 1) represents the last location (see Figure 3)

∆̄drive
(i,i+1) ∈ N0 Driving time in minutes needed to travel from i to i+ 1,

i = 0, . . . , r − 2

∆̄service
i ∈ N0 Time needed for loading and/or unloading at vertex i,

i = 0, . . . , r − 1, in minutes, ∆̄service
0 = 0

nTWi ∈ N Number of time windows at customer location i,
i = 1, . . . , r − 1

TW
begin

iz ∈ N0 Lower limit of the time window z at vertex i, i = 1, . . . , r − 1,



6 Mathematical formulation 20

z = 1, . . . , nTW in minutes counted from start time 0

TW
end

iz ∈ N0 Upper limit of the time window z at vertex i, i = 1, . . . , r − 1,
z = 1, . . . , nTWi in minutes counted from start time 0

udt ∈ N0 Driving time since the last daily rest period or break at the
beginning of the planning horizon in minutes

ddt ∈ N0 Cumulated daily driving time since the end of the last daily rest
period at the beginning of the planning horizon in minutes

ptr ∈ N0 Passed time since the end of the last daily rest period at the
beginning of the planning horizon in minutes

ptwr ∈ N0 Passed time since the end of the last weekly rest period at the
beginning of the planning horizon in minutes

urt ∈ N0 If a daily rest period takes place at start time, this parameter
expresses its duration since the start of the rest period
in minutes

ubt ∈ N0 If a break takes place at start time, this parameter expresses
its duration since the start of the break in minutes

dte ∈ {0, 1} Is equal to 1 if a driving time extension is currently used
when the planning horizon begins, 0 otherwise

hpb ∈ {0, 1} Is equal to 1 if the first part of a break with a duration of
at least 15 minutes has already been taken before the
beginning of the planning horizon, 0 otherwise

hpr ∈ {0, 1} Is equal to 1 if the first part of a daily rest period with a
duration of at least 3 hours has already been taken before the
beginning of the planning horizon, 0 otherwise

noRed ∈ {0, 1, 2, 3} The number of reduced daily rest periods that have already
been taken in the current week

noExt ∈ {0, 1, 2} The number of extended daily driving times that have already
been taken in the current week
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6.3 Variables

Variables needed to define the objective function

starti ∈ R+
0 Start of service time in vertex i, i = 1, ..., r − 1,

Start of driving (after potential break or rest) for i = 0

∆late
i ∈ R+

0 Lateness in vertex i, i = 1, . . . , r − 1

Variables that indicate which time window is chosen at customer location i

twiz =

{
1 if time window z is chosen at destination i
0 otherwise

i = 1, . . . , r − 1, z = 1, . . . , nbTWi

The following set comprises the continuous status variables for each vertex i.

Edt
i Driving time left until the next break or daily rest period when entering

vertex i, i = 0, . . . , r − 1 in minutes
0 ≤ Edt

i ≤ 270

Eddt
i Driving time left until the next daily rest period when entering vertex i

i = 0, . . . , r − 1 in minutes
0 ≤ Eddt

i ≤ 540

Et
i Time left until the next daily rest period when entering vertex i

i = 0, . . . , r − 1 in minutes
0 ≤ Et

i ≤ 900

Ldt
i Driving time left until the next break or daily rest period when leaving

vertex i, i = 0, . . . , r − 1 in minutes
0 ≤ Ldt

i ≤ 270

Lddt
i Driving time left until next daily rest when leaving vertex i

i = 0, . . . , r − 1 in minutes
0 ≤ Lddt

i ≤ 540

Lt
i Time left until the next daily rest period when leaving vertex i

i = 0, . . . , r − 1 in minutes
0 ≤ Lt

i ≤ 900

The following variables indicate for each arc (i, i + 1) if a daily rest is made, the number
of daily rests and their cumulated duration.

αrest
(i,i+1) =

{
1 if at least one daily rest is taken on arc (i, i+ 1)

0 otherwise

i = 0, . . . , r − 2
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Arest
(i,i+1) ∈ N0 The number of daily rest periods taken on arc (i, i+ 1),

i = 0, . . . , r − 2

∆rest
(i,i+1) ∈ R+

0 The cumulated duration of all daily rest periods on arc (i, i+ 1),

i = 0, . . . , r − 2

Regarding daily rests at vertices, the following variables indicate if a daily rest is made
and its duration.

αrest
i =

{
1 if a daily rest is made in vertex i
0 otherwise

i = 0, . . . , r − 1

∆rest
i ∈ R+

0 The duration of a daily rest in vertex i,

i = 0, . . . , r − 1

The next set of variables are needed to determine if breaks are taken on arc (i, i+ 1) and
their number.

αbreak
(i,i+1) =

{
1 if at least one break is taken on arc (i, i+ 1)

0 otherwise

i = 0, . . . , r − 2

Abreak
(i,i+1) ∈ N0 The number of breaks taken on arc (i, i+ 1), i = 0, . . . , r − 2

The following variables indicate if breaks are taken in vertices.

αbreak
i =

{
1 if a break is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

Each variable ∆wait
i gives the waiting time in vertex i:

∆wait
i ∈ R+

0 Waiting time in vertex i, i = 0, . . . , r − 1

The next variables specify if an early daily rest is made on an arc, meaning that the daily
driving time is not completely used up.

µearlydr1
(i,i+1) =


1 if a break is replaced by a daily rest on arc (i, i+ 1)

and this rest is the first rest on this arc
0 otherwise

i = 0, . . . , r − 2
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µearlydr2
(i,i+1) =


1 if a break is replaced by a daily rest on arc (i, i+ 1)

and this rest is not the first rest on this arc
0 otherwise

i = 0, . . . , r − 2

When arriving in vertex i, in case a daily rest was taken on arc (i − 1, i), the following
variable indicates if a break was taken since the last daily rest.

ebti =

{
1 if the last rest activity on the preceding arc (i− 1, i) was a break
0 otherwise

i = 0, . . . , r − 1

The next variables indicate if a break is still necessary to completely use up the daily
driving time left when leaving vertex i.

lbni =


1 if a break would be necessary to completely exploit

the daily driving time left when leaving vertex i
0 otherwise

i = 0, . . . , r − 1

The following variables are needed to model the optional rules.

αpbreak
i =

{
1 if the first part of a break is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

µupbreak
(i,i+1) =

{
1 if the second part of a break is taken on arc (i, i+ 1)

0 otherwise

i = 0, . . . , r − 2

µupbreak
i =

{
1 if the second part of a break is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

lpbreaki =


1 if when leaving vertex i a partial break of 15 minutes was taken

since the last rest period
0 otherwise

i = 0, . . . , r − 1
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αprest
i =

{
1 if the first part of a daily rest is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

lpresti =


1 if when leaving vertex i a partial rest period of 3 h was taken

since the last rest period
0 otherwise

i = 0, . . . , r − 1

µprest
i =


1 if the last break on arc (i− 1, i) is substituted by a

first partial rest
0 otherwise

i = 1, . . . , r − 1

µdredrest
i =


1 if in vertex i the decision is made that the next

daily rest after leaving vertex i will be a reduced one
0 otherwise

i = 0, . . . , r − 1

µredrest
(i,i+1) ∈ {0, 1, 2, 3} The number of reduced daily rests made

on arc (i, i+ 1), i = 0, . . . , r − 2

µredrest
i =

{
1 if a reduced daily rest is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

ldredresti =


1 if the next daily rest is a reduced one and is taken

after leaving vertex i
0 otherwise

i = 0, . . . , r − 1

µextd1
(i,i+1) =


1 if a driving time extension is used on arc (i, i+ 1) before the

first daily rest
0 otherwise

i = 0, . . . , r − 2
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µextd2
(i,i+1) ∈ {0, 1, 2} The number of driving time extensions used on arc (i, i+ 1)

between the first and the last daily rest, i = 0, . . . , r − 2

µextd3
(i,i+1) =


1 if a driving time extension is used on arc (i, i+ 1) after the

last daily rest
0 otherwise

i = 0, . . . , r − 2

µextd
i =

{
1 if a driving time extension is decided in vertex i
0 otherwise

i = 0, . . . , r − 1

lextdi =


1 if a decision concerning a driving time extension was made

before leaving vertex i
0 otherwise

i = 0, . . . , r − 1

Auxiliary variables:

λ1i , λ
2
i , λ

3
i , λ

4
i , λ

6
i , ∈ {0, 1}, i = 0, . . . , r − 1

λ5i ∈ {0, 1}, i = 0, . . . , r − 2

6.4 Optional rules

There are four optional rules that provide more flexibility to the driver schedule considering
a planning period of one week (see page 7). According to the EC regulation, breaks and
rest periods may be split into two parts (optional rules 1 and 2). The daily driving time
may be extended from 9 to 10 hours two times a week (optional rule 4). The maximum
time between the end of a daily rest period and the beginning of the next daily rest
period may be extended from 13 to 15 hours (optional rule 3). Each possibility has to be
considered when modeling the driver activities and determining the resulting driver status
when entering and leaving a vertex.

The impact of each optional rule and the variables and constraints will be described next
in more detail. This section will end with a description and modeling of dependencies of
the different optional rules.
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6.4.1 Splitting breaks

A break may be split into two parts, the first having a duration of at least 15 minutes
(first partial break), and the second (second partial break) having a duration of at least
30 minutes. After the second part of the break, a new driving time interval of at most 4.5
hours starts.

Without loss of generality we assume that if a break is split in an optimal solution, the first
partial break is taken to compensate waiting time at a customer location, i.e. we only allow
first partial breaks in vertices and not on arcs. If we allowed a first partial break to be taken
on an arc, either it could have been postponed to the next vertex or the second part of the
break would also have to be taken on the same arc without impact on the driver status.
Nevertheless, in practice, a complete break scheduled between two consecutive customer
locations may be split by the driver without influencing the schedule.

We introduce the variable αpbreak
i to indicate if a first partial break is taken upon arrival

at a customer location i.

Taking into account the driver status and the driving time needed to visit the next cus-
tomer, a break may be necessary on the way from customer i to customer i + 1. If a first
partial break has already taken place, only a second partial break needs to be scheduled.
The variable µupbreak

(i,i+1) indicates that a second partial break is scheduled on arc (i, i+ 1), i.e.
the first break scheduled on this arc has a duration of 30 minutes instead of 45 minutes.

In case no break and no daily rest period are needed to traverse the arc (i, i+ 1), a second
partial break may also be taken on the following arc. A second partial break may also
be scheduled in vertex i + 1 to again compensate for waiting time and to allow for a new
driving time interval to start. Variable µupbreak

i indicates whether a second partial break is
made in a vertex. If no second partial break is scheduled, neither on arc (i, i + 1) nor in
vertex i + 1, the break may be completed on a subsequent arc or in a subsequent vertex
and so on. To recall that a first partial break still may be used, we introduce the variable
lpbreaki for each customer vertex. If lpbreaki equals one, the next break will only have to take
30 minutes (second part) instead of 45 minutes.

In detail, the conditions are as follows.

Only the second partial break has to be taken on arc (i, i + 1) instead of a full 45-minute
break (µupbreak

(i,i+1) = 1) if and only if a first partial break was taken before and no second
partial break was made, yet (i.e. lpbreaki = 1). This means that we wish to impose that

µupbreak
(i,i+1) = 1⇔ lpbreaki = 1 ∧ αbreak

(i,i+1) = 1

This is ensured by the following conditions:

(µupbreak
(i,i+1) = 1⇒ lpbreaki = 1) ∧

(µupbreak
(i,i+1) = 1⇒ αbreak

(i,i+1) = 1) ∧

(µupbreak
(i,i+1) = 0⇒ αbreak

(i,i+1) = 0 ∨ lpbreaki = 0)
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Note that the last implication is the equivalent contraposition of (lpbreaki = 1 ∧ αbreak
(i,i+1) =

1⇒ µupbreak
(i,i+1) = 1). For our MILP model, we obtain the following constraints:

µupbreak
(i,i+1) ≤ lpbreaki ∀ i = 0, . . . , r − 2 (6.1)

µupbreak
(i,i+1) ≤ αbreak

(i,i+1) ∀ i = 0, . . . , r − 2 (6.2)

µupbreak
(i,i+1) ≥ lpbreaki + αbreak

(i,i+1) − 1 ∀ i = 0, . . . , r − 2 (6.3)

A second partial break can also be taken upon the arrival at a customer location if the
partial break status at the preceding vertex equals one and no break was taken on the
preceding arc. Therefore, we want to state that

µupbreak
i+1 = 1⇔ lpbreaki = 1 ∧ µupbreak

(i,i+1) = 0 ∧ αbreak
i+1 = 1

This is achieved by adding the following constraints, again making use of a contraposition
for the formulation of the last set of constraints:

µupbreak
i+1 ≤ lpbreaki ∀ i = 0, . . . , r − 2 (6.4)

µupbreak
i+1 ≤ 1− µupbreak

(i,i+1) ∀ i = 0, . . . , r − 2 (6.5)

µupbreak
i ≤ αbreak

i ∀ i = 0, . . . , r − 1 (6.6)

µupbreak
i+1 ≥ lpbreaki − µupbreak

(i,i+1) + αbreak
i+1 − 1 ∀ i = 0, . . . , r − 2 (6.7)

Note that inequalities (6.4) to (6.7) also hold for vertex 0. The status variable lpbreaki
indicating whether a first partial break still counts for the subsequent arc can now easily
be determined by the following set of constraints.

lpbreaki+1 = lpbreaki − µupbreak
(i,i+1) − µ

upbreak
i+1 + αpbreak

i+1 ∀ i = 0, . . . , r − 2 (6.8)

For determining the status variable for partial breaks for the first vertex, we need to know
if a partial break already took place. The input parameter hpb serves as an indicator if a
partial break already took place before the starting time of the schedule. It is needed when
the schedule does not start at the beginning of a week (i.e. after a weekly rest period),
and it is equal to one if a partial break was already taken and zero else. If hpb is equal to
one, a second partial break may be scheduled in the starting vertex. In that case, µupbreak

i

is equal to one. If hpb is equal to zero, a first partial break may be taken in vertex one.
Observe that αpbreak

0 and µupbreak
0 cannot be both equal to one due to (6.6) and the vertex

activity constraints (6.99) (see page 48).

The idea now is to define lpbreaki in such a way that a first partial break (except for a partial
break taken before the planning horizon starts) always has to be exploited in the course of
time. As it is possible that a first partial break has been taken before the beginning of the
planning horizon, maybe it will not be beneficial to force its use. This would for example
be the case if a daily rest would be necessary or advantageous to be taken before or instead
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of the next break. Therefore, only an upper and a lower bound for lpbreak0 are given which
induce the following logical conditions:

((hpb = 0 ∧ αpbreak
0 = 0) ∨ µupbreak

0 = 1)⇒ lpbreak0 = 0

αpbreak
0 = 1⇒ lpbreak0 = 1

The corresponding upper and lower bounds are given by:

lpbreak0 ≤ hpb+ αpbreak
0 (6.9)

lpbreak0 ≤ 1− µupbreak
0 (6.10)

lpbreak0 ≥ αpbreak
0 (6.11)

We force a first partial break only to be scheduled if the corresponding second partial break
is also scheduled to only keep track of first partial breaks that are necessary. lpbreaki has
been introduced to allow us to not only consider just the arc or vertex directly after a first
partial break has been taken. If lpbreaki = 1 and no second partial break is necessary on arc
(i, i+ 1) or at vertex i+ 1, lpbreaki+1 again is equal to 1 and a second partial break is possible
on arc (i+ 1, i+ 2) or in vertex i+ 2 if a break is needed, and so on.

We can distinguish between four cases for which a first partial break will be of no use, as
the second part will never be scheduled.

Case 1: It is not necessary to schedule a break to fully exploit the daily driving time left
and no use is made of a driving time extension. lbni indicates if a break is necessary to
completely use up the daily driving time left (without extension) when leaving vertex i.
µextd1
(i,i+1) indicates if a driving time extension is planned to take place on arc (i, i+ 1) before

the first daily rest. Observe that in that case an additional break would be necessary. We
obtain the following logical conditions:

lbni = 0 ∧ µextd1
(i,i+1) = 0⇒ lpbreaki = 0

lpbreakr−1 = 0

We add the following constraints to our model.

lpbreaki ≤ lbni + µextd1
(i,i+1) ∀i = 0, . . . , r − 2 (6.12)

lpbreakr−1 = 0 (6.13)

Case 2: A break is replaced by a daily rest on arc (i, i+ 1) and this rest is the first one on
this arc (i.e. µearlydr1

(i,i+1) = 1), which means, there will be no break before the next daily rest
is taken. Hence, the second partial break again would never be scheduled.

The logical expression

µearlydr1
(i,i+1) = 1⇒ lpbreaki = 0
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is transformed into

lpbreaki ≤ 1− µearlydr1
(i,i+1) ∀ i = 0, . . . , r − 2 (6.14)

Cases 3 and 4 refer to those situations in which a daily rest period (αrest
i = 1) or a partial

daily rest period (αprest
i = 1) in vertex i avoid scheduling a second partial break. Observe

that even if αprest
i = 0, in case that the last break on arc (i−1, i) is substituted by a partial

rest (indicated by variable µprest
i = 1)1, the status variable lpbreaki may still obtain the value

1, as a first partial break may be scheduled for a driving time extension. We transform the
logical conditions

αrest
i = 1⇒ lpbreaki = 0 ∧

(αprest
i = 1 ∧ µprest

i = 0)⇒ lpbreaki = 0

into the following constraints:

lpbreaki ≤ 1− αrest
i ∀ i = 0, . . . , r − 2 (6.15)

lpbreaki ≤ 1− αprest
i + µprest

i ∀ i = 0, . . . , r − 2 (6.16)

6.4.2 Splitting daily rest periods

A daily rest period may be split into two parts, one having a duration of at least 3 hours
(first partial rest), and the other (second partial rest) with a duration of at least 9 hours.
After the second partial rest, the daily driving time left is reset to 9 hours.

Splitting a daily rest period is advantageous if the first partial rest period compensates
waiting time at a customer location and is similar to splitting breaks (see Figure 9, (2)).

In addition, instead of scheduling a first partial rest period in vertex i, it is also possible
to substitute the last break on the preceding arc by a first partial rest (µprest

i = 1). As a
partial rest also resets the 4.5 hour driving time interval, a 45 minute break can then be
left out (see Figure 9, (3)). We will consider this in more detail at the end of this section
(see constraints (6.24) to (6.30) for µprest

i ).

We introduce the variable αprest
i to indicate whether a partial break is made upon arrival at

customer location i. If αprest
i = 1, then it may be necessary to schedule the second partial

rest on the way from customer i to customer i+ 1. The driver status as well as the driving
time needed from i to i + 1 determine whether a daily rest period is required on the arc
(i, i+ 1). In case no daily rest period is needed, the first partial rest still "counts" for the
subsequent arc. To keep track if a first partial rest still may be used, we introduce the
variable lpresti . If lpbreaki = 1 then the next daily rest period will only have a duration of at
least 9 hours instead of 11 hours.

In contrast to the case of splitting breaks, it is not necessary to define a variable to indicate
if a second partial rest period is scheduled. As sometimes it may be beneficial to take a
1 The partial rest period is taken instead of the last break on the arc (i− 1, i) and not in vertex i if µprest

i = 1.
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Figure 9: Splitting daily rest periods

daily rest that lasts longer than the minimum duration of 9 or 11 hours, respectively,
variables are introduced to identify the actual duration instead (see page 43, constraints
(6.79) to (6.84)).

Also different from partial breaks, it may be advantageous to take a first partial rest for
which the second part will be scheduled after the planning horizon as the decision about
taking a first partial rest will influence the time left until the next daily rest period is
necessary. If, for example, a first partial rest is taken at the last customer location, the
remaining duration of the second partial rest period is at least 9 hours instead of 11 hours.
In that case, more time will be left to fulfill the service at the customer location1.

Let us now consider the status variable lpresti , which indicates whether only the second part
of a daily rest period is still needed to reset the time left until the next daily rest period.
If a daily rest is taken in vertex i, the status variable lpresti is set to zero as a potential first

1 Assume that in Figure 9 the location i+1 is the last customer location and no reduced daily rest period is possible
anymore (i.e. in the current week 3 reduced daily rest periods have already taken place). The driver would reach
the time window, but adding 2 hours for serving the customer would lead to a working time of 13:30 h since the
last daily rest period. This violates rule 6 as it is not possible to append a daily rest period of 11 h and finish
it within the 24 h time interval. A daily rest period would be necessary before loading and/or unloading which
would have to be postponed to the following day.
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partial rest would have been used to reduce the duration of this daily rest period. Hence,

αrest
i = 1⇒ lpresti = 0

which is expressed by

lpresti ≤ 1− αrest
i ∀ i = 0, . . . , r − 1 (6.17)

Clearly, lpresti should always be equal to 1 if a first partial rest is taken in vertex i. That
means

αprest
i = 1⇒ lpresti = 1

This is induced by

lpresti ≥ αprest
i ∀ i = 0, . . . , r − 1 (6.18)

If a daily rest is taken on arc (i, i + 1), the status variable lpbreaki+1 is only influenced by a
potential partial rest in vertex i+ 1. We would like to state

αrest
(i,i+1) = 1⇒ lpresti+1 = αprest

i+1

This is imposed by inequalities (6.18) and the following set of constraints:

lpresti+1 ≤ αprest
i+1 + 1− αrest

(i,i+1)) ∀ i = 0, . . . , r − 2 (6.19)

An upper bound on the value of the status variable lpresti+1 is lpresti +αprest
i+1 . If both variables

lpresti and αprest
i+1 are zero then lpresti+1 must also be equal to zero:

lpresti = 0 ∧ αprest
i+1 = 0⇒ lpbreaki+1 = 0

This is induced by

lpresti+1 ≤ lpresti + αprest
i+1 ∀ i = 0, . . . , r − 2 (6.20)

If neither a daily rest was taken on arc (i, i + 1) nor in vertex i + 1, then lpbreaki+1 depends
on both variables, lpresti and αprest

i+1 . In this case, we have

(αrest
(i,i+1) = 0 ∧ αrest

i+1 = 0)⇒ (lpresti+1 = 1⇔ (lpresti = 1 ∨ αprest
i+1 = 1))

This is ensured by constraints (6.20) and

lpresti+1 ≥ lpresti + αprest
i+1 − αrest

i+1 − αrest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.21)

Note that inequalities (6.21) enforce lpresti +αprest
i+1 ≤ 1 in the case that no daily rest on the

arc (i, i + 1) or in the vertex i is made. This means that a first partial rest period has to
be exploited by taking a second partial daily rest period before a new first partial daily
rest period can be taken.
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In the first vertex, lprest0 only depends on αprest
0 and if a partial rest was made before the

start of the planning horizon (hpr = 1) if no rest is made in 0. The case that a rest is
made is already considered by constraints (6.17).

αrest
0 = 0⇒ lprest0 = αprest

0 + hpr

As αprest
0 + hpr is an upper bound on lprest0 , we obtain the following constraints:

lprest0 ≥ αprest
0 + hpr − αrest

0 (6.22)
lprest0 ≤ αprest

0 + hpr (6.23)

As mentioned at the beginning of this section instead of taking a break as the last resting
activity on arc (i, i + 1), it may also be possible to substitute this break by a first partial
rest period. The first partial rest also resets the driving time left until the next break
or rest period, so it may save time to just schedule a first partial rest period on the arc
(i, i + 1) as the last resting activity instead of a 45-minute break and additionally a first
partial daily rest in vertex i + 1 (see Figure 9 (3)). We introduce the variable µprest

i to
indicate that a substitution takes place and the status variables when entering vertex i and
the arrival time at customer i have to be modified accordingly. If such a substitution is
planned, a first partial rest period has to be scheduled:

µprest
i = 1⇒ αprest

i = 1

This logical condition is represented by

αprest
i ≥ µprest

i ∀ i = 1, . . . , r − 1 (6.24)

For vertex 0, since there is no preceding arc where we can substitute a break, we have

µprest
0 = 0 (6.25)

For other vertices i, there has to be a break on arc (i− 1, i) that may be substituted and
this break has to be the last resting activity on this arc. When entering vertex i, variable
ebti indicates if the last rest activity taken on the arc (i− 1, i) was a break. We obtain the
following upper bounds on µprest

i :

µprest
i ≤ αbreak

(i−1,i) ∀ i = 1, . . . , r − 1 (6.26)

µprest
i ≤ ebti ∀ i = 1, . . . , r − 1 (6.27)

If the daily driving time should be extended and the corresponding resting activity is
planned to be a first partial rest in a vertex, a preceding break on arc (i, i + 1) will not
be substituted, as both rest activities (45-minute break and first partial rest) are needed
to be able to extend the daily driving time to 10 hours. Therefore, we obtain the upper
bounds:

µprest
i ≤ 1− µextd

i ∀ i = 1, . . . , r − 1 (6.28)
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Whenever possible, the substitution should take place, as it will never worsen the objective
function value and it may save up to 45 minutes of time. Whenever possible means, if a
break is made on arc (i − 1, i) (αbreak

(i−1,i) = 1), the last resting activity on this arc was a
break, and a first partial rest is associated with vertex i (αprest

i = 1), then the break will be
substituted if no break for a driving time extension is needed in vertex i. This is expressed
by

(αbreak
(i−1,i) = 1 ∧ ebti = 1 ∧ µextd

i = 0)⇒ µprest
i = αprest

i

and guaranteed by inequalities (6.24) and the following constraints

µprest
i ≥ αprest

i − µextd
i − (1− αbreak

(i−1,i))− (1− ebti ) ∀ i = 1, . . . , r − 1 (6.29)

If there is only one break on arc (i − 1, i), a potential first partial break still counting
when leaving vertex i − 1 may be consumed by the substitution and would therefore not
be necessary to be scheduled. To avoid this, we add the following upper bound on lpbreaki
with Abreak

(i−1,i) being the number of breaks scheduled on arc (i− 1, i):

lpbreaki−1 ≤ Abreak
(i−1,i) − µ

prest
i + (1− αbreak

(i−1,i)) ∀ i = 1, . . . , r − 1 (6.30)

6.4.3 Reducing daily rest periods

A daily rest period may be reduced from 11 to 9 hours at most three times a week. If it is
reduced, the time between the end of a daily rest period and the beginning of the subsequent
reduced daily rest period is automatically extended from 13 to 15 hours because of standard
rule 6 (page 6), which states that there has to be a daily rest period in each time interval
with a duration of 24 hours.

The difficulty here lies in the fact that after a daily rest period, depending on whether
the next daily rest period is a reduced one or not, the time interval between the two rest
periods has a duration of 13 or 15 hours, respectively.

To overcome this, for the first daily rest on an arc, we introduce the variable µdredrest
i

associated with the decision about the next rest after leaving vertex i being a reduced one.
Additionally, the status variable ldredresti monitors if a decision about a reduced daily rest
period was made before leaving vertex i to keep track of a decision made about a reduced
daily rest period at a vertex prior to i if no rest period was scheduled since then.

If a second or third daily rest is made on an arc between two customers, only the driving
time has to be considered. As there are always at least 13 hours between two daily rests
but only at most 10 hours of driving allowed, no special care has to be taken about a
reduced daily rest. However, its duration needs to be modified.

The variable µredrest
(i,i+1) gives the number of reduced rest periods scheduled for the arc (i, i+1),

while the variable µredrest
i indicates if a reduced rest period is scheduled in vertex i. These

variables are used to modify the duration of daily rest periods such that instead of 11 hours
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at least 9 hours are needed.1 This means that the reduction has to be scheduled together
with the daily rest period itself, namely

(µredrest
i = 1⇒ αrest

i = 1) ∧ (µredrest
(i,i+1) = k ⇒ Arest

(i,i+1) ≥ k), k ∈ {0, 1, 2, 3}

The above conditions are expressed by constraints (6.31) and (6.32).

αrest
i ≥ µredrest

i ∀ i = 0, . . . , r − 1 (6.31)
Arest

(i,i+1) ≥ µredrest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.32)

If when leaving vertex i the decision is made that the next daily rest period will be a
reduced one (µdredrest

i = 1), the corresponding status variable (ldredresti ) is set to be equal
to one. This means that

µdredrest
i = 1⇒ ldredresti = 1

and this is represented by

ldredresti ≥ µdredrest
i ∀ i = 0, . . . , r − 1 (6.33)

If a daily rest is made either on arc (i − 1, i) or in vertex i, then 6.33 should hold as an
equality, since in this case the status variable ldredresti only depends on the decision about a
reduced rest period when leaving vertex i. The execution of former decisions about short
rests lies in the past. This can be stated by

(αrest
(i−1,i) = 1⇒ ldredresti = µdredrest

i ) ∧ (αrest
i = 1⇒ ldredresti = µdredrest

i )

This is induced by constraints (6.33), (6.34) and (6.35)

ldredresti ≤ µdredrest
i + (1− αrest

(i−1,i)) ∀ i = 1, . . . , r − 1 (6.34)

ldredresti ≤ µdredrest
i + (1− αrest

i ) ∀ i = 0, . . . , r − 1 (6.35)

In case neither a daily rest period was made on the arc (i, i + 1) nor in vertex i + 1, the
status variable ldredresti+1 additionally depends on the status variable ldredresti of the preceding
vertex i. Hence,

(αrest
(i,i+1) = 0 ∧ αrest

i+1 = 0)⇒ (ldredresti+1 = ldredresti + µdredrest
i+1 )

As ldredresti + µdredrest
i+1 is an upper bound on ldredresti+1 , we obtain the following constraints:

ldredresti+1 ≤ ldredresti + µdredrest
i+1 ∀ i = 0, . . . , r − 2 (6.36)

ldredresti+1 ≥ ldredresti + µdredrest
i+1 − αrest

(i,i+1) − αrest
i+1 ∀ i = 0, . . . , r − 2 (6.37)

The status variable ldredrest0 of the starting vertex only depends on the decision about a
reduced daily rest period:

ldredrest0 = µdredrest
0 (6.38)

1 Restrictions on the duration of daily rest periods are described in more detail in Section 6.9 on page 43.
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If several daily rest periods are scheduled on an arc (i, i + 1), the maximum time saving
with a reduced daily rest can be made by planning the first daily rest period to be a
reduced one. Therefore, in case at least one reduced daily rest is planned for (i, i+ 1), we
set ldredresti = 11, except for the case a second partial rest period still has to be scheduled.
Similarly, if a reduced daily rest is made in vertex i+1 and there were no daily rest periods
on the previous arc (i, i+ 1), the status variable ldredresti is set to be equal to 1 if lpresti = 0.
The corresponding logical conditions are:

(µredrest
(i,i+1) ≥ 1 ∧ lpresti = 0)⇒ ldredresti = 1 ∧

(µredrest
i+1 = 1 ∧ αrest

(i,i+1) = 0)⇒ ldredresti = 1

The total number of reduced daily rest periods in one week is at most 3 and therefore, this
is also an upper bound on the number of reduced daily rest periods on an arc. It follows
that the above conditions are induced by

3 ldredresti ≥ µredrest
(i,i+1) − 3 lpresti ∀ i = 0, . . . , r − 2 (6.39)

ldredresti ≥ µredrest
i+1 − αrest

(i,i+1) ∀ i = 0, . . . , r − 2 (6.40)

Additionally, we interlink the decision about a reduced daily rest period and the end of
the last daily rest period to ensure that the status variables Et

i , Lt
i, Lddt

i and Ldt
i for vertex

i reflect the exact driver status. The decision that the next daily rest should be a reduced
one (µdredrest

i+1 = 1) can only be made if there was a daily rest period on the previous arc
or vertex. This condition guarantees that decisions about reduced daily rest periods are
made as early as possible such that status variables will reflect the actual driver status
when entering or leaving a vertex. We add the conditions

(αrest
(i,i+1) = 0 ∧ αrest

i+1 = 0)⇒ µdredrest
i+1 = 0

and obtain the following set of inequalities:

µdredrest
i+1 ≤ αrest

(i,i+1) + αrest
i+1 ∀ i = 0, . . . , r − 2. (6.41)

Reduced rests can now be scheduled according to the status variables ldredresti . That means,
if at least one daily rest is scheduled on an arc (i, i+ 1) and the status variable ldredresti is
equal to 1, then at least one of the daily rests has to be a reduced one.

αrest
(i,i+1) = 1⇒ µredrest

(i,i+1) ≥ ldredresti

This is ensured by

µredrest
(i,i+1) ≥ ldredresti − (1− αrest

(i,i+1)) ∀ i = 0, . . . , r − 2 (6.42)

If no rest is made on the arc (i, i + 1), a similar condition holds for the following vertex
i+ 1:

αrest
(i,i+1) = 0⇒ (αrest

i+1 = 1⇒ µredrest
i+1 ≥ ldredresti )

1 Note that reduced daily rest periods may be scheduled on arc (i, i + 1) if ldredresti = 0. In that case, additional
time prior to this reduced daily rest period is not needed, just the 2 hours time saving for the reduction of the
duration is considered.
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This is guaranteed by the following constraints.

µredrest
i+1 ≥ ldredresti − αrest

(i,i+1) − (1− αrest
i+1 ) ∀ i = 0, . . . , r − 2 (6.43)

To ensure that the maximum number of reduced daily rest periods during one week is not
exceeded, we add the constraint

r−1∑
i=0

µredrest
i +

r−2∑
i=0

µredrest
(i,i+1) + noRed ≤ 3 (6.44)

where noRed is the number of reduced daily rests already taken in the current week in the
time before the start of the schedule.

We conclude this section by describing constraints that map dependencies between partial
and reduced daily rest periods. First, we have to ensure that enough rest periods are
scheduled, one for each decision about a reduced daily rest period and one for each second
partial rest period. For the case that rest periods are taken on arc (i, i+ 1), we obtain the
condition

αrest
(i,i+1) = 1⇒ Arest

(i,i+1) ≥ µredrest
(i,i+1) + lpresti

We transform this into

µredrest
(i,i+1) + lpresti ≤ Arest

(i,i+1) + (1− αrest
(i,i+1)) ∀ i = 0, . . . , r − 2 (6.45)

In addition, only one of the variables, ldredresti or lpresti , may take on the value 1. Both
cannot be equal to 1 as otherwise, the next daily rest would be a second partial rest period
and a reduced daily rest period as well, which does not make any sense.

(ldredresti = 1⇒ lpresti = 0) ∧ (lpresti = 1⇒ ldredresti = 0)

is imposed by

ldredresti + lpresti ≤ 1 ∀ i = 0, . . . , r − 1 (6.46)

For the first vertex it has to be ensured that no reduced rest period is scheduled if a second
partial rest is still outstanding. Hence,

hpr = 1⇒ µredrest
0 = 0

This is guaranteed by the following constraint.

µredrest
0 ≤ 1− hpr (6.47)
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6.4.4 Extending daily driving times

The daily driving time, i.e. the cumulated driving time between two consecutive daily rest
periods, may be extended from 9 to 10 hours twice a week. If a daily driving time is
extended, an additional break (or a first partial daily rest period) will be necessary, as
there has to be a break after at most 4.5 hours of driving.

Driving time extensions have an impact on the values of the status variables Et
i+1, Lt

i+1,
Eddt

i+1, Lddt
i+1, Edt

i+1 and Ldt
i+1 depending on when the additional break (or first partial daily rest

period) is taken. We distinguish between the following four cases and introduce decision
variables accordingly. The additional break can be taken:

case 1: in a vertex i (µextd
i = 1),

case 2: on an arc (i, i + 1), before the first daily rest period is taken or if no daily rest
period is taken on this arc (µextd1

(i,i+1) = 1),

case 3: on an arc (i, i+ 1), between two consecutive daily rest periods (µextd2
(i,i+1) = 1) or

case 4: on an arc (i, i+ 1), after the last daily rest (µextd3
(i,i+1) = 1).

The main difference between scheduling a break or a first partial rest period for a driving
time extension on an arc from scheduling it in a vertex is that they are always scheduled
as late as possible (i.e. after 4.5 hours of driving, directly initiating the extension). In
general, breaks can be scheduled in vertices to reduce or avoid waiting time, and therefore
they may be taken before the limit for the driving time without break or rest period of 4.5
hours is reached.

Furthermore, on an arc a break or a first daily rest period for a driving time extension
can be taken before the first daily rest period is completed (if there is a daily rest period
on this arc) (case 1), between two consecutive daily rest periods (case 2) or after the last
daily rest period (case 3).

In case 1, the time left until the next rest period when leaving vertex i, Lt
i, has to be taken

into consideration, as this may limit the extended daily driving time to a value that is
less than 10 hours. If a driving time extension occurs between two consecutive daily rest
periods (µextd2 = 1) (case 2), then this will lead to the maximum daily driving time of 10
hours as the daily driving time is not limited by the maximum time interval between two
consecutive daily rests. For the third case, we have to ensure that two breaks after the
last daily rest period are scheduled such that the last of the two breaks coincides with the
decision about the driving time extension.

Hence, if a special type of driving time extension can be scheduled on an arc, it depends
on the number of daily rest periods on this arc. µextd1

(i,i+1) does not depend on whether one
or more daily rest periods are made on arc (i, i + 1), whereas µextd3

(i,i+1) = 1 requires at least
one daily rest period. µextd2

(i,i+1) larger than 0 requires at least two daily rest periods on arc
(i, i+ 1), depending on the number of driving time extensions taken between the first and
the last daily rest period.
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We wish to state that

µextd2
(i,i+1) = k ⇒ Arest

(i,i+1) ≥ k + 1 with k ∈ {0, 1, 2} and

µextd3
(i,i+1) = 1⇒ αrest

(i,i+1) = 1

This is achieved by the following constraints:

Arest
(i,i+1) ≥ µextd2

(i,i+1) + αrest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.48)

αrest
(i,i+1) ≥ µextd3

(i,i+1) ∀ i = 0, . . . , r − 2 (6.49)

In addition to the decision variables for extending driving, we again need status variables
which in this case indicate if a driving time extension still holds when leaving vertex i
(lextdi ). This status variable ensures that a driving time extension cannot be made twice
without a rest period in between.

We start with the corresponding constraint for vertex 0. The input data tells us if an
extended daily driving time has already started: if the daily driving time ddt is greater
than 540 and the number of extended driving times already taken that week is less than
2, the input parameter dte is set to be equal to 1, otherwise dte = 0. We require that an
already started driving time remains active if no daily rest is made in vertex 0:

αrest
0 = 0⇒ lextd0 = dte

This is guaranteed by

lextd0 ≥ dte− αrest
0 and (6.50)

lextd0 ≤ dte (6.51)

No driving time extension needs to be scheduled in vertex 0 as such an extension can also
be postponed to the arc (0, 1). Hence,

µextd
0 = 0. (6.52)

Before a daily rest is made on arc (i, i + 1), a driving time extension can only take place
(µextd1

(i,i+1) = 1) if no driving time extension is still active when leaving customer i. This is
expressed by

lextdi = 1⇒ µextd1
(i,i+1) = 0

We add the constraints

µextd1
(i,i+1) ≤ 1− lextdi ∀ i = 0, . . . , r − 2 (6.53)

to our model.

We wish to avoid that an early daily rest period is scheduled (µearlydr1
(i,i+1) = 1) simultaneously

with a driving time extension before the first daily rest period (if one is taken) on arc
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(i, i+ 1) is taken, since in reality this combination is impossible.1 Therefore, the following
condition must hold.

µearlydr1
(i,i+1) = 1⇒ µextd1

(i,i+1) = 0

This is imposed by constraints (6.54).

µextd1
(i,i+1) ≤ 1− µearlydr1

(i,i+1) ∀ i = 0, . . . , r − 2 (6.54)

Usually, it does not improve the solution value to schedule a combination of extended
driving times and early daily rests on one arc. However, there are two exceptions: the
combination of an early daily rest as first daily rest on arc (i, i + 1) and an extended
driving time of type two (µextd2

(i,i+1) ≥ 1) or of type three (µextd3
(i,i+1) = 1). The other cases are

avoided if the following conditions are imposed. The variable µearlydr2
(i,i+1) = 1 indicates that

an early daily rest period is taken and this daily rest period is not the first one on this
arc.

µearlydr2
(i,i+1) = 1⇒ (µextd1

(i,i+1) = 0 ∧ µextd2
(i,i+1) = 0 ∧ µextd3

(i,i+1) = 0)

We add the following constraints:

µextd1
(i,i+1) ≤ 1− µearlydr2

(i,i+1) ∀ i = 0, . . . , r − 2 (6.55)

µextd2
(i,i+1) ≤ 2− 2 µearlydr2

(i,i+1) ∀ i = 0, . . . , r − 2 (6.56)

µextd3
(i,i+1) ≤ 1− µearlydr2

(i,i+1) ∀ i = 0, . . . , r − 2 (6.57)

In constraints (6.56), the upper bound 2 is the maximum number of driving time extensions
allowed during one week.

A driving time extension µextd1
(i,i+1) = 1 may not be possible if most of the available time

between two daily rest periods was already spent for other activities different from driving.
In that case, µextd1

(i,i+1) is set to be zero. The variable giving us information if a driving time
extension is possible, considering the maximum time left until the start of the next daily
rest period, is variable λ1. If λ1 is equal to 1, then no extension is possible, otherwise an
extension is permitted:2

λ1i = 1⇒ µextd1
(i,i+1) = 0

This is enforced by

µextd1
(i,i+1) ≤ 1− λ1i ∀ i = 0, . . . , r − 2 (6.58)

For µextd3
(i,i+1), we wish to ensure that the driving time extension is coupled with a second break

since the last daily rest period. This means that at least nine hours of daily driving time

1 For more details on early daily rests see page 46.
2 The auxiliary variable λ1 is described in more detail on page 61.
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have already been consumed when entering vertex i + 1 since the MILP model schedules
breaks and rest periods on arcs as late as possible. Therefore, at most one hour may be
left for driving until the next rest period. Similarly, this is also true for µextd1

(i,i+1) if no daily
rest period is taken on arc (i, i+ 1). Hence, the following conditions must hold:

µextd3
(i,i+1) = 1⇒ Eddt

i+1 ≤ 60 ∧
(µextd1

(i,i+1) = 1 ∧ αrest
(i,i+1) = 0)⇒ Eddt

i+1 ≤ 60

With 540 (i.e. 9 h) being an upper bound on Eddt
i+1, we can express this condition using a

"big-M approach" with M = 480 (= 540− 60).

Eddt
i+1 ≤ 60 + 480 (1− µextd3

(i,i+1)) ∀ i = 0, . . . , r − 2 (6.59)

Eddt
i+1 ≤ 60 + 480 (1− µextd1

(i,i+1)) + 480 αrest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.60)

If there was no rest period since leaving the last vertex (i.e. αrest
(i,i+1) = 0) and a driving time

extension was active when leaving that vertex (lextdi = 1), then this driving time extension
is still active when entering i+1. As a result, another driving time extension is not allowed
to start in vertex i+1. A new driving time extension may not start in i+1 if a driving time
extension has already started on arc (i, i+ 1) and no rest period was taken since then:

((lextdi = 1 ∨ µextd1
(i,i+1) = 1) ∧ αrest

(i,i+1) = 0)⇒ µextd
i+1 = 0

This is imposed by

µextd
i+1 ≤ 1− lextdi + αrest

(i,i+1) ∀ i = 0, . . . , r − 2 (6.61)

µextd
i+1 ≤ 1− µextd1

(i,i+1) + αrest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.62)

For the case that an extended driving time has started on arc (i, i+ 1) after the last daily
rest period, i.e. µextd3

(i,i+1) = 1, the above conditions are completed by adding the following
one:

µextd3
(i,i+1) = 1⇒ µextd

i+1 = 0

We obtain the additional constraints

µextd
i+1 ≤ 1− µextd3

(i,i+1) ∀ i = 0, . . . , r − 2 (6.63)

If the daily driving time left, Eddt
i , is higher than 270 minutes (that is 4.5 h), a break in

vertex i should not be considered to extend the daily driving time:

Eddt
i > 270⇒ µextd

i = 0

This is ensured by the following constraints:

270 (1− µextd
i ) ≥ Eddt

i − 270 ∀ i = 0, . . . , r − 1 (6.64)
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Now, the determination of the status variables lextdi+1 when leaving vertex i+ 1 is described.
If a daily rest period is taken in vertex i, then a new driving time interval starts. An
extended driving time still active when entering vertex i is finished with the start of the
daily rest period. Therefore, the status variable lextdi+1 is set to be zero. If a daily rest period
is taken on arc (i, i+ 1), lextdi+1 depends on µextd3

(i,i+1) and µ
extd
i+1 . It depends on lextdi and µextd1

(i,i+1)

and µextd
i+1 if no daily rest is made on arc (i, i + 1). In particular, the following conditions

have to hold:

αrest
i = 1⇒ lextdi = 0 ∧

(αrest
(i,i+1) = 1 ∧ αrest

i+1 = 0)⇒ (lextdi+1 = µextd3
(i,i+1) + µextd

i+1 ) ∧
(αrest

(i,i+1) = 0 ∧ αrest
i+1 = 0)⇒ (lextdi+1 = lextdi + µextd1

(i,i+1) + µextd
i+1 )

These conditions are represented by:

lextdi ≤ 1− αrest
i ∀ i = 0, . . . , r − 1 (6.65)

lextdi+1 ≥ µextd
i+1 + µextd3

(i,i+1) − αrest
i+1 ∀ i = 0, . . . , r − 2 (6.66)

lextdi+1 ≤ µextd
i+1 + µextd3

(i,i+1) + 1− αrest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.67)

lextdi+1 ≥ lextdi + µextd1
(i,i+1) + µextd

i+1 − αrest
(i,i+1) − αrest

i+1 ∀ i = 0, . . . , r − 2 (6.68)

lextdi+1 ≤ lextdi + µextd1
(i,i+1) + µextd

i+1 + αrest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.69)

Inequalities (6.66) and (6.67) are lower and upper bounds on lextdi+1 , respectively. Therefore,
(1 − αrest

(i,i+1)) needs not to be subtracted in constraints (6.66) and αrest
i+1 needs not to be

added in constraints (6.67). Similarly, αrest
i+1 needs not to be added in constraints (6.69).

The number of extended driving times during the week is bounded from above by the
maximum between 0 and 2 minus the number of extended driving times that were already
used since the start of the week.1

r−2∑
i=0

µextd1
(i,i+1) + µextd2

(i,i+1) + µextd3
(i,i+1) +

r−1∑
i=0

µextd
i ≤ max{2− noExt− dte, 0} (6.70)

As mentioned at the beginning, every daily driving time extension is coupled with a break,
meaning that a break has to be scheduled for each driving time extension. Hence, the
following constraints have to be added:

Abreak
(i,i+1) ≥ µextd1

(i,i+1) + µextd2
(i,i+1) + µextd3

(i,i+1) ∀ i = 0, . . . , r − 2 (6.71)

αbreak
i + αprest

i − µprest
i ≥ µextd

i ∀ i = 0, . . . , r − 1 (6.72)

1 The extended driving times already used since the start of the week consist of extended driving times already
completed with the start of a daily rest period (noExt) and of a potential driving time extension still active when
the schedule starts (if dte = 1).
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6.5 Begin of service constraints

Constraints (6.73) state that service, i.e. loading and/or unloading of goods, starting at
time starti+1 in vertex i+1 will exactly begin after the end of the preceding service time in
vertex i (∆̄service

i ) plus the driving time needed to reach destination i+ 1 from i (∆̄drive
(i,i+1)),

plus the duration of all (partial) breaks and (partial) daily rest periods taken on arc (i, i+1)
and in vertex i + 1, plus waiting time in i + 1. If a first partial break was taken prior to
the departure from i, 15 minutes are subtracted from the full duration of a corresponding
subsequent break thus converting it to a second partial break with a duration of 30 minutes.
If a break was substituted (for the substitution see page 32) by a first partial rest period,
the 45 minutes for the break are subtracted.1

starti+1 = starti + ∆̄service
i + ∆̄drive

(i,i+1) + 45 Abreak
(i,i+1) + ∆rest

(i,i+1) + 45 αbreak
i+1 + ∆rest

i+1

+ ∆wait
i+1 + 15 αpbreak

i+1 − 15 µupbreak
(i,i+1) − 15 µupbreak

i+1 + 180 αprest
i+1 − 45 µprest

i+1

∀ i = 0, . . . , r − 2 (6.73)

Vertex 0 denotes the starting position. (Partial) daily rest periods and 45 minute breaks
are allowed in the first vertex and the continuation of already started (partial) daily rest
periods and breaks is also considered. If a (partial) break (or daily rest) takes place at
the starting time of the schedule, parameter ubt (or urt, respectively) specifies its duration
until then. The continuation of a (partial) break or daily rest period is not mandatory.
The service time ∆̄service

0 is set to be zero, that means, in (6.74) start0 denotes the start of
driving from vertex 0 to vertex 1. The utilization of a first partial break or a first partial
daily rest period still active is also taken into consideration, where hpb indicates if a first
partial break has already been taken. If a first partial daily rest period is still active, the
duration of the corresponding daily rest period is adjusted accordingly to obtain a second
partial daily rest period (see Section 6.9 on page 43).

start0 = ∆rest
0 + (45−min (ubt+ 15 · hpb, 45)) · αbreak

0

+ (15−min (ubt, 15)) · αpbreak
0 + (180−min (urt, 180)) · αprest

0 (6.74)

6.6 Time window constraints

We model time windows as soft constraints, i.e we penalize lateness that refers to a chosen
time window in the objective function. Thus, a solution can be found even if not all time
windows can be met giving additional helpful information to the dispatcher. To guarantee
that exactly one time window is chosen for each vertex i = 1, . . . , r − 1, constraints (6.75)

1 Note that first partial breaks and first partial daily rest periods are scheduled in vertices to compensate waiting
time. Similar to breaks, first partial daily rest periods also reset the driving time interval and it may be advan-
tageous to substitute a last break on an arc with a first partial daily rest period. In that case, µprest

i = 1 and
αprest
i+1 = 1.
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are introduced. Constraints (6.76) state that service in vertex i will start no earlier than
the lower bound of the chosen time window.

nTWi−1∑
z=0

twiz = 1 ∀i = 1, . . . , r − 1 (6.75)

starti ≥
nTWi−1∑

z=0

TW
begin

iz twiz ∀i = 1, . . . , r − 1 (6.76)

6.7 Lateness constraints

Lateness in vertex i is greater than or equal to the difference between the start of load-
ing/unloading of goods and the end of the chosen time window (see (6.77)). The lateness
variable ∆late

i is defined to be greater than or equal to zero. Therefore,
∑r−1

i=1 ∆late
i repre-

sents the total lateness that is penalized in the objective function.

∆late
i ≥ starti −

nTWi−1∑
z=0

TW
end

iz twiz ∀i = 1, . . . , r − 1 (6.77)

6.8 Maximum time between two consecutive weekly rest periods

The time between the end of a weekly rest period and the start of the following weekly
rest period is not allowed to exceed 144 hours (8640 minutes). Therefore, each loading or
unloading activity at a customer location has to end within this time interval:

starti + ∆̄service
i ≤ 8640− ptwr ∀ i = 1, . . . , r − 1 (6.78)

where ptwr denotes the time passed since the last weekly rest period at the beginning of
the planning horizon in minutes.

6.9 Durations of daily rest periods

Depending on the number of daily rest periods Arest
(i,i+1) scheduled on an arc (i, i+ 1), lower

bounds on their cumulated duration ∆rest
(i,i+1) are set up. The minimum cumulated duration

is reduced by 2 hours for each reduced daily rest period on arc (i, i + 1) and for a second
partial daily rest taken (lpresti = 1). The same applies to vertices but with the difference
that at most one daily rest period per vertex may be scheduled. Note that if a daily rest
period has been taken on arc (i, i + 1), a potential first partial daily rest period that has
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been taken in vertex i or in a vertex prior to i is exhausted and may not be used in vertex
i+ 1. In vertex 0, we additionally have to consider the duration of an already started rest
period (urt > 0) and potentially a first partial daily rest period. We add the following
constraints to our model accordingly:

∆rest
0 ≥

(
660−min(660, urt)

)
αrest
0 − 120 µredrest

0 − 120 hpr (6.79)
∆rest

i ≥ 660 αrest
i − 120 µredrest

i − 120 lpresti−1

∀ i = 1, . . . , r − 1 (6.80)
∆rest

i+1 ≥ 660 αrest
i+1 − 120 µredrest

i+1 − 120 (1− αrest
(i,i+1))

∀ i = 0, . . . , r − 2 (6.81)
∆rest

(i,i+1) ≥ 660 Arest
(i,i+1) − 120 µredrest

(i,i+1) − 120 lpresti

∀ i = 0, . . . , r − 2 (6.82)

If no daily rest is taken, we set the corresponding duration variable ∆rest
i or ∆rest

(i,i+1),
respectively to be equal to zero:

αrest
i = 0⇒ ∆rest

i = 0 ∧
αrest
(i,i+1) = 0⇒ ∆rest

(i,i+1) = 0

As an upper bound on the duration of a rest period, we choose the maximum time available
between two weekly rest periods, i.e. 6·24 h = 144 h = 8640 min and thus obtain constraints
(6.83) and (6.84).

∆rest
i ≤ 8640 αrest

i ∀ i = 0, . . . , r − 1 (6.83)
∆rest

(i,i+1) ≤ 8640 Arest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.84)

In this context, it may be advantageous to take daily rest periods with a duration of more
than 11 hours or 9 hours, respectively. This influences the beginning of the next 24 h time
interval in which a daily rest period has to be taken and may be necessary to cope with
subsequent time windows.

6.10 Indicator variables for daily rests on arcs

The variable αrest
(i,i+1) is used to indicate if at least one daily rest period is taken on arc

(i, i+ 1). Hence, the following condition has to hold for each αrest
(i,i+1):

Arest
(i,i+1) > 0⇔ αrest

(i,i+1) = 1
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As the number of daily rests during one week is bounded from above by 8640:540=161,
constraints (6.85) and (6.86) induce these conditions.2

16 αrest
(i,i+1) ≥ Arest

(i,i+1) ∀ i = 0, . . . , r − 2 (6.85)
αrest
(i,i+1) ≤ Arest

(i,i+1) ∀ i = 0, . . . , r − 2 (6.86)

6.11 Indicator variables for breaks on arcs

In the following, some conditions will only hold if no breaks are taken or if at least one
break is taken on an arc. Therefore, variable αbreak

(i,i+1) is introduced to indicate if at least
one break is taken on arc (i, i+ 1) or not. We wish to state that

Abreak
(i,i+1) > 0⇔ αbreak

(i,i+1) = 1.

An upper bound on the maximum number of breaks during one week is 8640 : 45 = 192.
Again, using a big-M approach, the above statement is expressed by (6.87) and (6.88).

192 αbreak
(i,i+1) ≥ Abreak

(i,i+1) ∀ i = 0, . . . , r − 2 (6.87)

αbreak
(i,i+1) ≤ Abreak

(i,i+1) ∀ i = 0, . . . , r − 2 (6.88)

6.12 Decision variables that indicate a necessary break

The decision variable lbni indicates whether a break is necessary to completely use the daily
driving time left when leaving vertex i (Lddt

i ) or not. This is the case if Lddt
i > Ldt

i , where
Ldt
i denotes the driving time left until the next break:

Lddt
i > Ldt

i ⇔ lbni = 1

This is imposed by the following constraints:

270 lbni ≥ Lddt
i − Ldt

i ∀ i = 0, . . . , r − 1 (6.89)
lbni ≤ Lddt

i − Ldt
i ∀ i = 0, . . . , r − 1 (6.90)

Note that (6.90) induces Lddt
i ≥ Ldt

i and (6.89) ensures that the maximum difference
between Lddt

i and Ldt
i is less than or equal to 270 min = 4.5 h. Lddt

i − Ldt
i is always either

equal to zero, or greater than or equal to one, non-integer values between 0 and 1 are not
possible due to the above constraints.

1 A daily rest period has a duration of at least 9 h = 540min and the time between two weekly rest periods is at
most 24 · 6 h = 144 h = 8640min.

2 For the derivation see (f1’) and (f2’) on page 19.
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6.13 Decision variables that indicate that a break has already

been taken

Variable ebti should indicate if the daily driving time left when entering vertex i, Eddt
i , is

greater than the driving time left until the next break has to be taken, Edt
i , i.e. we wish to

achieve that

Eddt
i > Edt

i ⇔ ebti = 0.

This represented by constraints (6.91) and (6.92).

270 (1− ebti ) ≥ Eddt
i − Edt

i ∀ i = 0, . . . , r − 1 (6.91)
1− ebti ≤ Eddt

i − Edt
i ∀ i = 0, . . . , r − 1 (6.92)

In case at least one daily rest was made on arc (i, i+ 1), ebti indicates whether a break was
taken since the last daily rest period when arriving at vertex i. Similar to the last section,
non-integer values for the difference of Eddt

i and Edt
i between 0 and 1 are not possible due

to inequalities (6.91) and (6.92).

6.14 Indicator variables for early daily rests

Instead of taking a break after 4.5 hours of driving to completely use the daily driving time
until the next daily rest Lddt

i , it is also possible to prepone a daily rest period. This may
be advantageous if when leaving vertex i the daily driving time left, Lddt

i , is only slightly
larger than Ldt

i , the driving time left until the next break or rest period. If for example
Lddt
i = Ldt

i + 10, a break of a duration of 45 minutes as first resting activity on (i, i + 1)
would only allow driving for another 10 minutes. In such a case, it can be advantageous to
directly take a daily rest and to save 45 minutes to reach subsequent customer locations
earlier. In other situations, just saving 45 minutes for an additional break is the only
possibility to meet a subsequent customer time window (see for example Figure 10). It is
not meaningful to take more than two early daily rests on one arc, and if two early daily
rests are made, to have a positive effect, one of them has to be the first daily rest on that
arc. Therefore, we distinguish between two types that also may be combined:

• Type 1: The first break on arc (i, i+1) is substituted by an early daily rest (µearlydr1
(i,i+1) = 1).

• Type 2: The last break on arc (i, i+1) is substituted by an early daily rest (µearlydr2
(i,i+1) = 1)

and there are at least two daily rests on arc (i, i+ 1).

The following conditions have to hold if early daily rests of type 1 or type 2 are scheduled.
First, if no daily rest is scheduled at all on the arc (i, i+ 1), then an early daily rest does
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Figure 10: The impact of an early daily rest (µearlydr2
(1,2) = 1)

not take place. If an early daily rest of type 2 is scheduled, there have to be at least two
daily rest periods on the corresponding arc.

αrest
(i,i+1) = 0⇒ µearlydr1

(i,i+1) = 0

Arest
(i,i+1) < 2⇒ µearlydr2

(i,i+1) = 0

The above conditions are expressed by the following constraints:

µearlydr1
(i,i+1) ≤ αrest

(i,i+1) ∀ i = 0, . . . , r − 2 (6.93)

µearlydr2
(i,i+1) ≤ Arest

(i,i+1) − αrest
(i,i+1) ∀ i = 0, . . . , r − 2 (6.94)

If Lddt
i = Ldt

i then lbni = 0 (because of (6.89) and (6.90)), this means that no break is
necessary to completely use Lddt

i . In this case, the subsequent daily rest period on arc
(i, i+ 1) (if there has to be one) has to be a regular daily rest. No early daily rest of type
1 can be scheduled. Therefore,

lbni = 0⇒ µearlydr1
(i,i+1) = 0
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We obtain the following constraints:

µearlydr1
(i,i+1) ≤ lbni ∀ i = 0, . . . , r − 2 (6.95)

6.15 Vertex activity constraints

The vertex activity constraints generally limit possible activities and their combinations
in a vertex.

In vertex 0, we decide to set waiting time to be zero (see (6.96)), as there is no time
window:

∆wait
0 = 0 (6.96)

Moreover, solutions with waiting time ∆wait
0 greater than zero would be equivalent (w.r.t.

the objective function value) to solutions with waiting time in the following vertex in case
no daily rest periods on arc (0, 1) were scheduled. If a daily rest period is taken on this
arc, it may be extended accordingly.

If a break or daily rest period (full or partial) has not started yet, it may be postponed to
the following arc (0, 1). Thus, to reduce the solution space, we add the constraints

αbreak
0 = 0 and αpbreak

0 = 0 if ubt = 0 (6.97)

αrest
0 = 0 and αprest

0 = 0 if urt = 0 (6.98)

and thereby prohibit starting a new rest period or break.

There is no clear rule concerning the time between a daily rest period and a partial break or
partial rest. We assume that it is not desired by the legislator that these resting activities
are scheduled directly in series and do only allow one resting activity per vertex:

αrest
i + αbreak

i + αpbreak
i + αprest

i − µprest
i ≤ 1 ∀ i = 0, . . . , r − 1 (6.99)

If a break is substituted by a partial daily rest period (αprest
i = 1 ∧ µprest

i = 1) on
arc (i − 1, i), then a partial break for a driving time extension on a subsequent arc may
be advantageous in contrast to the resting activities αbreak

i = 1 or αrest
i = 1. We add

constraints (6.100) to further reduce the solution space.

αrest
i + αbreak

i + αprest
i ≤ 1 ∀ i = 0, . . . , r − 1 (6.100)
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6.16 Get status constraints

The driver starts at vertex 0 with a certain status, which depends on former activities.1
The time left until the next daily rest (Et

0) depends on the time elapsed since the end of the
last daily rest. The daily driving time left until the next daily rest (Eddt

0 ) depends on the
current daily driving time and the time left until the next daily rest period. The driving
time left until the next break or daily rest period (Edt

0 ) depends on the uninterrupted
current driving time, the overall time spent driving since the last daily rest and the time
left until the next daily rest. In addition, each of the status variables is influenced by
a decision about a reduced daily rest period (µdredrest

0 = 1) and by a daily rest period
scheduled in vertex 0.

The time left until the next daily rest has to be taken (Et
0) depends on the time spent since

the last daily rest period ptr and if a first partial rest was already made (hpr = 1) in case
no reduced daily rest period is taken in vertex 0.

As it may be the case that ptr is larger than actually allowed, 780− ptr+ 120 hpr may be
less than zero. The following logical condition takes this into account:

µdredrest
0 = 0⇒ Et

0 = max{780− ptr + 120 hpr, 0}

For our model, we obtain constraints (6.101) and (6.102).

Et
0 ≤ max{780− ptr + 120 hpr, 0}+ 120 µdredrest

0 (6.101)
Et

0 ≥ max{780− ptr + 120 hpr, 0} (6.102)

If a reduced daily rest is planned after leaving vertex 0 (µdredrest
0 = 1), we have to differ-

entiate between two cases. In case one, no daily rest is made in 0. In that case, two hours
are added to Et

0 to be able to already use the additional time for activities in vertex 0. In
case two, a daily rest period is taken in 0. In that case, two hours are added to Lt

0 as the
time left until the next rest period is reset by the daily rest period taken. The following
two conditions must hold:

(µdredrest
0 = 1 ∧ αrest

0 = 0)⇒ Et
0 = max{900− ptr, 0}

(µdredrest
0 = 1 ∧ αrest

0 = 1)⇒ Et
0 = max{780− ptr, 0}

The following constraints enforce the above conditions:

Et
0 ≤ max{780− ptr + 120 hpr, 0}+ 120 (1− αrest

0 ) (6.103)
Et

0 ≤ max{900− ptr, 0} (6.104)
Et

0 ≥ max{900− ptr, 0} − 120 (1− µdredrest
0 )− 120 αrest

0 (6.105)

Note that a reduced daily rest period will not be taken if a second partial rest can be made
instead (see constraints (6.46) on page 36).

1 See page 14 for a short description of the status variables.
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Now, the daily driving time left until the next daily rest (Eddt
0 ) can be determined. Eddt

0

depends on the driving time already used since the last daily rest and a potential driving
time extension. In addition, Eddt

0 is bounded from above by the time left until the next
daily rest period Et

0. We obtain the following conditions:

(µdredrest
0 = 0 ∨ αrest

0 = 1)

⇒Eddt
0 = max{min{540 + 60 dte− ddt, 780− ptr + 120 hpr}, 0}

(µdredrest
0 = 1 ∧ αrest

0 = 0)

⇒Eddt
0 = max{min{540 + 60 dte− ddt, 900− ptr}, 0}

By using the big-M approach and considering the fact that the different cases may only
differ by at most 120 minutes as far as the decision about a reduced daily rest period
µdredrest
0 is concerned, we add the following constraints to our model:

Eddt
0 ≤ max{min{540 + 60 dte− ddt, 780− ptr + 120 hpr}, 0}

+ 120 µdredrest
0 (6.106)

Eddt
0 ≥ max{min{540 + 60 dte− ddt, 780− ptr + 120 hpr}, 0} (6.107)

Eddt
0 ≤ max{min{540 + 60 dte− ddt, 780− ptr + 120 hpr}, 0}

+ 120 (1− αrest
0 ) (6.108)

Eddt
0 ≤ max{min{540 + 60 dte− ddt, 900− ptr, 0} (6.109)

Eddt
0 ≥ max{min{540 + 60 dte− ddt, 900− ptr, 0}

− 120 (1− µdredrest
0 )− 120 αrest

0 (6.110)

The last continuous status variable to be determined for vertex 0 is Edt
0 . In addition to

the dependencies on Et
0 and Eddt

0 , the driving time since the last break or rest period, udt,
needs to be considered:

(µdredrest
0 = 0 ∨ αrest

0 = 1)

⇒Edt
0 = max{min{270− udt, 540 + 60 dte− ddt, 780− ptr + 120 hpr}, 0}

(µdredrest
0 = 1 ∧ αrest

0 = 0)

⇒Edt
0 = max{min{270− udt, 540 + 60 dte− ddt, 900− ptr}, 0}
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We add the following constraints to our model:

Edt
0 ≤ max{min{270− udt, 540 + 60 dte− ddt, 780− ptr + 120 hpr}, 0}

+ 120 µdredrest
0 (6.111)

Edt
0 ≥ max{min{270− udt, 540 + 60 dte− ddt, 780− ptr + 120 hpr}, 0} (6.112)

Edt
0 ≤ max{min{270− udt, 540 + 60 dte− ddt, 780− ptr + 120 hpr}, 0}

+ 120 (1− αrest
0 ) (6.113)

Edt
0 ≤ max{min{270− udt, 540 + 60 dte− ddt, 900− ptr}, 0} (6.114)

Edt
0 ≥ max{min{270− udt, 540 + 60 dte− ddt, 900− ptr}, 0}
− 120(1− µdredrest

0 )− 120 αrest
0 (6.115)

6.17 Continuous driver status variables when entering a vertex

The driver status variables when entering vertex i+1 (Edt
i+1, Eddt

i+1 and Et
i+1) are determined

based on the driver status variables when leaving vertex i and the driver activities on arc
(i, i + 1). Driver activities on arcs include resting, taking a break and driving. If a first
partial daily rest or break has been taken in a preceding vertex, second partial rests and
breaks can be scheduled. The interrelation of status variables and activities on arcs is
shown in Figure 5 on page 13.

The constraints in this section serve two purposes. One is to determine the necessary
number, duration and timing of rest periods and breaks for traversing an arc (i, i + 1)
depending on the driver status Ldt

i , Lddt
i and Lt

i when leaving i. The second purpose is the
determination of the resulting driver status, Edt

i , Eddt
i and Et

i when entering vertex i+1.

We introduce variable λ5i to indicate if a driving time extension of one complete hour before
the first daily rest period (if there is one) on arc (i, i+1) is possible, without exceeding the
time left until the next rest period (Lt

i). In case no driving time extension is considered on
arc (i, i+ 1) before the first daily rest period, λ5i is set to be equal to 1.

(µextd1
(i,i+1) = 1 ∧ Lt

i > Lddt
i + 60 + 45 lbni + 45− 15 µupbreak

(i,i+1) )⇒ λ5i = 1

(µextd1
(i,i+1) = 1 ∧ Lt

i < Lddt
i + 60 + 45 lbni + 45− 15 µupbreak

(i,i+1) )⇒ λ5i = 0

µextd1
(i,i+1) = 0⇒ λ5i = 1

In case that Lt
i = Lddt

i + 60 + 45 lbni + 45 − 15 µupbreak
(i,i+1) and µextd1

(i,i+1) = 1, λ5i will not be
uniquely determined. This causes no problem as the corresponding constraints in that
case will yield the same variable values for Edt

i or Eddt
i , no matter if λ5i = 1 or λ5i = 0.1 We

1 See Section 6.1.2, page 18 for a more detailed description.
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use the big-M approach to represent the above statements.

270 λ5i ≥ Lt
i − Lddt

i − 60− 45 lbni − 45 + 15 µupbreak
(i,i+1)

− 270 (1− µextd1
(i,i+1)) ∀ i = 0, . . . , r − 2 (6.116)

150 (λ5i − 1) ≤ Lt
i − Lddt

i − 60− 45 lbni − 45 + 15 µupbreak
(i,i+1)

+ 150 (1− µextd1
(i,i+1)) ∀ i = 0, . . . , r − 2 (6.117)

λ5i ≥ 1− µextd1
(i,i+1) ∀ i = 0, . . . , r − 2 (6.118)

Because of having a maximum difference of 900− 540 = 360 minutes for Lt
i − Lddt

i , we set
M to 360− 60− 45 + 15 = 270 in inequalities (6.116). Knowing that Lt

i ≥ Lddt
i , we choose

M to be 60 + 45 + 45 = 150 in constraints (6.117).

6.17.1 Driving time left until the next break or rest

We will now determine Edt
i+1, the driving time left until the next break or daily rest period

when entering vertex i. The value of this variable depends on the driver status when
leaving the preceding vertex i and the driver activities scheduled for arc (i, i+ 1).

We have to differentiate between different cases when setting the value of Edt
i+1 depending

on

• the driver status Ldt
i when leaving the previous vertex

• if an early daily rest period is taken as the first resting activity on arc (i, i+ 1)1 ,

• the value of λ5i and

• if a break is scheduled on the arc (i, i+ 1).

Breaks and daily rest periods scheduled on the arc (i, i + 1) "extend" the driving time
allowed until the next break or daily rest period starting with the value of the status
variable Edt

i . In most instances, each rest period or break allows 4.5 hours of additional
driving to traverse the arc (i, i + 1). An exception can be the first resting activity on an
arc if it is a break. The time left until the next daily rest period (Lt

i) may, due to waiting,
loading and unloading activities in the past, not suffice to schedule another 4.5 hours of
driving after this break. Another exception is a break that is taken for daily driving time
extension which may extend the daily driving time by one hour (from 9 to a maximum of
10 hours). If such a break is made before the first daily rest period on that arc, it may be
the case that the extension is less than 60 minutes as the maximum daily driving time is
bounded from above by the maximum time between two consecutive daily rest periods.

Let us first determine the driving time left if no early daily rest is made as first resting
activity (µearlydr1

(i,i+1) = 0) and either a complete driving time extension of 60 minutes is
possible before the first daily rest on arc (i, i + 1) or such a driving time extension is not

1 Decision variables for early daily rests: see (6.93) - (6.94) on page 47.
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made (λ5i = 1). In addition, we demand that at least one break is necessary to traverse arc
(i, i+ 1).

(µearlydr1
(i,i+1) = 0 ∧ λ5i = 1 ∧ αbreak

(i,i+1) = 1)

⇒Edt
i = Lddt

i + 270 Abreak
(i,i+1) − 270 lbni + 270 Arest

(i,i+1) − ∆̄drive
(i,i+1)

− 210 µextd1
(i,i+1) − 210 µextd2

(i,i+1) − 210 µextd3
(i,i+1)

If the first resting activity on arc (i, i+1) is a break (αbreak
(i,i+1) = 1∧ lbni = 1∧µearlydr1

i = 0), it
may be the case that Lddt

i < Ldt
i + 270, as Lddt

i is bounded from above by the time left until
the next daily rest Lt

i, which is influenced by former servicing and waiting times.1 The
first break then serves to completely use Lddt

i , i.e. it extends the driving time by Lddt
i −Ldt

i .
Therefore, 270 minutes (270 lbni ) need to be subtracted. In addition, 210 minutes need
to be subtracted for each extended daily driving time, as the corresponding breaks only
extend driving by 60, not by 270 minutes.

If a daily driving time extension (µextd1
(i,i+1) = 1) is used and λ5i = 0, then the remaining daily

driving time depends on the time left until the next daily rest is necessary (Lt
i) minus 45

minutes for the break needed for the driving time extension minus 45 minutes if Lddt
i > Ldt

i

(lbni = 1) plus 15 minutes if a partial break has already been taken.

λ5i = 0

⇒ Edt
i+1 = Lt

i + 270 Abreak
(i,i+1) − 270− 45− 270 lbni − 45 lbni + 15 µupbreak

(i,i+1)

+ 270 Arest
(i,i+1) − ∆̄drive

(i,i+1) − 210 µextd2
(i,i+1) − 210 µextd3

(i,i+1)

If an early daily rest period is scheduled (i.e. µearlydr1
(i,i+1) = 1), the first resting activity on arc

(i, i + 1) is a daily rest period which "extends" the driving time until the next break or
rest period Ldt

i by 4.5 hours.

µearlydr1
(i,i+1) = 1

⇒Edt
i+1 = Ldt

i + 270 Abreak
(i,i+1) + 270 Arest

(i,i+1) − ∆̄drive
(i,i+1) − 210 µextd2

(i,i+1) − 210 µextd3
(i,i+1)

For the case that no break is made on arc (i, i+1), we simply obtain the logical condition

αbreak
(i,i+1) = 0⇒ Edt

i+1 = Ldt
i + 270 Arest

(i,i+1) − ∆̄drive
(i,i+1)

Reformulating the above conditions by using the big-M approach and integrating upper
and lower bounds we obtain the following linear constraints:

Edt
i+1 ≤ Lddt

i + 270 Abreak
(i,i+1) − 270 lbni + 270 Arest

(i,i+1) − ∆̄drive
(i,i+1)

− 210 µextd1
(i,i+1) − 210 µextd2

(i,i+1) − 210 µextd3
(i,i+1)

+ 480 µearlydr1
(i,i+1) + 480 (1− αbreak

(i,i+1)) + 480 (1− λ5i )

1 Another reason may be that a break in a preceding vertex was taken after less than 4.5 hours of driving.
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∀ i = 0, . . . , r − 2 (6.119)
Edt

i+1 ≥ Lddt
i + 270 Abreak

(i,i+1) − 270 lbni + 270 Arest
(i,i+1) − ∆̄drive

(i,i+1)

− 210 µextd1
(i,i+1) − 210 µextd2

(i,i+1) − 210 µextd3
(i,i+1)

− 630 (1− λ5i )
∀ i = 0, . . . , r − 2 (6.120)

Edt
i+1 ≤ Lt

i + 270 Abreak
(i,i+1) − 270− 45− 270 lbni − 45 lbni + 15 µupbreak

(i,i+1)

+ 270 Arest
(i,i+1) − ∆̄drive

(i,i+1) − 210 µextd2
(i,i+1) − 210 µextd3

(i,i+1)

+ 630 λ5i
∀ i = 0, . . . , r − 2 (6.121)

Edt
i+1 ≥ Lt

i + 270 Abreak
(i,i+1) − 270− 45− 270 lbni − 45 lbni + 15 µupbreak

(i,i+1)

+ 270 Arest
(i,i+1) − ∆̄drive

(i,i+1) − 210 µextd2
(i,i+1) − 210 µextd3

(i,i+1)

− 270 λ5i
∀ i = 0, . . . , r − 2 (6.122)

Edt
i+1 ≤ Ldt

i + 270 Abreak
(i,i+1) + 270 Arest

(i,i+1) − ∆̄drive
(i,i+1)

− 210 µextd2
(i,i+1) − 210 µextd3

(i,i+1)

∀ i = 0, . . . , r − 2 (6.123)
Edt

i+1 ≥ Ldt
i + 270 Abreak

(i,i+1) + 270 Arest
(i,i+1) − ∆̄drive

(i,i+1)

− 210 µextd2
(i,i+1) − 210 µextd3

(i,i+1)

− 1110 (1− µearlydr1
(i,i+1) )

∀ i = 0, . . . , r − 2 (6.124)
Edt

i+1 ≥ Ldt
i + 270 Arest

(i,i+1) − ∆̄drive
(i,i+1)

∀ i = 0, . . . , r − 2 (6.125)

Constraints (6.123) set an upper bound for Edt
i+1. Therefore, no big-M terms are needed

for these constraints. Lower bounds on Edt
i+1 are imposed by constraints (6.120) in case

λ5i = 1 and by constraints (6.122) if λ5i = 0. Accordingly, M is chosen for the remaining
constraints such that they become redundant if the corresponding conditions do not hold.
Often, the following dependencies are used:

• Ldt
i ≤ Lddt

i ≤ Lt
i ∀ i = 0, . . . , r − 1

• Lt
i ≤ Lddt

i + 360 ∀ i = 0, . . . , r − 1

Big-M terms are always shown on the right-hand side of the constraint and appear at the
end.

Finally, we demand that no break is made if it is not necessary. That means, if Ldt
i >

∆̄drive
(i,i+1), then no break is scheduled.

Ldt
i > ∆̄drive

(i,i+1) ⇒ αbreak
(i,i+1) = 0
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This is guaranteed by

270 (1− αbreak
(i,i+1)) ≥ Ldt

i − ∆̄drive
(i,i+1) ∀ i = 0, . . . , r − 2 (6.126)

6.17.2 Daily driving time left

Now, the driving time left until the next daily rest period when entering vertex i, Eddt
i , will

be determined. Similarly as in the last section, rest periods are considered to "extend" the
driving time allowed until the next daily rest period starting with the value of the status
variable Eddt

i . Each daily rest period allows 9 hours of additional driving to traverse the arc
(i, i + 1). Each extended daily driving time allows one additional hour of driving, except
for the case that the daily driving time is extended before the first daily rest is taken (if
one is taken) on arc (i, i + 1), as Lt

i, the time left until the next daily rest period when
leaving vertex i may not suffice to schedule another 60 minutes of driving. An early daily
rest as first resting activity (µearlydr1

(i,i+1) = 1) reduces the driving time until the next daily
rest period from Lddt

i to Ldt
i , an early daily rest as last resting activity reduces the driving

time between the last two daily rest periods on arc (i, i+ 1) from 9 to 4.5 hours.

At first, let us set the logical condition for the case in which a driving time extension before
the first daily rest period (if one is scheduled) is possible, without exceeding Lt

i (λ5i = 1)
and no early daily rest period as first resting activity is scheduled (µearlydr1

(i,i+1) = 0):

(µearlydr1
(i,i+1) = 0 ∧ λ5i = 1)

⇒Eddt
i+1 = Lddt

i + 540 Arest
(i,i+1) − 270 µearlydr2

(i,i+1) − ∆̄drive
(i,i+1)

+ 60 µextd1
(i,i+1) + 60 µextd2

(i,i+1) + 60 µextd3
(i,i+1)

The next condition considers the case that a driving time extension is scheduled before the
first daily rest period, but the time Lt

i does not suffice to schedule another 60 minutes of
driving.1

λ5i = 0

⇒Eddt
i+1 = Lt

i − 45 lbni − 45 + 15 µupbreak
(i,i+1) + 540 Arest

(i,i+1) − 270 µearlydr2
(i,i+1) − ∆̄drive

(i,i+1)

+ 60 µextd2
(i,i+1) + 60 µextd3

(i,i+1)

In case an early daily rest period is the first resting activity on arc (i, i+ 1) (µearlydr1
(i,i+1) = 1),

a driving time extension before the first daily rest period is not possible. We obtain the
logical condition

µearlydr1
(i,i+1) = 1

⇒Eddt
i+1 = Ldt

i + 540 Arest
(i,i+1) − 270 µearlydr2

(i,i+1) − ∆̄drive
(i,i+1) + 60 µextd2

(i,i+1) + 60 µextd3
(i,i+1)

1 Note that in this case µearlydr1
i = 0 because of (6.118) on page 52 and (6.54) on page 39.
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Again, we reformulate the above conditions by using the big-M approach, integrate upper
and lower bounds, and obtain the following linear constraints:

Eddt
i+1 ≤ Lddt

i + 540 Arest
(i,i+1) − 270 µearlydr2

(i,i+1) − ∆̄drive
(i,i+1)

+ 60 µextd1
(i,i+1) + 60 µextd2

(i,i+1) + 60 µextd3
(i,i+1)

∀ i = 0, . . . , r − 2 (6.127)

Eddt
i+1 ≥ Lddt

i + 540 Arest
(i,i+1) − 270 µearlydr2

(i,i+1) − ∆̄drive
(i,i+1)

+ 60 µextd1
(i,i+1) + 60 µextd2

(i,i+1) + 60 µextd3
(i,i+1)

− 330 µearlydr1
(i,i+1) − 330 (1− λ5i )

∀ i = 0, . . . , r − 2 (6.128)

Eddt
i+1 ≤ Lt

i − 45 lbni − 45 + 15 µupbreak
(i,i+1) + 540 Arest

(i,i+1) − 270 µearlydr2
(i,i+1) − ∆̄drive

(i,i+1)

+ 60 µextd2
(i,i+1) + 60 µextd3

(i,i+1)

+ 150 λ5i
∀ i = 0, . . . , r − 2 (6.129)

Eddt
i+1 ≥ Lt

i − 45 lbni − 45 + 15 µupbreak
(i,i+1) + 540 Arest

(i,i+1) − 270 µearlydr2
(i,i+1) − ∆̄drive

(i,i+1)

+ 60 µextd2
(i,i+1) + 60 µextd3

(i,i+1)

− 600 λ5i
∀ i = 0, . . . , r − 2 (6.130)

Eddt
i+1 ≤ Ldt

i + 540 Arest
(i,i+1) − 270 µearlydr2

(i,i+1) − ∆̄drive
(i,i+1)

+ 60 µextd2
(i,i+1) + 60 µextd3

(i,i+1)

+ 330 (1− µearlydr1
(i,i+1) )

∀ i = 0, . . . , r − 2 (6.131)

Eddt
i+1 ≥ Ldt

i + 540 Arest
(i,i+1) − 270 µearlydr2

(i,i+1) − ∆̄drive
(i,i+1)

+ 60 µextd2
(i,i+1) + 60 µextd3

(i,i+1)

∀ i = 0, . . . , r − 2 (6.132)

Constraints (6.127) and (6.132) impose upper and lower bounds on Eddt
i , respectively.

Therefore, no big-M terms are needed for these constraints. Accordingly, M is chosen
for the remaining constraints such that they become redundant when the corresponding
conditions do not hold. The following bounds are used:

• Ldt
i ≤ Lddt

i ≤ Lt
i ∀ i = 0, . . . , r − 1

• Lt
i ≤ Ldt

i + 630 ∀ i = 0, . . . , r − 1

• Lddt
i ≤ Ldt

i + 270 ∀ i = 0, . . . , r − 1 (see (6.89) on page 45)

Again, big-M terms always appear at the end of the corresponding inequalities. Addition-
ally, we demand that the driving time left until the next daily rest period or break is less
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than or equal to the daily driving time left:

Edt
i ≤ Eddt

i ∀ i = 0, . . . , r − 1 (6.133)

6.17.3 Maximum time until the next daily rest period

When traveling long distances, often, reaching the maximum daily driving time allowed
forces a new daily rest period and the time between two daily rest periods is less than
24− 11 = 13 or 24− 9 = 15 hours, respectively.

The time left until the next daily rest period when entering vertex i (i.e. Et
i ) can be derived

from the daily driving time left until the next rest period Eddt
i in case at least one daily rest

period was taken on arc (i, i + 1). Otherwise, Et
i depends on the status when leaving the

preceding vertex i and the overall duration of activities when traversing the arc (i, i + 1).
In addition, we have to consider if a daily rest period is taken in vertex i + 1. If the next
daily rest period after leaving vertex i+1 is planned to be a reduced one (ldredresti+1 = 1) and
a daily rest is made in i+ 1, this will only affect Lt

i+1, the time left until the next daily rest
period when leaving vertex i + 1. If no daily rest is made in i + 1 and a daily rest period
was taken on arc (i, i+ 1), Et

i needs to be modified in case that µdredrest
i+1 = 1.1

Let us first consider the case that at least one daily rest period is taken on arc (i, i + 1)
and no daily rest period is scheduled for vertex i + 1. The time left until the next daily
rest period when entering vertex i + 1 exceeds the daily driving time left until the next
period by 13 h − 9 h = 240 min, minus 45 minutes if a break has already been taken since
the last daily rest period on arc (i, i + 1) (ebti+1 = 1) plus 2 h = 120min if the next daily
rest will be a reduced one (ldredresti+1 = 1) minus 60 + 45 = 105 minutes if an extended daily
driving time (µextd3

(i,i+1) = 1) was scheduled since the last daily rest period.

(αrest
(i,i+1) = 1 ∧ αrest

i+1 = 0)

⇒Et
i+1 = Eddt

i+1 + 240− 45 ebti+1 + 120 ldredresti+1 − 105 µextd3
(i,i+1)

In the case that a daily rest period is taken in vertex i + 1, the decision about the next
daily rest period being a reduced one only influences Lt

i+1 but not Et
i+1.

(αrest
(i,i+1) = 1 ∧ αrest

i+1 = 1)⇒ Et
i+1 = Eddt

i+1 + 240− 45 ebti+1 − 105 µextd3
(i,i+1)

If no daily rest period was taken on the arc (i, i+ 1), we obtain

αrest
(i,i+1) = 0

⇒Et
i+1 = Lt

i − ∆̄drive
(i,i+1) − 45 Abreak

(i,i+1) + 15 µupbreak
(i,i+1)

We add the following linear constraints to our model:

Et
i+1 ≤ Eddt

i+1 + 240− 45 ebti+1 + 120 ldredresti+1 − 105 µextd3
(i,i+1)

1 Recall that by constraints (6.41) a decision about a reduced rest period µdredrest
i is linked with a daily rest period

on the preceding arc or vertex.
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∀ i = 0, . . . , r − 2 (6.134)
Et

i+1 ≥ Eddt
i+1 + 240− 45 ebti+1 + 120 ldredresti+1 − 105 µextd3

(i,i+1)

− 900 αrest
i+1 − 900 (1− αrest

(i,i+1))

∀ i = 0, . . . , r − 2 (6.135)
Et

i+1 ≤ Eddt
i+1 + 240− 45 ebti+1 − 105 µextd3

(i,i+1)

+ 120 (1− αrest
i+1 ) + 120 (1− αrest

(i,i+1))

∀ i = 0, . . . , r − 2 (6.136)
Et

i+1 ≥ Eddt
i+1 + 240− 45 ebti+1 − 105 µextd3

(i,i+1)

− 780 (1− αrest
(i,i+1))

∀ i = 0, . . . , r − 2 (6.137)

Et
i+1 ≤ Lt

i − ∆̄drive
(i,i+1) − 45 Abreak

(i,i+1) + 15 µupbreak
(i,i+1)

+ (1200 +
7

6
∆̄drive

(i,i+1)) α
rest
(i,i+1)

∀ i = 0, . . . , r − 2 (6.138)

Et
i+1 ≥ Lt

i − ∆̄drive
(i,i+1) − 45 Abreak

(i,i+1) + 15 µupbreak
(i,i+1)

∀ i = 0, . . . , r − 2 (6.139)

Constraints (6.134) and (6.139) impose upper and lower bounds on Et
i+1, respectively.

Additional lower and upper bounds that are used for determining appropriate big-M’s
are:

• 0 ≤ Eddt
i+1 ≤ 540

• 0 ≤ Lt
i+1 ≤ 900

For determining an appropriate M for (6.138), we first calculate an upper bound for the
number of breaks on arc (i, i+ 1). Therefore, recall (6.120) on page 54:

Edt
i+1 ≥ Lddt

i + 270 Abreak
(i,i+1) − 270 lbni + 270 Arest

(i,i+1) − ∆̄drive
(i,i+1)

− 210 µextd1
(i,i+1) − 210 µextd2

(i,i+1) − 210 µextd3
(i,i+1) − 630 (1− λ5i )

⇒

270 Abreak
(i,i+1) + 270 Arest

(i,i+1) ≤ Edt
i+1 + 270 lbn + ∆̄drive

(i,i+1) + 210 µextd1
(i,i+1) + 210 µextd2

(i,i+1)

+ 210 µextd3
(i,i+1) + 630 (1− λ5i )

⇒

270 Abreak
(i,i+1) ≤ 2 · 270 + ∆̄drive

(i,i+1) + 3 · 210 + 630

⇔

Abreak
(i,i+1) ≤

1800 + ∆̄drive
(i,i+1)

270
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We set M = 1200 + 7
6
∆̄drive

(i,i+1) and derive:

M = 1200 +
7

6
∆̄drive

(i,i+1)

⇔M = 900 + ∆̄drive
(i,i+1) + 45 ·

1800 + ∆̄drive
(i,i+1)

270
⇒M ≥ Et

i+1 − Lt
i + ∆̄drive

(i,i+1) + 45 Abreak
(i,i+1)

⇔Et
i+1 ≤ Lt

i − ∆̄drive
(i,i+1) − 45 Abreak

(i,i+1) +M

⇒Et
i+1 ≤ Lt

i − ∆̄drive
(i,i+1) − 45 Abreak

(i,i+1) + 15 µupbreak
(i,i+1) +M

So,M = 1200+ 7
6
∆̄drive

(i,i+1) is an appropriate choice, as constraints (6.138) become redundant
in case daily rest periods are scheduled on the corresponding arcs (i, i+ 1).

6.18 Continuous driver status variables when leaving a vertex

The driver status when leaving vertex i results from the driver status when entering vertex
i and the driver activities in vertex i. Driver activities include resting (partially, full or
reduced), taking a break (partially or full), waiting and loading/unloading goods. This
interrelation is shown in Figure 4 on page 13.

In addition, in case a daily rest period is taken in vertex i, the decision about the next daily
rest period being a reduced one has to be taken into account. The two status variables Lddt

i

for the daily driving time left and Ldt
i for the driving time left until the next break when

leaving vertex i are bounded from above by Lt
i, the maximum time allowed until the next

daily rest period when leaving vertex i. So we start with the discussion of the constraints
concerning Lt

i.

Driver activities in vertices are scheduled applying the rule that a resting activity is finished
first before waiting and afterward loading and/or unloading goods may start.

6.18.1 Time left until the next daily rest period

For determining Lt
i, the time left until the next daily rest period when leaving vertex i, we

have to consider two cases:

• Case 1: A daily rest period is taken in vertex i.

• Case 2: No daily period is taken in vertex i.

In the first case, the time left until the next daily rest period equals 13 hours or 15 hours
in case the next daily rest period is planned to be a reduced one, minus waiting time and
minus the time needed for loading or unloading.

αrest
i = 1⇒ Lt

i = 780 + 120 ldredresti −∆wait
i − ∆̄service

i
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In the second case we have to consider Et
i , the status when entering vertex i 6= 0, and

additionally all other activities that are possible in a vertex. Note that if a first partial
daily rest period is made, 3 + 9 = 12 hours have to be subtracted from the 24 hours time
interval for the complete daily rest period to obtain the time for the other activities in this
time interval.1 As one additional hour is needed for the daily rest period if it is split, 60
minutes are subtracted. The opportunity of substituting2 the last break on arc (i − 1, i)
by a first partial daily rest period (µprest

i = 1) is also taken into account. In that case, the
first partial daily rest period migrates from vertex i to the arc (i− 1, i) and it substitutes
a break.

αrest
i = 0⇒ Lt

i = Et
i − ∆̄service

i − 45 αbreak
i + 15 µupbreak

i − 15 αpbreak
i

− 60 αprest
i + 45 µprest

i −∆wait
i

In vertex 0, a (partial) break or a (first partial) daily rest period may take place or may
be continued:

αrest
0 = 0⇒ Lt

0 = Et
0 − (45−min(45, ubt+ 15 hpb)) αbreak

0

− (15−min(15, ubt)) αpbreak
0 − (60−min(60, urt)) αprest

0

Reformulating the above conditions by using the big-M approach and integrating upper
and lower bounds we obtain the following linear constraints:

Lt
i ≤ 780 + 120 ldredresti −∆wait

i − ∆̄service
i ∀ i = 0, . . . , r − 1 (6.140)

Lt
i ≥ 780 + 120 ldredresti −∆wait

i − ∆̄service
i

− 900 (1− αrest
i )

∀ i = 0, . . . , r − 1 (6.141)

Lt
i ≤ Et

i − ∆̄service
i − 45 αbreak

i + 15 µupbreak
i − 15 αpbreak

i − 60 αprest
i

+ 45 µprest
i −∆wait

i

+ 1020 αrest
i

∀ i = 1, . . . , r − 1 (6.142)

Lt
i ≥ Et

i − ∆̄service
i − 45 αbreak

i + 15 µupbreak
i − 15 αpbreak

i − 60 αprest
i

+ 45 µprest
i −∆wait

i

∀ i = 1, . . . , r − 1 (6.143)

Lt
0 ≤ Et

0 − (45−min(45, ubt+ 15 hpb)) αbreak
0 − (15−min(15, ubt)) αpbreak

0

− (60−min(60, urt)) αprest
0

+ 1020 αrest
0 (6.144)

Lt
0 ≥ Et

0 − (45−min(45, ubt+ 15 hpb))αbreak
0 − (15−min(15, ubt)) αpbreak

0

− (60−min(60, urt)) αprest
0 (6.145)

1 See rule 6 and optional rule 2 on page 6.
2 See also page 32.
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Constraints (6.140), (6.143) and (6.145) impose lower and upper bounds on Lt
i. Addition-

ally, Lt
i ≤ 900 and Et

i ≤ 900 has to hold. Big-M’s for the other constraints were determined
accordingly.

6.18.2 Daily driving time left

A set of auxiliary decision variables is needed to determine the driving time left until the
next daily rest period, Lddt

i , that will now be introduced. We use the following bounds in
conjunction with the big-M approach to set the corresponding constraints:

• 0 ≤ Lt
i ≤ 900

• 0 ≤ Eddt
i ≤ 540

• 0 ≤ Edt
i ≤ 270

The auxiliary decision variable λ1i indicates if there is not enough time to take a break on
arc (i, i + 1) and completely use the daily driving time left (including a potential driving
time extension), in case no daily rest period was made or to take a break and drive 540min
in total in case a daily rest was made. If λ1i = 0 and no rest was taken, the time until the
next daily rest period suffices to schedule an additional break on the next arc before the
next daily rest period starts even if no such break is actually needed. Hence, the following
conditions must hold:

(αrest
i = 0 ∧ Lt

i > Eddt
i + 45− 15 lpbreaki + 60 µextd

i )⇒ λ1i = 0

(αrest
i = 0 ∧ Lt

i < Eddt
i + 45− 15 lpbreaki + 60 µextd

i )⇒ λ1i = 1

(αrest
i = 1 ∧ Lt

i > 540 + 45)⇒ λ1i = 0

(αrest
i = 1 ∧ Lt

i < 540 + 45)⇒ λ1i = 1

This is induced by:

870 (1− λ1i ) ≥ Lt
i − Eddt

i − 45 + 15 lpbreaki − 60 µextd
i − 870 αrest

i

∀ i = 0, . . . , r − 1 (6.146)

−645 λ1i ≤ Lt
i − Eddt

i − 45 + 15 lpbreaki − 60 µextd
i + 645 αrest

i

∀ i = 0, . . . , r − 1 (6.147)
315 (1− λ1i ) ≥ Lt

i − 585− 315 (1− αrest
i ) ∀ i = 0, . . . , r − 1 (6.148)

−585 λ1i ≤ Lt
i − 585 + 585 (1− αrest

i ) ∀ i = 0, . . . , r − 1 (6.149)

The auxiliary decision variable λ2i indicates if it is possible to take a break after Edt
i or

270 (in case a rest period, break or partial rest is scheduled in i) minutes of driving after
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leaving vertex i before taking the next daily rest period.

((αrest
i = 1 ∨ αbreak

i = 1 ∨ (αprest
i = 1 ∧ µprest

i = 0)) ∧ Lt
i > 315)⇒ λ2i = 0

((αrest
i = 1 ∨ αbreak

i = 1 ∨ (αprest
i = 1 ∧ µprest

i = 0)) ∧ Lt
i < 315)⇒ λ2i = 1

((αrest
i = 0 ∧ αbreak

i = 0 ∧ (αprest
i = 0 ∨ µprest

i = 1)) ∧ Lt
i > Edt

i + 45− 15 lpbreaki )

⇒ λ2i = 0

((αrest
i = 0 ∧ αbreak

i = 0 ∧ (αprest
i = 0 ∨ µprest

i = 1)) ∧ Lt
i < Edt

i + 45− 15 lpbreaki )

⇒ λ2i = 1

We add the following constraints to our model:

585 (1− λ2i ) ≥ Lt
i − 315− 585 (1− αrest

i − αbreak
i − αprest

i + µprest
i )

∀ i = 0, . . . , r − 1 (6.150)
−315 λ2i ≤ Lt

i − 315 + 315 (1− αrest
i − αbreak

i − αprest
i + µprest

i )

∀ i = 0, . . . , r − 1 (6.151)

870 (1− λ2i ) ≥ Lt
i − Edt

i − 45 + 15 lpbreaki − 870 αrest
i − 870 αbreak

i

− 870 αprest
i + 870 µprest

i

∀ i = 0, . . . , r − 1 (6.152)

−315 λ2i ≤ Lt
i − Edt

i − 45 + 15 lpbreaki + 315 αrest
i + 315 αbreak

i

+ 315 αprest
i − 315 µprest

i

∀ i = 0, . . . , r − 1 (6.153)

Note that only one resting activity per vertex is allowed if µprest
i = 0. If µprest

i = 1, a first
partial break may still be taken (see constraints (6.99) and (6.100) on page 48).

The auxiliary decision variable λ3i indicates if Edt
i or 270 minutes (in case a resting activity

was made in i) of driving until the next daily rest period are allowed due to Lt
i. Hence,

(αrest
i = 1 ∨ αbreak

i = 1 ∨ (αprest
i = 1 ∧ µprest

i = 0) ∧ Lt
i > 270)⇒ λ3i = 0

(αrest
i = 1 ∨ αbreak

i = 1 ∨ (αprest
i = 1 ∧ µprest

i = 0) ∧ Lt
i < 270)⇒ λ3i = 1

(αrest
i = 0 ∧ αbreak

i = 0 ∧ (αprest
i = 0 ∨ µprest

i = 1) ∧ Lt
i > Edt

i )⇒ λ3i = 0

(αrest
i = 0 ∧ αbreak

i = 0 ∧ (αprest
i = 0 ∨ µprest

i = 1) ∧ Lt
i < Edt

i )⇒ λ3i = 1
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The above conditions are enforced by

630 (1− λ3i ) ≥ Lt
i − 270− 630 (1− αrest

i − αbreak
i − αprest

i + µprest
i )

∀ i = 0, . . . , r − 1 (6.154)
−270 λ3i ≤ Lt

i − 270 + 270 (1− αrest
i − αbreak

i − αprest
i + µprest

i )

∀ i = 0, . . . , r − 1 (6.155)
900 (1− λ3i ) ≥ Lt

i − Edt
i − 900 αrest

i − 900 αbreak
i − 900 αprest

i + 900 µprest
i

∀ i = 0, . . . , r − 1 (6.156)
−270 λ3i ≤ Lt

i − Edt
i + 270 αrest

i + 270 αbreak
i + 270 αprest

i − 270 µprest
i

∀ i = 0, . . . , r − 1 (6.157)

Since

λ3i = 1⇒ λ2i = 1

must hold, we add the constraints

λ2i ≥ λ3i ∀ i = 0, . . . , r − 1 (6.158)

The last auxiliary decision variable λ6i is needed to check if in case that no daily rest period
is taken in i, the time left until the next daily rest period when leaving vertex i, Lt

i, is
larger than the daily driving time left when entering vertex i plus 60 minutes if a driving
time extension is used (µextd

i = 1). If a daily rest period is taken in i, λ6i is set to be equal
to 1.

(Lt
i > Eddt

i + 60 µextd
i ∧ αrest

i = 0)⇒ λ6i = 0

(Lt
i < Eddt

i + 60 µextd
i ∧ αrest

i = 0)⇒ λ6i = 1

αrest
i = 1⇒ λ6i = 1

We add the constraints:

900 (1− λ6i ) ≥ Lt
i − Eddt

i − 60 µextd
i − 900 αrest

i ∀ i = 0, . . . , r − 1 (6.159)
−540 λ6i ≤ Lt

i − Eddt
i − 60 µextd

i + 540 αrest
i ∀ i = 0, . . . , r − 1 (6.160)

λ6i ≥ αrest
i ∀ i = 0, . . . , r − 1 (6.161)

Now, we can determine the driving time left until the next daily rest period, Lddt
i , when

leaving vertex i. First of all we consider the case that λ1i = 0 and a daily rest is made in
i. The following condition must be satisfied:

(λ1i = 0 ∧ αrest
i = 1)⇒ Lddt

i = 540

As λ1i = 0, the time until the next daily rest period suffices for the maximum daily driving
time of 9 hours and a 45 minute break that has to be taken after at most 4.5 hours of
uninterrupted driving. For the case that no daily rest is made in i and λ1i = 0, we have to
impose that

(λ1i = 0 ∧ αrest
i = 0)⇒ Lddt

i = Eddt
i + 60 µextd

i
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Here, λ1i indicates that there is enough time until the next daily rest left to completely
use the daily driving time left when entering i, including a 45 minute break (no matter if
needed or not) plus 60 minutes if a driving time extension is used.

If λ1i = 1 and λ2i = 0, there is enough time to schedule 270 minutes of driving and to take a
break (second part or full) right after leaving vertex i if a resting activity that extends the
driving time until the next break or daily rest takes place in i. If no such resting activity
takes place, there is enough time to schedule Edt

i minutes of driving and a break (second
part or full). The time until the next rest period, Lt

i, does not exceed the time needed to
completely use 9 hours driving time gained by taking a daily rest period in i or to use the
daily driving time left when entering vertex i, respectively. In that case, the daily driving
time left Lddt

i when leaving i equals the time left until the next daily rest Lt
i when leaving

i minus the time needed for a break (full or second part).

(λ1i = 1 ∧ λ2i = 0)⇒ Lddt
i = Lt

i − 45 + 15 lpbreaki

If λ2i = 1 and λ3i = 0, we differentiate between the case with a resting activity that extends
the driving time in vertex i and the case without. We will first take a look at the case
with no resting activity in i. Because of λ2i = 1, the time until the next daily rest does not
suffice to schedule Eddt

i minutes of driving until the next daily rest and to take a break.
But as λ3i = 0, it follows that Edt

i ≤ Lt
i ≤ Edt

i + 45− 15 lpbreaki . That means, Edt
i minutes

of driving are possible but a break to extend the driving time is not possible, as it would
not fit in the time interval between the last and the subsequent daily rest period.

(λ2i = 1 ∧ λ3i = 0 ∧ αrest
i = 0 ∧ αbreak

i = 0 ∧ (αprest
i = 0 ∨ µprest

i = 1)⇒ Lddt
i = Edt

i

If a resting activity that extends the driving time is made in vertex i, we differentiate
between the case that λ6i = 1 and λ6i = 0. If λ6i = 1, 270 minutes of driving until the next
daily rest are possible, otherwise, Eddt

i minutes are possible plus 60 minutes if the daily
driving time is extended with a corresponding break in vertex i.

(λ2i = 1 ∧ λ3i = 0 ∧ (αrest
i = 1 ∨ αbreak

i = 1 ∨ (αprest
i = 1 ∧ µprest

i = 0)) ∧ λ6i = 1)

⇒ Lddt
i = 270

(λ2i = 1 ∧ λ3i = 0 ∧ (αrest
i = 1 ∨ αbreak

i = 1 ∨ (αprest
i = 1 ∧ µprest

i = 0)) ∧ λ6i = 0)

⇒ Lddt
i = Eddt

i + 60 µextd
i

In case λ3i = 1, the time left until the next daily rest does not suffice to drive 270 minutes,
in case a resting activity that extends the driving time was made in i. Moreover, it does
not suffice to drive Edt

i minutes in case no resting activity was made. Depending on λ6i ,
we can determine Lddt

i as follows:

(λ3i = 1 ∧ λ6i = 1)⇒ Lddt
i = Lt

i

(λ3i = 1 ∧ λ6i = 0)⇒ Lddt
i = Eddt

i + 60 µextd
i

Again, we use the big-M approach and integrate upper and lower bounds to derive linear
constraints. Redundant constraints like Lddt

i ≤ 540 are omitted.

Lddt
i ≥ 540− 540 λ1i − 540 (1− αrest

i )
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∀ i = 0, . . . , r − 1 (6.162)
Lddt
i ≤ Eddt

i + 60 µextd
i + 540 αrest

i

∀ i = 0, . . . , r − 1 (6.163)
Lddt
i ≥ Eddt

i + 60 µextd
i − 600 αrest

i − 600 λ1i
∀ i = 0, . . . , r − 1 (6.164)

Lddt
i ≤ Lt

i − 45 + 15 lpbreaki + 45 (1− λ1i ) + 45 λ2i
∀ i = 0, . . . , r − 1 (6.165)

Lddt
i ≥ Lt

i − 45 + 15 lpbreaki − 855 (1− λ1i )− 855 λ2i
∀ i = 0, . . . , r − 1 (6.166)

Lddt
i ≤ Edt

i + 540 (1− λ2i ) + 540 λ3i + 540 αbreak
i + 540 αrest

i + 540 αprest
i

− 540 µprest
i

∀ i = 0, . . . , r − 1 (6.167)
Lddt
i ≥ Edt

i − 270 (1− λ2i )− 270 λ3i − 270 αbreak
i − 270 αrest

i − 270 αprest
i

+ 270 µprest
i

∀ i = 0, . . . , r − 1 (6.168)
Lddt
i ≤ 270 + 270 (1− λ2i )

∀ i = 0, . . . , r − 1 (6.169)
Lddt
i ≥ 270− 270 (1− λ2i )− 270 λ3i − 270 (1− αbreak

i − αrest
i − αprest

i + µprest
i )

− 270 (1− λ6i )
∀ i = 0, . . . , r − 1 (6.170)

Lddt
i ≤ Eddt

i + 60 µextd
i + 540 (1− λ2i ) + 540 λ3i +

540 (1− αbreak
i − αprest

i + µprest
i ) + 540 λ6i

∀ i = 0, . . . , r − 1 (6.171)
Lddt
i ≥ Eddt

i + 60 µextd
i − 540 (1− λ2i )− 540 λ3i

− 540 (1− αbreak
i − αprest

i + µprest
i )− 540 λ6i

∀ i = 0, . . . , r − 1 (6.172)
Lddt
i ≤ Lt

i

∀ i = 0, . . . , r − 1 (6.173)
Lddt
i ≥ Lt

i − 900 (1− λ3i )− 900 (1− λ6i )
∀ i = 0, . . . , r − 1 (6.174)

Lddt
i ≥ Eddt

i + 60 µextd
i − 540 (1− λ3i )− 540 λ6i

∀ i = 0, . . . , r − 1 (6.175)
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6.18.3 Driving time left until the next break or daily rest period

Using Lddt
i as an upper bound, the driving time left until the next break or daily rest period

Ldt
i when leaving vertex i can now be easily determined.

If a resting activity was made in vertex i, Ldt
i depends on whether Lddt

i > 270 or not.
Therefore, we introduce the auxiliary variable λ4i :

Lddt
i > 270⇒ λ4i = 1

Lddt
i < 270⇒ λ4i = 0

We formulate this in our model as follows:

270 λ4i ≥ Lddt
i − 270 ∀ i = 0, . . . , r − 1 (6.176)

270 (λ4i − 1) ≤ Lddt
i − 270 ∀ i = 0, . . . , r − 1 (6.177)

With λ4i we obtain the following conditions:

(αrest
i = 1 ∨ αbreak

i = 1 ∨ (αprest
i = 1 ∧ µprest

i = 0) ∧ λ4i = 1)⇒ Ldt
i = 270

(αrest
i = 1 ∨ αbreak

i = 1 ∨ (αprest
i = 1 ∧ µprest

i = 0) ∧ λ4i = 0)⇒ Ldt
i = Lddt

i

In case no extending rest activity is made in vertex i, Edt
i depends on whether Lt

i > Edt
i

or not. In the last section, we introduced the variable λ3i that is equal to zero if Lt
i > Edt

i ,
and equal to one if Lt

i < Edt
i in case no extending rest activity is made. We obtain the

following conditions:

(αrest
i = 0 ∧ αbreak

i = 0 ∧ (αprest
i = 0 ∨ µprest

i = 1) ∧ λ3i = 1)⇒ Ldt
i = Lddt

i

(αrest
i = 0 ∧ αbreak

i = 0 ∧ (αprest
i = 0 ∨ µprest

i = 1) ∧ λ3i = 0)⇒ Ldt
i = Edt

i

These logical conditions are induced by the following constraints:

Ldt
i ≥ 270− 270 (1− λ4i )− 270 (1− αrest

i − αbreak
i − αprest

i + µprest
i )

∀ i = 0, . . . , r − 1 (6.178)
Ldt
i ≤ Lddt

i

∀ i = 0, . . . , r − 1 (6.179)
Ldt
i ≥ Lddt

i − 540 λ4i − 540 (1− αrest
i − αbreak

i − αprest
i + µprest

i )

∀ i = 0, . . . , r − 1 (6.180)
Ldt
i ≥ Lddt

i − 540 (1− λ3i )− 540 αrest
i − 540 αbreak

i − 540 αprest
i + 540 µprest

i

∀ i = 0, . . . , r − 1 (6.181)
Ldt
i ≤ Edt

i + 270 αrest
i + 270 αbreak

i + 270 αprest
i − 270 µprest

i

∀ i = 0, . . . , r − 1 (6.182)
Ldt
i ≥ Edt

i − 270 λ3i
∀ i = 0, . . . , r − 1 (6.183)



6 Mathematical formulation 67

6.19 Objective functions

The main objective is to minimize the sum of the overall lateness. The completion time, i.e.
the overall schedule duration until the last customer is serviced and the last stop is reached
is important, too. Other criteria are relevant for the quality of a solution in practice, but
are considered less important. We chose a combination of strategies for this multicriteria
optimization problem. At first, two sets were created. One for lateness and completion time
and one for all other criteria. Within both sets a trade-off strategy was chosen providing
different weights for each of the objectives. As the first set was considered to be more
important than the second one, a lexicographic ordering was done for the two sets. Two
objective functions were created from the two sets. The first one that is considered most
important is described in Section 6.19.1 and the second one is described in Section 6.19.2.

6.19.1 Objective function 1

Penalized lateness for violating time windows is minimized along with the completion
time.

Minimize startr−1 +
r−1∑
i=1

P ·∆late
i (6.184)

with P as a user-specified penalty constant.

Note that the begin of service time startr−1 is also penalized (with factor 1) in the objective
function. As we consider lateness to be the most important optimization criterion, the
penalty of 1 minute lateness is more important (i.e. has higher weight) than the penalty of
the latest completion time possible. The maximum time between two weekly rest periods
is 6 · 24 h = 8640 min. The schedule starts directly after finishing a weekly rest period
(time 0). The latest completion time startr−1 + ∆̄service

r−1 is therefore less than 8640. We set
P = 8640 neglecting the time needed for loading and/or unloading at the last customer
location, ∆̄service

r−1 .

6.19.2 Objective function 2

It is important that dispatchers and drivers agree with the schedules generated as otherwise
they will not adopt them. Different criteria that are important for the quality of a solution
and thus the compliance with the resulting schedule have not been taken into account
until now. As dispatchers, drivers and anyone else that tries to analyze the schedule would
be confused if the schedule contained, for example, unnecessary early daily rests or if
waiting time would occur even though the lower boundary of the chosen time window had
already been exceeded, such cases have to be eliminated to obtain more comprehensible
solutions. Furthermore, it may be advantageous if the solution does not exploit driving
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time extensions or reduced daily rest periods completely. This is, for example, the case if
the planning horizon does not comprise the whole week. Moreover, if unexpected events
during the execution of the plan such as traffic jams or delays in loading or unloading do
occur, using the optional rules may help to compensate the additional time needed. So the
idea is to only use optional rules if there is any benefit. In other words, not making use of
the optional rules would worsen lateness and/or completion time.

The objective function (6.185) contains different, partially conflicting, criteria needed to
meet the objectives described above. They are provided with different weights that may
be customized.

Minimize
r−1∑
i=1

nTW∑
z=0

10 (z + r − i) twiz +
r−1∑
i=0

starti

+
r−2∑
i=0

10 (r − i) (µearlydr1
(i,i+1) + µearlydr2

(i,i+1) )

+
r−1∑
i=0

10 (r − i) (αpbreak
i + αprest

i )

+
r−1∑
i=0

20 ∆wait
i

+
r−2∑
i=0

30 (r − i) µredrest
(i,i+1) +

r−1∑
i=0

40 (r − i) µredrest
i

+
r−2∑
i=0

50 (r − i) µextd2
(i,i+1) + 60 (r − i) µextd1

(i,i+1) + 60 (r − i) µextd3
(i,i+1)

+
r−1∑
i=0

60 (r − i) µextd
i (6.185)

Note that penalizing waiting time has the positive side effect that daily rest periods are
extended to compensate for waiting time.

6.20 The lexicographic solution technique

The constraints described in the previous sections together with the two objective functions
presented in Section 6.19 form the MILP model with the consideration of optional rules.
Two MILP submodels are created to be able to solve the problem in two optimization steps.
The objective function (6.184) together with the constraints described form one submodel.
This submodel is solved in the first optimization step. In the second optimization step,
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the objective function of the previous step is transformed to constraint (6.186) with the
previous objective function value z∗ as an upper bound such that the weighted sum of
overall lateness and completion time is prevented from increasing.

startr−1 +
r−1∑
i=1

P ·∆late
i ≤ z∗ (6.186)

Together with the objective function (6.185) and the constraints from the previous opti-
mization step we obtain the second submodel which is solved in the last optimization step.
The solution obtained is the solution of the complete MILP model.

6.21 The MILP model without optional rules

If no optional rules should be taken into account, the MILP model can easily be adapted.
By adding the following constraints, all optional rules are switched off.

µredrest
(i,i+1) = 0 ∀ i = 0, . . . , r − 2 (6.187)

µextd1
(i,i+1) = 0 ∀ i = 0, . . . , r − 2 (6.188)

µextd2
(i,i+1) = 0 ∀ i = 0, . . . , r − 2 (6.189)

µextd3
(i,i+1) = 0 ∀ i = 0, . . . , r − 2 (6.190)

µupbreak
(i,i+1) = 0 ∀ i = 0, . . . , r − 2 (6.191)

µprest
(i,i+1) = 0 ∀ i = 0, . . . , r − 2 (6.192)

µredrest
i = 0 ∀ i = 0, . . . , r − 1 (6.193)
αprest
i = 0 ∀ i = 0, . . . , r − 1 (6.194)

αpbreak
i = 0 ∀ i = 0, . . . , r − 1 (6.195)
µextd
i = 0 ∀ i = 0, . . . , r − 1 (6.196)

µdredrest
i = 0 ∀ i = 0, . . . , r − 1 (6.197)

µupbreak
i = 0 ∀ i = 0, . . . , r − 1 (6.198)

lpbreaki = 0 ∀ i = 0, . . . , r − 1 (6.199)
lpresti = 0 ∀ i = 0, . . . , r − 1 (6.200)

ldredresti = 0 ∀ i = 0, . . . , r − 1 (6.201)
lextdi = 0 ∀ i = 0, . . . , r − 1 (6.202)

These constraints are needed later when the influence of the optional rules on the run time
and the objective function value is studied. Additionally, we will later use the solution of
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the MILP model with disabled optional rules as an upper bound for the optimal objec-
tive function value of the model with optional rules (only considering objective function
(6.184)).

7 Numerical experiments - Part 1

The MILP models described in the previous section were implemented in Java (Java 8,
64 bit) and were solved with CPLEX 12.6 (64 bit) with ILOG Cplex Concert Technology.
The test runs were performed on an Intel Core i5 2500K with 8 GB RAM (DDR3-10700
(667 MHz)) running Windows 7 Professional Service Pack 1, 64 bit.

If the number of time windows per customer location (vertices 1 to r − 2) is denoted by
z and the final destination is equipped with a "time window" that equals the planning
horizon, the first MILP submodel (for minimizing lateness along with completion time)
with optional rules has

• 28r + rz − 2z − 7 binary variables,

• 4(r − 1) integer (non-binary) variables,

• 11r − 2 continuous variables and

• 147r − 49 constraints

where r denotes the number of customer locations to be visited (including start and end
position).

In the following, test instances are derived from real routes. Then the run times for
two possible solution processes for the model with optional rules are compared. If no
specific optimization step is addressed, the run times comprise the CPLEX times for all
optimization steps involved and are given as wall clock time1. Afterwards, run times are
analyzed depending on the number of stops and the number and size of time windows. The
section concludes with the analysis of the influence of the optional rules on the run time
as well as on lateness and overall traveling time.

7.1 Test instances

Test instances were derived from real data provided by a German haulage company that
operates a fleet of vehicles in Europe. The haulage company was a partner in the research
project Dynaserv which aimed at supporting dynamic tasks of dispatchers in transport
companies by the integration of online data. The underlying database of the prototype
developed during the project comprised telematics data of the vehicles of the haulage
company as well as arrival times at customer locations initially planned by the dispatchers

1 wall clock time: total physical time elapsed
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in the order management system. Routes and driving times between customer locations
were first calculated using the routing algorithm of the prototype. For each route, support
points1 were manually added until the route computed by the routing algorithm matched
the route chosen by the driver. Figure 11 shows an example.

Figure 11: Fitting the computed route to the driver’s route

A planning horizon of one week was considered. In all test cases, drivers start their tours
on Monday after a weekly rest period. Varying starting times were taken into account.
To be able to analyze the influence of the number of time windows on the run time, cases
with one, two or three alternative time windows were generated. Exact time windows at
customer locations were not available as they were chosen in customer systems and not
transferred to the database of the prototype. Instead, planned arrival times extracted
from the transport management software were used as a basis for the test instances. From
process analysis it is known that arrival times were planned to be sooner rather than late.
Therefore, for the cases with one or two time windows, the start of the first time window at
a customer location was set to be equal to the planned arrival time. For the case with three
alternative time windows, the start of the intermediate time window was set to be equal
to the planned arrival time. Time window lengths of 0, 30, 60, 120 and 600 minutes were
analyzed. The time between the end of a time window and the start of the subsequent time
window was set to 120 minutes except for the instances with 600 minutes time windows.
Here, a time interval of 840 minutes was chosen. These instances represent daily opening
hours. Table 2 gives an overview of the underlying vehicle routes of the base instances.
1 Support points, similar to the customer locations, have to be traversed by the route computed by the routing
algorithm. They were used as a tool to fit the computed routes to the drivers’ routes for which position data was
available.
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The values indicated in the last two columns correspond to the real distances traveled and
the total real driving time.

base
instance/

route

#0stops
including

start0and0end
countries0stops

total
distance

in0km

overall
driving

duration0in0h

1 4 HU-DE-DE-ES 2914 36.85
2 5 ES-ES-DE-DE-IT 3391 42.48
3 6 DE-DE-DE-ES-ES-DE 3653 46.95
4 6 HU-DE-DE-IT-IT-DE 2831 36.45
5 6 FR-FR-DE-DE-HU-HU 1739 22.37
6 6 DE-DE-HU-DE-DE-IT 2944 37.47
7 7 ES-FR-FR-DE-DE-DE-DE 2269 30.32
8 7 DE-DE-IT-IT-DE-HU-HU 3142 39.77
9 7 IT-IT-IT-DE-DE-HU-IT 3019 38.17

10 8 DK-DK-DE-DE-DE-FR-FR-DK 3436 43.77
11 8 DE-IT-IT-DE-DE-FR-FR-DE 3447 43.62
12 9 HU-DE-DE-DE-FR-FR-FR-FR-DE 2475 31.85
13 10 FR-FR-FR-FR-FR-DE-DE-IT-IT-DE 2826 36.42
14 11 DE-DE-DE-DE-DE-FR-FR-DE-DE-DE-DE 3055 40.85
15 12 DE-DE-DE-DE-FR-FR-DE-DE-DE-DE-DE-DE 3250 41.95

Table 2: Characteristics of the test instances

For each base instance, 15 test instances were obtained by varying the number and length
of time windows as described above. In total, 225 test instances were generated. Table 3
shows the number of variables and constraints for the test instances with three alternative
time windows depending on the number of stops.
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#2stops2(incl.
start2and2end)

#2binary
variables

#2integer2(non-
binary2variables)

#
continuous
variables

#2constraints

4 111 12 42 539
5 142 16 53 686
6 173 20 64 833
7 204 24 75 980
8 235 28 86 1127
9 266 32 97 1274

10 297 36 108 1421
11 328 40 119 1568
12 359 44 130 1715

Table 3: Total number of variables and constraints in the MILP model with optional rules
(3 alternative time windows)

7.2 The solution of the model without optional rules as upper

cutoff

In order to reduce the Cplex run time, the possibility to set an upper cutoff for the optimal
solution value was examined. run times for the model without optional rules were known to
be significantly shorter (see Section 7.3.3). Therefore, we used the optimal solution value
obtained by solving the first submodel with a solution space restricted to possibilities that
do not include optional rules as an upper cutoff. Figure 12 gives an overview of the solution
processes with and without upper cutoff. Tables 4 and 5 display the run times for all test
instances cumulated over 2 or 3 runs, respectively.

All instances were solved to optimality for both solution processes. On average, the run
time was almost 39% less when an upper cutoff was used. The two instances derived from
base instance 15 with a time window length of 600 minutes and one or two time windows
show the greatest improvements and are crucial for the reduced average run time. This
can be identified clearly in Figure 13.

For further analysis of the run time, the solution process with three runs, that means with
one additional run to determine an upper cutoff, was chosen.

7.3 Analysis

Figure 14 depicts the average run times of runs 1 to 3 depending on the number of customer
vertices. As expected, the run time increases with the number of customer vertices. It is
not surprising that the run time of the second run grows strongest, thus increasing the
proportion of the second run on the overall run time from almost 42% (4 stops) to more
than 71% (12 stops).
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Solution process with upper cutoffSolution process without upper cutoff

Transformation algorithm

Run 1:
• Model without optional rules
• Objective:

Minimize penalized lateness and completion
time

Run 2:
• Model with optional rules
• Objective:

Minimize penalized lateness and completion time
• Upper cutoff: Optimal solution value of run 1

Run 3:
• Model with optional rules
• Objectives:

• Reduce the usage of optional rules to a
minimum

• Use optional rules as late as possible
• Reduce waiting time to a minimum

• Additional constraint: Keep penalized
lateness and completion time from previous run

Transformation algorithm

Run 1:
• Model with optional rules
• Objective:

Minimize penalized lateness and completion time

Run 2:
• Model with optional rules
• Objectives:

• Reduce the usage of optional rules to a
minimum

• Use optional rules as late as possible
• Reduce waiting time to a minimum

• Additional constraint: Keep penalized
lateness and completion time from previous run

Figure 12: Solution processes with and without an upper cutoff
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base
inst./
route

#
stops

0 30 60 120 600 ∑

1 4 0.094 0.125 0.078 0.032 0.048 0.377
2 5 0.172 0.187 0.187 0.141 0.078 0.765
3 6 0.062 0.327 0.077 0.078 0.157 0.701
4 6 0.140 0.156 0.171 0.157 0.172 0.796
5 6 0.079 0.094 0.078 0.078 0.155 0.484
6 6 0.343 0.234 0.141 0.218 0.282 1.218
7 7 0.265 0.203 0.265 0.313 0.219 1.265
8 7 0.140 0.219 0.141 0.093 0.219 0.812
9 7 0.109 0.125 0.125 0.171 0.219 0.749

10 8 0.281 0.156 0.250 0.140 0.203 1.030
11 8 0.702 0.468 0.328 0.467 0.593 2.558
12 9 0.312 0.437 0.250 0.344 1.403 2.746
13 10 2.512 0.717 0.265 0.342 2.901 6.737
14 11 1.623 2.184 1.638 1.950 1.825 9.220
15 12 1.233 3.806 3.011 1.778 79.748 89.576

∑ 8.067 9.438 7.005 6.302 88.222 119.034
1 4 0.031 0.032 0.030 0.047 0.031 0.171
2 5 0.155 0.077 0.079 0.063 0.063 0.437
3 6 0.062 0.077 0.063 0.079 0.093 0.374
4 6 0.187 0.140 0.140 0.202 0.266 0.935
5 6 0.109 0.109 0.187 0.202 0.187 0.794
6 6 0.124 0.249 0.296 0.234 0.266 1.169
7 7 0.234 0.344 0.234 0.187 0.405 1.404
8 7 0.140 0.155 0.235 0.171 0.265 0.966
9 7 0.172 0.187 0.156 0.281 0.109 0.905

10 8 0.561 0.420 0.328 0.422 0.359 2.090
11 8 0.717 0.687 0.671 0.640 0.171 2.886
12 9 0.655 1.014 0.359 0.765 0.811 3.604
13 10 0.266 0.343 0.531 0.546 2.496 4.182
14 11 2.278 1.794 2.277 0.765 1.809 8.923
15 12 0.796 2.043 1.778 7.223 44.461 56.301

∑ 6.487 7.671 7.364 11.827 51.792 85.141
1 4 0.062 0.062 0.046 0.077 0.047 0.294
2 5 0.078 0.063 0.078 0.078 0.188 0.485
3 6 0.078 0.079 0.094 0.094 0.421 0.766
4 6 0.328 0.265 0.186 0.125 0.265 1.169
5 6 0.187 0.155 0.171 0.173 0.110 0.796
6 6 0.358 0.546 0.609 0.282 0.437 2.232
7 7 0.217 0.202 0.313 0.748 0.516 1.996
8 7 0.250 0.359 0.125 0.390 0.375 1.499
9 7 0.203 0.156 0.172 0.172 0.577 1.280

10 8 0.530 1.170 0.546 0.234 1.170 3.650
11 8 2.043 1.123 0.780 0.795 1.903 6.644
12 9 0.546 1.232 2.013 1.030 1.373 6.194
13 10 1.092 0.593 2.340 1.248 2.340 7.613
14 11 3.479 3.962 2.168 3.993 10.514 24.116
15 12 2.153 3.246 4.228 2.558 9.032 21.217

∑ 11.604 13.213 13.869 11.997 29.268 79.951
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Table 4: Run times in seconds for the MILP model without additional run for an upper
cutoff
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base
inst./
route

#
stops

0 30 60 120 600 ∑

1 4 0.064 0.141 0.047 0.063 0.078 0.393
2 5 0.109 0.203 0.218 0.109 0.109 0.748
3 6 0.063 0.062 0.077 0.079 0.125 0.406
4 6 0.110 0.172 0.124 0.094 0.155 0.655
5 6 0.126 0.095 0.095 0.095 0.125 0.536
6 6 0.126 0.140 0.125 0.140 0.188 0.719
7 7 0.311 0.295 0.375 0.281 0.265 1.527
8 7 0.125 0.123 0.141 0.140 0.312 0.841
9 7 0.125 0.125 0.188 0.126 0.110 0.674

10 8 0.764 0.280 0.405 0.437 0.328 2.214
11 8 0.436 0.687 0.344 0.328 0.937 2.732
12 9 0.592 0.934 0.531 0.545 0.907 3.509
13 10 0.809 1.077 0.904 0.609 1.575 4.974
14 11 1.997 2.168 1.826 1.685 1.576 9.252
15 12 1.529 1.637 9.874 2.059 3.962 19.061

∑ 7.286 8.139 15.274 6.790 10.752 48.241
1 4 0.077 0.062 0.062 0.079 0.063 0.343
2 5 0.108 0.077 0.079 0.094 0.126 0.484
3 6 0.078 0.062 0.062 0.095 0.157 0.454
4 6 0.172 0.203 0.186 0.172 0.203 0.936
5 6 0.109 0.717 0.094 0.141 0.203 1.264
6 6 0.154 0.218 0.265 0.343 0.173 1.153
7 7 0.266 0.311 0.250 0.203 0.219 1.249
8 7 0.172 0.171 0.155 0.124 0.172 0.794
9 7 0.156 0.125 0.156 0.234 0.218 0.889

10 8 0.576 0.375 0.375 0.437 0.312 2.075
11 8 0.843 0.764 0.437 0.547 0.374 2.965
12 9 1.265 0.951 0.779 1.091 0.905 4.991
13 10 0.499 0.514 0.968 0.749 1.810 4.540
14 11 2.137 1.576 1.389 0.717 2.324 8.143
15 12 3.058 2.029 2.168 8.767 8.221 24.243

∑ 9.670 8.155 7.425 13.793 15.480 54.523
1 4 0.077 0.109 0.078 0.095 0.030 0.389
2 5 0.110 0.141 0.077 0.093 0.265 0.686
3 6 0.078 0.063 0.094 0.110 0.359 0.704
4 6 0.266 0.311 0.219 0.141 0.219 1.156
5 6 0.375 0.156 0.126 0.142 0.110 0.909
6 6 0.421 0.437 0.578 0.249 0.265 1.950
7 7 0.344 0.234 0.281 0.373 0.406 1.638
8 7 2.058 0.296 0.186 0.422 0.203 3.165
9 7 0.156 0.140 0.188 0.204 0.390 1.078

10 8 0.655 0.422 0.469 0.453 0.701 2.700
11 8 1.996 1.435 1.030 0.703 1.686 6.850
12 9 0.889 1.373 1.403 1.404 1.139 6.208
13 10 1.014 1.201 1.420 1.139 3.416 8.190
14 11 4.025 3.402 2.027 2.278 10.935 22.667
15 12 2.028 1.358 2.465 3.509 6.973 16.333

∑ 14.492 11.078 10.641 11.315 27.097 74.623
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Table 5: Run times in seconds for the MILP model with additional run for an upper cutoff
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Figure 13: Run times for the MILP model with optional rules
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Figure 14: Average run time depending on the number of vertices

7.3.1 The influence of the number of time windows on the run time

Figure 15 shows the influence of the number of time windows on the average run time
depending on the number of vertices. In the following examples it clearly can be seen that
the number of time windows per stop as well as the number of vertices are important for
the run time.

Example 1: 10 stops, 2 time windows:

• Total number of variables: 433.

• Number of constraints: 1421.

• Average run time: 0.908 s

Example 2: 11 stops, 2 time windows:

• Total number of variables: 478. Increase compared to Example 1: 10%.

• Number of constraints: 1568. Increase compared to Example 1: 10%.

• Average run time: 1.629 s. Increase compared to Example 1: 79%.

Example 3: 10 stops, 3 time windows:

• Total number of variables: 441. Increase compared to Example 1: 2%.
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• Number of constraints: 1421. Increase compared to Example 1: 0%.

• Average run time: 1.638 s. Increase compared to Example 1: 80%.

Figure 15: The influence of the number of time windows (TW) on the run time

7.3.2 The influence of the time window length on the run time

The three diagrams in Figure 16 show the average run times depending on the number of
stops and the time window length separately for each number of time windows.

Figure 17 depicts the average run times of all numbers of alternative time windows.

We can see from Figure 16 that there are significantly long run times in some of the
instances with a time window length of 10 h compared to the other instances. Furthermore,
there is one test instance (there is only one base instance that has 12 stops) with a time
window length of 120 minutes that has a comparably long run time and another one with a
time window length of 60 minutes. Test instances with time window lengths of 30 minutes
or exact arrival times performed best. If we do consider the cumulated view (Figure 17),
in some cases, we can see significant decreasing average run times if a time window with a
length of 30 minutes instead of an exact arrival time is possible. In others, a slight increase
can be recognized.
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Figure 16: The influence of the time window length on the run time
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Figure 17: The influence of the time window length on the run time

7.3.3 The influence of the optional rules

In the following, we examine the influence of the optional rules on the run time and the
reachability of time windows. For the case without optional rules, constraints (6.187) -
(6.202) are included. For the case with optional rules, the solution process with upper
cutoff is chosen (see Figure 12). Table 6 shows the cumulated run time of both runs for
each of the 225 test instances for the model without optional rules. Figure 18 compares
the average run time for each base instance with the run time of the MILP model with
optional rules (see also Figure 5 on page 76).

Ignoring the optional rules, the average run time of the test instances per base instance
could be reduced by 37% (base instance 1, 4 stops) up to 81 % (base instance 15, 12 stops).
This means that the optional rules have a strong influence on the overall run time.

Lateness, on the other hand, is reduced significantly if optional rules are considered. Figure
19 shows the average lateness per base instance. The large difference for base instance 12
is notable. Here, time windows very often cannot be met at all and in some instances
lateness at a single customer location of sometimes more than 10 hours cannot be avoided.
In practice, re-planning would be necessary. Only in the instances with simulated opening
hours and at least two time windows lateness can be avoided, no matter if the optional
rules are used or not. When considering the optional rules, the largest share of the lateness
reduction is achieved because in some of the instances a complete daily rest period can be
left out. In these instances, this has an effect on the lateness at several customer locations.
For base instances 1 and 2 no lateness occurred even if optional rules were ignored. For base
instances 4 and 9, the average lateness was not improved when considering the optional
rules. In all other cases, a reduction was noticed. Cumulating the lateness over all test
instances, a reduction of 55% can be observed by taking into account optional rules.
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base
inst./
route

#
stops

0 30 60 120 600 ∑

1 4 0.032 0.046 0.046 0.047 0.032 0.203
2 5 0.031 0.031 0.046 0.046 0.077 0.231
3 6 0.048 0.032 0.046 0.031 0.046 0.203
4 6 0.047 0.062 0.032 0.079 0.063 0.283
5 6 0.063 0.031 0.046 0.031 0.077 0.248
6 6 0.094 0.031 0.047 0.063 0.047 0.282
7 7 0.094 0.077 0.094 0.094 0.061 0.420
8 7 0.062 0.062 0.063 0.062 0.094 0.343
9 7 0.062 0.032 0.079 0.030 0.078 0.281

10 8 0.078 0.110 0.124 0.141 0.125 0.578
11 8 0.125 0.282 0.234 0.219 0.281 1.141
12 9 0.484 0.390 0.608 0.468 0.406 2.356
13 10 0.266 0.296 0.624 0.343 0.250 1.779
14 11 0.405 0.437 0.327 0.235 0.872 2.276
15 12 0.469 0.795 0.935 0.531 0.249 2.979

∑ 2.360 2.714 3.351 2.420 2.758 13.603
1 4 0.063 0.046 0.032 0.046 0.031 0.218
2 5 0.031 0.047 0.062 0.078 0.062 0.280
3 6 0.047 0.046 0.032 0.046 0.063 0.234
4 6 0.063 0.047 0.093 0.079 0.093 0.375
5 6 0.047 0.078 0.047 0.062 0.093 0.327
6 6 0.079 0.062 0.078 0.109 0.063 0.391
7 7 0.093 0.110 0.125 0.063 0.078 0.469
8 7 0.078 0.047 0.047 0.047 0.110 0.329
9 7 0.078 0.062 0.063 0.156 0.109 0.468

10 8 0.140 0.218 0.203 0.125 0.187 0.873
11 8 0.297 0.281 0.624 0.203 0.281 1.686
12 9 0.577 0.515 0.421 0.593 0.374 2.480
13 10 0.297 0.296 0.343 0.187 0.343 1.466
14 11 0.234 0.312 0.373 0.344 0.483 1.746
15 12 1.029 1.061 0.748 0.780 0.375 3.993

∑ 3.153 3.228 3.291 2.918 2.745 15.335
1 4 0.063 0.094 0.047 0.031 0.047 0.282
2 5 0.063 0.063 0.031 0.079 0.063 0.299
3 6 0.046 0.031 0.016 0.079 0.124 0.296
4 6 0.079 0.079 0.110 0.094 0.094 0.456
5 6 0.030 0.062 0.046 0.062 0.046 0.246
6 6 0.077 0.141 0.078 0.109 0.110 0.515
7 7 0.157 0.110 0.078 0.062 0.063 0.470
8 7 1.982 0.171 0.110 0.109 0.391 2.763
9 7 0.093 0.093 0.094 0.094 0.061 0.435

10 8 0.219 0.172 0.218 0.312 0.312 1.233
11 8 0.639 0.515 0.156 0.531 0.312 2.153
12 9 0.655 0.625 0.842 0.764 0.515 3.401
13 10 0.515 0.436 0.983 0.297 0.811 3.042
14 11 0.780 0.780 0.951 0.530 1.154 4.195
15 12 0.638 0.484 0.889 0.638 1.264 3.913

∑ 6.036 3.856 4.649 3.791 5.367 23.699
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Table 6: Run times in seconds for the MILP model without optional rules
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Figure 18: Average run times with and without considering optional rules
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Figure 19: Average lateness with and without considering optional rules

The influence of the optional rules on the overall travel time, that means, the overall time
from the start of the schedule until the last stop is reached, should not be neglected as
well. Figure 20 shows the average travel time with and without optional rules per base
instance. The computational results show that on average over all test instances the travel
time is reduced by 5% when optional rules are considered. The average reduction of the
travel time is nearly 6 hours (357 minutes), this means that the last stop can be reached
much earlier. Thus, the start of the weekly rest period can be earlier if optional rules are
taken into account. This option is interesting if drivers return home for the weekend. If
not, as it is the case in the test instances, they may continue driving and may reach the
next customer earlier. Furthermore, drivers may use a part of the additional time to look
for a good rest area to stay for the weekend.

Summing up, it is really worthwhile to consider the optional rules when planning driver
schedules. The test scenarios presented so far do not consider unexpected events like for
example traffic jams, but such events may extend the travel times significantly. Therefore,
it is important to include time buffers, for example, in the driving durations between
customers and in the loading and unloading times, no matter which planning technique
is chosen. This can be done by multiplying the durations with a constant factor that
is greater than one and using the result as new estimated duration. Thus, time buffers
are obtained that are proportional to the durations. Other techniques that, for example,
incorporate road data and the probability of traffic jams for different roads are possible.
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Figure 20: Average travel time with and without considering optional rules

8 Myopic algorithm - A heuristic

The MILP models presented in the previous sections allow us to set up an optimal driver
schedule for driver rest periods and breaks and to choose time windows. To solve the mod-
els efficiently, advanced optimization algorithms are necessary and an optimization solver
is recommended to obtain high-quality solutions within a reasonable time. Optimization
software has to be integrated and acquisition costs must not be neglected. A transport
company has to weigh the additional costs against the advantages and cost savings achiev-
able.

To get a feeling for the magnitude of the schedule improvement, a myopic algorithm was
developed that mimes a dispatcher that uses sophisticated strategies to plan driver activi-
ties considering the routes between customer locations and time windows successively one
after another.

The input for the algorithm is the same as for the models presented: the driver status
at the beginning of the planning horizon, the sequence of customer locations and other
stops to be visited and driving durations between consecutive stops i and i + 1 (∆̄drive

(i,i+1)),

start and end times of possible time windows at stop i (TW begin

i,z , TW end

i,z ) and planned
durations for handling activities including loading and/or unloading (∆̄service

i ). Durations
are expressed in minutes. Time windows are given in minutes since the end of the last
weekly rest period.

Similar to the naive labeling algorithm proposed by Goel (2009), the driver status is rep-
resented by an n-tupel. The three-tupel described in Goel (2009) that defines the driver
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status at arrival at a stop contains the arrival time, the cumulated driving time since the
last (daily or weekly) rest period and the cumulated driving time since the last break or
rest period (nonstop driving time). The myopic algorithm, similar to the naive labeling
algorithm, only considers at each decision point the driver status and activities concerning
the current arc (i.e. decisions about activities that take place between leaving stop i and
loading or unloading at stop i+ 1) and decides for exactly one alternative. Once the plan
for an arc is made, the driver status at the subsequent stop is fixed and the algorithm
proceeds with planning the next arc.

8.1 The driver status

We extend the tupel representing the driver status to be able to additionally consider the
optional rules. To this end, the following parameters are considered:

• ptwr:
Time elapsed since the last weekly rest period in minutes.

• udt:
Uninterrupted driving time since the last break or daily rest period.

• ddt:
Cumulated driving time since the last daily or weekly rest period.

• ptr:
Time elapsed since the end of the last daily or weekly rest period.

• hpb:
Takes the value 1 if a partial break was taken and 0 otherwise.

• hpr:
1 if a partial daily rest period has been taken, 0 otherwise

• noRed:
Number of reduced daily rest periods taken since the end of the last weekly rest period.
(Previous daily rest periods with a duration of less than 11 hours).

• noExt:
Number of extended daily driving times already taken in this week. If the current daily
driving time exceeds 9 hours, this information is included.

• red:
1 if a driving time extension is active (more than 9 hours of daily driving time), 0
otherwise.

• dte:
1 if the next daily rest period is planned to be a reduced one, 0 otherwise.

The driver status at the beginning of the planning horizon is given by the tupel

driverStatus = (ptwr, udt, ddt, ptr, hpb, hpr, noRed, noExt, red, dte).

The corresponding status variables are initialized accordingly (see Section B Algorithm 2
in the appendices).
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8.2 Updating the driver status

Each activity has an activity type and a duration and when added to the schedule it
modifies the driver status. Activity types considered by the myopic algorithm are:

• rest:
• redrest:
• drive:
• work:
• break:
• wait:

Regular, first or second part of a daily rest period
Reduced daily rest period
Driving
Loading or unloading
Break
Wait

More details about the update algorithm for the driver status can be found in the appen-
dices (see Section B Algorithm 3).

8.3 The algorithm

The myopic algorithm is structured as follows. At first, the driver status is initialized.
Then, activities between each pair of successive stops i and i+1 are scheduled sequentially.
This is done in three steps. In step one, activities between stops i and i+ 1 are scheduled.
Step two is concerned with the choice of the time window at the next stop i + 1. In
step three, activities at stop i + 1 are scheduled. Steps one to three are repeated until
the last stop is reached. Figure 21 shows a flowchart of the complete algorithm. In the
following, more detailed flowcharts and short descriptions are given for the different steps.
The corresponding pseudo-code can be found in the appendices (see Algorithms 5 - 7).

The procedure in the step "Scheduling driver activities on arc (i,i+1)" is similar
to the naive method for scheduling driving periods, breaks, and rest periods presented by
Goel (2009) and is illustrated in Figure 22. In addition to Goel (2009) we consider the
possibility to extend the daily driving time by one hour.

In the step "Choose time window at stop i+1", the time window at the next stop i+1 is
chosen. Therefore, the first reachable time window, that means the first time window that
ends after the last activity scheduled so far, is determined. When considering the current
schedule, a daily rest period is necessary as the time left does not suffice to wait, load
and/or unload at customer location i + 1 because of the maximum time interval between
two daily rest periods, it is tried to reduce the durations of daily rest periods scheduled on
the arc (i, i+ 1). If this does not help to be on time, it is tested if it is possible to extend
the duration of the previous daily rest period and thus eliminate waiting time. In this way,
the start of the time interval between the last daily rest period and the next one that is
not scheduled yet can be postponed. The option to plan the next daily rest period to be a
reduced one is taken into account.1 If with this modification the daily rest period can take

1 If the next daily rest period is planned to be a reduced one, the maximum time between the last daily rest period
and the following one increases by 2 hours.
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Figure 21: Myopic algorithm - flowchart
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Figure 22: Scheduling activities on arc (i, i+ 1)
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place after loading and/or unloading at the customer, the schedule is altered accordingly.
In case the above modifications do not suffice to reach the time window, the next time
window1 is selected. These steps are repeated if either it is possible to be on time or the
last time window is selected. The flowchart in Figure 23 illustrates the course of action.

In the step "Modifying rest durations and scheduling activities at stop i+1"
(Figure 24), if there is lateness, regular daily rest periods are reduced if possible, and
activities are rescheduled accordingly. Afterwards, activities at stop i + 1 are scheduled.
If there is still time left until the start of the time window chosen, potential waiting time
can be compensated by a resting activity. The options to take a partial daily rest period
or a partial break are included. If there is still waiting time, we try to compensate it by
extending the last daily rest period on the current arc. Finally, if the stop is a customer
location, loading and/or unloading is scheduled.

1 Time windows should be sorted by their start time and should not overlap.
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Figure 23: Choose time window at stop (i, i+ 1)
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Figure 24: Modifying rest durations and scheduling activities at stop i+ 1
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9 Numerical experiments - Part 2

In this section we present the results obtained with the myopic algorithm and compare
them to the results achieved with the MILP models. General findings are discussed at the
end of the section.

9.1 Comparison of the algorithm and the MILP models

The run time of the myopic algorithm was less than 1 millisecond for each test instance.
In Figures 25 and 26, lateness and overall travel times of the schedules constructed by the
myopic algorithm and those constructed with the MILP models (with and without optional
rules) are compared.
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Figure 25: Average lateness of schedules depending on the solution technique

Figure 25 shows that, on average, the myopic algorithm performs better than the model
without optional rules. Lateness decreases by 18% when the myopic algorithm is used.
For all instances with base instances 1, 2, 4, 6, 7, and 9, there is no difference concerning
lateness no matter if the model with optional rules or the myopic algorithm is chosen
as solution technique. But the cumulated lateness over all instances is 83% worse if the
algorithm instead of the MILP model with the consideration of optional rules is used to
determine the driver schedule. This shows that the MILP model with consideration of
the optional rules has a significant higher potential for keeping lateness low or avoiding it.
The reason for this is that by the use of the MILP models a global optimum over all stops
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is obtained. For the choice of time windows and the determination of driver activities
the whole tour is considered. In contrast, the myopic algorithm plans driver activities
successively not considering stops beyond the next one.

Figure 26: Average travel time of schedules depending on the solution technique

The overall travel time (see Figure 26) is on average slightly reduced (less than 1%) if the
myopic algorithm is chosen and not the model without optional rules, but compared to the
model with optional rules, the schedules constructed with the myopic algorithm require on
average 5% more time. This is significant as discussed in Section 7.3.

9.2 General findings

The following figures depict schedule properties retrieved with each of the three solution
techniques described in the previous sections depending on input parameters and set-
tings.

At first, we analyze the influence of the time window properties on the overall lateness.
As one might have expected, lateness tends to be less if more time windows are available.
When derivating test instances from base instances, the second time window added for a
chosen base instance is set to start after a time interval that follows the first time window.
In the driver schedules obtained for those instances, lateness is significantly less compared
to the corresponding schedules for the instances with only one time window.1 When the
third time window at a customer location is added, which ends before the start of first time
window assigned, still a reduction can be noticed in all but one test set (see Figure 27). As

1 For the derivation of test instances from base instances and the assignment of time windows see Section 7.1.
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the myopic algorithm is a heuristic that only identifies local optima, i.e. an optimum for
the current arc, but not the global one, deterioration is possible when time windows are
added. Neglecting the possibility to use waiting time to start a daily rest period or break
and choosing a time window earlier even if this causes lateness can lead to more lateness
at subsequent customer locations. As expected, lateness is reduced if time windows are
extended leaving their starting time constant. If two or more time windows are available
with 10 hours length (simulation of opening hours), no lateness is observed at all no matter
which solution technique was chosen.

Figure 27: Impact of time windows on lateness

The overall travel time does not behave as uniformly as the lateness, since it is only
considered as a subordinate optimization criterion in the MILP models. While the average
overall travel time decreases with the number and the length of time windows if the model
with optional rules is chosen, with the model without optional rules, the average overall
travel time sometimes increases when the second time window is added. With the myopic
algorithm, all average values for two time windows show this deterioration.

Figure 29 shows the average proportions of the different driver activities. It is interesting
that the proportion of working time (i.e. the driving time and the time needed for load-
ing/unloading) with 45.81% considering the model with optional rules is reduced by about
6% if the optional rules are neglected and by nearly 5% if the myopic algorithm is chosen
as solution technique. The proportions of rest periods, breaks and waiting time increase
accordingly.
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Figure 28: Time window properties and travel time

Figure 29: Proportions of different driver activities
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Research has shown that long periods of night work can be harmful for the health of workers
and driving at night raises safety risks for the driver himself and other participants in traf-
fic. Therefore, Directive 2002/15/EC (European Parliament and Council of the European
Union (2002)) lays down basic rules for night work that have to be implemented in national
law. The rules incorporate the necessity to compensate night workers in accordance with
national legislative measures. German law, i.e. the "Arbeitszeitgesetz" (Deutscher Bun-
destag (1994)), specifies that compensation may be a corresponding number of paid days
off or an adequate surcharge on the gross remuneration. This means that the transport
undertakings themselves may be interested in keeping drivers’ working hours at night as
low as possible.

Neither the models nor the myopic algorithm incorporate the consideration of nightly
working time. Figure 30 shows the average proportions of nightly working time with no
efforts taken to keep them low. For the night time we use the definition given by the
"Arbeitszeitgesetz". There, the night time is defined to be the time period between 11:00
pm and 06:00 am. It is interesting to note that the average proportions of nightly working
time for all solution techniques are less than the proportion of night time on the overall day
with 24 hours (lower right corner of Figure 30). The reason for this may be the originally
planned arrival times that served as basis for the definition of time windows. Only base
instances 6, 8, 10, 13 and 14 contained arrival times which were planned during night
time. Still, independent of the solution technique, the resulting working time at night is
not negligible.

Figure 30: Proportions of working time at night and day
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10 Summary and future research

In this last section, we reflect on the main results of this study and reveal aspects that are
worthwile to be discussed and analyzed in future research.

10.1 Summary

Increasing just-in-time management practices, growing pressure on satisfying customer
demands on time, and the need to keep transport costs low put high pressure on truck
drivers, dispatchers, and their transport companies. Regulation (EC) No 561/2006 defines
the rules for the number, duration and time intervals when rest periods and breaks have
to be taken with the objective to ensure road safety, adequate working conditions, and
undistorted competition in the road haulage sector. A strict adherence to the rules is
necessary, since depending on the seriousness, infringements may have severe consequences
for the drivers and the transport company itself. When determining driver schedules, the
EU legislation has to be taken into account, as it has a high influence on the arrival times
at customer locations and on the travel durations in general. Technology such as on-board
computers, digital tachographs and telematics equipment add new challenges but also offer
new planning possibilities.

The present study proposes two MILP models and optimization strategies that, together
with a transformation algorithm (see Appendix A), allow to plan driver activities in com-
pliance with Regulation (EC) No 561/2006 for a given sequence of customer locations and
other stops to be visited. Each customer location has one or multiple time windows among
which a choice has to be made. The incorporation of daily rest periods and breaks allows for
greater planning reliability. A special feature is the consideration of "soft" time windows
which has not been studied in this context so far. By penalizing lateness in the objective
function instead of prohibiting the arrival outside the time windows, schedules are found
even if lateness cannot be avoided. The resulting schedule gives important information to
the dispatcher that is necessary to set up a better schedule. In online re-planning, lateness
can be revealed at an early stage such that it is possible to reorganize the schedule or to
negotiate arrival times with customers before communication effort and costs increase and
further delays or cancellations are unavoidable. In this way, transport undertakings as well
as their customers can benefit and pressure on dispatchers and drivers can be reduced.
Attempts to choose time windows that are not reachable can be avoided.

Test instances were derived from real data provided by a German haulage company that
operates vehicles in Europe. Vehicle routes were reconstructed for one week, involving
between 2 and 10 customer locations and stops for start and end locations (i.e. 4 to 12
stops). Arrival times planned by the dispatchers were used as a basis to generate different
time windows. The number of time windows and their length were varied to obtain different
test instances. We examined the run time, lateness and overall travel time for all of the
instances depending on the number of stops, and the number and length of time windows.
For all of the instances, reasonable run times were achieved ranging from 0.03 seconds
(4 stops, 3 time windows, time window length: 10 h) to 10.94 seconds (11 stops, 3 time
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windows, time window length: 10 h) for the MILP model with consideration of the optional
rules on a desktop computer, where the number of stops had the most influence on the run
time.

The optional rules were deactivated in the original MILP model to test their influence on
the above criteria. The run time was reduced significantly by between 37% (base instance
1, 4 stops) up to 81% (base instance 15, 12 stops). On the other hand, the overall lateness
was 55% less if the optional rules were allowed and the overall travel time was reduced by
5%.

The proposed MILP models allow to establish an optimal driver schedule with the help of
optimization software. As the use of a commercial solver can be an obstacle for a company
due to cost reasons, we wished to investigate the magnitude of the schedule improvement
compared to a heuristic that should simulate the usage of sophisticated strategies by a
dispatcher. Based on the idea of a driver status that is modified with each new activity,
a myopic algorithm was developed that can only "see" the route until the next customer
stop and the corresponding customer time window in advance, and plans driver activities
accordingly. Simple strategies were chosen to also integrate the optional rules.

The myopic algorithm achieved 18% overall lateness reduction and no increase in the
average overall travel time in comparison with the model without optional rules. Together
with the run time of the myopic algorithm that was less than 1 millisecond, the algorithm
itself is interesting. The main advantages of the myopic algorithm are its short run time
and that no optimization solver is necessary to obtain a solution. The short-sightedness
and concentration on one arc at a time makes resulting schedules easy to understand.
Similar to the models, the possibility to start with a given driver status allows for online
re-planning.

The consideration of the complete tour with all stops allows to construct a schedule with
globally optimized lateness (the most important criterion) and overall travel time when
solving the MILP model with optional rules. The overall lateness was 45% less compared
to the myopic algorithm and the average overall travel time was reduced by 3.5%. The
run time is longer, but depending on the fleet size, the length of the planning horizon and
the available computing capacity, online re-planning still may be considered.

The largest advantage of the MILP models is the determination of a global optimum over
all stops. If the customer locations to be visited in the considered week are not known
in advance but only for the next one or two stops, the dispatcher has to choose among
different opportunities without exactly knowing future requests. This reduces the benefit
of the MILP model with optional rules.

10.2 Future research

The basis for planning of vehicle routes should be reliable driving durations that consider
various traffic conditions that are dependent on the routes traveled and the time of the
day (see, for example, Kok (2010)). Travel times may vary significantly as there are
differences, for example, between traveling on a Saturday, in rush-hour traffic or at the
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start of vacations. Even though online re-planning is possible, when scheduling driver
activities, the estimated driving duration should consider time buffers to compensate for
delays due to unexpected events such as traffic jams or detours because of blocked roads.
To find reasonable time buffers when scheduling customer stops and driver activities is
worth further consideration. The robustness depending on the measures chosen could be
analyzed by simulating deteriorations and using online re-planning with a lesser degree of
freedom to determine modified schedules.

The presented techniques to plan driver activities do not consider the location of possible
rest areas. Especially when a daily rest period has to be taken, drivers often face the
problem of finding an adequate location. Even though modern parking guidance systems
are available at some locations, nowadays rest areas are often overcrowded. Depending on
the time of the day, drivers often have to search intensively for a place to spend their daily
rest period. Goel (2012) proposes an approach that only allows breaks and rest periods
at rest areas. It is worth taking a closer look at the integration of information about rest
areas into the model with multiple soft time windows. Additionally, detours to reach rest
areas could also be considered.

The integration of the rules of Directive 2002/15/EC (European Parliament and Council
of the European Union (2002)) should be studied. This comprises the rule that working
time has to be interrupted by a break of at least 30 minutes if the sum of all working hours
is between six and nine hours and of at least 45 minutes if the driver works more than
nine hours. Furthermore, Directive 2002/15/EC contains a framework to define rules for
night work. If night work is performed, the daily working time is not allowed to exceed
ten hours in each 24 hours period and it has to be compensated by the employer. Different
implementations in national laws do exist. The numerical experiments in Section 9.2 show
that a significant part of the overall working time can be at night if no measures are taken
to keep it low. Depending on the strategy of a haulage company it would, for example,
be possible to define time intervals in which no work is allowed. Another approach would
be to allow not more than 10 hours working time between two daily rest periods and to
introduce a cost function for working time at night.

Especially when considering long-haul trips, driving bans on public holidays need to be
integrated into driver scheduling. As there are regional differences, the integration into
the combined problem of route planning (or vehicle routing) and driver scheduling seems
reasonable.

Truck drivers face difficult working conditions. In long-haul international transport, truck
drivers spend long periods on-road away from home. Competitors and client demands
such as just-in-time management induce high pressure. Moreover, remote monitoring and
complex technology act as a deterrent because drivers may feel permanently observed
and monitored or demoralized. Accessibility of facilities and services (hygienic, food and
medical) is not always the best and road safety risks are not negligible. All these reasons
lead to a low attractiveness of the profession and a shortage of qualified drivers (European
Commission (2014)). Besides lowering pressure by employing better and more realistic
planning techniques, an improvement on working conditions can be achieved. Planning
techniques that take into account different amenities at resting places where drivers take
their daily rest periods and breaks would help to raise the attractiveness of the profession.
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Appendices

A Transformation to a driver schedule

The following algorithm transforms the solution of a MILP model (the model with con-
sideration of the optional rules or the model without) into a uniquely determined detailed
driver schedule. The method addActivity ((i, i+ 1), 〈type〉, 〈duration〉) adds an activity
of type 〈type〉 and duration 〈duration〉 as last activity on arc (i, i + 1) that in this case
represents the time interval between the start after unloading/loading at customer i and
the end of loading/unloading at customer i+ 1.

restCarryover1: If there is much time to reach a time window, it is possible that a rest
on an arc is planned that lasts longer than 11 hours and another rest is planned in the
subsequent vertex. In that case, the difference of the duration of the last rest on the arc
and 11 hours is added to the duration of the rest taken in the vertex.

restCarryover2: It is possible that the solution has one rest more than actually needed
to traverse the arc. To prevent two consecutive rest periods without another activity in
between, this rest is mapped on the subsequent vertex.

helpPartialRest: Indicates if a partial rest is taken on the arc and not in vertex i+ 1.

Algorithm 1 Computing a Driver Schedule
Input: model solution

1:

Output: a list of driver activities

2:

3: // Initialize

4: restCarryover1 ← 0

5: restCarryover2 ← 0

6: helpPartialRest← 0

7: ptwr ← Time at the start of the schedule

8: duration← 0

9:

10: // ———————————————————————————————

11: // Determine activities in the first vertex

12: // ———————————————————————————————

13: if
?
α
rest

0 = 1 then

14: duration←
?
∆

rest

0
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15: addActivity ((0, 1), rest, duration)

16: ptwr ← ptwr + duration

17: else if
?
α
break

0 = 1 then

18: if hpb = 1 then

19: duration← max
(
0, 30− ubt

)
20: else

21: duration← max
(
0, 45− ubt

)
22: end if

23: addActivity ((0, 1), rest, duration)

24: ptwr ← ptwr + duration

25: else if
?
α
pbreak

0 = 1 then

26: duration← max
(
0, 15− ubt

)
27: addActivity ((0, 1), rest, duration)

28: ptwr ← ptwr + duration

29: else if
?
α
prest

0 = 1 then

30: duration← max(0, 180− urt)
31: addActivity ((0, 1), rest, duration)

32: ptwr ← ptwr + duration

33: end if

34: if
?
∆

wait

0 > 0 then

35: duration←
?
∆

wait

0

36: addActivity ((0, 1), wait, duration)

37: ptwr ← ptwr + duration

38: end if

39:

40: // ———————————————————————————————

41: // Calculate activities "between" customer locations i and i+ 1

42: // ———————————————————————————————

43: for i = 0 to n− 1 do

44:

45: // Use driving time left until next break or rest period to partially or

46: // completely traverse the arc (i, i+ 1).

47: if
?
L
dt

i > 0 then

48: if ∆̄drive
(i,i+1) > 0 then
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49: duration← min

(
?
L
dt

i , ∆̄
drive
(i,i+1)

)
50: addActivity ((0, 1), drive, duration)

51: ptwr ← ptwr + duration

52: end if

53: end if

54:

55: // No early daily rest period is planned as first

56: // resting activity on arc (i, i+ 1).

57: if
?
µ
earlydr1

(i,i+1) = 0 then

58:

59: // The distance between i and i+ 1 is greater than the

60: // driving time left until the next break or rest period.

61: if ∆̄drive
(i,i+1) >

?
L
dt

i then

62:

63: // Take a break if the daily driving time left is greater than

64: // the driving time left until the next break. Afterwards, continue

65: // driving until the daily driving time reaches its limit or customer

66: // i+ 1 is reached.

67: if
?
L
ddt

i >
?
L
dt

i then

68: if
?
l
pbreak

i = 1 then

69: duration← 30

70: else

71: if
?
α
prest

i+1 = 1 ∧ ∆̄drive
(i,i+1) <

?
L
ddt

i ∧ ?
µ
extd1

(i,i+1) = 0 ∧ ?
µ
extd

i+1 = 0 then

72: duration← 180

73: helpPartialRest← 1

74: else

75: duration← 45

76: end if

77: end if

78: addActivity ((i, i+ 1), rest, duration)

79: ptwr ← ptwr + duration

80:

81: duration← min

(
?
L
ddt

i −
?
L
dt

i , ∆̄
drive
(i,i+1) −

?
L
dt

i

)
82: addActivity ((i, i+ 1), drive, duration)
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83: ptwr ← ptwr + duration

84: end if

85:

86: // If a driving time extension of type 1 is used, take an additional

87: // break or first partial daily rest period.

88: if
?
µ
extd1

(i,i+1) = 1 then

89: if
?
α
prest

i+1 = 1 ∧ ?
µ
extd

i+1 = 0 ∧
?
∆

rest

(i,i+1) = 0 then

90: duration← 180

91: helpPartialRest← 1

92: else

93: duration← 45

94: end if

95: addActivity ((i, i+ 1), rest, duration)

96: ptwr ← ptwr + duration

97:

98: // If the time suffices, 60 minutes of driving do follow, otherwise

99: // the remaining time left until the next rest period is exploited.

100: if
?
λ
5

i = 1 then

101: duration← 60

102: else

103: if
?
l
pbreak

i = 1 then

104: duration←
?
L
t

i −
?
L
ddt

i − 30

105: else

106: duration←
?
L
t

i −
?
L
ddt

i − 45

107: end if

108: if
?
L
ddt

i >
?
L
dt

i then

109: duration← duration− 45

110: end if

111: end if

112: duration← min

(
duration, ∆̄drive

(i,i+1) −
?
L
ddt

i

)
113: addActivity ((i, i+ 1), drive, duration)

114: ptwr ← ptwr + duration

115: end if

116: end if
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117: end if

118:

119: // ———————————————————————————————

120: // If at least one daily rest period should be made on arc (i, i+ 1),

121: // schedule now the first daily rest period.

122: // ———————————————————————————————

123: restCarryover1 ←
?
∆

rest

(i,i+1) −
?
A

rest

(i,i+1) · 660 + 120 · ?µ
redrest

(i,i+1) + 120 ·
?
l
prest

i

124: if
?
A

rest

(i,i+1) ≥ 1 then

125: // In case that
?
E

ddt

i+1 is equal to 540, the rest period can be

126: // postponed to the subsequent vertex. Only take a daily rest period

127: // in the opposite case.

128: if
?
E

ddt

i+1 < 540 then

129: if
?
µ
redrest

(i,i+1) =
?
A

rest

(i,i+1) ∨
?
l
prest

i = 1 ∨
?
l
dredrest

i = 1 then

130: duration← 540

131: else

132: duration← 660

133: end if

134: if
?
α
rest

i+1 = 0 ∧
?
A

rest

(i,i+1) = 1 then

135: duration← duration+ restCarryover1

136: end if

137: addActivity ((i, i+ 1), rest, duration)

138: ptwr ← ptwr + duration

139: end if

140: end if

141: // ———————————————————————————————

142: // Plan driver activities between the first and the last daily rest period

143: // on arc (i, i+ 1)

144: // ———————————————————————————————

145: for k =
?
A

rest

(i,i+1) to 2 do

146: duration← 270

147: addActivity ((i, i+ 1), drive, duration)

148: ptwr ← ptwr + duration

149: if k > 2 ∨ ?
µ
earlydr2

(i,i+1) = 0 then

150: duration← 45
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151: addActivity ((i, i+ 1), rest, duration)

152: ptwr ← ptwr + duration

153:

154: duration← 270

155: addActivity ((i, i+ 1), drive, duration)

156: ptwr ← ptwr + duration

157:

158: // Schedule extended driving times of type 2 as late as possible.

159: if k ≤ ?
µ
extd2

(i,i+1) + 1 then

160: duration = 45

161: addActivity ((i, i+ 1), rest, duration)

162: ptwr ← ptwr + duration

163:

164: duration← 60

165: addActivity ((i, i+ 1), drive, duration)

166: ptwr ← ptwr + duration

167: end if

168: if k > 2 then

169: // Schedule reducd daily rest periods as late as possible.

170: // In case that
?
l
dredrest

i = 1, one reduced daily rest period

171: // has to be the first daily rest period on this arc.

172: if k ≤ ?
µ
redrest

(i,i+1) −
?
l
dredrest

i then

173: duration← 540

174: addActivity ((i, i+ 1), rest, duration)

175: ptwr ← ptwr + duration

176: else

177: duration← 660

178: addActivity ((i, i+ 1), rest, duration)

179: ptwr ← ptwr + duration

180: end if

181: end if

182: end if

183: k ← k − 1

184: end for

185: // ———————————————————————————————
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186: // Plan last daily rest period in case that more than one daily rest period

187: // is taken on arc (i, i+ 1).

188: // ———————————————————————————————

189: if
?
A

rest

(i,i+1) ≥ 2 then

190: if
?
E

ddt

i+1 < 540 then

191: if
?
µ
redrest

(i,i+1) ≥ 1 +
?
l
prest

i +
?
l
dredrest

i then

192: duration← 540

193: else

194: duration← 660

195: end if

196: if
?
α
rest

i+1 = 0 then

197: duration← duration+ restCarryover1

198: end if

199: addActivity ((i, i+ 1), rest, duration)

200: ptwr ← ptwr + duration

201: end if

202: end if

203: // ———————————————————————————————

204: // Plan driver activities after the last daily rest period on arc (i, i+ 1).

205: // ———————————————————————————————

206: if
?
A

rest

(i,i+1) ≥ 1 then

207: if
?
E

ddt

i+1 < 540 then

208: duration← min

(
270, 540−

?
E

ddt

i+1

)
209: addActivity ((i, i+ 1), drive, duration)

210: ptwr ← ptwr + duration

211: if
?
E

ddt

i+1 < 270 then

212: if
?
α
prest

i+1 = 1 ∧ ?
µ
extd

i+1 = 0 ∧ ?
µ
extd3

(i,i+1) = 0 then

213: duration← 180

214: helpPartialRest← 1

215: else

216: duration← 45

217: end if

218: addActivity ((i, i+ 1), rest, duration)
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219: ptwr ← ptwr + duration

220: if
?
µ
extd3

(i,i+1) = 0 then

221: duration← 270−
?
E

ddt

i+1

222: addActivity ((i, i+ 1), drive, duration)

223: ptwr ← ptwr + duration

224: else

225: duration← 270

226: addActivity ((i, i+ 1), drive, duration)

227: ptwr ← ptwr + duration

228: if
?
α
prest

i+1 = 1 ∧ ?
µ
extd

i+1 = 0 then

229: duration← 180

230: helpPartialRest← 1

231: else

232: duration← 45

233: end if

234: addActivity ((i, i+ 1), rest, duration)

235: ptwr ← ptwr + duration

236:

237: duration← 60−
?
E

ddt

i+1

238: if duration > 0 then

239: addActivity ((i, i+ 1), drive, duration)

240: ptwr ← ptwr + duration

241: end if

242: end if

243: end if

244: end if

245: end if

246: // ———————————————————————————————

247: // Plan driver activities at arrival at customer i+ 1.

248: // ———————————————————————————————

249: // If a daily rest period is planned for arc (i, i+ 1) that can be postponed

250: // to the subsequent vertex, do it. If a daily rest period is also scheduled

251: // at customer location i+ 1, unite the two daily rest periods.

252: if
?
E

ddt

i+1 = 540 ∧
?
A

rest

(i,i+1) ≥ 1 then
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253: if
?
µ
redrest

(i,i+1) ≥ 1 +
?
l
prest

i +
?
l
dredrest

i then

254: restCarryover2 ← 540 + restCarryover1

255: else

256: restCarryover2 ← 660 + restCarryover1

257: end if

258: end if

259: if
?
α
rest

i+1 = 1 then

260: duration←
?
∆

rest

i+1

261: if
?
A

rest

(i,i+1) > 0 then

262: duration← duration+ restCarryover1

263: end if

264: addActivity ((i, i+ 1), rest, duration)

265: ptwr ← ptwr + duration

266: else if restCarryover2 > 0 then

267: duration← restCarryover2

268: addActivity ((i, i+ 1), rest, duration)

269: ptwr ← ptwr + duration

270: else if
?
A

break

(i,i+1) ≥ 1 ∧
?
E

dt

i+1 = 270 ∧
?
E

ddt

i+1 ≤ 270 then

271: if
?
l
pbreak

i = 1 ∧
?
A

rest

(i,i+1) = 0 then

272: duration← 30

273: else

274: duration← 45

275: end if

276: addActivity ((i, i+ 1), rest, duration)

277: ptwr ← ptwr + duration

278: end if

279: if
?
α
break

i+1 = 1 then

280: if
?
l
pbreak

i = 1 ∧ ?
α
break

(i,i+1) = 0 then

281: duration← 30

282: else

283: duration← 45

284: end if

285: addActivity ((i, i+ 1), rest, duration)

286: ptwr ← ptwr + duration
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287: else if
?
α
pbreak

i+1 = 1 then

288: duration← 15

289: addActivity ((i, i+ 1), rest, duration)

290: ptwr ← ptwr + duration

291: else if
?
α
prest

i+1 = 1 ∧ helpPartialRest = 0 then

292: duration← 180

293: addActivity ((i, i+ 1), rest, duration)

294: ptwr ← ptwr + duration

295: end if

296: if
?
∆

wait

i+1 > 0 then

297: duration←
?
∆

wait

i+1

298: addActivity ((i, i+ 1), wait, duration)

299: ptwr ← ptwr + duration

300: end if

301: if i < r − 1 ∧ ∆̄service
i+1 > 0 then

302: duration← ∆̄service
i+1

303: addActivity ((i, i+ 1), work, duration)

304: ptwr ← ptwr + duration

305: end if

306: i← i+ 1
307: end for

B Myopic algorithm - Pseudo-code

At the beginning of the planning horizon, the driver status is given by the tupel

driverStatus = (ptwr, udt, ddt, ptr, hpb, hpr, noRed, noExt, red, dte).

The corresponding status variables are initialized in Algorithm 2.

Algorithm 2 Initialize driver status

1: // Initialize: Set starting driver status
2:
3: udt← udt
4: ddt← ddt
5: ptr ← ptr
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6: ptwr ← ptwr
7: hpb← hpb
8: hpr ← hpr
9: noRed← noRed

10: noExt← noExt
11: dte← 0
12: red← 0
13:
14: // If the driving time since the last daily or weekly rest period exceeds 9 hours, a
15: // driving time extension is active.
16:
17: if ddt > 540 ∧ noExt <= 2 then
18: dte← 1
19: end if
20:
21: // If the time since the last daily or weekly rest period exceeds 13 hours, plan that
22: // the next daily rest period has to be a reduced one.
23:
24: if ptr > 780 ∧ noRed < 3 then
25: red← 1
26: end if

The method scheduleActivity (<last stop>,<duration in min.>,<activity type>) sched-
ules an activity with given activity type activityType and duration duration, i.e. adds it
at the end of the list of activities between stops i and i+1. The update of the driver status
is done accordingly and the algorithm used can be seen as an extension to optional rules
of the label-update made in the labeling algorithms of Goel (2009). The pseudo-code is
given by Algorithm 3.

Algorithm 3 Update driver status

1: switch activityType
2:
3: ptwr ← ptwr + duration
4:
5: case drive
6: udt← udt+ duration
7: ddt← ddt+ duration
8: ptr ← ptr + duration
9: break

10: end case
11:
12: case work
13: ptr ← ptr + duration
14: break
15: end case



B Myopic algorithm - Pseudo-code 112

16:
17: case wait
18: ptr ← ptr + duration
19: break
20: end case
21:
22: case break
23: ptr ← ptr + duration
24: if duration > 15 then
25: udt← 0
26: hpb← 0
27: else
28: hpb← 1
29: end if
30: break
31: end case
32:
33: case rest
34: udt← 0
35: if duration = 180 then
36: hpr ← 1
37: ptr ← ptr + 180
38: else
39: ddt← 0
40: ptr ← 0
41: hpb← 0
42: hpr ← 0
43: red← 0
44: dte← 0
45: end if
46: break
47: end case
48:
49: case redrest
50: udt← 0
51: ddt← 0
52: ptr ← 0
53: hpb← 0
54: hpr ← 0
55: red← 0
56: dte← 0
57: noRed← noRed+ 1
58: break
59: end case
60: end switch
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Algorithm 4 is used, to determine the first reachable time window. This is for example
needed in Algorithm 5 if a driving time extension is considered or in Algorithm 6 right at
the beginning.

Algorithm 4 Determine first reachable time window

Input: last stop i, potential arrival time time at customer location i + 1, time window
information for i+ 1 (next stop)

Output: first time window reachable without lateness ignoring a potential daily rest pe-
riod still to take or last time window if lateness is not avoidable

1: z ← 0
2: minLateness← max

(
time− TW end

i+1,0, 0
)

3:
4: for k = 1 to nbTWi − 1 do
5: lateness← max

(
time− TW end

i+1,k, 0
)

6: if
(

(lateness < minLateness)

∨(time ≤ TW
end

i+1,k ∧ TW
begin

i+1,k < TW
begin

i+1,z)

)
then

7: minLateness = lateness
8: z ← k
9: end if

10: end for
11: return z

For each pair of consecutive stops i and i+ 1 Algorithms 5, 6, and 7 are executed one after
another to determine the driver schedule.

Algorithm 5 Schedule activities on arc (i,i+1)

1: //
2: // Schedule activities "between" stops i and i+ 1.
3: // (Durations of daily rest periods may be modified later.)
4: //
5:
6: duration← 0
7: drivingT imeToDest← ∆̄drive

(i,i+1)
8:
9: while drivingT imeToDest > 0 do

10:
11: // Determine the next driving time interval as the minimum of the nonstop
12: // driving time left, the daily driving time left, the time until the next daily rest
13: // period and the driving time still needed to reach the next stop.
14: // If a partial daily rest period was made or it was decided previously that the
15: // next daily rest period will be a reduced one, add two hours to the time until
16: // the next daily rest period has to start.
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17:

18: duration← min

 270− udt,
540 + 60 dte− ddt,
780 + 120 hpr + 120 red− ptr,
drivingT imeToDest


19:
20: scheduleActivity (i, duration, drive)
21:
22: Update driver status
23:
24: drivingT imeToDest← drivingT imeToDest− duration
25:
26: if drivingT imeToDest = 0 then
27: break
28: else
29:
30: //
31: // If less than one hour of driving is left to reach the next stop, take a driving
32: // time extension if possible and advantageous.
33: //
34:
35: // A driving time extension is considered
36: // - if at most one hour of driving is left until the next stop is reached,
37: // - if at least one daily rest period on the current arc has already been made,
38: // - if in the current week, less than two driving time extensions have been taken
39: // - if it is possible to save a daily rest period on the current arc and thus
40: // - reach an earlier time window or reduce lateness.
41:

42: if

 (drivingT imeToDest ≤ 60)
∧ (getDailyRestPosSize() > 0)
∧ (ddt = 540)
∧ (noExt < 2)

 then

43:
44: redRestPoss← 0
45:
46: if noRed < 3 then
47: redRestPoss← 1
48: end if
49:

50: if
(

780 + 120 redRestPoss
≥ ptr + drivingT imeToDest+ 45 + workingT ime

)
then

51:
52: time1← ptwr + 45 + drivingT imeToDest
53: time2← ptwr + 660 + drivingT imeToDest
54:
55: // Determine the first reachable time window for both alternatives
56: // (Algorithm 4).
57:
58: z1← Determine first reachable time window for time1
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59: z2← Determine first reachable time window for time2
60:
61: // If the first reachable time window starts earlier or the lateness is less if
62: // a driving time extension is used, take the driving time extension.
63:
64: if TW begin

i+1,z1 < TW
begin

i+1,z2 ∨ time2− TW
end

i+1,z2 > 0 then
65:
66: scheduleActivity (i, 45, break)
67: Update driver status
68:
69: scheduleActivity (i, drivingT imeToDest, drive)
70: Update driver status
71:
72: dte← 1
73: noExt← noExt+ 1
74:
75: if 780 < ptr + ∆̄service

i+1 then
76: red = 1
77: end if // if 780 < ptr + ∆̄service

i+1

78: break // Leave while loop
79: end if // if TW begin

i+1,z1 < TW
begin

i+1,z2 ∨ time2− TW
end

i+1,z2 > 0
80: end if // 780 + 120 redRestPoss ≥ ptr + . . .
81: end if // if drivingT imeToDest ≤ 60 . . .
82:
83: // If the daily driving time or the time until the next daily rest period is
84: // exhausted, take a daily rest period. Otherwise, the nonstop driving time
85: // equals 4.5 hours and a break has to be taken.
86:
87: if ddt = 780 ∨ ptr + 45− 15 hpb ≥ 780 then
88: duration← 660− 120 (hpr + red)
89: if red = 1 then
90: scheduleActivity (i, duration, redrest)
91: else
92: scheduleActivity (i, duration, rest)
93: end if
94: Update driver status
95: else
96: duration← 45− 15 hpb
97: scheduleActivity (i, duration, rest)
98: Update driver status
99: end if // if ddt = 780 ∨ ptr + 45− 15 hpb ≥ 780
100: end if // if drivingT imeToDest = 0
101: end while // while drivingT imeToDest > 0

As we do include standard rule 6, we have to ensure that the maximum time interval
between two (daily) rest periods is not exceeded when waiting time and time for load-
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ing/unloading is scheduled. Algorithm 6 schedules an additional daily rest period if nec-
essary. To avoid lateness, the duration of daily rest periods between stops i and i + 1
may be reduced. If avoidance is not possible, it is tried to remove the last daily rest pe-
riod by extending the duration of the previous daily rest period to compensate waiting
time. The method extendRestDurationLastRest (< modifier in min. >) in Algorithm
6 extends the duration of the last scheduled daily rest period and modifies ptwr and the
starting times of subsequent activities accordingly.

Algorithm 6 Choose time window at stop i+ 1

1: //
2: // Determine the first reachable time window. Plan an additional daily rest period
3: // if it is necessary before loading or unloading may start. If this causes lateness
4: // for the time window currently considered, first try to reduce the duration of daily
5: // rest periods on this arc. If this does not work, try to leave out the last daily
6: // rest period:
7: // If waiting time occurs, compensate it if possible, by extending the previous daily
8: // rest period on this arc. Additionally, consider the option to plan the next daily rest
9: // period to be a reduced one to obtain two additional hours until the next daily

10: // rest period is necessary.
11: //
12:
13: z ← Determine first reachable time window for ptwr
14:
15: repeat
16: chosenTWEnd← TW

end

i+1,z

17: z ← z + 1

18: waitingT ime← max
(

0, TW
begin

i+1,z − ptwr
)

19: dailyT imeAfterService← ptr + waitingT ime+ ∆̄service
i+1

20:
21: if dailyT imeAfterService > 780 + 120 (hpr + red) then
22:
23: // Without daily rest period, the time does not suffice to wait and serve the
24: // customer. Try to schedule a daily rest period.
25:
26: if (hpr = 1) ∨ (red = 1) then
27: duration← 540
28: else
29: duration← 660
30: end if
31:
32: if ptwr + duration > chosenTWEnd then
33:
34: //
35: // If lateness occurs, test, whether reducing rest periods on the current arc
36: // helps to reach the chosen time window in time.
37: //
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38:
39: // Determine the number of daily rest periods on the current arc that may be
40: // reduced.
41:
42: posNoReductions← getNoReducableRestPeriods()
43:
44: if (hpr = 0) ∧ (red = 0) then
45: posNoReductions← posNoReductions+ 1
46: end if
47:
48: posNoReductions = min (posNoReductions, 3− noRed)
49:
50: if ptwr + duration− 120 posNoReductions ≤ chosenTWEnd then
51:
52: if red = 0 then
53: scheduleActivity (i, duration, rest)
54: else
55: scheduleActivity (i, duration, redrest)
56: end if
57:
58: Update driver status
59:
60: break
61:
62: else
63:
64: // If it is not possible to schedule a daily rest period without lateness, try
65: // to extend the last daily rest period on this arc by the waiting time
66: // to shift the 24 h hours time interval and/or try to extend it by deciding
67: // that the next daily rest period should be a reduced one.
68:
69: reducedRestPoss = 0
70:
71: if (noRed < 3) ∧ (hpr = 0) then
72: reducedRestPoss = 1
73: end if
74:
75: hadDailyRest = 0
76:
77: if getNoReducableRestPeriods() > 0 then
78: hadDailyRest = 1
79: end if
80:

81: if

(
(dailyT imeAfterService− hadDailyRest · waitingT ime
≤ 780 + 120 (hpr + reducedRestPoss)

∧ getNoRestPeriods() > 1

)
then

82:
83: if hadDailyRest > 0 then
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84: extendRestDurationLastRest (waitingT ime)
85: end if // if hadDailyRest > 0
86:
87: if ptr + waitingT ime+ ∆̄service

i+1 > 780 ∧ red = 0 then
88: red← 1
89: end if
90:
91: break
92:
93: else
94:
95: // A daily rest period is necessary, but it is not possible to avoid
96: // lateness if this time window is chosen. Schedule the daily rest
97: // period.
98:
99: if red = 0 then
100: scheduleActivity (i, duration, rest)
101: else
102: scheduleActivity (i, duration, redrest)
103: end if
104:
105: Update driver status
106:
107: end if // if dailyT imeAfterService− hadDailyRest · waitingT ime . . .
108: end if // if ptwr + duration− . . .
109: else
110:
111: // The time suffices to take a regular daily rest period. Note that the daily
112: // rest period may end after the start of the time window.
113:
114: scheduleActivity (i, duration, rest)
115: Update driver status
116:
117: break
118:
119: end if// if ptwr + duration > chosenTWEnd
120: else
121:
122: // An additional daily rest period is not necessary.
123: // If lateness occurs, the current time window considered is already the last
124: // one, as we started this loop with the "first reachable time window".
125:
126: break
127:
128: end if // if dailyT imeAfterService > 780 + 120 (hpr + red)
129:
130: lateness← max (0, ptwr − chosenTWEnd)
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131:
132: until lateness = 0 ∨ z = nbTWi+1

133:
134: // In the repeat-loop, z was raised by 1 one time too often. Therefore, subtract 1.
135:
136: z ← z − 1

The method reduceRestDurationLastRest() in Algorithm 7 is used to reduce the the
duration of the last daily rest period if this helps to reduce lateness. Waiting time
may be compensated by extending the last daily rest period on the current arc (method
extendRestDurationLastRest (< extension in min. >)). If there is waiting time, the
method extendRestDurationLastRest (< extension in min. >) can be used to extend the
last daily rest period on the current arc accordingly.

Algorithm 7 Schedule activities at stop i+ 1

1: lateness← max
(

0, ptwr − TW end

i+1,z

)
2:
3: // If there is lateness, reduce the duration of daily rest periods.
4:
5: if lateness > 0 then
6:
7: posNoReductions = min (getNoReducableRestPeriods(), 3− noRed)
8:
9: while (ptwr > TW

end

i+1,z) ∧ (posNoReductions > 0) do
10:
11: reduceRestDurationLastRest()
12: posNoReductions← posNoReductions− 1
13:
14: end while
15:
16: else
17:
18: //
19: // Plan activities after the arrival at the customer location.
20: //
21:
22: // If there is waiting time, try to compensate it by resting activities.
23: // If the last activity scheduled was a (reduced) daily rest period ignore this step.
24:
25: noActivities← getNoActivitiesArc()
26: if noActivities < 1 ∨ getActivityType (noActivities− 1) 6= ”rest” then
27: if hpr = 1 ∨ red = 1 then
28: duration← 540
29: else
30: duration← 660
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31: end if
32:
33: if ptwr ≤ TW

begin

i+1,z − duration then
34: if red = 1 then
35: scheduleActivity (i, duration, redrest)
36: Update driver status
37: else
38: scheduleActivity (i, duration, rest)
39: Update driver status
40: end if
41:
42: else if (ptwr ≤ TW

begin

i+1,z − 540) ∧ (noRed < 3) then
43: scheduleActivity (i, 540, redrest)
44: Update driver status
45:
46: else if (hpr = 0) ∧ (red = 0) ∧ (ptwr ≤ TW

begin

i+1,z − 180) then
47: scheduleActivity (i, 180, rest)
48: Update driver status
49:
50: else if (ptwr ≤ TW

begin

i+1,z − 45 + 15 hpb) ∧ (udt > 0) then
51: scheduleActivity (i, 45− 15 hpb, break)
52: Update driver status
53:
54: else if (ptwr ≤ TW

begin

i+1,z − 15) ∧ (hpb = 0) then
55: scheduleActivity (i, 15, rest)
56: Update driver status
57:
58: end if // if ptwr ≤ TW

begin

i+1,z − duration
59: end if // if noActivities < 1 ∨ getActivityType (noActivities− 1) 6= ”rest”
60: end if // if lateness > 0
61:
62: //
63: // Postprocessing: Compensate waiting time by extending the duration of the last
64: // daily rest period if possible.
65: //
66: if ptwr ≤ TW

begin

i+1,z then
67: if getDailyRestPosSize() > 0 then
68: extendRestDurationLastRest

(
TW

begin

i+1,z − ptwr
)

69:
70: else
71: Save the driver status.
72: Save the chosen time window.
73: scheduleActivity

(
i, TW

begin

i+1,z − ptwr, wait
)

74:
75: end if // if getDailyRestPosSize() > 0
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76: else
77: Save the driver status.
78: Save the chosen time window.
79: end if // if ptwr ≤ TW

begin

i+1,z

80:
81: //
82: // Plan loading or unloading at customer location.
83: //
84: if ∆̄service

i+1 > 0 then
85: scheduleActivity

(
i, ∆̄service

i+1 , work
)

86: end if // if ∆̄service
i+1 > 0

C Examples of schedules

This appendix shows three examples of schedules. The aim is to give an idea of how the
different planning techniques behave. Base instance 3 (see Figure 31) with 3 time windows
and a time window size of 30 minutes (see Table 7) was chosen for the analysis. Tables 8
and 10 show the output of the transformation algorithm, Table 8 for the model without
optional rules, and 10 for the model with optional rules. Table 9 depicts the result when
using the myopic algorithm as a planning technique.

start

target2location Rastatt26DET Kirkel26DET Madrid26EST Duenas26EST Wolfsburg26DET

stops [0] [1] [2] [3] [4] [5]

durw2loading/unloading26hT 2:00 2:00 2:00 2:00 0:00

Mon206:30 Mon205:30 Wed205:30 Thu203:30 Mon200:00

Mon207:00 Mon206:00 Wed206:00 Thu204:00 Sun223:59

Mon209:00 Mon208:00 Wed208:00 Thu206:00

Mon209:30 Mon208:30 Wed208:30 Thu206:30

Mon211:30 Mon210:30 Wed210:30 Thu208:30

Mon212:00 Mon211:00 Wed211:00 Thu209:00

Mon207:47

time2windows start

end

start

end

start

end

Table 7: Time windows

It is interesting to see the advantages when optimizing over all arcs. Independent on
the planning technique, the driver starts his work week at the first customer (no driving
duration between start vertex 0 and customer vertex 1) at 7:47 on Monday morning. While
the models decide to take the first time window and thus accept a lateness of 47 minutes,
the myopic algorithm decides to avoid lateness at the first customer and chooses the second
time window compensating part of the waiting time by a first partial break. The effect
can be seen when having a look at the lateness at the second customer. While the myopic
algorithm cannot avoid a lateness of 2:16 hours, the models manage to ’reduce’ lateness to
1:03 hours. Over the first two customers, lateness can thus be reduced by 26 minutes.
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Figure 31: Route of base instance 3
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The choice of time windows varies between the three schedules. The use of reduced daily
rest periods allows the driver to be on time at stop three, no matter if the model with
optional rules or the myopic algorithm is chosen. On the last arc the MILP model with
consideration of the optional rules has the advantage to ’know’ that there are no remaining
requests in the considered week. All possible driving time extensions and reduced daily
rest periods are used such that the driver is able to finish his tour significantly earlier than
in the schedule that was created by the myopic algorithm. In turn, the myopic algorithm
achieves a much earlier completion time than the MILP model without consideration of
the optional rules.
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day type from until duration

Mon Sun)load 07:47 09:47 02:00

stop:v1

chosenvtimevwindow:

start: Mon 06:30 end: Mon 07:00

calculatedvarrival: Mon 07:47

lateness: 00:47

Mon drive 09:47 12:03 02:16

Mon Sun)load 12:03 14:03 02:00

stop:v2

chosenvtimevwindow:

start: Mon 10:30 end: Mon 11:00

calculatedvarrival: Mon 12:03

lateness: 01:03

Mon drive 14:03 16:17 02:14

Mon break 16:17 17:02 00:45

Mon drive 17:02 20:47 03:45

Mon rest 20:47 07:47 11:00

Tue drive 07:47 12:17 04:30

Tue break 12:17 13:02 00:45

Tue drive 13:02 17:32 04:30

Tue rest 17:32 04:32 11:00

Wed drive 04:32 09:02 04:30

Wed break 09:02 09:47 00:45

Wed drive 09:47 12:07 02:20

Wed Sun)load 12:07 14:07 02:00

stop:v3

chosenvtimevwindow:

start: Wed 10:30 end: Wed 11:00

calculatedvarrival: Wed 12:07

lateness: 01:07

Wed drive 14:07 16:17 02:10

Wed rest 16:17 04:55 12:38

Thu drive 04:55 06:00 01:05

Thu Sun)load 06:00 08:00 02:00

stop:v4

chosenvtimevwindow:

start: Thu 06:00 end: Thu 06:30

calculatedvarrival: Thu 06:00

lateness: 00:00

Thu drive 08:00 11:25 03:25

Thu break 11:25 12:10 00:45

Thu drive 12:10 16:40 04:30

Thu rest 16:40 03:40 11:00

Fri drive 03:40 08:10 04:30

Fri break 08:10 08:55 00:45

Fri drive 08:55 13:25 04:30

Fri rest 13:25 00:25 11:00

Sat drive 00:25 03:07 02:42

stop:5

chosenvtimevwindow:

start: Mon 00:00 end: Sun 23:59

calculatedvarrival: Sat 03:07

lateness: 00:00

Table 8: Optimal schedule identified by the MILP model without optional rules
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day type from until duration

Mon break 07:47 08:02 00:15

Mon wait 08:02 09:00 00:58

Mon Sun)load 09:00 11:00 02:00

stop:c1

chosenctimecwindow:

start: Mon 09:00 end: Mon 09:30

calculatedcarrival: Mon 08:02

lateness: 00:00

Mon drive 11:00 13:16 02:16

Mon Sun)load 13:16 15:16 02:00

stop:c2

chosenctimecwindow:

start: Mon 10:30 end: Mon 11:00

calculatedcarrival: Mon 13:16

lateness: 02:16

Mon drive 15:16 17:30 02:14

Mon break 17:30 18:00 00:30

Mon drive 18:00 20:47 02:47

Mon rest 20:47 05:47 09:00

Tue drive 05:47 10:17 04:30

Tue break 10:17 11:02 00:45

Tue drive 11:02 15:32 04:30

Tue rest 15:32 01:57 10:25

Wed drive 01:57 06:27 04:30

Wed break 06:27 07:12 00:45

Wed drive 07:12 10:30 03:18

Wed Sun)load 10:30 12:30 02:00

stop:c3

chosenctimecwindow:

start: Wed 10:30 end: Wed 11:00

calculatedcarrival: Wed 10:30

lateness: 00:00

Wed drive 12:30 13:42 01:12

Wed rest 13:42 00:42 11:00

Thu drive 00:42 02:45 02:03

Thu break 02:45 03:30 00:45

Thu Sun)load 03:30 05:30 02:00

stop:c4

chosenctimecwindow:

start: Thu 03:30 end: Thu 04:00

calculatedcarrival: Thu 03:30

lateness: 00:00

Thu drive 05:30 10:00 04:30

Thu break 10:00 10:45 00:45

Thu drive 10:45 13:12 02:27

Thu rest 13:12 00:12 11:00

Fri drive 00:12 04:42 04:30

Fri break 04:42 05:27 00:45

Fri drive 05:27 09:57 04:30

Fri rest 09:57 20:57 11:00

Fri drive 20:57 00:37 03:40

stop:c5

chosenctimecwindow:

start: Mon 00:00 end: Sun 23:59

calculatedcarrival: Fri 20:57

lateness: 00:00

Table 9: Schedule created with the myopic algorithm
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date day from until duration

Mon Sun)load 07:47 09:47 02:00

stop:31

chosen3timekwindow:

start: Mon 06:30 end: Mon 07:00

calculated3arrival: Mon 07:47

lateness: 00:47

Mon drive 09:47 12:03 02:16

Mon Sun)load 12:03 14:03 02:00

stop:32

chosen3time3window:

start: Mon 10:30 end: Mon 11:00

calculated3arrival: Mon 12:03

lateness: 01:03

Mon drive 14:03 16:17 02:14

Mon break 16:17 17:02 00:45

Mon drive 17:02 21:32 04:30

Mon rest 21:32 06:32 09:00

Tue drive 06:32 11:02 04:30

Tue break 11:02 11:47 00:45

Tue drive 11:47 16:17 04:30

Tue rest 16:17 01:17 09:00

Wed drive 01:17 05:47 04:30

Wed break 05:47 06:32 00:45

Wed drive 06:32 08:07 01:35

Wed Sun)load 08:07 10:07 02:00

stop:33

chosen3time3window:

start: Wed 08:00 end: Wed 08:30

calculated3arrival: Wed 08:07

lateness: 00:00

Wed drive 10:07 13:02 02:55

Wed rest 13:02 02:55 13:53

Thu drive 02:55 03:15 00:20

Thu break 03:15 03:30 00:15

Thu Sun)load 03:30 05:30 02:00

stop:34

chosen3time3window:

start: Thu 03:30 end: Thu 04:00

calculated3arrival: Thu 03:30

lateness: 00:00

Thu drive 05:30 09:40 04:10

Thu break 09:40 10:10 00:30

Thu drive 10:10 14:40 04:30

Thu break 14:40 15:25 00:45

Thu drive 15:25 16:25 01:00

Thu rest 16:25 01:25 09:00

Fri drive 01:25 05:55 04:30

Fri break 05:55 06:40 00:45

Fri drive 06:40 11:10 04:30

Fri break 11:10 11:55 00:45

Fri drive 11:55 12:52 00:57

stop:35

chosen3time3window:

start: Mon 00:00 end: Sun 23:59

calculated3arrival: Fri 12:52

lateness: 00:00

Table 10: Optimal schedule identified by the MILP model with optional rules
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