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Beta-boosted ensemble for big credit scoring
data

Maciej Zięba, Wolfgang Karl Härdle

Abstract In this work we present a novel ensemble model for a credit scoring prob-
lem. The main idea of the approach is to incorporate separate beta binomial distri-
butions for each of the classes to generate balanced datasets that are further used
to construct base learners that constitute the final ensemble model. The sampling
procedure is performed on two separate ranking lists, each for one class, where
the ranking is based on prepotency of observing positive class. Two strategies are
considered: one assumes mining easy examples and the second one forces good
classification of hard cases. The proposed solutions are tested on two big datasets
on credit scoring.
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Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,
Poland, e-mail: maciej.zieba@pwr.edu.pl

Wolfgang Karl Härdle
Professor at Humboldt-Universität zu Berlin, Ladislaus von Bortkiewicz chair of statistics and Di-
rector of C.A.S.E. - Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin,
Spandauer Straße 1, 10178 Berlin, Germany and School of Business, Singapore Management
University, 50 Stamford Road, Singapore 178899. e-mail: haerdle@wiwi.hu-berlin.de

Financial support from the Deutsche Forschungsgemeinschaft via CRC Economic Risk and
IRTG 1792 High Dimensional Non Stationary Time Series, Humboldt-Universität zu Berlin, is
gratefully acknowledged.

1
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1 Introduction

The problem of constructing a decision model to distinguish good and bad con-
sumers can be defined as a dichotomous classification task, where the positive class
(usually less numerous) represents "bad" applicants and the negative class stays be-
hind "good" cases. Usually, instead of obtaining the binary classification result we
aim at estimating the probability of credit repayment for each of the consumers.
Basing on the probabilities the financial institution is capable to define the various
profiles of the consumers. The common procedure for that kind of applications is to
separate from training some group of labeled consumers and sort them according to
the predictive probability using the trained model. The sorted group with the given
labels is further used to distinguish the profiles. As a consequence, a higher patience
is given to construct models that are characterized by good sorting capabilities than
to the typical classifiers used for binary classification. Instead of maximizing the
accuracy of prediction the community working on the credit scoring models aims
at achieve the highest value of AUC (area under ROC curve) criterion that stays
behind sorting capabilities of the models.

Various machine learning algorithms were applied to solve credit scoring and
fraud detection problems, such as: neural networks [13, 18, 22], Gaussian Processes
[10], various extensions of SVMs (Support Vector Machines) [2, 3, 4, 7, 8, 9, 23] or
comprehensible models based on neural structures [20] or SVMs [16].

Ensemble methods have also gained particular attention in the field of credit
scoring. The general idea of this type of models is based on constructing many
component models (so called base learners) that are joined together as one complex
classifier. Usually, the base model is so-called weak learner that is characterized
by poor individual performance, but strong learners are also used for particular en-
semble models. Authors of [17] present very beneficial comparison of the standard
ensemble procedures in application to credit scoring tasks. Some more up-to-date
analysis of this kind of models for this particular application were presented in [1]
and [24]. The most recent models make use of various types of base learners [11],
joined two strategies of diversification on features and data levels [15], switching
class labels [25], boosting neural networks [21] or using ensemble of cost-sensitive
SVMs trained with active learning strategy [26]. Most recent studies studies show
the great benefit of using Extreme Boosted Trees [27].

Here, we aim at constructing a novel boosting approach that works indepen-
dently on selected base model and performs well on big credit scoring datasets. The
key idea of this approach is to apply a strategy to sample examples for each of the
boosting iterations to construct the base learners. We make use of particular Beta
Binomial distributions that are applied to the sorted training data according to the
prediction probabilities returned by current ensemble model. In this work we dis-
tinguish two sampling strategies: the first strategy aims at sampling with the higher
probability the examples that are already well located in the ranking. The other strat-
egy is an example of so-called hard examples mining where the higher probabilities
are given to the examples badly predicted and badly located in the ranking. Our
approach was tested on the two benchmark datasets using two base models: Logis-



Beta-boosted ensemble for big credit scoring data 3

tic Regression and Decision Tree classifier. The results show that the first strategy
works fine with the stable models like Logistic Regression, while the second strat-
egy improves the quality of weak learners like Decision Trees.

The paper is organized as follows. In Section 2 we present the BetaBoost algo-
rithm. In Section 3 we introduce some experimental studies investigating the perfor-
mance of the approach. The paper is summarized with some conclusions presented
in Section 4.

2 Method description

The main idea of the proposed approach is to create an ensemble model that makes
use of re-sampling diversification technique in only to increase its sorting capa-
bilities. To achieve the goal, each of the base learners is trained using re-sampled
training data. The re-sampling procedure makes use of two particular beta binomial
distributions (one for each class) that are used to generate indexes of examples that
are going to be taken in the next boosting iteration. The crucial step in the training
procedure is sorting the training data according to predictive capabilities of the so
far created ensemble model. As a consequence, the examples with higher probabil-
ity value have higher indexes and are going to be selected more often in training
iterations. For the sampling sampling procedure we propose to use Beta Binomial
distribution which is going to be characterized in the next subsection.

2.1 Beta Binomial distribution

The beta binomial distribution is selected because it is capable to assign high prob-
abilities to particular regions of the sorted data according to predictive probability
values of the training examples. Practically, it means that we are capable to concen-
trate our model either on learning from difficult-to-distinguish credit consumers, or
put the higher impact on learning from the easy-to-classify client applicants.

The flexibility of beta binomial distribution is controlled by three parameters:

• Shape parameters a and b that are characteristic for beta distribution (a,b > 0).
• Parameter N that represents the number of trials characteristic for binomial dis-

tribution (N ∈ N0).

The probability function for beta binomial distribution (BBin(a,b,N)) can be
presented in the following form:

p(k;a,b,N) =

(
N
k

)
B(k+a,N− k+b)

B(a,b)
, (1)

where B(a,b) is the beta function. The plots of the probability function for various
values of the parameters a and b are presented in Figure 1.
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Fig. 1: Probability mas function for beta binomial distribution considering various
a, b values.

The presented distribution has the important property for the particular values
of shape parameters a and b. In this application we are concentrating on particular
families of beta binomial distributions:

• The subset of distributions, where a ≤ 1, b ≥ 1 and a 6= b. If k1 > k2, then
p(k1;a,b,N)< p(k2;a,b,N).

• The subset of distributions, where a ≥ 1, b ≤ 1 and a 6= b. If k1 > k2, then
p(k1;a,b,N)> p(k2;a,b,N).

The selection of the particular distributions is indicated by the strategies that
are going to be applied to train the ensemble model. For the first strategy we
aim at putting the higher impact on selecting better located examples in the rank-
ing so for the ranking list for negative examples (sorted according to probabil-
ity of observing positive class) we apply the family of distributions that satisfies
p(k1;a,b,N) < p(k2;a,b,N), while for the ranking list for positive cases we use
family of distribution that satisfies p(k1;a,b,N) > p(k2;a,b,N). As a consequence
it is more probable to select the examples properly located on the both of the lists.

For the second strategy we make use of the first family of distributions for pos-
itive ranking list and the second family for negative sorted samples. Contrary to
previous strategy we aim at mining rather hard positive and negative examples and
omitting well classified examples.

In the next section we present, how the beta binomial sampling is used in con-
structing the boosted model.

2.2 Beta-boosted ensemble model

In this work we aim at constructing the ensemble classifier for binary classification
y ∈ {0,1}, composed of T base models:
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pT (y|x) =
T

∑
t=0

pt p(y|x, t)y
{

1− p(y|x, t)
}(1−y)

, (2)

where x is vector of input features, p(y|x, t) represents t-th base learner, and pt is
prior distribution over base learners.

For further work we assume that base learners are characterized by uniform dis-
tribution, so we can present the ensemble model given by equation (2) in the fol-
lowing form:

pT (y = 1|x) = 1
T +1

T

∑
t=0

p(y = 1|x, t). (3)

We are interested in obtaining probability value for a given positive class therefore
we will further operate on probability for this class, p(y = 1|x).

For the given predictor p(y = 1|x) and the set of examples XN = {xn}N
n=1 we can

define the rank function h(x,XN , p):

h(x,XN , p) =
N

∑
n=1

I

{
p(y = 1|x)> p(y = 1|xn)

}
(4)

The procedure for creating the ensemble classifier can be described by Algorithm
1. To create the classifier we make use of training data DN = {(xn,yn)}N

n=1, that
contains N training examples: N1 positive and N0 negative instances. We aim at
constructing the ensemble model given by the equation (3).

Algorithm 1: BetaBoost

Input: Training data: DN = {(xn,yn)}N
n=1

Output: Ensemble model: pT (y = 1|x) (see eq. (3))
Parameters: BBin0(·) parameters for negative class: a0, b0,

BBin1(·) parameters for positive class: a1, b1,
number of base learners: T +1.

1 Set XN1 = {xn : yn = 1} and XN0 = {xn : yn = 0};
2 Train weak learner p(y|x,0) with data DN ;
3 for t← 1 to T do
4 Create ensemble predictor pt−1(y = 1|x) = 1

t+1 ∑
t
j=0 p(y = 1|x, j);

5 Generate X̃(1)
N/2 with sample(XN1 , pt−1,a1,b1,N/2) (see Algorithm 2);

6 Generate X̃(0)
N/2 with sample(XN0 , pt−1,a0,b0,N/2) (see Algorithm 2);

7 Create new training data D̃N = (X̃(1)
N/2,1)∪ (X̃

(1)
N/2,0);

8 Train weak learner p(y|x,k) with data D̃N ;
9 end

To initialize the training procedure we distinguish positive and negative exam-
ples denoting them by XN1 and XN2 respectively. We also initialize the ensem-
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ble structure by training the first base learner p(y|x,0) using initial training set
DN = {(xn,yn)}N

n=1. In the next step we perform constructing the committee of T
base classifiers in the training loop. Before creating the base learner we perform beta
binomial sampling using separate distributions for each of the classes to obtain N/2
samples for each class. We use distributions for each of the classes, BBin0(a,b,N)
to sample negatives and BBin1(a,b,N) to sample positives. We recommend to use
particular families of distributions that was characterized in subsection 2.1.

Algorithm 2: Sampling procedure: sample(XN , p,a,b,Nout)

Input: Predictor p(y = 1|x), the set of examples XN = {xn}N
n=1, number of

output samples Nout .
Output: Set of data samples X̃Nout = {xn}Nout

n=1
Parameters: BBin(·) parameters: a, b.

1 X̃0← /0;
2 for n← 1 to Nout do
3 Sample k ∼ BBin(a,b,N−1);
4 X̃n← X̃n−1∪{x ∈ XN : h(x,XN , p) = k}, h(x,XN , p) is given by eq. (4);
5 end

The procedure of sampling the data makes use of the currently created ensem-
ble model pt−1(y = 1|x) to determine the ranking position of the example x in the
given set XN using ranking function h(x,XN , p) given by equation (4). The sam-
pling procedure is performed independently for each of the classes and is described
by Algorithm 2. First, we sample the integer k from BBin(a,b,N− 1) distribution.
Second, we identify the sample that has ranking value equal to the sampled k value
and include it into the set of output samples X̃n. The sampling procedure is repeated
Nout times to obtain the output set of examples, X̃Nout . The procedure is equivalent
to sorting the given data according to the given predictions and then sampling their
position with beta binomial distribution.

The sampling procedure is performed separately for the sets of positive and neg-
ative examples XN1 , XN0 and, as a consequence, the new sets X̃(1)

N/2 and X̃(0)
N/2 are

created and each of them contains N/2 sampled examples. The two set are then la-
beled and concatenated to the new training data D̃N that is further used to train the
k-th base learner p(y|x,k). The procedure is repeated T times to obtain ensemble
model composed of T +1 base learners.

2.3 Toy example

Consider the toy example in which we have set of 15 examples, 5 from positive class
and 10 from negative class. Assume, that we have the committee of the models that
sorted the training examples according to the predictive probability p(y = 1|x) (see
Figure 2a). Further, we assign individual ranking position for each of the considered
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p0(y=1|x)0 1

(a) Sorted data points according to the predictive distribution.

p0(y=1|x)0 1

0 1 2 0 3 4 5 1 6 7 8 2 9 3 4

(b) Sorted data points with individual rankings for each class.

Fig. 2: The set of data examples sorted according to p0(y = 1|x). Red circles repre-
sent negative examples, and green circles stand behind positive cases.

classes (see Figure 2b). Next, we assume individual Beta binomial distribution for
each of the classes:

• BBin0(0.8,2,9) for negative examples.
• BBin1(2,0.8,4) for positive examples.

The selected distributions are consistent with the first strategy described in sub-
section 2.1, where we aim at mining easy examples from both classes. We take
arbitrary values of the parameters (a0 = 0.8, b = 2, a = 2, b = 0.8) just to illustrate
the proposed algorithm. Considering real applications, the selection of the a and b
is crucial for the training procedure. If the both values are close to 0 the distribution
approaches uniform distribution, while for large a and small b examples with high
positions are going to be selected multiple times. To select proper parameters for
the distributions model selection procedure should be applied.

If we assume equal prior probabilities for selecting examples from minority and
majority class, the sampling distribution for the next boosting iteration is presented
in Figure 2.

If perform sampling with replacement from the given distribution we can obtain
the set of examples that should be taken into next boosting iteration that is presented
in Figure 4a. After learning the second base learner p(y = 1|x,1) and adding it to
the ensemble model p1(y = 1|x) = p(y=1|x,0)+p(y=1|x,1)

2 we obtain the better sorting
of the data (see Figure 4b).

If we consider the AUC criterion (area under ROC curve) that represents the
quality of the sorting capabilities for the binary classification models it increases
from 0.76 to 0.92.

The idea that stays behind the proposed procedure is a proper selection of the
sampling distributions the satisfy the conditions that are described in subsection
2.1. In this variant we take the distribution for sampling positive examples that sat-
isfies: a1 ≥ 1, b1 ≤ 1 and for sampling negative instances we use the distribution
with parameters: a0 ≤ 1, b0 ≥ 1. Practically it means, that we aim at putting the
higher impact on the examples that are characterized by higher predictive probabil-
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Fig. 3: Sampling distribution for examples presented in Figure 2 - BBin0(0.8,2,9)
for negative and BBin1(2,0.8,4) for positive examples.

p0(y=1|x)0 1

0 1 2 0 3 4 5 1 6 7 8 2 9 3 4

0 1 1 4

4

4

(a) The data sampled from distribution presented in Figure 3 (Grey circle stays
behind unselected sample).

p1(y=1|x)0 1

0 1 2 03 45 16 7 8 29 3 4

(b) The new order based on the classification of the ensemble model p1(y =

1|x) = p(y=1|x,0)+p(y=1|x,1)
2 .

Fig. 4: The illustrative example presenting the capabilities of the joined ensemble
model, after training the second base learner on the sampled data.

ities (for positive examples), or lower probability values (for negative examples).
Our philosophy for this particular case is to put the higher impact on distinguishing
the examples located away from each other in the global ranking determined by the
predictions comparing to examples located in the weighted middle of the ranking
list. As a consequence, we are sacrificing some portion of difficult to distinguish
examples by putting them to unsure region, but we avoid observing them in low or
high ranking positions. So the model has some capability to prevent overfitting that
can be caused by discursive (or even noise) examples in training data. We also aim
at dealing with imbalanced data phenomenon by sampling equal number of positive
and negative examples.

Quite opposite strategy is observed for the following sampling distribution:
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Fig. 5: Sampling distribution for examples presented in Figure 2 - BBin0(2,0.8,9)
for negative and BBin1(0.8,2,4) for positive examples.

• BBin0(2,0.8,9) for negative examples.
• BBin1(0.8,2,4) for positive examples.

In this case, the sampling distribution for the next boosting iteration is presented
in Figure 5. Following this strategy we aim at correct classification of the improperly
ranked examples, assuming that they are rather hard examples that we manage to
classify by the ensemble model.

The two presented strategies aim at different cases. In the first case we trust our
base model, but we do not trust to our data assuming that there are some portion
of the examples that are impossible to be distinguished. Therefore, we are leaving
some portion of examples in controversial area on the ranking, cleaning low and
high ranking regions with improperly located samples. For the second strategy, we
use rather untrusted weak learner as a base model, but we aim at create the com-
plex model that will properly classify hard instances if their impact is going to be
decreased.

2.4 Relation to existing solutions

The presented work is inspired by existing RankBoost [5] (for which the equiva-
lence to well known AdaBoost was described in [19]) method and couple of other
approaches. In contrast to the RankBoost we define two separate ranking functions
for positive and negative examples. First of all, the Rankboost approach is very sen-
sitive to the noisy examples located in training data. BetaBoost model presented in
this paper deals well with insecure and noisy data because the distribution is not
updated in iterations and does not depend on global ranking. Moreover, it is also
more beneficial to use more flexible sampling distribution that is characterized by
two parameters (a and b) contrary to the specific exponential-based distribution used
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(a) Training set.

(b) Validation set.

Fig. 6: A comparison analysis of BetaBoost ( a0 = 0.8, b0 = 2, a1 = 2 and b1 = 0.8)
and Balanced Bagging for the growing number of base learners on GMSC dataset.
We consider Logistic Regression as base learner. AUC is taken as quality criterion.

in typical boosting approaches. The proposed solution is also inheriting self-paced
philosophy [12] if the strategy with the increasing probabilities for positive and with
decreasing probabilities for negative examples is applied.

As the procedure is independent on global ranking it is crucial to apply proper
model selection procedure that will fit proper sampling curves for each of the
classes.

3 Experiments

We are going to evaluate our approach on two large datasets from credit scoring
domain that are available in Kaggle repository:
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(a) Training set.

(b) Validation set.

Fig. 7: A comparison analysis of BetaBoost ( a0 = 0.8, b0 = 2, a1 = 2 and b1 = 0.8)
and Balanced Bagging for the growing number of base learners on LCLD dataset.
We consider Logistic Regression as base learner. AUC is taken as quality criterion.

• Give me Some Credit [6].
• Lending Club Loan Data [14].

Give me Some Credit (GMSC) dataset is composed of 150000 examples, 10026
positive and 139974 negative elements. Each of the credit consumers is represented
by the vector of 10 numeric features. Each of the attributes were normalized before
using it for training.

Lending Club Loan Data(LCLD) dataset is composed of 887379 examples,
67429 positive and 819955 negative cases. Each of the examples were described
by 12 features, where 6 of them were numeric, and the remaining 6 were nominal.
On the preprocessing stage we have normalized the numeric features and binarized
nominal attributes.
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(a) Training set.

(b) Validation set.

Fig. 8: A comparison analysis of BetaBoost (a0 = 1.5, b0 = 0.8, a1 = 0.8 and
b1 = 1.5) and Balanced Bagging for the growing number of base learners on GMSC
dataset. We consider Logistic Regression as base learner. AUC is taken as quality
criterion.

We divide each of the initial datasets to: training set (80% examples) and test
set (20% examples). From training set we separate 10% instances for validation to
monitor the training progress and select the best set of base learners.

For the evaluation we use AUC (area under ROC curve) criterion, which is often
for evaluating credit scoring models and measures well the sorting capabilities of
learners. For each of the scenarios we apply model selection of the sampling param-
eters (a1, b1, a0, b0) from the set of candidates and select the parameters with the
highest AUC obtained on the validation set.

We consider the two scenarios that were described in this work. In the first of the
scenarios we aim at putting higher weights to the "secure" examples, assuming that
controversial examples are hard to classify.

Therefore we propose to use Logistic Regression as a stable base learner:
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(a) Training set.

(b) Validation set.

Fig. 9: A comparison analysis of BetaBoost (a0 = 1.2, b0 = 0.8, a1 = 0.8 and b1 =
1.2),Balanced Bagging and AdaBoost for the growing number of base learners on
LCLD dataset. We consider Decision Tree as base learner. AUC is taken as quality
criterion.

p(y = 1|x,k) = σ(wT
k x) =

1
1− exp{−wT

k x}
(5)

At first we analyze the training capabilities of the BetaBoost model trained using
the following beta parameters: a0 = 0.8, b0 = 2, a1 = 2 and b1 = 0.8. We compare
the proposed approach with so called Balanced Bagging that performs sampling
with replacement from uniform distribution to obtain N/2 samples from each class.
The results of the comparison are presented in Figure 6 and 7.

It can be observed, that Logistic Regression is a very stable model characterized
by small variance of the performance. Practically, it means that small changes in
data caused by uniform sampling does not affect the overall performance of the
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Fig. 10: Final results for considered models - GMSC dataset (test data)

Fig. 11: Final results for considered models - LCLD dataset (test data)

model. If we apply sampling for the procedure characteristic for BetaBoost model
we would obtain the improvement of AUC measure as it is observed in Figures 6 and
7. As a consequence of increasing probabilities for positive examples (a1 > 1 and
b1 < 1) and decreasing probabilities for negative cases (a0 < 1 and b0 > 1) we aim at
good quality prediction of the positive examples that are located on higher ranking
positions and negative examples that are located on low positions. To obtain the goal
we sacrifice the "difficult" examples that are suspected to be "noisy" instances, that
are located in the discussion area. As a consequence, the improvement of AUC is
observed for both of the considered datasets.

As a second base model we propose to use Decision Trees. As a fact that this
model is recognized as so called weak learner, we propose the following sampling
parameters to train the BetaBoost models:

• a0 = 1.5, b0 = 0.8, a1 = 0.8 and b1 = 1.5 for GMSC dataset,
• a0 = 1.2, b0 = 0.8, a1 = 0.8 and b1 = 1.2 for LCLD dataset.

The results are presented in Figures 7 and 8. We can see that sampling with
replacement using the second strategy (a0 ≥ 1, b0 ≤ 1 and a1 ≤ 1, b1 ≥ 1) makes
significant improvement of AUC criterion comparing to BetaBoost strategy, that also
uses decision tree as a base learner. We also consider in the analysis the AdaBoost
classifier that learns the component base model using the similar strategy that in-
creases the impact of "hard examples", decreasing the significance of well predicted
instances. The AdaBoost model needs more iterations to achieve acceptable AUC
level because both datasets are spoiled by imbalanced data phenomenon. The perfor-
mance of AdaBoost is similar to BetaBoost on GMSC dataset, but on LCLD dataset
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it gives significantly worse results. We also present the results on validation data to
show that overfitting problem is not observed for the considered models.

We presented the final results obtained by the considered models in Figures 10
(GMSC dataset) and 11 LCLD dataset. The considered models are as follows:

• BetaBoostL. BetaBoost with Logistic Regression as base learner trained with the
first strategy (a0 ≤ 1, b0 ≥ 1 and a1 ≥ 1, b1 ≤ 1).

• BalBagL. Balanced Bagging with Logistic Regression as a base learner.
• BetaBoostDT. BetaBoost with a decision tree as a base learner trained with the

second strategy (a0 ≥ 1, b0 ≤ 1 and a1 ≤ 1, b1 ≥ 1).
• BalBagDT. Balanced Bagging with a decision tree as a base learner.
• AdaBoost. AdaBoost classifier with a decision tree as a base learner.

It can be observed, that the BetaBoost with decision tree as a base learner train
with the second strategy performed better then the reference approaches considered
in the experiments. On (GMSC dataset) we observed only slight increase in quality
of BetaBoost comparing to Balanced Bagging from 0.8652 to 0.8673. However,
we operate on big data, so the slight improvements in quality criterion may have
great impact on financial benefit. The improvement observed on the LCLD dataset
is indisputable.

4 Conclusions and Future Works

In this work we propose alternative ensemble based strategy, that makes use of beta
binomial sampling to create the base models. Two strategies can be distinguished
while taking the sampling distribution. In the first strategy we aim at putting higher
impact on "easy examples", we bestow trust the base model and do not trust in data
quality. In the second strategy we take rather weak and unstable base model and we
put the higher impact on training "hard examples".

Contrary to existing approaches like AdaBoost, we update the sampling distribu-
tion basing only on individual ranking for each of the classes. As a consequence,
the impact of noisy examples in training data is not high.

The crucial step for the proposed the BetaBoost model is to find proper parame-
ters for sampling distributions. It can be performed by grid search, but this approach
is ineffective for large data sets. In the future works we plan to propose the smart
model selection approach to solve that issue. Additionally, we are going to per-
form more formal discussion of the properties of the proposed model. Moreover,
the weighted variant of ensemble model is going to be proposed.
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