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Abstract 
Lot sizing when done for the short-term heavily interacts with the 

sequencing decisio ns for the Oper ations to be performed. Especially for 
real-world situations where capacities are scarce, demand is dynamic, and 
precedence relations among the Ope rations have to be taken into account 
the MRP II logic whic h is implemented in most production planning Sy s
tems does not satisfy. In this paper, we will reveal the shortcomings of 
MRP II by mean s of an example. A mixed-integer programm ing model is 
then defined to specify the problem of capacitated, dynamic, multi-level 
Iot sizin g and scheduling. Also, we pre sent a generic Solution method (a 
so-called meta-method) which may be used as a basis of more advanc ed 
implementations that may repla ce the traditional MRP II Systems. 

1 Problem Context 

Consider the Organization of an in-house production system. Typically, the 
architecture of such a system is build up from several production cells, so-called 
segments, which may be implemented in different fashions (flow lines or work 
centers for instance). This macro-structure further refines into a micro-structure 
as each segment provides the capability to perform a bunch of Operations. 

Raw materials and component parts are floating concurrently through this 
complex system in order to be processed and assembled until a final product 
comes out being ready for deliverance. 

Production planning is one of the most challenging subjects for the man-
agement there. It appears to be a hierarchical process ranging from long- to 
medium- to short-term decisions (see for instance [6, 10, 12, 32, 33, 34, 36]). 
Our focus will be the short-term scope which li nks to medium-term decisions 
via the master production schedule (MPS). The MPS defines the external (or 
independent) demand, i.e. due dates and order sizes for final products. The 
goal now is to find a feasible production plan which meets the requests and 
provides release dates and amounts for all products including component parts. 
For economical reasons, finding a feasible plan is not sufficient. In the usual 
case, production plans can be evaluated by means of an objective function (e.g. 
a function which measures the setup and the holding costs). Then, the aim is 
to find a feasible production plan with optimum (or close to optimum) objective 
function value. 

2 Problem Outline 

Let the manufacturing process be triggered by orders which originate from cus-
tomers or from other facilities. Suppose now, that the output of the make-
to-order system under concern is or at least includes a set of non-customized 
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products. Certainly, this is a valid assumption for many firms no matter what 
industry they belong to and no matter of what size they are. 

To motivate a planning activity, we first need to identify a subject of concern 
that is worth (in terms of economical rationale) to be considered. A first clue are 
large inventories. Due to the opportunity costs of capital and the direct costs of 
storing goods, holding items in inventory and thus causing holding costs should 
be avoided. On the other hand, if d ifferent parts are making use of common 
resources, say machines, and a setup action must take place to prepare proper 
Operation, then opportunity costs (i.e. setup costs) are incurred since production 
is delayed. Another aspect of sharing resources is that the production of s uch 
parts cannot coincide if different setup states are required. Hence, orders must 
be sequenced. If p roduction planning is about the timing of production and not 
about what to produce (e.g. make-or-buy decisions), then production costs need 
not to be considered as long as they are time invariant. In summary, we have 
a trade-off between low s etup costs (favoring large production lots) and low 
holding costs (favoring a lot-for-lot-like production where sequence decisions 
have to be made due to sharing common resources). Essentially, the problem 
of sh ort-term production planning turns out to be a lot sizing and scheduling 
problem then. 

If we ask about how to solve this production planning problem, we first 
need a deeper understanding of its basic attributes. The first key element we 
have to remember is the stream of component parts floating through a complex 
production system. Operations may be executed only if parts being subject of 
these particular Operations a re indeed available. In other words, a production 
plan must respect the precedence relations of Operations. Hence, multi-level 
structures must be taken into account. For the sake of conven ience, we do not 
further distinguish between Operations and items (also called products or parts). 
Fach Operation produces an item, and each item is the Output of an Operation. 
Both terms are used as synonyms. Apparently, we face a multi-item problem 
here. 

The second key ele ment of our problem is the presence of s carce capacity. 
As usual in in-house production systems, producing an item requires a certain 
amount of one or more resources (e.g. manpower, machine time, energy, ...) 
with limited capacity per timeunit. Thus, production planning must take scarce 
capacity into account. Following the terminology in the literature, we a lso say 
machine instead of resource. 

Furthermore, we have the following Situation: The time interval which is the 
focus of the planning process is finite and subdivided into several discrete time 
periods. To refer to these periods we number them consecutively beginning with 
period 1. The length of the overall time interval is called the planning horizon, 
or horizon for short, and is counted in number of time periods. This properly 
reflects the real-world Situation where we fa ce a planning horizon of say four 
weeks (or 20 days o r 40 shifts) and discrete time periods are naturally given. The 
(known or estimated) external demand (given by the MPS) is given in units per 
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item per period. It is to be met promptly at the end of each per iod. Backlogging 
and shortages are not allowed here which enforces a high service level. The 
demand may vary from period to period. This is called dynamic demand. All 
relevant data for the planning process is assumed to be deterministic which is 
justified by havi ng a short-term planning problem on hand. 

3 Current Practice 

The basic working principle of today's decision support Systems for Manufac-
turing Resource Planning (MRP II) is more or less the same in all current 
implementations. It should be reviewed here by means of a small example (see 
also [8]). For an overview of more than a hundred modern MRP II Software 
packages we refer to [1, 2] where a detailed list of features is enclosed. 

Assume the following data: Three items j = 1,...,3 are to be produced 
sharing a Single machine. The gozinto-structure1 of these items is given in 
Figure 1. The planning horizon is 10 periods (2 = 1,..., 10) long and inventory 
is empty. Table l2 provides the MPS (with external demands djt), the capacity 
limit per period Ct, the need of capacity per item pj, and the item-specific setup 
costs Sj and holding costs per period hj. We assume that the minimum lead 
time is zero. 

II .. 6 7 8 9 10 hj Sj 'Pj 
i = l 20 20 20 25 900 1 
i = 2 10 850 1 
i = 3 10 800 1 

Ct 100 .. .. 100 100 100 100 100 

Table 1: Data of the Example 

Starting with the MPS, lot sizes for all items are determined by a level-by-
level approach disregarding capacity constraints. In our example, we Start to 
compute lot sizes for item 1 using some lot sizing rule. Let us say, we decide 
to use a lot-for-lot policy. Then, we derive i nternal demands and due dates for 
the next level which is item 2. As a result we ha ve an internal demand for 40 
units of item 2 in periods 6, 8 and 10. Again, we employ some lot sizing rule, 
but, this time considering item 2. Suppose, we decide to produce the demands 

1 The term gozinto-structure was coined by Vazsonyi [35] who gave a reference to an italian 
mathematician named Zepar tzat Go zinto. This pers on is pure ficti on. But, if yo u read his 
name in Eng iish pron unciation, it turns out wha t is meant: The product-structure. Nodes 
represent item s, and arcs depic t precedence relations be tween the items. Are weig hts are 
produetion coefficients. 

2Missing entries in tables are assumed to be zero throughout the text. 
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Figure 1: A Gozinto-Structure with Three Items 

of periods 8 and 10 in one lot in period 8. Following the same lines, we then 
compute internal demands for item 3 and again employ some lot sizing rule. As 
a result we might get what is shown in Table 2 where qjt denotes the production 
quantity of i tem j in period t. Note, this is not a valid production plan since 
capacity restrictions are violated in period 8. 

Table 2: A Production Plan with Capacity Constraint Violations 

In a next step, the intermediate result is modified to find a plan without 
requiring an excess of ca pacity. This is done by shifting lots to the left or to the 
right until the capacity profile is met. In our example for instance, this can be 
achieved by shifting the lot for item 2 in period 8 to the left (see Table 3). 

But, because precedence constraints are not taken into account when lots are 
shifted in order to find a plan that does not violate the capacity restrictions, the 
conventional approach obviously fails. Looking at the example reveals, it would 
never be po ssible to produce item 2 in period 7 since we lack a sufhcient amount 
of item 3 there. 

The traditional way to overcome this is to introduce lead times. To make 

qjt t = 1 2 3 4 5 6 7 8 9 10 
j = 1 
j = 2 
j - 3 

20 20 20 
40 80 
40 80 
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qjt / = 1 2 3 4 5 6 7 8 9 10 
3 = 1 20 20 20 
i = 2 40 80 
3 = 3 40 80 

Table 3: A P roduction Plan with Precedence Relation Violations 

this idea clear, let us start with the MPS again (see T able 1). Going through 
the level-by-level approach as described above, we now use an offset of, say, 
two periods — the so-called lead time — when we compute the due dates of the 
internal demand. The outcome of the procedure is given in Table 4. 

£
 II i—«
 

2 3 4 5 6 7 8 ( ) 10 
3 = 1 20 20 20 
j = 2 40 80 
j = 3 40 80 

Table 4: A Production Plan with Positive Lead Times 

Note, this plan is infeasible again. Once more, we are off cap acity limits. 
Shifting the lot of item 2 in period 4 to the left, Ieads us to the Solution in Table 
5. 

II 2 3 4 5 6 7 8 9 10 
3 = 1 20 20 20 
3= 2 40 80 
j — 3 40 80 

Table 5: A Feasible Production Plan 

Now we are done. The result represents a feasible production plan. The 
sum of setup and holding costs is 9,800. Due to the introduction of p ositive lead 
times we had more flexibility when shifting lots which helped. And, indeed this 
is what can be observed in practice. Known as the lead-time-syndrome [37], 
planners tend to increase lead times arbitrarily whenever they detect backorders 
or high work-in-process inventories. But, as a result most firms suffer from 
long makespans and large total holding costs. To be convinced, compare the 
feasible plan in Table 5 with the optimum plan in Table 6. Figure 2 shows the 
schedule of the optimum Solution by m eans of a Gantt-chart. The sum of setup 
and holding costs is 6,700. 
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II 2 3 4 5 6 7 8 9 10 
j = 1 20 20 20 
j = 2 40 80 
j = 3 40 80 

Table 6: An Optimum Production Plan 

machine 

10 
period 

Figure 2: An Optimum Schedule 

The reason for this dilemma in production planning apparently is the tradi-
tional level-by-level approach. This widely used method does not take capacity 
constraints and precedence relations simultaneously into account. Unfortunately, 
good alternatives are not availableyet. This gives the motivation to develop such. 

4 Basic Assumptions 

Several items are to be produced in order to meet some known (or estimated) 
dynamic demand without backlogs and stockouts. Precedence relations among 
these items dehne an acyclic gozinto-structure of the general type. In contrast to 
many authors who allow demand for end items only, now, demand may occur for 
all items including component parts. The finite planning horizon is subdivided 
into a number of discrete time periods. Positive lead times are given due to 
technological restrictions such as cooling or transportation for instance. Fur-
thermore, items share common resources. Some (maybe all) of them are scarce. 
The capacities may vary over time. Producing one item requires an item-specific 
amount of the available capacity. All data are assumed to be deterministic. 

Items which are produced in a period to meet some future demand must be 
stored in inventory and thus cause item-specific holding costs. Most authors 
assume that the holding costs for an item must be g reater than or equal to the 
sum ofthe holding costs for all immediatepredecessors. They argue that holding 
costs are mainly opportunity costs for capital "which occurs no matter a compon
ent part is assembled or not. Two reasons persuade us to make no particular 
assumptions for holding costs. First, as it is usual in the chemical industry for 
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instance, keeping some component parts in storage may require ongoing addi-
tional effort such as cooling, heating, or shaking. While these parts need no 
special treatment when processed, storing component parts might be more ex
pansive than storing assembled items. Second, Operations such as cutting tin 
mats for instance make parts smalier and often easier to handle. The remaining 
"waste" can often be sold as raw material for other manufacturing processes. 
Hence, opportunity costs may decrease when component parts are assembled. 
However, it should be made clear that the assumption of general holding costs 
is the most unrestrictive one. All models and methods developed under this 
assumption work for more restrictive cases as well. 

Each item requires at least one resource for which a setup State has to be 
taken into account. Production can only take place if a proper State is set 
up. Setting a resource up for producing a particular item incurs item—specific 
setup costs which are assumed to be sequence independent. Setup times are not 
considered. Once a certain setup action is performed, the setup State is kept 
up until another setup changes the current State. Hence, same items which are 
produced having some idle time in-between do not enforce more than one setup 
action. To get things straight, note that some authors use the word c hangeover 
instead of setup in this context. 

The most fundamental assumption here is that for each resource at most 
one setup may occur within one period. Hence, at most two items sharing a 
common resource for which a setup State exists may be produced per period. 
Due to this assumption, the problem is known as the proportional lot sizing and 
scheduling problem (PLSP) [7, 15, 26]. By choosing the length of each time 
period appropriately small, the PLSP is a good approximation to a continuous 
time axis. It refines the well-known discrete lot sizing and scheduling problem 
(DLSP) [5, 11, 18, 28, 31] as well as the continuous setup lot sizing problem 
(CSLP) [3, 20, 19]. Both assume that at most one item may be produced per 
period. All three models could be classified as small bücket models since only 
a few (one or two) items are produced per period. In contrast to this, the 
well-known capacitated lot sizing problem (CLSP) [4, 9, 13, 17, 27, 29, 30] 
represents a large bücket model since many items can be produced per period. 
Remember, the CLSP does not include sequence decisions and is thus a much 
"easier" problem. An extension of the single-level CLSP with partial sequence 
decisions can be found in [14]. In [16] a large bücket single-level lot sizing and 
scheduling model is discussed. 

5 A Mixed-Integer Programming Model 

An important variant of the PLSP is the one with multiple machines (PLSP-
MM). Several resources (machines) are available and each item is produced on 
an item-specific machine. This is to say that there is an unambiguous mapping 
from items to machines. Of course, some items may share a common machine. 
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Special cases are the single-machine problem for which modeis and methods are 
given in [24, 21, 25, 23], an d the problem with dedicated machines where items 
do not share a common machine. For the latter optimal Solutions can be easily 
computed with a lot-for-lot policy [22]. 

Let us first introduce some notation. In Table 7 the decision variables are 
defined. Likewise, the parameters are explained in Table 8. Note, from these 
data, we c an easily derive the net requirement nrj for an item j and the set 
Vj of all immediate predecessors of an item j. Both will later on be needed 
for describing a Solution meta-method. Using this notation, we are now able to 
present a MlP-model formulation. 

Symbol Definition 
Ijt Inventory for item j at the end of period t. 
qjt Production quantity for item j in period t. 
Xjt Binary variable which indicates whether a setup for 

item j oc curs in period t (xjt = 1) or not (xjt = 0). 
yjt Binary variable which indicates whether machine rrij 

is set up for item j at the end of period t (yjt = 1) 
or not (yjt — 0). 

Table 7: Decision Variables for the PLSP-MM 

J T 
min EE^' + MJ«) (1) 

j=lt=l 
subject to 

(jt — Jj(t-i) Ut - h(t-1) + - djt - ̂ 2 aJWt / _ i1, ""' 'r (2) 

> E E j , (3) 
.'65, r=t+1 

(4) 

%(,_!) J ^ 1" -(5) 
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üji "Gozinto"-factor. Its value is zero if item i is not an 
immediate successor of item j. Otherwise, it is the 
quantity of item j that is directly needed to 
produce one item i. 

Cmt Available capacity of mach ine m in period t. 
djt External demand for item j in period t. 
hj Non-negative holding cost for having one unit of 

item j one period in inventory. 
Ijo Initial inventory for item j. 
Jm Set of all items that share the machine m, 

i.e. Jm d= {j € {1,..., J} | rrij = m}. 
J Number of ite ms. 
M Number of machines. 
rrij Machine on which item j is produced. 
pj Capacity needs for producing one unit of item j. 
Sj Non-negative setup cost for i tem j. 
Sj Set of immediate successors of item j, 

i.e. Sj d= {i € {1, | aji > 0}. 
T Number of per iods. 
Vj Positive and integral lead time of item j. 
Vjp Unique initial setup State. 

Table 8: Parameters for the PLSP-MM 

E r/l T (7) 
j<ZJm 

m = 1, ...,M 
t = 1,.. 

3 = !>• ..,J 
t — 1,.. .,T 

3 — 
t = 1,.. -,T 

*,€{0,1} ; = (8) 

(9) 

The objective (1) is to minimize the sum of s etup and holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory 
what was in there at the end of period t — 1 plus what is produced minus ex
ternal and internal demand. To fulfill internal demand we must respect positive 
lead times. Restrictions (3) guarantee so. Constraints (4) make sure that the 
setup state of each machine is uniquely defined a t the end of each p eriod. Those 
periods in which a setup happens are spotted by (5). Note that idle periods 
may occur in order to save setup costs. Due to (6) production can only take 
place if there is a proper setup State either at the beginning or at the end of 
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a particular period. Hence, at most two items can be manufactured on each 
machine per period. Capacity constraints are formulated in (7). Since the right 
hand side is a constant, overtime is not available. (8) dehne the binary-valued 
setup State variables, while (9) are simple non-negativity conditions. The reader 
may convince himselfthat due to (5) in combination with (1) setup variables xjt 

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for 
these. For letting inventory variables Ijt be non-negative backlogging cannot 
occur. 

6 A Meta-Method 

There is a generic construction scheme that forms the basis of potential methods. 
It is a backward oriented procedura which schedules items period by period 
starting with period T and ending with period one. We choose here a recurrent 
representation which enables us to develop the underlying ideas in a stepwise 
fashion. Now, let us assume that construct(t,kt,m) is the procedura to be 
defined. Keep in mind that t -f At is the period and m is the machine under 
concern. We use At € {0,1} where At = 1 indicates that the setup State for 
machine m at the beginning of period t + 1 is to be fixed next and At = 0 
indicates that we a lready have chosen a setup State at the end of period t. In 
the specification below, jmt will denote the setup state for machine m at the end 
of period t. Assume jmt = 0 for m = 1,..., M and t = 1,..., T initially. 

Before t he construction mechanism Starts, the decision variables yjt and qjt 
are assigned zero for j = 1,..., J, m~ 1,..., M, and t = 1,... ,T. Remember, 
given the values for yjt and qjt the values for Xjt and Ijt are implicitly defined. 
Furthermore, assume auxiliary variables djt and CDjt for j = 1 and 
f = 1,... > T. The former ones represent the entries in the demand matrix and 
thus are initialized with djt = djt. The latter ones stand for the cumulative future 
demand for item j which is not been met yet. As we will see, the cumulative 
demand can be efficiently c omputed while moving on from period to period. 
For the sake of convenience we in troduce CDj(j+1) = 0 for j = 1,..J. The 
remaining capacity of machine m in period t is denoted as RCmt. Initially, 
RCmt = Cmt for m — 1,..., M and t = 1,..., T. 

The initial call is construct(T, 1,1) and initiates the fixing of setup states at 
the end of period T. Table 9 gives all the details. 

The choice of jmT needs to be refined, but at this point we do not need any 
further insight and suppose that the selection is done somehow. All we need to 
know is that Xmt C Jm U {0} for m = 1,.M and t = 1,... ,T is the set of 
items among which items are chosen. Item 0 is a dummy item. As one can see, 
once a setup state is chosen for all machines at the end of period T, a call of 
construct(T, 0,1) is made. Table 10 provides a recipe of how t o evaluate such 
calls. 

The Situation when Galling construct(t, 0, m) is that the setup state jmt has 
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choose jmT € XmT' 
if UmT * 0) 

VjmTT := 1. 
if (m = M) 

construct(T, 0, 1). 
eise 

construct(T, 1, m + 1). 

Table 9: Evaluating construct(T, 1, •) 

for j e Jm 
CDjt min|cZ?j(1+1) +d,'(,max{0,nrj - J^=t+1 

if ^ 0) 
%..< := minjcD^.t, 

:= CDjmit — Qjmtt-
RCmt '•= KC mt — • 
for i 6 

if {t - Vi > 0 an d qjmtt > 0) 

if (m = M) 
construct(t — 1,1,1). 

eise 
construct(t, 0, m + 1). 

Table 10: Evaluating construct(i, 0, •) where 1 < t < T 

already been chosen. Remarkable to note, how easy it is to take initial inventory 
into account. This is due to the backward oriented scheme. Evaluating 

min < CD j(t+i) + djt, max{0, nrj - ^ qjT} > (10) 
l r=t+l J 

makes sure that for an item j no more than the net requirement nrj is produced. 
Note, cumulating the production quantities is an easy task which can be done 
very efhciently. Given the cumulative demand CDjmtt, production quantities 
Qjmtt can be determined with respect to capacity constraints. Afterwards, we 
simply update the djt—matrix to take internal demand into account and proceed. 
Table 11 describes how to evaluate construct(t, 1, )-calls. 

These lines closely relate to what is defined in Table 10. Differences lie in the 
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Choose jmt € Tmt -
if (jmt # 0) 

Vjmit 
if (jmt ^ im((+l)) 

9jmt(t+ij := min{c£)jmI(t+i), }-
C&jm,(t+1) •= CDjrni(t+1) - 9jmt(t+1). 
•ßC)7l(t+l) Pjmi ?imt (*+!)' 
for i 6 ̂ TOi 

if (< + 1 - Vi > 0 and qjmt[t+\) > 0) 
^»(t+l-Wi) := di(t+i-Vi) "H 

if (m = M) 
constructit, 0, 1). 

eise 
con£iruct(t, 1, m + 1). 

Table 11: Evaluating constr«ct(t,1, •) where 1 < t < T 

fact that a setup State is chosen for the end of pe riod t but items are scheduled 
in period 14-1. For Computing production quantities we must therefore take into 
account that item jm(t+i) may already be scheduled in period t + 1. 

Note, the combination of what is given in Tables 10 and 11 enforces that every 
item jmt that is produced at the beginning of a period t + 1 is also produced at 
the end of period t if there is any positive cumulative demand left. 

Turning back to the specification of the construd-procedure, it remains to 
explain what shall happen when the first period is reached. Table 12 describes 
how to sc hedule those items in period 1 for which the machines are initially set 
up for. In contrast to what is given in Table 11 the initial setup State is known 
and thus needs not to be chosen. 

if (jm O +jm\) 

•— C.Djmol — 
if (m = M) 

construct( 0,0,1). 
eise 

construct( 0,1, m + 1). 

Table 12: Evaluating construct(0,1, •) 
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A call to construct(0, 0, •) ter minates the construction phase. What is left is 
a final feasibility test where 

T 
nr3 = Ysqit (11) 

t=1 
must hold for j = 1,..., J for being a feasible Solution. Eventually, the objective 
function value of a feasible Solution can be determined. 

If we have no initial inventory, we can a lso perform a capacity check testing 

t+At 
yi yi PiidjiCDj(t+At) > y ^ c mT (12) 

T = 1 

which must be false for m = 1,..., M if period t+At is under concern and thus, 
when true, indicates an infeasible Solution. 

The procedure is a meta-method only, since some details are left unspecified. 
The rule to select an item is, for instance, not discussed any further. For concrete 
implementations which are based on this meta-method, these details need to be 
defined. In [26] we find some meta-method instances which work well. All of 
them are sampling methods which run the construction phase several times and 
come up with the best Solution that was found. Good suboptimal results, say 
within a 10% ränge from the optimum objective function value, are reported to 
be available after a few seconds when running on a modern personal Computer. 

7 Conclusion 

We have pointed out that the underlying concept of modern MRP II Systems 
is insufficient. Many things, such as long lead times and high work-in-process, 
practitioners complain about are not as fate would have it, but are inherent 
in modern production planning systems. A mathematical programming model 
is defined to specify the rnulti-level lot sizing and scheduling problem which is 
to be solved in order to avoid these shortcomings. Moreover, we have given a 
generic method that outlines efficient Solution proced ures to attack the planning 
problem. Future work s hould integrate concrete implementations of the meta-
method into Computer based planning tools and compare the results with those 
of existing MRP II systems. 
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