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Abstract

In this paper we consider the resource-constrained project scheduling problem with
multiple execution modes for each activity and makespan minimization as objective.
We present a new genetic algorithm approach to solve this problem. The genetic en-
coding 1s based on a precedence feasible sequence of activities and a mode assignment.
After defining the related crossover, mutation, and selection operators, we describe a
local search extension which is employed to improve the schedules found by the basic
genetic algorithm. Finally, we present the results of our thorough computational study.
We determine the best among several different variants of our genetic algorithm and
compare it to three other heuristics that have recently been proposed in the literature.
The results that have been obtained using a standard set of instances show that the new
genetic algorithm outperforms the other heuristic procedures with regard to a lower
average deviation from the optimal makespan.

Keywords: Project Management and Scheduling, Multiple Modes, Genetic Al-
gorithms, Local Search, Computational Results.

1 Introduction

Within the classical resource-constrained project scheduling problem (RCPSP), the activ-
ities of a project have to be scheduled such that the makespan of the project is minimized.
Thereby, technological precedence constraints have to be observed as well as limitations
of the renewable resources required to accomplish the activities. Once started, an activity
may not be interrupted.

This problem has been extended to a more realistic model, the multi-mode resource-
constrained project scheduling problem (MRCPSP). Here, each activity can be performed
in one out of several modes. Each mode of an activity represents an alternative way of com-
bining different levels of resource requirements with a related duration. Following Slowinski
[22], renewable, nonrenewable and doubly constrained resources are dinstinguished. While
renewable resources have a limited per-period availability such as manpower and machines,
nonrenewable resources are limited for the entire project, allowing to model, e.g., a budget
for the project. Doubly constrained resources are limited both for each period and for the
whole project. However, since they can simply be incorporated by enlarging the sets of the
renewable and nonrenewable resources, we do not consider them explicitly. The objective
is to find a mode and a start time for each activity such that the schedule is makespan
minimal and feasible w.r.t. the precedence and resource constraints. This problem has been
introduced by Elmaghraby [8].

The outlined problem arises within systems for production planning and scheduling as
well as project management software. However, as shown by Sprecher and Drexl [27], even
the currently most powerful optimization procedures are unable to find optimal schedules
for highly resource-constrained projects with more than 20 activities and three modes per
activity. Hence, in practice heuristic algorithms to generate near-optimal schedules for larger
projects are of special interest.

Several heuristic procedures for solving the MRCPSP have been proposed in the literat-
ure: Drexl and Griinewald [6] suggested a regret-based biased random sampling approach.
Slowinski et al. [23] described a single-pass approach, a multi-pass approach, and a sim-
ulated annealing algorithm based on a precedence feasible activity list and priority rules.



Kolisch and Drexl [15] presented a local search procedure. The only genetic algorithm
currently available for the MRCPSP has been proposed by Ozdamar [20] and is based on a
priority rule encoding. Sprecher and Drex! [26] developed a branch-and-bound procedure
which is, according to the results obtained by Hartmann and Drexl [11], the currently most
powerful algorithm for exactly solving the MRCPSP. Sprecher and Drex! [27] suggested to
use it as a heuristic by imposing a time limit. Finally, Boctor [2], [3], [4] presented heuristics
for instances without nonrenewable resources.

This paper introduces a new genetic algorithm (GA) approach for solving the MRCPSP.
The search space, i. e. the set of the genotypes, consists of the precedence feasible activity
sequences and all mode combinations. The phenotype, i. e. schedule, related to a genotype is
generated using a serial scheduling scheme. After defining the genetic operators, we extend
the procedure by a local search component which systematically improves the solutions
found by the GA. Then we compare our GA to three heuristic approaches proposed in the
literature. For this computational comparison, we use a standard set of project instances
that has been generated using the problem generator ProGen developed by Kolisch et al. [16].

The remainder of the paper is organized as follows: Section 2 contains the description
of the problem. Section 3 gives a brief indroduction into the basic ideas of the theory of
evolution that are relevant for our GA. Section 4 describes the new GA approach including
different variants of the genetic operators and a local search extension. Section 5 provides
the results of our computational experiments. Finally, Section 6 states some conclusions.

2 Problem Description

We consider a project which consists of J activities (jobs) labeled j = 1,...,J. Due to
technological requirements the activities are partially ordered, that is, there are preced-
ence relations between some of the jobs. These precedence relations are given by sets of
immediate predecessors P; indicating that an activity 7 may not be started before all of
its predecessors are completed. The transitive closure of the precedence relations is given
by sets of (not necessarily immediate) predecessors P;. The precedence relations can be
represented by an activity-on-node network which is assumed to be acyclic. We consider
additional activities j = 0 representing the only source and j = J + 1 representing the
unique sink activity of the network.

With the exception of the (dummy) source and (dummy) sink activity, each activity
requires certain amounts of resources to be performed. The set of renewable resources is
referred to as R. For each renewable resource r € R the per-period-availability is constant
and given by Kf. The set of nonrenewable resources is denoted as N. For each nonrenewable
resource r € N the overall availability for the entire project is given by K¥.

Each activity can be performed in one of several different modes of accomplishment.
A mode represents a combination of different resources and/or levels of resource requests
with a related duration. Once an activity is started in one of its modes, it is not allowed
to be interrupted, and its mode may not be changed. Activity j may be executed in M;
modes labeled m = 1,..., M;. The duration of job j being performed in mode m is given
by d;m. We assume the modes to be labeled w.r.t. to non-decreasing duration, that is,
djm < djmyr for all activities j = 1,...,J and modes m = 1,..., M; — 1. Furthermore,
activity j executed in mode m uses kfm, units of renewable resource r each period it is in



process, where we assume w.l.o.g. k;-’mr < K7 for each renewable resource r € R. Note,
otherwise activity j could not be performed in mode m. Moreover, it consumes k7, . units of
nonrenewable resource r € N. W.l.o.g., we assume that the dummy source and the dummy
sink activity have only one mode each with a duration of zero periods and no request for
any resource.

The objective is to minimize the makespan of the project. We assume the parameters
to be nonnegative and integer valued. A mathematical programming formulation of this

problem has been given by Talbot [30].

3 Evolution and Optimization

3.1 The Theory of Evolution

In his book “On the Origin of the Species by Means of Natural Selection”, Charles R. Darwin
(1809-1882) laid the foundation of the theory of evolution. 1t has later been extended and
confirmed by various researchers such as Gregor Mendel (1822-1884) who developed a theory
of genetic inheritance.

The process of evolution can be desribed as follows: An individual, or more precisely,
its phenotype, consists of basic characteristics contained in its genes, the genotype, and
further acquired characterictics. The individuals of a species are similar but differ both
in their genotypes and phenotypes. New individuals are produced by crossover, that is,
usually two parent individuals mate. The genotype of a child individual is determined by a
recombination of the parents genes and mutation, that is, random changes of some genes.

In the struggle for life, the individuals of a species compete for food and mating partners.
The fittest individuals of the population survive and may pass on their genes, the others
die before they can reproduce. This principle of selection leads to an increasing level of
adaption to the species’ environment.

Populations may be separated from each other by mountains, deserts, or water. Isolated
populations of the same species may develop differently. Nevertheless, some fit individuals
may migrate between populations and spread their genes.

The adaption of a species to its environment is called phylogenetic learning. In addition,
each individual of a species may learn individually. This process is referred to as ontogenetic
learning. The results of phylogenetic learning are passed on to the following generations
bv means of recombination of the genes as described above. In contrast, the results of
ontogenetic learning are not hereditary, that is, changes within the phenotype do not havean
influence on the genotype. This seems to be because there is no mechanism to decide whether
a change is useful or not, as e.g. injuries or changes due to old age. Only random changes
within the genotype by means of mutation may be passed on; together with recombination
and selection this forms the process of phylogenetic learning. This contradicts the theory
of Jean-Baptiste de Monet Chevalier de Lamarck (1744-1829) who claimed that physical
changes of an individual occur if and because they are useful, and that these changes are
passed on to its offspring. His teleological theory of evolution, however, has been disproved.



3.2 Genetic Algorithms

Genetic algorithms have been developed by Holland [13], for an introduction into GAs we
refer to Goldberg {9]. GAs are inspired by the theory of biological evolution and serve
as a meta strategy within the fields of e.g. continuous and discrete optimization, machine
learning, and game theory. Many variants of GA techniques have been developed over the
years, therefore we restrict the following description to the ideas that are used in the GA
proposed in this paper.

Roughly speaking, a GA is based on a problem specific encoding and related unary and
binary operators, that is, mutation and crossover. First, an initial population is determined
and the fitness of the individuals is computed, reflecting the quality of the individuals w.r.t. a
given objective. Then new individuals are produced using mutation and crossover. Finally,
the next generation is determined by a selection strategy which allows fit individuals to
survive and removes the others from the population, that is, they die. Following the isolation
principle in nature, this basic scheme is often extended by considering several independently
developing populations on different “islands”.

The crossover operator recombines parts of two fit individuals to form new ones. These
parts, the genes or gene combinations, are assumed to have contributed to the fitness of
the parent individuals and are called building blocks. The mutation operator may produce
genes or gene combinations that had not occured in the population before. That is, the
result of a mutation can be a genotype that could not have been produced by the crossover
operator.

Usually, the basic genetic algorithm described above makes only little use of problem
specific knowledge. Therefore, as outlined by Grefenstette [10], it is sometimes extended
by a local search component that is used to improve the fitness of an individual. While
the genetic algorithm roughly navigates through the whole search space in order to identify
promising regions, the local search extension systematically scans the neighborhood of an
individual. In analogy to biology, the local search component corresponds to individual or
ontogenetic learning. In contrast to nature, the artificial evolution also offers the possibility
of inheriting the local search results as described by Lamarck.

Viewing the sequence of generations produced by a GA as a Markov chain, Eiben et
al. [7] examine the general GA characteristics that make G As suitable to solve combinatorial
optimization problems. They state some simple sufficient conditions under which a GA
“almost surely” finds an optimum (i. e. finds an optimum with probability one within an
infinite number of generations).

The only GA that has been proposed for the MRCPSP up to now is that of Ozdamar
[20]. Lee and Kim [18] have suggested a GA for the RCPSP. Kohlmorgen et al. [14] report
their experiences with a parallel implementation of a GA for the RCPSP. For the job shop
scheduling problem which is, as shown by Sprecher [25], included in the RCPSP as a special
case, GAs have been discussed by e.g. Dorndorf and Pesch [5], Herrmann et al. {12], and
Mattfeld {19].



4 A Genetic Algorithm

4.1 Basic Scheme

In this subsection we outline our genetic algorithm approach. Before the GA itself is ex-
ecuted, we apply a preprocessing procedure which adapts the project data in order to reduce
the search space. The GA starts by computing an initial population, i. e. the first gener-
ation, containing POP individuals and then determines their fitness values. We assume
POP to be an even integer. Then the population is randomly partitioned into pairs of
individuals. To each resulting pair of (parent) individuals, we apply the crossover operator
to produce two new (children) individuals. Subsequently, we apply the mutation operator
to the genotypes of the newly produced children. After computing the fitness of each child
individual, we add the children to the current population, leading to a population size of
2 - POP. Then we apply the selection operator to reduce the population to its former size
POP and obtain the next generation to which we again apply the crossover operator. This
process is repeated for a prespecified number of generations which is denoted as GEN.

We consider a number of /S L islands on which the artificial evolution as described above
takes place. On each island, the evolution starts with an independently generated initial
population. Let the island currently under consideration be denoted as ¢ with 1 < ¢ < ISL,
and let the current generation be denoted as g with 1 < ¢ < GEN. We use a prespecified
migration probability pmigration 2nd draw a random number ¢ € [0, 1] to control the migration
between the islands: If we have ¢ < Pmigration, then the fittest individual of generation g
leaves island 7 and migrates to island ¢+ 1 where it is added to the population of generation g.

The stopping criterion is either to reach a prespecified number of islands as described
above or, alternatively, to meet a given limit on the CPU time without bounding the number
of islands. In the latter case, if GEN generations have been completed and the time limit
has not yet been met, we skip to the next island and start a new evolution. Clearly, if the
number of islands is given by ISL, at most ISL - POP - GEN different individuals are
calculated.

The remainder of this section is organized as follows: In Subsection 4.2, we briefly
summarize the preprocessing concepts. Then, in Subsection 4.3, we introduce the genetic
representation of the individuals. In Subsections 4.4, 4.5, and 4.6, the crossover, the muta-
tion, and the selection operators are defined, respectively. Finally, in Subsection 4.7 the local
search component is described. Throughout this section, we illustrate the defiritions using
the project example displayed in Figure 1. For the crossover, selection, and local search
extension, several variants are described. They have been evaluated in our computational
studies the results of which will be summarized in Section 5.

4.2 Preprocessing

Before the genetic algorithm itself is executed, the project data is adapted by preprocessing
in order to reduce the search space. The reduction procedure has been introduced by
Sprecher et al. [29] in order to accelerate a branch-and-bound algorithm for the MRCPSP.
We briefly summarize the definitions and results: Sprecher et al. define a mode to be non-
executable if its execution would violate the renewable or nonrenewable resource constraints
in any schedule. A mode is called inefficient if its duration is not shorter and its resource
requests are not less than those of another mode of the same activity. A nonrenewable
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Figure 1: Project instance

resource is called redundant if the sum of the maximal requests of the activities for this
resource does not exceed its availability. Clearly, redundant nonrenewable resources as
well as non-executable and inefficient modes may be deleted from the project data without
affecting the set of the optimal solutions. As there are interaction effects between the
elimination of modes and nonrenewable resources, the project data is adapted as follows:
First, all non-executable modes are deleted. Second, all redundant renewable resources
and, subsequently, all inefficient modes are removed. The second step is repeated until no
redundant renewable resources are left. The result of this adaption is a reduction of the
number of feasible as well as infeasible solutions.

Consider the project instance given in Figure 1. If activity 5 was performed in mode
2, the whole project would require at least 17 units of the nonrenewable resource whereas
only 15 units are available. Consequently, mode 2 of activity 5 is non-executable w.r.t. to
the nonrenewable resource and may therefore be deleted.

4.3 Individuals and Fitness

In our GA, an individual [ is represented by a pair of an activity sequence and a mode
assignment and is denoted as

I=((,....33),m").

The job sequence ji,. ..,j% is assumed to be a precedence feasible permutation of
the set of activities, that is, we have {j{,...,74} = {1,...,J} and PJ}I C .. dE
for i = 1,...,J. The mode assignment m! is a mapping which assigns to each activity
7 €{1,...,J} amode m/(j) € {1,..., M;}. In the examples of this section, we use the
equivalent notation for the individuals which is displayed in Figure 2.

RO ) O B
mf(GH| -+ imi(5h)

Figure 2: Genotype



Each genotype is related to a uniquely determined schedule (phenotype} which is com-
puted as follows: First, the dummy source activity is started at time 0. Then we schedule
the activities in the order that is prescribed by the sequence ji, ..., jf. Thereby, activity
j¥ is scheduled in mode m!(j]) and assigned the earliest feasible start time. Note that the
result is an active schedule, that is, no activity can be left shifted without violating the
constraints (for a formal definition of active schedules cf. Sprecher et al. [28]).

Clearly, the schedule related to an individual is feasible with respect to the precedence
relations and the renewable resource constraints, but not necessarily w.r.t. the nonrenewable
resource constraints. However, it is useful to include schedules that are infeasible w.r.t. the
nonrenewable resources into the search space because, as proven by Kolisch and Drexl [15],
already finding a feasible schedule is an NP-complete problem if at least two nonrenewable
resources are given.

The fitness of an individual I is computed as follows: Let T' be the upper bound on the
project’s makespan given by the sum of the maximal durations of the activities. Moreover,
let L¥(I) denote the leftover capacity of nonrenewable resource r € N w.r.t. the modes
selected by the genotype of individual 7, that is,

J
Ly = K! = ki,
7=1

If there is a nonrenewable resource r € N with LY < 0, then the mode assignment
of individual 7 is infeasible w.r.t. the nonrenewable resource constraints. In this case, the
fitness of I is given by

=T+ ) L)l
TEN
LY (I)<0

Otherwise, if individual [ is feasible w.r.t. the nonrenewable resources, the fitness f{I)
of individual 7 is given by the makespan of the related schedule. From the definitions given
above it is clear that a lower fitness of an individual implies a better quality of the related
schedule. Observe that a feasible individual always has a lower fitness than an infeasible
one.

For illustration, we consider the project instance given in Figure 1 and the two indi-
viduals M and F displayed in Figure 3. Clearly, the mode assignment of individual M
is feasible as 15 units of the nonrenewable resource are requested, that is, the capacity is
not exceeded. Now we derive a schedule from the genotype of M which can be found in
Figure 4, where 7(m) stands for activity j being performed in mode m. The fitness of M is
equal to the makespan of the schedule, that is, we have f(M) = 15. Individual F induces
a nonrenewable resource requirement of 19 units which exceeds the availability by 4 units.
Computing 7" = 22, we obtain a fitness value of f(F) = 26.

It should be noticed that the permutation based genetic encoding includes some redund-
ancy. This can be seen in genotype of indvidual M of Figure 3: Interchanging activities
1 and 6 in this genotype obviously results in another genotype with a precedence feasible
job sequence. The schedule related to this other genotype, however, is the same as that of
the original genotype of M. Figure 4 shows that this is due to the fact that activities 1 and
6 start at the same time. In other words, different genotypes, i. e. elements of the search
space, may be related to the same schedule.
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Figure 4: Schedule of individual M

4.4 Crossover

We consider two individuals selected for crossover, a mother M and a father F. Then we
draw two random integers p; and p; with 1 < py,ps < J. Now two new individuals, a
daughter D and a son S, are produced from the parents. We first consider D which is
defined as follows: In the sequence of jobs of D, the positions ¢ = 1, ..., p; are taken from
the mother, that is,

-D M
Ji =T -
The job sequence of positions ¢ = p; +1,...,J in D is taken from the father. However,

the jobs that have already been taken from the mother may not be considered again. Fol-
lowing the general crossover technique described by Reeves [21] for permutation based
genotypes, we obtain:

7P = jF where k is the lowest index such that jf ¢ P, P

This definition ensures that the relative positions in the parents’ job sequences are
preserved. Observe that the resulting job sequence is precedence feasible.

The modes of the activities on the positions ¢ = 1,..., p; in daughter D are defined by
the mother’s mode assignment m™, that is,

mP(5P) = mM (jP).

The modes of the remaining jobs on the positions ¢ = po + 1,...,J in D are derived
from the father’s mode assignment m*:

mP(3F) = mF (5P).



The son S of the individuals M and F is computed similarly. However, the positions
1,...,p; of the son’s job sequence are taken from the father and the remaining positions
are determined by the mother. Analogously, the first part up to position p; of the mode
assignment of S is taken from F while the second part is derived from M.

The above definitions are illustrated by the following example. Using the project instance
of Figure 1 and the individuals shown in Figure 3, we set p; := 3 and p; := 4 and compute
the children displayed in Figure 5. We consider the daughter D. The first three positions of
the job sequence are equal to those of M. The order of the remaining activities is taken from
F. According to the value of p,, the modes of the first four activities in the job sequence
of D are determined by M while the last two activities get their modes from F. Observe
that, as we have p; < po in this example, the fourth activity of the daughter’s job sequence,
activity 3, is determined by the father’s job sequence. The mode of activity 3, however, is
taken from the mother.

214 6
D= S =
2 1

Figure 5: Children

We have considered two variants of this crossover operator: First, the general variant
as defined above and, second, a simplified version in which we randomly draw only p; and

set p2 ‘= p1.

4.5 Mutation

The mutation included in our GA is applied to each newly generated child individual and
is defined as follows: Given an individual I of the current population, we draw two random
integers ¢; and ¢; with 1 < ¢3 < J and 1 < ¢ < J. ¢ is used to modify the job
sequence by exchanging activties j,{l and jgl +1 if the result is a job sequence which fulfills
the precedence constraints (cf. Subsection 4.3). Note that each of the changed activities
keeps its assigned mode, that is, this modification does not change the mode assignment.
Then we randomly choose a new mode for the activity on position g3, that is, we redetermine
m!(j1,) by drawing a random integer out of {1,.. ., MJ;{? }. While the first step may create
job sequences (i. e. gene combinations) that could not have been procuced by the crossover
operator, the second step may introduce a mode (i. e. gene) that has not occured in the
current population.

It should be noted that performing a mutation on an individual does not necessarily
change the related schedule. This is due to the redundancy in the genetic representation
that has been described in Subsection 4.3. We consider again the project instance shown in
Figure 1, individual M of Figure 3, and the related schedule displayed in Figure 4. Choosing
q1 = 3 induces an exchange of activities 1 and 6 in the job sequence. However, activities 1
and 6 are assigned a start time of 6 no matter if they are changed in this job sequence or
not.



4.6 Selection

We consider two variants of the selection operator. The first variant is a simple survival-
of-the-fittest method: We restore the original population size by keeping the POP best
individuals and removing the remaining ones from the population (ties are broken arbitrar-
ily).

The second variant is a randomized version of the previously described survival-of-the-
fittest technique. Let P denote the current population, that is, a list containing the individu-
als. Note that we use a list of individuals instead of a set because we explicitly allow two (or
more) distinct individuals with the same genotype in a population. We restore the original
population size by successsively removing individuals from the population until POP indi-
viduals are left, using the following probability: Denoting with fyese = min{f(I) |1 € P}
the best fitness in the current population, the probability to die for an individual [ is given
by

_ (f(])—fbest+1)2
Paesnll) = 5 e () ~ oo 4 1

4.7 Improvement by Local Search

In this subsection we discuss a problem specific local search method to improve the schedule
related to an individual. The approach is based on the definition of a multi-mode left shift
which has been introduced by Sprecher et al. [29] in order to accelerate their branch-and-
bound algorithm for the MRCPSP. A multi-mode left shift of an activity j is an operation
on a given schedule which reduces the finish time of activitity j without changing the modes
or finish times of the other activities and without violating the constraints. Thereby, the
mode of activity 7 may be changed.

We employ the local search procedure after transforming an individual 7 into a schedule.
If the schedule is feasible w.r.t. the nonrenewable resources, we try to improve it as follows:
For each activity 5{,.. .,jf, we check whether a multi-mode left shift can be performed.
Thereby, the modes of an activity j7 are tested w.r.t. non-decreasing duration, that is, in
the order given by 1,..., M fis For each activity, the first feasible multi-mode left shift
found (if any) is applied to the schedule. Then we skip to the next activity in the job
sequence. The result is a feasible schedule with a makespan equal to or lower than the
original one. Now the fitness of individual 7 is set to be equal to the new makespan. This
improvement procedure is applied to all individuals of the current population for which we
have to compute the fitness.

We consider again the project instance given in Figure 1. The schedule shown in Figure 4
related to individual M of Figure 3 is improved by the procedure described above as follows:
While activities 2 and 4 cannot be left-shifted, we can perform a multi-mode left shift on
activity 1. Leaving activity 6 unchanged, we can now apply a multi-mode left-shift to
activity 3. Finally, left-shifting activity 5 yields a new makespan of 13 periods. The
resulting schedule is displayed in Figure 6.

As each activity is considered only once for a multi-mode left shift, we call the above
procedure single pass local search algorithm. Note, however, that the schedule derived by
this single pass approach is not necessarily tight (a tight schedule is a schedule to which
no multi-mode left shift can be applied, cf. Speranza and Vercellis [24] and Sprecher et

10
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Figure 6: Improved schedule of individual M

al. [29]). This is because a multi-mode left shift of some activity j/ might allow a multi-
mode left shift of some activity j{ with & < i that had not been possible before. In the
improved schedule of Figure 6, for example, a multi-mode left shift of activity 2 is possible
because the total consumption of the nonrenewable resource decreased due to the multi-
mode left shift of activity 1. Consequently, we consider a second variant of our local search
extension which we call multi pass procedure: We repeatedly apply the above single pass
algorithm until we have obtained a tight schedule. In contrast to the single pass algorithm,
the multi pass approach always leads to a local optimum as the resulting schedule cannot be
further improved using multi-mode left shifts. Note, however, that these procedures cannot
improve schedules for the single-mode RCPSP found by the GA, because in this case the
set of tight schedules coincides with the set of the active ones (cf. Sprecher et al. [29]), and
each schedule computed by the evaluation function of Subsection 4.3 is active.

Both local search procedures can be viewed as a second step of the genotype evaluation
as they compute fitness values. But we can do more: Applying one of these procedures
to a schedule S related to an individual I, we obtain an improved schedule S’. Now we
can transform the new schedule S’ into an individual I’ that is, we can find an individual
I’ which corresponds to schedule S’. Clearly, the job sequence of individual I’ is given
by the sequence of activities ordered w.r.t. non-decreasing start times of schedule §’; the
mode assignment is straightforward. Subsequently, we can replace individual I with the
improved individual I” in the current population. Considering evolution in biology, the
single and multi pass procedures above which only change the phenotype (schedule) can be
compared to individual or ontogenetic learning. The transformation of their results into a
new genotype, i. e. into hereditary information, corresponds to the possibility to inherit the
results of ontogenetic learning as described by Lamarck.

5 Computational Results

5.1 Experimental Design

In this section we present the results of the computational studies concerning the genetic
algorithm introduced in the previous section. The experiments have been performed on a
Pentium-based IBM-compatible personal computer with 133 MHz clock-pulse and 16 MB
RAM. The GA has been coded in ANSI C, compiled with the GNU C compiler and tested
under Linux.
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We used a set of standard test problems systematically constructed by the project
generator ProGen which has been developed by Kolisch et al. [16). They are available in
the project scheduling problem library PSPLIB from the University of Kiel. For detailed
information the reader is referred to Kolisch and Sprecher [17]. Some of the instances have
been used by Kolisch and Drexl [15] and Ozdamar [20] to evaluate their heuristics for the
MRCPSP.

In our study, we have used the multi-mode problem sets containing instances with 10,
12, 14, 16, 18, and 20 non-dummy activities. Each of the non-dummy activities may be
performed in one out of three modes. The duration of a mode varies between 1 and 10
periods. We have two renewable and two nonrenewable resources. For each problem size,
a set of instances was generated by systematically varying four parameters, that is, the
resource factor and the resource strength of each resource category. The resource factor
is a measure of the average portion of resources requested per job. The resource strength
reflects the scarceness of the resources. For each project size, 640 instances were generated.
Those instances for which no feasible solution exists have not been considered. Hence, we
have 536 instances with J = 10, 547 instances with J = 12, 551 instances with J = 14, 550
instances with J = 16, 552 instances with J = 18, and 554 instances with J = 20. The set
with 20 non-dummy activities currently is the hardest standard set of multi-mode instances
for which all optimal solutions are known, cf. Sprecher and Drexl [27].

5.2 Configuration of the Algorithm

In the numerical investigation reported in this subsection we determined the best configur-
ation of our GA. We selected the instance set with 20 non-dummy activities per project for
these experiments.

In the best configuration, we have a population size of 50 individuals and 30 generations
on twoislands. Moreover, the best configuration consists of the general crossover variant, the
deterministic selection operator, and the single pass multi-mode left shift concept without
inheritance, but it does not include migration between the islands, that is, pmigration = 0. In
the following, we summarize the most important computational results which confirm the
superiority of this configuration.

In a first step we confirm the relationship between the number of islands, the popula-
tion size, and the number of generations stated above. We set the number of individuals
(i. e. schedules) to be examined to 3000 per instance, resulting in an average computation
time of 1.2 seconds per instance. The impact of varying ISL, POP, and GEN within
the best configuration is documented in Table 1. For each tested parameter combination,
the average deviation from the optimal makespan, the maximal deviation, the fraction of
instances for which a feasible schedule has been found, and the fraction of instances for
which an optimal schedule has been found are given. Choosing POP = 50, GEN = 30,
and ISL = 2 yields the best results, an average deviation of 1.6 % from the optimal solution.
Notice that stopping the evolution of 50 individuals after 30 generations on two islands is
more promising than to have 60 generations and only one island. Consider the last row of
Table 1: Selecting a population size of 3000, only one generation and one island induces a
simple procedure which randomly generates 3000 schedules without employing the genetic
operators (note, however, that the single pass local search concept is included). The results
show that this random procedure is clearly outperformed by the “real” GA. This confirms
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the quality of our genetic encoding and the related operators.

POP GEN ISL av.dev. max.dev. feasible optimal

30 20 5 2.3% 21.7% 100.0% 60.3%
30 50 2 1.9% 17.9% 100.0% 64.1%
50 30 2 1.6 % 10.5% 1000% 67.7%
50 60 1 1.8 % 13.9% 1000% 66.3%
100 30 1 1.7% 14.3% 1000% 66.6 %
3000 1 1 6.8 % 60.7% 99.1% 451 %

Table 1: Impact of the number of generations — 3000 individuals, J = 20

The second step to verify the quality of the configuration given above is to determine
the best variants of the genetic operators. Here we have selected a population size of 50 and
a generation number of 30 and imposed a time limit of one second (without limiting the
number of islands). This foregoing is useful because some configuration changes may slightly
improve the solution quality, but on the other hand may drastically increase the computation
times. Table 2 summarizes the results of the changes of the best configuration. Using the
simple crossover variant (i.e. py = p) instead of the general one, omitting the mutation
operator, and employing the randomized selection operator instead of the deterministic one
deteriorate the results. Moreover, allowing migration between the islands does not improve

the solution quality.

Configuration av.dev. max.dev. feasible optimal
best 1.9% 11.9% 100.0% 64.8%
simple crossover 2.2% 152% 1000% 61.7%
without mutation 2.8 % 179% 100.0% 54.5%
randomized selection 2.4 % 28.6 % 100.0% 58.0%
Pmigration = 0.25 21 % 17.9% 100.0 % 62.8 %

Table 2: Impact of alternative genetic operators — 1 second, J = 20

Finally, the third step to confirm the configuration stated above as the best one is
to examine several alternatives of the local search extension. Again, we have selected a
population size of 50, a generation number of 30, and a time limit of one second. Employing
the best genetic operators yields the results displayed in Table 3. They show that the single
pass multi-mode left shift concept without inheritance is capable of improving the average
deviation of the basic GA without local search extension by a factor of approximately 1.4.
However, applying the multi-mode left shift procedure until tight schedules are achieved does
not have an additional positive impact on the solution quality. This is because the solutions
found by the multi pass procedure are only slightly better than those of the single pass
concept while it requires more computation time, that is, a smaller number of individuals
can be generated within the time limit. Also the inheritance of the local search results, that
is, the transformation of the improved phenotype (i. e. schedule) into a related genotype
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(i. e. individual), does not yield a further improvement of the computational results.

Local search inheritance av.dev. max.dev. feasible optimal

none — 2.6 % 21.7% 100.0% 56.1%
single pass  no 1.9% 11.9% 100.0% 64.8%
multi pass no 1.9% 150% 100.0% 64.1%
single pass  yes 2.3 % 200% 100.0% 61.2%
multi pass  yes 2.4 % 273% 100.0% 60.5%

Table 3: Impact of local search variants — 1 second, J = 20

5.3 Population Analysis

In this subsection we analyze the generations produced by the GA in order to answer a
question that has been arising in the previous subsection: Why is it disadvantageous to

inherit the local search results?
First we define a measure for the similarity of two individuals 7 and I’. We start with

a definition of the similarity of the related activity sequences. Our goal is to check if two
activities have the same relative positions in the activity sequences of both I and I’. Since
it is sufficient to consider only those activities that are not precedence related, we define

Given two activities ¢ and j that are not precedence related, i. e. {i,j} € M, we reflect
their relative positions within I and I’ by

LI { 1, if iis before j in both [ and I’, or if j is before 7 in both I and I',

arl = .
{i.7} 0. otherwise.

Now we are ready to define the following measure for the similarity of the job sequences
of I and I’: If there are activities that are not precedence related, i. e. M # (), we set

Ir 1 Lr
o = — [ TN
Z {i.5}

IMi {t,7}eM !

Otherwise, if M = §, we have a serial network structure which implies that there is only
one precedence feasible job sequence. In this case, we define o/’ = 1.
The next definition reflects whether an activity j is assigned the same mode by two

individuals I and I’:

e _ } 1, i mi(G) =ml(j),
7 0, otherwise.

This enables us to define the following measure for the similarity of the mode assignments
of I and I':

Ly _
7] =

~|

J Lr
> oui
=
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Combining the above definitions, we obtain a measure o/’ for the similarity of individu-
als I and I’ in which both the activity sequences and the mode assignments are considered:

bl g b
2

Clearly, the higher o©7'| the more identical information is contained in the genotypes of
individuals 7 and I’. Observe that we have o/’ € [0, 1]. Especially, we have o/:!" = 0 if I
and I’ do not have any genetic information in common, and o¥f " = 1 if they are identical,
that is, if we have I = I'.

Now we use this similarity measure for analyzing the different generations produced
by our GA. More precisely, each generation is partitioned into sets of similar individuals.
Therefore we have implemented a cluster analysis algorithm.! Given a generation with
POP individuals, we first compute the similarity value for each pair of individuals. Then
the cluster analysis algorithm starts with the trivial partition in which each individual forms
a cluster, that is, we have POP clusters. After that we unite clusters as follows: Consider
two clusters C and C’. C and C’ are united if we have o/’ > 0.8 for all individuals I € C
and I’ € C’. This is repeated until there are no clusters left that can be united w.r.t. this
similarity criterion. Each resulting cluster contains highly similar individuals.

For the following experiment, we have tested two variants of the GA: first, the best
configuration without inheritance of the single pass local search results and, second, the
best configuration with inheritance. While the number of individuals is again fixed to 50
per generation, we have observed the development on one island only. We have applied both
variants to the hardest of the instances with 20 activities, that is, those with a high resource
factor and a low resource strength implying scarce resources. Table 4 lists the average
number of clusters that have been obtained by both variants for every fifth generation.
As the first generation is randomly determined, there are no similarities of more than 0.8,
inducing 50 clusters with one individual each. With an increasing number of generations,
the number of clusters in a generation decreases, that is, more similar individuals occur in
the population. Clearly, this is due to the crossover and selection operators which tend to
copy “fit” and remove “unfit” information. Table 4, however, shows that the inheritance
mechanism accelerates the reduction of clusters: While the GA without inheritance leads to
13 different clusters after 30 generations, the GA with inheritance results in only 4 clusters
at the same time.

Inheritance 1 5 10 15 20 25 30 35 40 45 50 55 60
no 50 34 27 22 18 15 13 10 9 7 7 7 6
yes 50 28 19 11 7 6 4 3 3 3 3 2 2

Table 4: Average number of clusters w.r.t. generation number

These results explain why including the inheritance mechanism into the GA deteriorates
the quality of the solutions: As already outlined, the basic strategy of any GA is to gather
information about promising regions of the search space. Each of our clusters can be viewed

'For a general introduction into cluster analysis the reader is referred to e.g. Backhaus et al. [1].
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as such a promising region. At the same time, however, information that is not considered
as promising is removed. Clearly, this leads to a loss of genetic variety. If the number of
clusters decreases too fast—in other words, if too much information is lost too fast—the GA
gets stuck in some promising regions of the search space. As each cluster contains similar
information, the GA is likely to fail to construct individuals from previously unsearched
regions of the (usually huge) search space if only few clusters are left. Consequently, many
regions remain unexplored, and better solutions may be left undetected.

The arguments above also explain why it is better to consider two islands with 30
generations each instead of 60 generations on one island: Table 4 indicates that the GA
(without inheritance) results in too few clusters after more than 30 generations.

Basically, one encounters the following difficulty when designing a GA: An evolution
proceeding too fast leads to a loss of genetic variety and is thus disadvantageous. On the
other hand, an evolution proceeding too slowly may be unable to identify promising regions
of the search space. Therefore, the variants and parameters have to be chosen carefully.

5.4 Comparison with other Heuristics

In this subsection we summarize the results obtained from a comparison of our GA with
three other heuristics for solving the MRCPSP that have recently been proposed in the
literature.

For the comparison of our GA with the approaches of Kolisch and Drex! {15} and
Ozdamar [20], we have selected the standard instance set with 10 non-dummy activities
and fixed the number of individuals to 3000 (without imposing a time limit). The results
given in Table 5 show that the new GA produces an average deviation of 0.22 % from the
optimal makespan. Kolisch and Drex! [15] have suggested a local search procedure which
constructs an initial solution and tries to improve it by neighborhood moves based on slack
calculations. They report that their approach outperforms the algorithms of Boctor [2] and
of Drexl and Griinewald [6]. We have recompiled their original PASCAL code, limited the
number of neighborhood moves to 3000 and obtained an average deviation of more than
0.8 %. Ozdamar [20] has developed a GA which is based on a genetic representation of a
sequence of priority rules that is used within a parallel scheduling scheme. Each individual
is evaluated both in a forward and in a backward evaluation of the priority rule sequence.
For 3000 individuals, Ozdamar [20] reports an average deviation of more than 0.8 %. Hence,
the average deviation produced by the new GA is nearly four times lower than those of the
two heuristics from the literature.

Heuristic av. dev. feasible optimal
new GA 0.22% 1000% 96.3%
Kolisch, Drex]  0.82% 1000% 89.0%
Ozdamar 0.86% 100.0% 881%

Table 5: Comparison with two other heuristics — 3000 individuals, J = 10

Next, we compare the new GA with a truncated version of the branch-and-bound proced-
ure of Sprecher and Drexl [26]. As shown by Hartmann and Drexl [11], this is the currently
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most efficient exact approach for solving the MRCPSP. We have coded the branch-and-
bound procedure including all available bounding rules in C using the same data structures
as in the implementation of our GA when possible. As suggested by Sprecher [25], we
have employed the job number rule into the branch-and-bound algorithm, that is, the next
eligible activity to be selected is the one with the lowest number. The modes are selected
w.r.t. non-decreasing duration.

Table 6 displays the results obtained from both algorithms with a time limit of one
second. While the truncated exact procedure solves all instances with 10 activities to
optimality within one second, its average deviation for the instances with 20 activities is six
times higher than that obtained by the GA. In contrast to the GA which results in moderate
maximal deviations of at most 15 %, the maximal deviation of the truncated branch-and-
bound algorithm is almost 80 % for J = 20. While our GA finds a feasible solution for
every instance, the truncated exact procedure fails to do so for instances with more than

12 activities.

Heuristic J av.dev. max. dev. feasible optimal
new GA 10 0.15% 105% 100.0% 97.6%
truncated b&b 10  0.00 % 0.0% 100.0% 100.0%
new GA 12 0.17% 71% 1000% 96.3%
truncated b&b 12 0.12 % 179% 100.0% 98.2%
new GA 14 0.68 % 15.0% 1000% 86.6%
truncated b&b 14 146 % 33.3% 996% 85.7%
new GA 16 1.00% 129% 100.0% 78.6%
truncated b&b 16 3.81 % 524% 99.5% 69.5%
new GA 18 147 % 13.0% 100.0% 714%
truncated b&b 18 7.48 % 7.4 % 980% 57.4%
new GA 20 191 % 11.9% 100.0% 64.8%

truncated b&b 20 11.51 % 786 % 96.4% 47.3%

Table 6: Comparison with truncated branch-and-bound — 1 second, all instances

6 Conclusions

We have presented a genetic algorithm for solving project scheduling problems with mul-
tiple modes. The numerical results show that the GA is successful in finding feasible sched-
ules which is remarkable as already the feasibility problem is NP-complete if at least two
nonrenewable resources are given. A computational comparison revealed that our GA out-
performs other heuristics proposed in the literature for the MRCPSP. Of special interest,
possibly also for other scheduling problems, is that the permutation based genetic repres-
entation yields better results than a priority rule based encoding. Moreover, the problem
specific local search extension is capable of improving the solutions found by the basic GA.

These results are encouraging for future research on other scheduling problems which
include hard feasibility problems such as e.g. the RCPSP with maximal time lags: These
problems may also be solved using a (possibly permutation based) genetic encoding which
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includes infeasible schedules into the search space. Infeasibility can then be penalized with
disadvantageous fitness values. A local search component using problem specific knowledge
can be added for supporting the process of finding feasible or near-optimal solutions.

Acknowledgement: I am indebted to Rainer Kolisch and Andreas Drexl for making
the source code of their heuristic available.
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