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Abstract

The notion of the group of orthogonal matrices acting on the set
of all feasible identification schemes is used to characterize the iden-
tification problem arising in structural vector autoregressions. This
approach presents several conceptual advantages. First, it provides a
fundamental justification for the use of the normalized Haar measure
as the natural uninformative prior. Second, it allows to derive the
joint distribution of blocks of parameters defining an identification
scheme. Finally, it provides a coherent way for studying perturba-
tions of identification schemes becomes relevant, among other things,
for the specification of vector autoregressions with time-varying co-
variance matrices.
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1 Introduction

Structural vector autoregressive (SVAR) models have established themselves
as an indispensable tool in empirical macroeconomics. While these models
capture reasonably well the dynamic properties of the data, their economic in-
terpretation in terms of structural shocks is discussed controversially because
these models suffer from a fundamental identification problem. This problem
is addressed by imposing some restrictions (short-run, long-run, sign restric-
tions, etc.) which are more or less funded in a priori economic reasoning.
The econometric aspects of the identification problem has been analyzed by
Rubio-Raḿırez, Waggoner, and Zha (2010) and Waggoner and Zha
(2003) in the spirit of Rothenberg (1971).

We view the identification problem as an invariance property of the group
of orthogonal matrices on the set of observationally equivalent identification
schemes. While already anticipated in the previously mentioned papers, fol-
lowing this route rigorously presents several advantages. First, the identifica-
tion problem is given a precise mathematical framework. In this framework,
the invariance principle naturally leads to the use of the normalized Haar
measure as an uninformative prior (Jaynes, 1968). Second, it allows the
derivation of the joint distribution of the impact effects and not just of a sin-
gle coefficient as in Baumeister and Hamilton (2015, section 3). Third,
the action of the group allows to conceive a kind of perturbation analysis of
the identification scheme. This is not only interesting in itself, but can be
used to formulate time-varying covariance matrices in a coherent way.

2 Structural Vectorautoregressive Models

Consider a vector autoregressive (VAR) processes {Xt} with observations in
the state space Rn and defined as the stationary solution of the stochastic
difference equations of order p with constant coefficients Φ1, . . . ,Φp:

Xt = Φ1Xt−1 + · · ·+ ΦpXt−p + Zt, Zt ∼WN(0,Σ), (2.1)

where Σ is symmetric and positive definite. The reduced form shocks Zt are
obtained from the structural shocks {Vt} by a linear weighting scheme

Zt = B′Vt, Vt ∼WN(0, In), (2.2)

where the n×n matrix B is left unrestricted. The uncorrelatedness assump-
tion of the structural shocks is very much accepted in the literature. Other-
wise, there would remain some unexplained relationship between them. The
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assumption that the structural shocks have a covariance matrix equal to the
identity is just a convenient normalization.

Although this is not necessary for the discussion, it will be assumed that
{Xt} admits a causal representation with respect to {Zt}. Thus, there exists a
sequence of matrices {Ψj}, j = 0, 1, 2, . . ., with Ψ0 = In and

∑∞
j=0 ‖Ψj‖ <∞

such that

Xt = Ψ0Zt + Ψ1Zt−1 + Ψ2Zt−2 + . . . =
∞∑
j=0

ΨjZt−j = Ψ(L)Zt (2.3)

= Ψ0B
′Vt + Ψ1B

′Vt−1 + Ψ2B
′Vt−2 + . . . =

∞∑
j=0

ΨjB
′Vt−j = Ψ(L)B′Vt

(2.4)

Such a causal representation of Xt in terms of current and past Zt’s exists if
and only if det(In − Φ1z − Φ2z

2 − · · · − Φpz
p) = det Φ(z) 6= 0 for all z ∈ C

with |z| ≤ 1.
While the VAR, usually, gives a good summary of the data, at least up

to the second moments, it is just a preliminary first step in the analysis. The
second and more controversial step aims at identifying the structural shocks
{Vt} and their effects on Xt+j, j = 0, 1, 2, . . . These effects are propagated
over time and captured by the sequence {ΨjB

′}, j = 0, 1, 2, . . . , known as
the impulse response function. The shocks and their propagation are usually
given an economic interpretation and are at the core of the SVAR approach.

Relying on second moments only or assuming a Gaussian framework, it
is easy to see that the simultaneous equation system (2.2) is not identified,
i.e. it is impossible to extract B just from the knowledge of Zt alone.1 In-
deed, taking the symmetry of covariance matrices into account, the nonlinear
equation system

Σ = E(ZtZ
′
t) = E(B′VtV

′
tB) = B′B (2.5)

delivers only n(n+1)/2 independent equations for n2 unknown coefficients in
B. Thus, there is a need of n2−n(n+1)/2 = n(n−1)/2 additional equations.
A customary solution to the underidentification problem is to place enough
restrictions on the matrixB so that the equation system (2.5) admits a unique
solution. We call these identifying restrictions an identification scheme.

One popular form of restrictions is to set some coefficients a priori to zero.
These, so-called, short-run restrictions have to come from either additional,
usually theoretical, reasoning or other a priori reasoning and are subject to

1In a non-Gaussian framework, it is conceivable to rely on higher moments.
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controversy. Another common way to place restrictions on B is to assume
that the cumulated effects of some particular shocks on some variable equals
zero. Thus, these so-called long-run restrictions impose zeros on Ψ(1)B.
Obviously, short- and long-run restriction do not exclude each other, but can
complement each other. As the gap between equations and unknowns grows
quadratically, it becomes more and more difficult to incorporate reasonable
restrictions as the dimension n of the VAR increases.2

3 An Algebraic Interpretation of the Identi-

fication Problem

3.1 The group action of orthogonal matrices

One aim of this paper is to provide a deeper conceptual framework which in
the end should allow a better understanding of the fundamental identification
problem and of the solution techniques proposed in this context.

Before presenting some results it is necessary to introduce some algebraic
and topological notions. Let Mn be the vector space of n× n matrices with
real entries. It is clear that to any matrix A = Aij ∈ Mn we can associate a
point in Rn2

and hence identify the vector space Mn with Rn2
. In this way,

Mn can be equipped with the Euclidian metric of Rn2
. With respect to this

metric, the usual matrix operations are continuous and even smooth.3 Since
detA is a continuous function from Mn to R, the set of invertible matrices
is an open subset of Mn which forms a group with respect to the matrix
multiplication. This group is called the general linear group and denoted by
GLn.

In the following, the subgroup of orthogonal matrices On, i.e. matrices Q
with the property Q′Q = In, will be of special interest. It can be shown that
On is a compact (closed and bounded) subgroup of GLn.4 This implies that
On has a finite Haar measure (see Diestel and Spalsbury, 2014, chapter
5). This measure can be normalized to make it a probability distribution.5

This distribution can be efficiently implemented numerically by applying

2An early example of how difficult this can be, is given by the five-dimensional VAR
analyzed by Blanchard (1989).

3A function is called smooth if it is infinitely differentiable.
4This is proven in Proposition 1 if Σ is et to In.
5The normalized Haar measure is unique and is the analogue to the uniform distribution

on the real line. Denote the normalized Haar measure by µ, then in the case of orthogonal
matrices we must have µ(On) = 1, and µ(QQ) = µ(QQ) = µ(Q) for every measurable set
Q ⊆ On and every Q ∈ On.

3



the QR-decomposition to a random matrix A with law L(A) = N(0, In⊗ In),
i.e. the elements of A are iid N(0,1) random variables (see Birkhoff and
Gulati, 1979; Stewart, 1980; Edelman and Rao, 2005, for details).

In Section 3.2, we derive an analytic expression for the density of sub-
blocks of the normalized Haar measure on On. This result will then be used
to derive a corresponding result for the identification schemes. For this pur-
pose, we define the set of conceivable identification schemes, called the set of
structural factorizations, and an action of On on this set.

Definition 1. For any given positive definite symmetric matrix Σ, the set

B(Σ) = {B ∈ GLn : Σ = B′B}

is called the set of feasible structural factorizations of Σ.

This set is nonempty because every positive definite symmetric matrix
admits a unique Cholesky factor R such that Σ = R′R with R being an upper-
triangular matrix with positive diagonal entries (see, for example, Meyer,
2000, 154–155). Clearly, any B1, B2 ∈ B(Σ), B1 6= B2, are observationally
equivalent with respect to {Zt}.6

Proposition 1. B(Σ) is compact in Mn.

Proof. Consider the function F (B) = B′B − Σ. Because the usual matrix
operations are continuous and the set consisting just of the zero matrix is
closed, F−1({0}) = B(Σ) is closed. Moreover,

n∑
j=1

BijBij = Σii > 0

implies that ‖B‖ :=
√∑n

i,j B
2
ij =

√∑n
i=1 Σii. Thus, the set B(Σ) is bounded.

Consider the following map:

On × B(Σ)→ B(Σ) : (Q,B) = QB.

Note it is well-defined because QB ∈ B(Σ) as B′Q′QB = B′B = Σ and
continuous, in fact even smooth. Moreover, the map satisfies:

(i) In ∈ On and InB = B for all B ∈ B(Σ).

6In the terminology of Dufour and Hsiao (2008) B(Σ) is called a model and its
elements structures.
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(ii) Because the matrix multiplication is associative, (Q1Q2, B) = (Q1, Q2B)
for all Q1, Q2 ∈ On and all B ∈ B(Σ).

Thus, the map defines a continuous (even smooth) group action of On on
B(Σ).

In addition, the group action is transitive because for any B1, B2 ∈ B(Σ)
we can find Q ∈ On such that (Q,B1) = B2. To see this take Q =
B2(B

′
1B1)

−1B′1 = B2Σ
−1B′1. This property means that we can move ma-

trices in B(Σ) around via homeomorphism of B(Σ) onto itself. For any given
element B ∈ B(Σ) the isotropy subgroup or stabilizer HB is defined as

HB = {Q ∈ On : QB = B}.

Given the invertibility of B, this subgroup is the trivial subgroup which
consists just of the identity element In. Thus, the group action is not only
transitive, but also free. The quotient group On/H is therefore just On

itself. Given these preliminaries, we can apply two classic theorems of Weil
(see Diestel and Spalsbury, 2014, chapter 6) to draw the following two
conclusions:

(i) On/HB = On and B(Σ) are homeomorphic. Thus, given any fixed
matrix B0 ∈ B(Σ), there corresponds to every identification scheme
B ∈ B(Σ) a unique orthogonal matrix Q with B = QB0 and vice-
versa. A convenient choice of B0 is given by the Cholesky factor of
Σ.

(ii) There is a unique On-invariant probability measure on B(Σ).

This invariance property provides an important justification to state our
ignorance about the correct identification scheme in B(Σ) in terms of the
normalized Haar measure on On (see Jaynes, 1968, sections 7 and 8). This
view stands in contrast to the arguments put forward by Baumeister and
Hamilton (2015).

3.2 The distribution of structural factorizations

The next step consist in the characterization of the Haar probability measure
on On which will then allows us to derive the corresponding probability
measure on B(Σ). For this purpose, we closely follow the exposition in Eaton
(1989, chapter 7). Let Fq,n, q ≤ n, denote the set of n × q real matrices F
such that F ′F = Iq. These are matrices such that the q columns of F belong
to some orthogonal matrix in O(n). For q ≤ n, let A denote a n× q random
matrix with probability law L(A) = N(0, In ⊗ Iq), then F = A(A′A)−1/2 is
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a well-defined element of Fq,n. According to Eaton (1989, proposition 7.1),
F has the uniform distribution on Fq,n.

Partition the matrix A as A = (A′1, A
′
2)
′ with A1 and A2 being n1 × q,

respectively (n− n1)× q matrices, then F can be written as

F =

(
A1

A2

)
(A′1A1 + A′2A2)

−1/2.

Denote the upper n1 × q block of F by F1. Thus,

F1 = A1(A
′
1A1 + A′2A2)

−1/2.

F1 can be thought of as the n1×q upper left block of some random orthogonal
matrix.

With these preliminaries, we can quote two theorems of Eaton (1989,
Chapter 7, propositions 7.2 and 7.3).7

Theorem 1. When n1 ≥ q and n1 + q ≤ n, the random matrix F ′1F1 has a
multivariate beta distribution B(n1, n− n1; Iq). Thus, F ′1F1 has density

f0(X) = C0(detX)(n1−q−1)/2(det(Iq −X))(n−n1−q−1)/2 1(X) (3.1)

where 1 denotes the indicator function of the q× q symmetric matrices all of
whose eigenvalues are in (0, 1) and the constant C0 is

C0 = ω(n1, q)ω(n− n1, q)/ω(n, q)

where ω is the Wishart constant, i.e.

ω(r, q) =

[
πq(q−1)/4 2rq/2

q∏
j=1

Γ

(
r − j + 1

2

)]−1
.

Using the same notation as in Theorem 1, it is possible to derive an
explicit formula for the density of F1.

Theorem 2. For n1 ≥ q and n1 + q ≤ n, the density of F1 is given by

f1(X) = C1(det(Iq −X ′X))(n−n1−q−1)/2 1(X ′X) (3.2)

where the constant C1 is given by

C1 =
(√

2π
)−n1q

ω(n− n1, q)/ω(n, q)

7Further background material can be found in Eaton (1983) and Anderson (1984).
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Remark 1. The case n1 ≤ q is treated by taking transposes.

It is easy to see that for the special case n1 = q = 1, equation (2) reduces
to

f1(x) =
Γ(n/2)

Γ(1/2)Γ((n− 1)/2)
(1− x2)(n−3)/2 1(x2)

which is exactly the formula given in Baumeister and Hamilton (2015,
equation (32)).

From the preceding Section 3.1 it is clear that every B ∈ B(Σ) can be
represented as QR where Q is some orthogonal matrix and R is the Cholesky
factor of Σ. Assuming as in Theorem 2 that n1 ≥ q and n1 +q ≤ n, partition
Q and the Cholesky factor R conformably into four submatrices

Q =

(
Q11 Q12

Q21 Q22

)
and R =

(
R11 R12

0 R22

)
such that Q11 and R11 are n1× q, respectively q× q submatrices. Remember
that R11 is an invertible upper triangular square matrix. The upper left block
n1 × q block of B ∈ B(Σ), B11, is then given by B11 = Q11R11. From this
relation we can deduce the distribution of B11

Corollary 1. Given that the n1 × q matrix Q11, n1 ≥ q, has density (3.2),
B11 = Q11R11 has a density given by

f2(X) = C1| detR11|−n1

(det(Iq −R−111
′X ′XR−111 ))(n−n1−q−1)/2 1(R−111

′X ′XR−111 )

= C1(det Σ11)
−(n−q−1)/2

(det(Σ11 −X ′X))(n−n1−q−1)/2 1(R−111
′X ′XR−111 ) (3.3)

where Σ11 is the upper left q × q block of Σ. Using transposes a similar
argument can be made for the case n1 ≤ q.

Proof. As Q11 is distributed according to the density in equation (3.2), the
theory of multidimensional analysis (see, for example Magnus and Neudecker,
1999) implies that B11 has a density given by (3.3).

3.3 Perturbation analysis

As On is a smooth submanifold in Rn2
we have the notion of a tangent space

at any point Q ∈ On denoted by TQOn. We can explicitly realize this tangent
space as:

TQOn =

{
dγ(t)

dt

∣∣∣∣
t=0

∈Mn : γ a smooth curve in On with γ(0) = Q

}
.
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It can be shown by simple algebra that TQOn is a vector space. Because
γ(t) ∈ On, γ(t)Tγ(t) = In where the superscript T denotes transposition.
Differentiating this expression with respect to t and evaluating at t = 0 gives
γ′(0)Tγ(0) + γ(0)Tγ′(0) = γ′(0)TQ+QTγ′(0) = 0. This implies that QTγ′(0)
equals some skew-symmetric matrix S so that γ′(0) = QS. The tangent
space at the identity therefore consists of the skew-symmetric matrices and
we have TQOn = QTInOn = Qon where on is the so-called Lie algebra
of On.8 The Lie algebra of a Lie group is just the tangent space at the
identity together with the Lie bracket [., .] which for matrix groups is just
the commutator [A,B] = AB − BA. In our case the Lie algebra on is the
vector space of n × n skew-symmetric matrices S, i.e. of matrices with the
property S ′ = −S. These matrices have trace, tr(S), equal to zero and purely
imaginary eigenvalues. The dimension of the vector space on is given by the
number of free parameters of n× n skew-symmetric matrices. Thus,

n(n− 1)

2
= dim on = dim TInOn = dimOn = dimB(Σ)

= ”number of missing equation“.

The advantage of working with the Lie algebra is that it is a vector space
where many computations can be accomplished more easily. The mechanism
for passing information from the Lie algebra to the matrix Lie group is the
matrix exponential map which is defined through the power series expansion:

exp(A) =
∞∑
k=0

Ak

k!
.

It can be shown that the exponential map is defined for every A ∈ Mn and
that exp(A) is invertible. Thus, exp : Mn → GLn. Note that exp(A + B) is
in general not equal to exp(A) exp(B). A sufficient condition for this to hold
is that A and B commute, i.e. that AB = BA.

For skew-symmetric matrices, the matrix exponential delivers the special
orthogonal group SOn of rotations which is defined as the set of orthogonal
matrices with determinant equal to one. Thus, we have exp(on) = SOn ⊂ On.
Given a fixed identification scheme B ∈ B(Σ)), we can consider (small)
random perturbation of this scheme as follows

exp(S)B

where the free elements of the skew-symmetric matrix S are independently
drawn from a zero mean normal distribution. Other centered distributions

8See Baker (2001) and Hall (2003) for light introductions.
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are, of course, reasonably as well. Thus, S is centered at the zero matrix
whose exponential equals the identity matrix. Clearly, exp(S)B ∈ B(Σ).
Note that because SOn has determinant equal to one, exp(S) excludes reflec-
tions and simple interchanges of in the ordering of the structural shocks.

Alternatively, we can construct a random walk like time-varying scheme

Bt = exp(St)Bt−1, t = 1, 2, . . . (3.4)

starting with some identification scheme B0 ∈ B(Σ). The term random walk
is motivated by taking the matrix logarithm of Bt and expressing it using
the Baker-Campbell-Hausdorff formula (see Hall, 2003; Higham, 2008):

logBt = log(exp(St)Bt−1)

= log(Bt−1) + log(exp(St)) +
1

2
[log(exp(St)), log(Bt−1)]

+ higher order terms.

The “higher order terms” are given only in terms of Lie brackets of log(Bt−1)
and log(exp(St)). Ignoring the higher order terms and noting that log(exp(St)) =
St, we can approximate logBt as

logBt ≈ log(Bt−1) + St +
1

2
[St, log(Bt−1)].

Because ‖ logBt− log(Bt−1)−St‖ = ‖1
2
[St, log(Bt−1)]‖ ≤

√
2
2
‖St‖‖ log(Bt−1)‖

(Böttcher and Wenzel, 2008), we can make logBt following approxi-
mately a random walk by making the perturbation St small. It is, however,
not wise to use the logarithmic formulation because the matrix logarithm
is not unique and the principal matrix logarithm not always defined (see
Higham, 2008, for more details). Thus, it is recommended to work directly
with the propagation mechanism (3.4) and take the logarithmic specification
only for motivation.

As Bt ∈ B(Σ) the resulting identification schemes will hold the covari-
ance matrix constant. To relax this assumption, one can follow a suggestion
of Primiceri (2005) and factorize the time-varying covariance matrix Σt as
Σt = L′tΩtLt where Lt is an upper triangular matrix with ones on the di-
agonal and Ωt is a diagonal matrix with strictly positive diagonal elements.
Like the Cholesky decomposition, this factorization is also unique. The evo-
lution of Σt can then be specified as Lt = exp(Tt)Lt−1 where Tt is an upper
triangular matrix with zeros on the diagonal and normally distributed mean
zero elements above the main diagonal and Ωt = Ωt−1 exp(Dt) and Dt is
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a diagonal matrix with mean zero normally distributed diagonal elements.9

The scheme is initialized with L0 being an upper triangular matrix with one
on the diagonal and Ω0 being a diagonal matrix with strictly positive diago-
nal elements. As exp(Tt) results in an upper triangular matrix with ones on
the diagonal, the above scheme is well-defined and produces symmetric and
positive definite matrices Σt.

4 Conclusion

Although the flavor of this note is on the theoretical side, it is should be clear
that the suggestions derived from viewing the identification problem in terms
of a group action are awaiting to be implemented in empirical applications.
This should affirm their usefulness and open the way for further insights
along this route.
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