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Abstract 
 
The effects of climate policies are often studied under the assumption of perfectly competitive 
markets for fossil fuels. In this paper, we allow for monopolistic fossil fuel supply. We show 
that, if fossil and renewable energy sources are perfect substitutes, a phase will exist during 
which the monopolist chooses a limit pricing strategy. If limit pricing occurs from the 
beginning, a renewables subsidy increases initial extraction, whereas a carbon tax leaves initial 
extraction unaffected. However, if initially fossil fuels are cheaper than renewables, a 
renewables subsidy and a carbon tax lower initial extraction, contrary to the case of perfect 
competition. Both policy instruments lower cumulative extraction. If fossil fuels and renewables 
are imperfect but good substitutes, the monopolist will exhibit ‘limit pricing resembling’ 
behavior, by keeping the effective price of fossil close to that of renewables for considerable 
time. The empirical question whether energy demand is elastic or inelastic has less drastic 
implications for the fossil price and extraction paths than under perfect substitutability. 
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1 Introduction

In the seventies and eighties of the previous century the literature on monopolistic

supply of non-renewable resources was mainly inspired by the question how the devel-

opment of fossil fuel use under monopoly (e.g., OPEC) would deviate from the perfectly

competitive case. It famously turned out that under certain conditions “the monopolist

is the conservationist’s best friend” (e.g. Dasgupta and Heal, 1979, p. 329), which was

especially interesting in the light of the sustainability debate following the publication

of the Club of Rome’s report on the ‘Limits to Growth’ (Meadows et al., 1972). The

most recent sustainability debate, however, is no longer solely about resource scarcity,

but rather about the impact of fossil fuel abundance on global warming. The problems

associated with climate change have spawned a lot of research on the effects of climate

policies like carbon taxation and renewables subsidies under different circumstances.

Nevertheless, most of these analyses are carried out in a context of perfect competition.

It is the aim of the present paper to fill this gap in the literature.

Our main objective is to study the effect of carbon taxes and renewables subsidies

in a world where the demand for energy comes from a set of homogeneous price-

takers, whereas supply of fossil fuels is managed by a monopoly. Hence, the analysis is

restricted in several ways. We do not consider a strategic game between a monopolistic

supplier and a monopsonistic group of demanders (cf. Liski and Tahvonen, 2004; Kagan

et al., 2015), or a differential game between a resource monopolist and a competitive

backstop producer (cf. Jaakkola, 2015). We also do not study the more realistic setting

with a dominant supplier and a competitive fringe. See Groot et al. (1992) for the

case without backstop. Moreover, we do not allow for heterogeneity of climate change

policies across fossil fuel consuming countries. Hence, here we do not address issues

like spatial carbon leakage under monopoly. This is considered in Van der Meijden et al.

(2015). The central objectives are then, first, the characterization of the optimum,

allowing for general profit functions, including stock-dependent extraction costs and

second, the examination of the effects of environmental policies on the time profiles of

fossil prices and extraction, and on cumulative fossil fuel use over the entire extraction

horizon. We briefly discuss the implications of our results for the so-called Green

Paradox, which refers to the idea that suboptimal climate policies, such as a renewables

subsidy or a rapidly rising carbon tax, encourages fossil producers to extract more

quickly and accelerates global warming (cf. Van der Ploeg and Withagen, 2015).
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We show that, with perfect substitution between renewable and fossil energy, un-

der general conditions a limit pricing phase will exist in which the fossil monopolist

prevents suppliers of renewable energy from entering the market by just undercutting

their price. If the initial fossil stock is small, or if energy demand is inelastic, limit

pricing will even occur from the beginning until the end of fossil extraction. In this

case, a constant renewables subsidy increases the extraction rate at any time, whereas

a constant carbon tax leaves fossil use unaffected. If the initial fossil stock is large

and if energy demand is elastic, the fossil energy price will be lower than the price of

renewable energy initially. In this case, a constant renewables subsidy lowers initial

extraction, but increases the extraction rate during the limit pricing phase. A constant

carbon tax lowers initial extraction as well, but leaves the extraction rate during the

limit pricing phase unaffected. We find that, with HARA utility and with constant

marginal extraction costs, an increase in the carbon tax and the renewables subsidy

increase the duration of the limit pricing phase. As long as fossil extraction costs are

stock-dependent, both policy instruments induce the monopolist to leave a larger share

of the initial stock untapped.

On a macroeconomic level, one could argue that renewable and fossil energy sources

are not perfectly substitutable, e.g. because of problems due to intermittence. There-

fore, we extend our framework to allow for imperfect substitution. We show that the

price elasticity of fossil demand is a weighted average of the price elasticity of aggregate

energy demand and the elasticity of substitution between fossil and renewables, with

changing weights over time. Irrespective of the price elasticity of energy demand,

the monopolist will always choose fossil supply such that the price elasticity of fossil

demand exceeds unity. We show that, as a result, the empirical question whether energy

demand is elastic or inelastic has less drastic implications for the resource price and

extraction paths than under perfect substitutability (cf. Andrade de Sá and Daubanes,

2016). Still, as long as the elasticity of substitution between fossil and renewable

energy is large enough, the fossil monopolist will exhibit ‘limit pricing resembling’

behavior, by keeping the effective price of fossil close to that of renewables for con-

siderable time, to prevent too rapidly increasing marginal profits over time.

In the next section we introduce the model, derive the main results, and compare

them to what other authors have found. We give a full characterization of the optimum

for the monopolist and perform a policy analysis. Section 3 extends the model with

imperfect substitutability. Section 4 concludes.
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2 The model

We consider a single country that derives welfare from the use of energy. Energy comes

from fossil fuel, that is supplied by a monopolist, or from a renewable resource that

is supplied competitively. Production of renewable energy has constant marginal cost.

We abstract from set up costs. For the time being we assume fossil fuel and renewables

to be perfect substitutes. This assumption will be relaxed in Section 3. We suppose that

the importing country’s government imposes a constant carbon tax on the domestic

consumption of fossil fuel. This can be justified by linear marginal climate damages

and price taking behavior on the fossil fuel market by the consumers, or the consumers’

country. We will also assume a constant unit subsidy on renewables. Since for the

consumer country climate change constitutes the only externality, a carbon tax suffices

to tackle the externality. However, in practice we more often observe second-best

policies such as subsidizing solar or wind energy.

The constancy of the subsidy rate is questionable, although constant subsidies are

frequently assumed in the existing literature (Van der Ploeg and Withagen, 2014). In

principle one can calculate the optimal subsidy, absent carbon taxes. But it has to

be taken into account then that different approaches yield different outcomes. For

example, we could consider a game where the consuming country sets the subsidy

conditional upon the size of the stock of fossil fuel and the fossil fuel exporter sets its

price conditional on its remaining stock. Then the feedback Nash equilibrium concept

applies, or possibly a feedback Stackelberg equilibrium concept with either the mo-

nopolist or the importing country acting as the leader. The analysis of such a game is

beyond the purpose the present paper. Alternatively, we may consider the optimal open-

loop subsidy. This can pose the problem of dynamic inconsistency, if at some instant of

time the subsidy jumps to zero, namely when the stock of fossil fuel is depleted. The

discontinuity will lead the fossil fuel supplier to leave fossil fuel in the ground in order

to benefit from the price jump. In both cases it is unlikely that the optimal subsidy

is constant. We have chosen to assume that the consumer country’s government can

commit itself to a constant subsidy from the beginning.

In the remainder of this section we will in turn discuss energy supply and demand

and profit maximization by the fossil monopolist. Subsequently, we will characterize

the equilibrium and describe the effects of policy changes on the use of fossil and

renewable energy.
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2.1 Energy demand and supply

The producer and consumer prices of energy at instant of time t are denoted by pp(t)
and pc(t), respectively. The tax per unit of fossil fuel use is τ , the constant cost of

producing energy from renewables is b, and the subsidy per unit of energy from the

renewable source is σ. The limit consumer price for the monopolist is b − σ. As long

as pc(t) = pp(t) + τ ≤ b − σ all energy demand at instant of time t is met by fossil

fuel, whereas demand for fossil fuel is zero if pc(t) > b − σ. Hence, we assume that at

the limit price the monopolist captures the entire market. The corresponding supply is

denoted by q̂. We define b̂ = b − σ − τ so that q̂ is fossil fuel demand if pp(t) = b̂. With

S(t) denoting the resource stock at instant of time t net instantaneous profits of the

monopolist are denoted by Π(q(t), S(t)). The remaining stock is included so as to allow

for extraction costs that get higher with a lower remaining resource stock. We assume

Π is well-defined and continuously differentiable. In addition we make the following

assumption:

Assumption 1

(i) There exists 0 ≤ S̃ ≤ S0 such that Π(q̂, S̃) > 0.

(ii) There exists M > 0 such that M ≥ ΠS(q, S) ≥ 0 for all q ≥ q̂, S > 0.

(iii) Π(q, S) is concave in q: Π(q, S) > Πq(q, S)q for all q ≥ q̂, S > 0.

Hence, to make the problem interesting, profits are positive at the limit price for some

feasible resource stock (i), and although profits are non-decreasing in the existing

resource stock, the benefits of larger resource stocks are bounded (ii). Finally, we

impose concavity of the profit function in q to guarantee second order conditions (iii).1

From here on we will denote the producer price by p, thus omitting the producer

index. It will be shown in the sequel that the equilibrium consists of three phases.

Initially, from time 0 until time T1, the monopolist supplies at a consumer price below

the net renewables price b − σ, so that p(t) + τ < b − σ (or: p(t) < b̂); then, from T1

until T2, the price is set marginally below b̂. This is a phase with limit pricing. Finally,

after T2 there is no supply anymore. The first interval may be degenerate.

1Note that for q = q̂ the derivative of Π with respect to q is the derivative for q approaching q̂ from
above (or from the right).
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2.2 The monopolist’s problem

The monopolist chooses an extraction path so as to maximize its profits, given the

resource constraint and the condition that the extraction rate is high enough to keep

renewables from the market. Hence, we consider the following problem.

max
T2,q(t)

T2∫
0

e−rtΠ(q(t), S(t))dt (1)

subject to

Ṡ(t) = −q(t), S(t) ≥ 0, S(0) = S0, q(t) ≥ q̂. (2)

Here, r is the constant rate of interest. By λ we denote the shadow price of unextracted

fossil fuel. The Hamiltonian H and the Lagrangian L of the problem read

H(q, λ, t) = e−rtΠ(q, S) + λ[−q],

L(q, λ, µ, t) = e−rtΠ(q, S) + λ[−q] + µ[q − q̂].

According to the Maximum Principle, the necessary condition reads

e−rtΠq(q(t), S(t)) = λ(t) if q(t) ≥ q̂, (3a)

e−rtΠq(q̂(t), S(t)) + µ(t) = λ(t), µ(t) ≥ 0 if q(t) = q̂. (3b)

Along the optimal path, the evolution of the shadow price satisfies

−λ̇(t) = e−rtΠS(q(t), S(t)). (4)

Furthermore, the transversality conditions are given by

H(q(T2), λ(T2), T2) = e−rT2Π(q(T2), S(T2)) + λ(T2)[−q(T2)] = 0, (5a)

λ(T2)S(T2) = 0. (5b)

2.3 Characterization of the equilibrium

We first show that there exists a non-degenerate interval of time with limit pricing.

Lemma 1 There exists 0 ≤ T1 < T2 such that q(t) = q̂ for all T1 ≤ t ≤ T2.
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Proof. Once extraction stops, extraction will be zero forever from that moment on. In

view of Assumption 1 (i) and since q(t) ≥ q̂ > 0 as long as extraction takes place, the

moment where extraction stops is larger than zero and finite: 0 < T2 <∞. If q(T2) > q̂,

then it follows from (3a) and (5a) that

λ(T2) = e−rT2Π(q(T2), S(T2))/q(T2) = e−rT2Πq(q(T2), S(T2)),

which would be a violation of Assumption 1 (iii). Hence, q(T2) = q̂. Suppose then that

there exists ε > 0 such that q(t) > q̂ for all T2 − ε ≤ t < T2. Since λ is continuous and

therefore also q is continuous up to T2, we get a violation of Assumption 1 (iii) again. �

The lemma suggests that there is a critical initial resource stock level such that at this

level the phase of limit pricing starts immediately, whereas for higher initial stocks there

is a phase with lower prices initially. This is shown in the following lemma.

Lemma 2 There exists Ŝ0 such that if S0 ≤ Ŝ0, it is optimal to have limit pricing from the

start: T1 = 0.

Proof. First, suppose S(T2) > 0 and Ŝ0 is finite. Then λ(T2) = 0 (from (5b)) and

Π(q̂, S(T2)) = 0 (from (5a)). This determines S(T2). Instant of time T2 follows from

S(T2) = S0−T2q̂. If S0 is going to be the threshold it must be the case that 0 < S(T2) ≤
S0. So, we restrict ourselves to initial stocks that satisfy this condition. Consider the

differential equation for λ: −λ̇(t) = e−rtΠS(q̂, S0 − tq̂) with the boundary condition

Πq(q̂, S0) = λ(0). The solution for λ(t) is downward sloping in time because ΠS > 0.

For every given initial S0 the solution gives an instant of time t2 at which λ(t2) = 0. It

also gives S(t2) ≡ S0− t2q̂. The threshold Ŝ0 we are looking for is such that T2 = t2 and

S(T2) = S(t2). If S0 = S(T2) then T2 = 0 and t2 > 0. For S0 arbitrarily high ΠS(q̂, S0) is

bounded from above (Assumption 1 (ii)). T2 is then arbitrarily large but it will take a

finite time t2 for λ to become zero. Hence t2 < T2. In view of continuity, there is an Ŝ0

such that for S0 = Ŝ0 the resulting S(t2) = S(T2).
Now suppose S(T2) = 0 and Ŝ0 is finite. Then λ(T2) = e−rT2Π(q̂, 0)/q̂ (from (5a)).

The threshold level follows from Πq(q̂, Ŝ0) = λ(0), where λ(0) is determined by

−λ̇(t) = e−rtΠS(q̂, S0 − tq̂), λ(T2) = e−rT2Π(q̂, 0)/q̂, and T2 = Ŝ0/q̂.
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Suppose Πq(q̂, S0) < 0 for all q ≥ q̂ and S > 0. Then it follows from (3b) that µ(t) > 0
for all t, yielding limit pricing throughout, which implies that Ŝ0 is infinitely large.

In all three cases the necessary conditions are satisfied and the tranversality condi-

tion holds. In view of our concavity assumption, these conditions are sufficient. Hence

the optimum has been established. �

Note that the case with an infinitely large Ŝ0 in which there is limit pricing throughout,

prevails if the producer price elasticity of demand is smaller than unity over the whole

range of q > q̂. To see this, write Π(q, S) = p(q)q−G(q, S) where G gives the extraction

costs. Let us define the consumer price elasticity of demand as

εc(q) = − dq

d(p+ τ)
p+ τ

q
,

and the producer price elasticity of demand as

εp(q) = − dq

d(p+ τ)
p

q
= − dq

d(p+ τ)
p+ τ

q

p

p+ τ
= εc(q) p

p+ τ
.

The difference is in the carbon tax to be paid by the consumer. We can then rewrite

(3b) as

e−rt[p′(q)q + p(q)−Gq(q, S)] = e−rt
[(

1− 1
εp(q)

)
p(q)−Gq(q, S)

]
= λ− µ.

With inelastic demand (i.e., εc(q) < 1 and thus εp(q) < 1, for all q ≥ q̂) there is

limit pricing throughout, because µ is necessarily strictly positive then. This result was

derived by Andrade de Sá and Daubanes (2016) for the special case of linear extraction

costs.

2.4 Policy analysis

The existing previous literature on monopoly and limit pricing is scarce and mainly

addresses the effect of changes in the renewables price on limit pricing. No attention is

paid to the policy instruments, subsidies and carbon taxes. For the renewables cost we

have the following results.

Proposition 1 Consider a marginal decrease in b.

(i) Suppose q(0) = q̂. Then q(0) goes up.
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(ii) Suppose q(0) > q̂. Then q(0) goes down.

Proof. Part (i) is trivial, because q̂ is fossil fuel demand if pp(t) = b̂ = b− σ − τ so that

with a marginal decrease in b demand goes up. To prove part (ii), note that

Ḣ = ∂H
∂t

. (6)

Hence

∫ T2

0
e−rtΠ(q(t), S(t))dt = H(0)−H(T2)

r
. (7)

Since H(T2) = 0 in an optimum, we find

Λ(S0, b, σ, τ) ≡
∫ T2

0
e−rtΠ(q(t), S(t))dt = H(0)

r
. (8)

We have µ(0) = 0 if S0 > Ŝ0, because then T1 > 0 and q(0) > q̂. Hence, we substitute

(3a) into the Hamiltonian to get

H(0) = Π(q(0), S0)− Πq(q(0), S0)q(0). (9)

Due to concavity of Π in q, H(0) is increasing in q(0). An increase in b lowers q̂ and

thus relaxes the constraint the monopolist faces. Hence dΛ(S0, b, σ, τ)/db > 0, implying

dH(0)/db > 0. Therefore, dq(0)/db > 0. �

Hoel (1978) shows the existence of a limit pricing regime for linear cost functions. He

also performs a sensitivity analysis with respect to the renewables price for the case

without extraction cost (G(q, S) ≡ 0) and a constant price elasticity of demand. He

proves that the initial price with limit pricing is higher than in the case of no backstop

and argues that a marginally lower backstop price b increases the initial price the

monopolist charges. Finally, he demonstrates that depletion of the resource then occurs

sooner. To see this in our setting, note that from (3a) and (5a) with Π(q, S) = p(q)q at

the moment T1 of the transition to limit pricing we have

e−rT1

(
1− 1

εp(q̂)

)
= e−rT2 .
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With a constant price elasticity the limit pricing interval is not affected by a change

in the backstop price. But the initial price goes up. Then T2 must go down. Salant

(1977) was the first to show that limit pricing prevails for general convex cost functions,

without stock-dependent extraction costs. However, he did not perform a sensitivity

analysis and did not discuss policy issues.

The result in part (ii) of Proposition 1 could have been stated more generally as:

Suppose q(0) > q̂, then any change that lowers future profits without affecting current

profits at the initial extraction level, lowers initial extraction. This result, that we

have proved by using optimal control theory, was demonstrated before by Gilbert and

Goldman (1978) for the case of constant marginal extraction costs. More specifically,

they showed that a monopolist facing a threat of future entry sets a higher initial price

than an unconstrained monopolist. In a similar vein, though in a more general setting

allowing for stock-dependent extraction costs, Hoel (1978) proves that an inward shift

of the demand function facing a monopolist that leaves demand unchanged near the

original initial price, lowers initial extraction. In these two papers, however, limit

pricing behavior is not explicitly discussed, and therefore, our case (i) in which we find

the opposite effect on initial extraction, was ignored by Gilbert and Goldman (1978)

and Hoel (1978). Furthermore, we are also interested in situations in which demand

near the original price is affected as well, e.g. by taxation of fossil fuels, which is not

discussed these earlier papers. The effects of fossil fuel taxes and renewables subsidies

are discussed in the following proposition.

Proposition 2

(i) Consider a marginal increase in σ.

(a) Suppose q(0) = q̂. Then q(0) goes up.

(b) Suppose q(0) > q̂. Then q(0) goes down.

(c) Suppose S(T2) > 0. Then S(T2) goes up.

(ii) Consider a marginal increase in τ.

(a) Suppose q(0) = q̂. Then q(0) is unaffected.

(b) Suppose q(0) > q̂. Then q(0) goes down.

(c) Suppose S(T2) > 0. Then S(T2) goes up.

9



Proof. The proof of parts (ia) and (ib) follow the proof of Proposition 1. Concerning

part (ic): with partial exhaustion the amount of fossil fuel left in the ground is deter-

mined by Π(q̂, S(T2)) = 0, which follows from (5a) and (5b). Since q̂ goes up, the stock

left in the ground is larger because Πqdq̂ + ΠSdS(T2)) = 0 and Πq < 0 (which follow

from (3b) with µ(T2) > 0 and λ(T2) = 0 due to (5b)), dq̂ > 0 and ΠS > 0 implying

dS(T2) > 0.

The proof of part (iia) is immediate, because q̂ does not depend on τ . To prove part

(iib), note that we can rewrite (9) as

H(0) = Π(q(0), S0; τ)− Πq(q(0), S0; τ)q(0), (10)

where we have explicitly included τ as a parameter in Π(·). Total differentiation gives

dH(0) = −Πqqdq(0) + (Πτ − Πqτq(0)) dτ = −Πqqdq(0),

where the second equality uses Πτ = −Πqτq = −q, which follows from Π(q, S) =
(pc(q)− τ)q−G(q, S). Hence, H(0) is increasing in q(0). An increase in τ lowers profits

of the monopolist for all (S, q), implying dΛ(S0, b, σ, τ)/dτ < 0, so that dH(0)/dτ < 0
(from (8)). Therefore, dq(0)/dτ < 0. To prove part (iic), note again that with partial

exhaustion we have Π(q̂, S(T2); τ) = 0. Since q̂ remains unaffected, the stock left in

the ground is larger because ΠSdS(T2)) + Πτdτ = 0 and ΠS > 0, and Πτ < 0 implying

dS(T2) > 0. �

These results are of relevance for the incidence of the so called Green Paradox (Sinn,

2008, 2012). A Weak Green Paradox is said to occur if the initial emissions of carbon

dioxide increase as a result of climate policies (e.g., the introduction of a subsidy

for renewable energy), whereas a Strong Green Paradox materializes if the present

discounted value of climate damages increases (Gerlagh, 2011). Green Paradoxes have

been predominantly studied under perfect competition. In that framework, a higher

subsidy for renewables results in more initial supply and consumption of fossil fuel,

implying the occurrence of a Weak Green Paradox. Under monopoly, however, a Weak

Green Paradox merely occurs if there is limit pricing from the start. If there is no limit

pricing from the beginning, we have shown that a higher renewables subsidy will lead

to lower short-term fossil fuel supply and consumption levels in the case of a resource
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market monopoly. Consequently, a Weak Green Paradox does not materialize. The

intuition is simple: As the consumer price of renewables and fossil is lowered, more

resources will be demanded during the future limit pricing phase. Therefore, fewer

fossil fuels are available for extraction during the first phase, causing the initial supply

of fossil fuels to fall. The effect of climate policies on the amount of fossil fuel that

remains unextracted does not differ from the perfectly competitive case.

Because the effectiveness of climate policies might be severely reduced by limit

pricing behavior (cf. Andrade de Sá and Daubanes, 2016), it is of policy relevance to

determine the effects of different types of policies on the duration of the limit pricing

phase. In the general case described so far, the effects of policy changes on the duration

of the different regimes in the model are ambiguous. However, by imposing a bit more

structure on extraction costs, we obtain the following univocal results.

Proposition 3 Suppose marginal extraction costs k are stock-independent and constant.

Define the super-elasticity as η(q) ≡ εcq(q)q/εc(q).

(i) Consider a marginal increase in σ.

(a) Suppose q(0) = q̂. Then the duration of the limit pricing phase decreases.

(b) Suppose q(0) > q̂. Then the duration of the limit pricing phase increases

(decreases) if (b̂− k)η(q̂)εc(q̂) > (<)− (τ + k).

(c) T2 decreases.

(ii) Consider a marginal increase in τ .

(a) Suppose q(0) = q̂. Then the duration of the limit pricing phase remains un-

changed.

(b) Suppose q(0) > q̂. Then the duration of the limit pricing phase increases.

Proof. In case of limit pricing from the start, i.e., q(0) = q̂, an increase in σ lowers

pc = b − σ and therefore increases q̂, whereas an increase in τ leaves pc = b − σ and

q̂ unchanged. Together with T2 = S0/q̂, this proves parts (ia) and (iia). To prove part

(ib), combine (3a) and (5a) and use Π(q̂, S) = (b̂− k)q to get

T2 − T1 = 1
r

ln
 b̂− k

(b− σ) (1− 1/εc(q̂))− k



11



By taking the derivative with respect to σ and τ , respectively, we find

sign
d(T2 − T1)

dσ
= sign

[
(b̂− k)η(q̂) + 1

εc(q̂)(τ + k)
]
, (11a)

sign
d(T2 − T1)

dτ
= sign

b− σ
εc(q̂) > 0. (11b)

This proves parts (ib) and (iib). To prove part (ic), suppose first that there is limit

pricing from the start, i.e., q(0) = q̂. The result then immediately follows, as dq̂/dσ > 0.

Next, suppose q(0) > q̂. Note from (4) that λ is constant in case of stock-independent

extraction costs. From (3a) we get that dλ = Πqqdq(0) + ΠSdS(0) + Πτdτ = Πqqdq(0),
where the second equality uses dS(0) = dτ = 0. By using Πqq < 0 and result (ib) from

Proposition 2, we get dλ/dσ > 0. From (5a) we obtain e−rT2(b̂ − k)λ, implying that T2

must go down as λ increases and b̂ falls. �

Unambiguous results for the effect of the renewables subsidy on the duration of the

limit pricing regime (i.e., result (ib) in Proposition 3) can be found by imposing addi-

tional structure on the demand side. Appendix A.1 shows that we get d(T2−T1)/dσ > 0
for the class of HARA utility functions,

U(E) = 1− ϕ
ϕ

[(
ψE

1− ϕ + χ

)ϕ
− χϕ

]
, (12)

where E = x + q denotes a composite energy good, x is consumption of renewables,

ϕ > 0, ψ > 0, χ ≥ 0, and ζ ≥ 0. Hence, for HARA utility functions the duration of

the limit pricing phase increases upon an increase in the renewables subsidy. A counter

example can be obtained by using the following non-HARA utility function:

U(E) = χE + E1−ϕ

1− ϕ. (13)

Appendix A.1 shows that, with this utility function, the sign of the derivative of the

length of the limit pricing phase is given by the sign of ϕ(χ − τ − k), which is only

positive for small enough τ+k. Hence, with this non-HARA utility function, an increase

in the renewables subsidy may cause the duration of the limit pricing phase to go down.

To illustrate the effects of the introduction of a renewables subsidy, Figure 1 shows

the time profiles of the price and use of fossil fuels for the HARA utility case with

ψ = 2, φ = 0.5, χ = 0. Furthermore, we have imposed b = 1, k = 0.2, r = 0.05,

12



Figure 1: Effect of a renewables subsidy on fossil time profiles

Panel (a) - Fossil price Panel (b) - Fossil use
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Notes: The solid (dashed) lines represent the pre(post)-subsidy situation. We have picked the following parameter values: ψ = 2,
φ = 0.5, χ = 0, b = 1, k = 0.2, r = 0.05, and S0 = 50. The black (gray) lines show the time profiles under monopoly (perfect
competition).

and S0 = 50. The solid lines correspond to the scenario with σ = 0 and the dashed

lines with σ = 0.2. The black lines represent the situation with monopolistic supply of

fossil fuels, whereas the gray lines depict the time profiles under perfect competition.

The figure clearly shows that initial extraction goes down upon the introduction of

a subsidy for renewables under monopoly, whereas initial extraction goes up under

perfect competition. In both cases, depletion will occur sooner. In the monopolistic

case, the length of the limit pricing phase increases upon the introduction of the subsidy.

3 Imperfect substitution

Contrary to our assumption (in line with most of the literature about the transition

from fossil fuels to renewables), in reality fossil fuels and renewables are not perfect

substitutes. In this section, we first relax the assumption of perfect substitutability.

Subsequently, we will pay attention to consequences for the price the elasticity of fossil

fuel demand.
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3.1 Example with CES functions

To illustrate the consequences of imperfect substitutability, we consider an example in

which utility from energy is given by the following CES specification:

U(E) = E1− 1
γ − 1

1− 1
γ

,

where energy is a CES aggregate of fossil fuel q and renewables x:

E(q, x) =
(
δq

ε−1
ε + (1− δ)x

ε−1
ε

) ε
ε−1 . (14)

The elasticity of substitution between fossil fuels and renewables is equal to ε. As-

suming quasilinear utility and denoting the composite energy price by pE, consumers

maximize U(E)− pEE, implying that energy demand is given by

E = p−γE , (15)

from which it can be seen that the (positively defined) price elasticity of energy demand

equals γ. The first-order conditions for fossil and renewables use read

pE
∂E(q, x)
∂q

≤ p+ τ, (16a)

pE
∂E(q, x)
∂x

≤ b− σ, (16b)

with equalities holding if q > 0 and x > 0, respectively. If there is positive demand for

both energy sources, fossil fuel demand can be solved from (14)-(16b), yielding

q(p) =
(
p+ τ

δ

)−γ δ + (1− δ)
(

(p+ τ)/δ
(b− σ)/(1− δ)

)ε−1


γ−ε
1−ε

. (17)

With constant marginal extraction costs k, the problem of the monopolist is to

max
q(t)

∞∫
0

e−rt(p(q(t))− k)q(t)dt subject to Ṡ(t) = −q(t), S(t) ≥ 0, S(0) = S0, (18)

where p(q) is the inverse function of (17). The solution to the monopolist’s problem is

provided in Appendix A.2.
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Figure 2: Time profiles: the role of the elasticity of substitution

Panel (a) - Fossil price Panel (b) - Fossil use
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Notes: The solid, dashed and dotted line correspond to the scenarios with ε =∞, ε = 30, and ε = 10, respectively. We have used
γ = 1.07, σ = 0, τ = 0, b = 1, k = 0, r = 0.05, and S0 = 76.5.

In order to show the effects of imperfect substitutability, we simulate the model for

different values of the elasticity of substitution between fossil fuels and renewables.

Figure 2 shows the time profile of the fossil fuel price in Panel (a) and of fossil fuel

use in Panel (b). We have imposed parameter values γ = 1.07, σ = 0, τ = 0, b = 1,

k = 0, r = 0.05, and S0 = 76.5. The solid line represents the case in which fossil fuels

and renewables are perfect substitutes (i.e., ε = ∞). For the dashed line, we have

used ε = 30 and for the dotted line ε = 10. The figure shows that the time profiles of

the price and use of fossil fuels converge to those under perfect substitutability if the

elasticity of substitution between fossil and renewables is increased. This illustrates the

robustness of our earlier results in which we have assumed perfect substitutability: the

results of the generalized model with good, but imperfect substitution resemble those

of the model with perfect substitution as long as the elasticity of substitution is large

enough.

3.2 Price elasticity of fossil fuel demand

As noted by Andrade de Sá and Daubanes (2016), if fossil and renewable energy are

perfect substitutes, there is a crucial role for the price elasticity of energy demand. If

demand is inelastic, the monopolist will optimally choose a strategy of limit pricing

throughout, which effectively implies choosing the point on the demand curve where

15



the price elasticity of demand for fossil is infinitely large. In case of elastic energy

demand, the price elasticity of demand for fossil fuels is constant and equal to the

price elasticity of energy demand until the limit pricing phase starts, when it jumps to

infinity. With imperfect substitutability, however, the elasticity Φ(p) ≡ −(dq/dp)(p+τ)/q
gradually changes over time. By using (17) we find

Φ(p) = Ω(p)
1 + Ω(p)γ + 1

1 + Ω(p)ε, with Ω(p) = δ

1− δ

(
(p+ τ)/δ

(b− σ)/(1− δ)

)1−ε

. (19)

Hence, the price elasticity of fossil demand can be written as a weighted average of the

elasticity of energy demand, γ, and the elasticity of substitution between fossil fuels and

renewables, ε. Moreover, if fossil and renewable energy are close substitutes, which we

assume to be the case, the relative weight of the elasticity of substitution increases over

time as the fossil price rises. To see this, note that by imposing 1 < ε � ∞ we ensure

that fossil fuels and renewables are good, but imperfect substitutes. As a result, Ω(p)
tends to zero if p becomes infinitely large. Therefore, (19) implies that the elasticity of

fossil demand tends to ε.

Figure 3: Time profiles: the role of the energy demand elasticity

Panel (a) - Fossil price Panel (b) - Fossil use
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Notes: The solid and dashed lines correspond to the scenarios with γ = 1.05 and γ = 0.8, respectively. The black lines represent
the case with good, but imperfect substitution (ε = 30). The gray lines represent the case with perfect substitution (ε = ∞). We
have used σ = 0, τ = 0, b = 1, k = 0, r = 0.05, and S0 = 76.5.

Note that, irrespective of the price elasticity of energy demand (which may well

be chosen smaller than unity on empirical grounds), the monopolist always chooses

extraction such that the price elasticity of fossil demand exceeds one. As a result,
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the difference between the case with inelastic and elastic energy demand is less sharp

than it is under perfect substitutability. Figure 3 shows that by moving from elastic

demand (gray black lines, γ = 1.05) to inelastic energy demand (dashed gray lines,

γ = 0.8) under perfect substitutability, the price and extraction paths in panel (a) and

(b), respectively, change considerably, because in the case with γ = 0.8 there will be

limit pricing throughout. Under imperfect substitution, however, the solid black lines

(γ = 1.05) do not differ drastically from the dashed black lines (γ = 0.8).

Figure 4: Price elasticity of fossil demand

Panel (a) - Time profile Panel (b) - Elasticity versus price
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Notes: The solid, dashed and dotted line correspond to the scenarios with ε =∞, ε = 30, and ε = 10, respectively. We have used
γ = 1.07, σ = 0, τ = 0, b = 1, k = 0, r = 0.05, and S0 = 76.5.

Hence, when allowing for imperfect substitution between fossil fuels and renew-

ables, the empirical question whether energy demand is elastic or inelastic becomes

less important than in the case of perfect substitution studied by Andrade de Sá and

Daubanes (2016). Still, the case with monopolistic supply differs considerably from

the case with competitive resource supply. If fossil fuels and renewables are close

substitutes, i.e., if ε is large, Φ(p) will rapidly change with p if the relative effective

price of these energy sources deviates from z ≡ δ/(1 − δ)(p + τ)/(b − σ). This gives

rise to ‘limit pricing resembling’ behavior by the monopolistic fossil fuel supplier: if z

rises above unity, marginal profits will rapidly rise with increases in p. Therefore, once

z comes close to unity, it is profitable for the supplier to keep it close to unity until most

of the stock is exhausted. Afterwards, the price will increase, fossil demand will tend

to zero, the elasticity of fossil demand will rapidly increase and marginal profits will

converge to average profits, as in the extreme case of perfect substitutability.
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Figure 4 illustrates the development of the fossil demand elasticity over time in

panel (a) and its dependence on the effective relative price z in panel (b), for two

different values of the elasticity of substitution between fossil and renewable energy.

The dashed line corresponds with ε = 30 and the dotted line with ε = 10. In both cases,

the fossil demand elasticity starts out just above one (indicated by the flat dotted line

in panel (a)) and tends towards ε in the long run.

4 Conclusion

In a general model of non-renewable resource supply by a monopolist we have shown

that, if fossil fuels and renewables are perfect substitutes, the equilibrium necessarily

contains a limit pricing regime. It has been shown that the effects of environmental

policies, such as a carbon tax or a renewables subsidy, can be the opposite of what they

would be in the case of perfect competition. In particular, the initial use of fossil fuels

can decrease instead of increase as a consequence of more stringent climate change

policy. This is not to say that such policies are less harmful from a social welfare

perspective than in the case of perfect competition: whether or not this is the case

depends on the acuteness of climate change damages.

We have demonstrated that our results are robust to introducing imperfect but good

substitutability between fossil and renewable resources: the monopolist will choose a

‘limit pricing resembling’ strategy by keeping the effective fossil price just below the

effective renewables price for a considerable period of time. Nevertheless, abrupt

regime shifts from ‘Hotelling pricing’ to ‘limit pricing’ disappear and the empirical

question whether energy demand is elastic or inelastic has less drastic implications

for the fossil price and extraction paths than under perfect substitutability.

In future research, a strategic game in which the fossil importing country sets a

renewables subsidy and the fossil fuel exporter sets its price—both conditional on

the remaining stock—could be introduced. Another promising way to proceed is by

generalizing the analysis to the case of oligopolistic fossil supply. This is an interesting

field of research because of the possibility of strategic interaction among supplying

firms, which is absent in the cases of monopoly and perfect competition.
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Appendix

A.1 Comparative statics for HARA and non-HARA utility functions

The inverse demand function corresponding to the HARA utility function (12) is given

by:

p(q + x) = ψ

(
ψ(q + x)

1− ϕ + χ

)ϕ−1

− τ.

Use p(q̂) = b̂ and set x = 0. Then,

erT2−rT1 = b̂− k
b̂− k − (1− ϕ)(b− σ − ψχ( b−σ

ψ
)
ϕ−2
ϕ−1 )

.

The sign of the derivative of the right-hand side with respect to b−σ equals the sign of:

−ψχ
(
b− σ
ψ

)ϕ−2
ϕ−1

− (τ + k)
(

1− ϕ+ (ϕ− 2)χ(b− σ
ψ

)
−1
ϕ−1

)
.

The first term is negative. If (1 − ϕ + (ϕ − 2)χ
(
b−σ
ψ

) −1
ϕ−1 ) ≥ 0 the entire expression is

negative. Otherwise, the second term is positive. But τ+k ≤ b−σ in view of assumption

1, so as to make supply at the limit price profitable.For τ + k = b − σ the expression

boils down to:

(1− ϕ)ψ
(
b− σ
ψ

)χ
(
b− σ
ψ

) −1
ϕ−1

− 1

 ,

which is definitely negative since q̂ = 1−ϕ
ψ

{(
b−σ
ψ

) 1
ϕ−1 − χ

}
> 0. Hence, for HARA

utility functions the limit pricing phase becomes longer upon a decrease in the cost of

renewables b or an increase in the subsidy σ.

By taking the non-HARA utility function (13) and following the same approach as

before we can show that the sign of the derivative of the length of the limit pricing

phase is given by the sign of ϕ(χ− τ − k), which is equal to the expression given in the

main text.
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A.2 Imperfect substitution

The Hamiltonian H associated with the profit maximization problem of the monopolist

reads

H(q, λ, t) = e−rt(p(q)− k)q + λ[−q],

As before, λ denotes the shadow price of unextracted fossil fuel. According to the

Maximum Principle, the necessary condition reads

e−rt (p(q) + p′(q)q − k) = λ(t). (A.1)

Along the optimal path, the evolution of the shadow price satisfies

−λ̇(t) = 0. (A.2)

Furthermore, the transversality condition is given by

lim
t→∞

λ(t)S(t) = 0. (A.3a)
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