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Abstract

In this paper we propose a novel method to construct confidence intervals in a class
of linear inverse problems. First, point estimators are obtained via a spectral cut-off
method depending on a regularisation parameter α, that determines the bias of the
estimator. Next, the proposed confidence interval corrects for this bias by explicitly
estimating it based on a second regularisation parameter ρ, which is asymptotically
smaller than α. The coverage error of the interval is shown to converge to zero. The
proposed method is illustrated via two simulation studies, one in the context of func-
tional linear regression, and the second one in the context of instrumental regression.
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Roman Pays 20, B 1348 Louvain-la-Neuve, Belgium. E-mail address: ingrid.vankeilegom@uclouvain.be.

This research was supported by IAP research network grant nr. P7/06 of the Belgian government (Belgian

Science Policy), by the European Research Council under the European Community’s Seventh Framework

Programme (FP7/2007-2013) / ERC Grant agreement No. 295298, and by the contract “Projet d’Actions

de Recherche Concertées” (ARC) 11/16-039 of the “Communauté française de Belgique” (granted by the

“Académie universitaire Louvain”).

1



1 Introduction

The recent literature in econometrics has shown the importance of the theory of inverse

problems as a conceptual framework for numerous questions related to functional estimation,

including regression on functional data, or nonparametric instrumental regression (see e.g.

Carrasco et al. (2007) for a survey of this approach). The central point of this approach is

the inversion of operators (linear for simplicity) by means of regularisation methods (see e.g.

Engl et al. (2000)). Examples of common regularisation methods are Tikhonov, Landweber-

Fridman, spectral cut-off, etc. The application of these regularisation methods leads to

estimators that converge at nonparametric rates, and are asymptotically normal but biased.

The existence of this bias complicates the construction of confidence intervals.

The goal of this note is to adapt a procedure proposed by Hall and Horowitz (2013) to

linear inverse problems in order to correct confidence intervals by means of an estimator of

the bias that is based on a second regularisation parameter, smaller than the first one. This

approach is frequent in nonparametric statistics (see e.g. Schucany and Sommers (1977) and

Hall (1992)). Our approach is limited to a simple framework : the operator is defined on a

function space but with values in IRn, and the operator is supposed to be known. We restrict

attention to regularisation via the spectral cut-off method, and our study concentrates on the

estimation of a linear function of the functional parameter. This framework is nevertheless

appropriate for the case of regression on functional data and the case of nonparametric

regression with instrumental variables.

Engl et al. (2000) provide a detailed discussion of methods for inverse problems. For

regression on functional data see e.g. Cardot and Johannes (2010) or Florens and Van Bel-

legem (2015) among many others. The model with instrumental variables is the topic of

interest in e.g. Darolles et al. (2011) and Hall and Horowitz (2005).

The paper is organised as follows. In the next section, it is explained how to estimate

linear functions of the functional parameter by means of the spectral cut-off method. Section

3 gives the properties of the proposed estimator, whereas bias-corrected confidence intervals

are constructed in Section 4. These intervals require certain properties on the bias of the

estimator, which are developed in Section 5. The coverage probability of the proposed

confidence interval is obtained in Section 6, and the finite sample performance of the interval

is studied in Section 7 by means of a simulation study.
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2 Spectral cut-off estimation in a class of linear inverse

problems

Consider the following linear model :

Y = Kϕ+ U, (2.1)

where ϕ belongs to a Hilbert space E equipped with scalar product 〈·, ·〉, Y = (Y1, . . . , Yn)t

is an element of IRn equipped with scalar product 〈a1, a2〉 = n−1
∑n

i=1 a1ia2i for a1, a2 ∈ IRn,

K is a linear and compact operator from E to IRn, and U ∈ IRn satisfies E(U) = 0 and

Var(U) = σ2In. Throughout, we will use the notation 〈·, ·〉 to indicate both the scalar

product in E and in IRn, as it will be clear from the context in which space we are working.

We suppose that K and σ2 are known in order to simplify the presentation. Note that K

depends on n, but we do not highlight this dependence, since we will work with fixed n.

Let us illustrate model (2.1) by means of two examples :

1. Example 1 : Functional linear regression

Let IR be equipped with a measure π and define E = L2(IR, π) = {ϕ : IR →
IR;
∫
ϕ2(x)π(dx) <∞}. The operator K is based on n fixed elements of E denoted by

Z1, . . . , Zn :

Kϕ =
(∫

IR
Zi(x)ϕ(x)π(x) dx

)
i=1,...,n

= (〈Zi, ϕ〉)i=1,...,n.

Hence, the model is in this case

Yi = 〈Zi, ϕ〉+ Ui.

2. Example 2 : Instrumental regression

Let (Y1, Z1,W1), . . . , (Yn, Zn,Wn) be n identically distributed random vectors in IR ×
IRp × IRq, and suppose that the marginal distribution of (Zi,Wi) is known. Consider

the model 
Y1
...

Yn

 =


E(ϕ(Z)|W = W1)

...

E(ϕ(Z)|W = Wn)

+


U1

...

Un

 ,

where E(Ui|Wi) = 0 and ϕ ∈ E = L2(IR, fZ), where fZ is the density of Zi. This

defines implicitly the operator K : L2(IR, fZ) → IRn by (Kϕ)i = E(ϕ(Z)|W = Wi),

i = 1, . . . , n. We condition on the instruments W1, . . . ,Wn, so that the operator K is

deterministic (but depending on n) as required.
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Equation (2.1) defines an ill-posed inverse problem. The operator K is not injective, and

hence not invertible in general. Moreover, the minimisation of ‖Y − Kϕ‖2 does not solve

the problem in general. In fact, this minimisation leads to the normal equation

K∗Y = K∗Kϕ,

where K∗ : IRn → E is the adjoint operator of K defined by 〈Kϕ, a〉 = 〈ϕ,K∗a〉. The

operator K∗K is not invertible neither, and its generalised inverse is not continuous, which

necessitates the regularisation of K∗K via its inverse. Let us show the calculation of K∗ for

our two leading examples.

1. Functional linear regression (cont’d)

The operator K∗ is given by K∗a = n−1
∑n

i=1 Ziai for an arbitrary a = (a1, . . . , an)t.

Indeed,

〈K∗a, ϕ〉 = 〈Kϕ, a〉 = n−1
n∑
i=1

〈Zi, ϕ〉ai = 〈n−1
n∑
i=1

Ziai, ϕ〉.

Hence, in this exampleK∗Kϕ = n−1
∑n

i=1 Zi〈Zi, ϕ〉 is the empirical variance of Z1, . . . , Zn

applied to ϕ.

2. Instrumental regression (cont’d)

In this case, K∗a(z) = n−1
∑n

i=1 ai[fZ|W (z|Wi)/fZ(z)], where fZ|W is the conditional

density of Zi given Wi. This follows from the following calculation :

〈K∗a, ϕ〉 = 〈Kϕ, a〉 = n−1
n∑
i=1

E(ϕ(Z)|W = Wi)ai

= n−1
n∑
i=1

∫
ϕ(z)fZ|W (z|Wi) dz ai

=

∫
ϕ(z)fZ(z)

[
n−1

n∑
i=1

ai
fZ|W (z|Wi)

fZ(z)

]
dz,

where the scalar product in E is defined by 〈ϕ1, ϕ2〉 =
∫
ϕ1(z)ϕ2(z)fZ(z) dz. Then,

K∗Kϕ(z) = n−1
∑n

i=1E(ϕ(Z)|W = Wi)[fZ|W (z|Wi)/fZ(z)].

The operator K admits a singular value decomposition (λj)j=1,2,..., (ϕj)j=1,2,..., (ψj)j=1,...,n,

where ϕj ∈ E , ψj ∈ IRn, λj ∈ [0,∞) for all j and λj = 0 for j > n. This means that

K∗Kϕj = λ2jϕj, KK
∗ψj = λ2jψj, Kϕj = λjψj and K∗ψj = λjϕj. Moreover, (ϕj)j is an

orthonormal basis of E , and (ψj)j is an orthonormal basis of IRn. Hence we can write
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ϕ =
∑∞

j=1〈ϕ, ϕj〉ϕj. Note that λj, ϕj and ψj depend on n (since K depends on n), but to

keep the notation simple, we will omit the index n in the notation.

We will use this spectral value decomposition to regularise model (2.1). We restrict

attention to the so-called spectral cut-off method :

ϕ̂α =
∞∑
j=1

λj>α

1

λj
〈Y, ψj〉ϕj =

∑
λj>α

1

λ2j
〈Y, ψj〉K∗ψj. (2.2)

In the example on functional linear regression this means that

ϕ̂α(x) =
1

n

n∑
i=1

{ ∑
λj>α

1

λ2j
Yiψji

( 1

n

n∑
`=1

Z`(x)ψj`

)}
,

where the j-th eigenvector of the matrix KK∗ is written as (ψj`)`=1,...,n. On the other hand,

for the example on instrumental regression, we have

ϕ̂α(z) =
1

n

n∑
i=1

{ ∑
λj>α

1

λ2j
Yiψji

( 1

n

n∑
`=1

fZ|W (z|W`)

fZ(z)
ψj`

)}
.

In the first example the estimator is an element of the space generated by the Z`’s, whereas in

the second example the estimator belongs to the space generated by the fZ|W (·|W`)/fZ(·)’s.
We now turn to the estimation of continuous linear functions of ϕ, i.e. scalar products

of the form θ = 〈ϕ, µ〉 thanks to Riesz’ Theorem, where µ ∈ E is a known function. In this

case we have

θ̂α = 〈ϕ̂α, µ〉 =
∑
λj>α

1

λj
〈Y, ψj〉〈µ, ϕj〉 =

∑
λj>α

1

λ2j
〈Y, ψj〉〈Kµ,ψj〉.

The advantage of this estimator is that it reduces the problem to an estimation problem in

IRn : the ψj’s and the λ2j ’s are the eigenvectors and eigenvalues of KK∗, which is an n× n
matrix.

3 Properties of the estimator

The estimator ϕ̂α defined in (2.2) is biased, and we can calculate its bias and variance. In

fact,

E(ϕ̂α) =
∑
λj>α

1

λj
〈E(Y ), ψj〉ϕj =

∑
λj>α

1

λj
〈Kϕ,ψj〉ϕj

=
∑
λj>α

1

λj
〈ϕ,K∗ψj〉ϕj =

∑
λj>α

〈ϕ, ϕj〉ϕj
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and E(ϕ̂α) − ϕ = −
∑

λj≤α〈ϕ, ϕj〉ϕj. This bias is the rest of the development of a Fourier

expansion of ϕ in the basis of ϕj functions by truncating the development at λj > α.

The variance of ϕ̂α is obtained as follows : for an arbitrary g ∈ E and denoting V =

Var(ϕ̂α), we have

V (g) = E
[
(ϕ̂α − E(ϕ̂α))〈ϕ̂α − E(ϕ̂α), g〉

]
= E

[( ∑
λj>α

1

λj
〈U, ψj〉ϕj

)
〈
∑
λ`>α

1

λ`
〈U, ψ`〉ϕ`, g〉

]
= E

[ ∑
λj>α,λ`>α

1

λjλ`
〈U, ψj〉〈U, ψ`〉〈ϕ`, g〉ϕj

]
.

Since E[〈U, ψj〉〈U, ψ`〉] = n−2
∑n

i,i′=1E(UiUi′)ψjiψ`i′ = σ2n−2
∑n

i=1 ψjiψ`i = σ2n−1〈ψj, ψ`〉 =

σ2n−1I(j = `), we have that

V (g) =
σ2

n

∑
λj>α

1

λ2j
〈ϕj, g〉ϕj

and

tr(V ) =
∑
j

〈V ϕj, ϕj〉 =
σ2

n

∑
λj>α

1

λ2j
.

Hence,

MSE(ϕ̂α) = E‖ϕ̂α − ϕ‖2 = ‖Eϕ̂α − ϕ‖2 + tr(V ) =
∑
λj≤α

〈ϕ, ϕj〉2 +
σ2

n

∑
λj>α

1

λ2j
.

If the vector of errors U is normally distributed, we have

ϕ̂α − ϕ ∼ N
(
−
∑
λj≤α

〈ϕ, ϕj〉ϕj, V
)
.

For the estimator θ̂α = 〈ϕ̂α, µ〉 of θ = 〈ϕ, µ〉 it follows that the bias equals

E(θ̂α)− θ = −
∑
λj≤α

〈ϕ, ϕj〉〈ϕj, µ〉,

the variance equals

Var(θ̂α) =
σ2

n

∑
λj>α

1

λ2j
〈ϕj, µ〉2,

and hence

θ̂α − θ ∼ N
(
−
∑
λj≤α

〈ϕ, ϕj〉〈ϕj, µ〉,
σ2

n

∑
λj>α

1

λ2j
〈ϕj, µ〉2

)
.
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Note that K is an operator from E (of infinite dimension) to IRn, and hence it can

only have n singular values that are non-zero. We suppose that these n singular values are

strictly positive. The operator K is hence not injective and for fixed n the model is not

identified. The identified part of ϕ and of θ corresponds to the eigenvectors ϕj for which the

corresponding λj are non-zero. We therefore have to distinguish two parts in the bias bα of

θ̂α :

bα = E(θ̂α)− θ = −
∑
λj≤α

〈ϕ, ϕj〉〈ϕj, µ〉

= −
∑

0<λj≤α

〈ϕ, ϕj〉〈ϕj, µ〉 −
∑
λj=0

〈ϕ, ϕj〉〈ϕj, µ〉

= bα1 + bα2.

The term bα1 is the bias due to regularisation, whereas the term bα2 is the bias due to

under-identification.

We are now interested in the rate of convergence of the MSE of ϕ̂α and of θ̂α. This study

necessitates certain regularity conditions on ϕ and µ with respect to the rate of decrease of

the λj’s. Suppose for instance that

lim
n→∞

n∑
j=1

〈ϕ, ϕj〉2

λ2βj
<∞ and lim

n→∞

n∑
j=1

〈ϕj, µ〉2

λ2γj
<∞, (3.1)

for some 0 < β, γ < ∞, which are so-called source conditions. We focus attention on

the case where γ < 1. In fact, if γ ≥ 1, then µ = K∗v for some v ∈ IRn and hence

〈ϕ, µ〉 = 〈ϕ,K∗v〉 = 〈Kϕ, v〉 = 〈E(Y ), v〉. The problem is then well-posed and does not

necessitate inversion of K.

If we analyse the problem for n going to infinity, we have to suppose that the series

K = Kn converges to an identified limiting operator. We can then write

E(θ̂α)− θ = −
∑

0<λj≤α

λβ+γj

〈ϕ, ϕj〉
λβj

〈ϕj, µ〉
λγj

−
∑
λj=0

〈ϕ, ϕj〉〈ϕj, µ〉. (3.2)

The square of the first term of (3.2) is bounded by cα2(β+γ) and

c =
( ∑

0<λj≤α

〈ϕ, ϕj〉
λβj

〈ϕj, µ〉
λγj

)2
≤

∑
0<λj≤α

〈ϕ, ϕj〉2

λ2βj

∑
0<λj≤α

〈ϕj, µ〉2

λ2γj
,

and this is bounded when n tends to infinity thanks to (3.1). The second term of (3.2) tends

to zero for two reasons : (1) the number of λj’s that equal zero decreases when n tends to
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infinity, and (2) 〈ϕ, ϕj〉 and 〈ϕj, µ〉 tend to zero. We suppose that K∗K tends to its limit at

a sufficiently fast rate so that the second term of (3.2) is asymptotically negligible compared

to the first term. This hypothesis is verified if we suppose that K converges to a limit K̃

with eigenvectors ϕ̃j and eigenvalues λ̃j, that λj converges to λ̃j uniformly in j, that

∞∑
j=1

〈ϕ, ϕ̃j〉2

λ̃2βj
<∞ and

∞∑
j=1

〈ϕ̃j, µ〉2

λ̃2γj
<∞,

and that λ̃j < α for j > n.

This implies that

(
E(θ̂α)− θ

)2
=
( ∑
λj≤α

λβ+γj

〈ϕ, ϕj〉
λβj

〈ϕj, µ〉
λγj

)2
(1 + o(1)) ≤ c1α

2(β+γ)

for some 0 < c1 <∞. In the same way we can bound the variance of θ̂α :

Var(θ̂α) =
σ2

n

∑
λj>α

1

λ
2(1−γ)
j

〈ϕj, µ〉2

λ2γj
≤ c2σ

2

nα2(1−γ)

for some 0 < c2 < ∞. Hence, the MSE of θ̂α is bounded by c1α
2(β+γ) + c2σ

2/(nα2(1−γ)),

and this is minimal for α2 proportional to n−1/(β+1), which leads to a MSE of the order

n−(β+γ)/(β+1).

4 Confidence intervals

If we assume normality of the error U , a naive approach to calculate a confidence interval

for θ would be to neglect the bias of θ̂α, which gives the classical interval

θ̂α ± z(δ)τα,

where τα = (Var(θ̂α))1/2 is the standard deviation (which is known), z(δ) satisfies P (N(0, 1) >

z(δ)) = δ/2, and 0 < 1− δ < 1 is the desired probability of the interval. Neglecting the bias

leads to an erroneous evaluation of the coverage probability. Following the method proposed

by Hall and Horowitz (2013), we can in fact write the following :

P
(
θ̂α − tτα ≤ θ ≤ θ̂α + tτα

)
= P

(
− t ≤ θ̂α − θ

τα
≤ t
)

= Φ
(
t− bα

τα

)
− Φ

(
− t− bα

τα

)
,

8



where bα = θα− θ = E(θ̂α)− θ. Hence, in order to obtain an interval of coverage probability

1− δ, it suffices to solve

Φ
(
t− bα

τα

)
− Φ

(
− t− bα

τα

)
= 1− δ

with respect to t, where Φ(·) is the distribution function of a standard normal random

variable. This can however not be solved in practice, since the bias bα of θ̂α is unknown. We

will therefore estimate this bias, based on a second regularisation parameter ρ > 0.

The proposed procedure is as follows :

1. Estimation of ϕ and of θ based on a regularisation parameter ρ, smaller than α :

ϕ̂ρ =
∑
λj>ρ

1

λj
〈Y, ψj〉ϕj and θ̂ρ =

∑
λj>ρ

1

λj
〈Y, ψj〉〈ϕj, µ〉.

2. Estimation of the bias of θ̂α by

b̂αρ = θ̂α − θ̂ρ.

3. Calculation of t̂, which is the solution of

Φ
(
t− b̂αρ

τα

)
− Φ

(
− t− b̂αρ

τα

)
= 1− δ

with respect to t, and calculation of the confidence interval

θ̂α ± t̂τα.

5 Properties of the estimator of the bias

An easy calculation shows that

b̂αρ = −
∑

ρ<λj≤α

1

λj
〈Y, ψj〉〈ϕj, µ〉,

from which we derive that

E(b̂αρ)− bα =
∑
λj≤ρ

〈ϕ, ϕj〉〈ϕj, µ〉,

and

Var(b̂αρ) =
σ2

n

∑
ρ<λj≤α

1

λ2j
〈ϕj, µ〉2.
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Moreover, b̂αρ − bα follows a normal distribution if we assume that the error vector U is

normal.

In order to justify our estimation procedure of the bias, we will need that E[(b̂αρ−bα)2] =

o(b2α) for appropriate choices of α and ρ. We will first show why this property holds true. In

the next section, we will use this property to study the coverage error of our bias-corrected

interval.

Let us suppose that we have a method to choose α2 proportional to n−1/(β+1), such that

the squared bias and the variance are exactly proportional to n−(β+γ)/(β+1). We then have

the following result.

Proposition 5.1. Let ρ2 = α2a(n) and let α2 be proportional to n−1/(β+1). Moreover,

suppose that

1. the source conditions (3.1) hold.

2. a(n)→ 0 when n tends to infinity.

3.

a(n)−(1−γ)
∑

ρ<λj≤α

1

λ2γj
〈ϕj, µ〉2 → 0.

Then,

E[(b̂αρ − bα)2] = o(b2α).

Proof. Define

A = n
β+γ
β+1

(∑
λj≤ρ

〈ϕ, ϕj〉〈ϕj, µ〉
)2

and B = n
β+γ
β+1
−1

∑
ρ<λj≤α

1

λ2j
〈ϕj, µ〉2.

We need to show that A and B tend to zero as n tends to infinity. First note that

A ≤ n
β+γ
β+1 ρ2(β+γ)

(∑
λj≤ρ

〈ϕ, ϕj〉
λβj

〈µ, ϕj〉
λγj

)2
.

Now, the Cauchy-Schwarz inequality yields that

lim
n→∞

(∑
λj≤ρ

〈ϕ, ϕj〉
λβj

〈µ, ϕj〉
λγj

)2
≤ lim

n→∞

n∑
j=1

〈ϕ, ϕj〉2

λ2βj
× lim

n→∞

n∑
j=1

〈µ, ϕj〉2

λ2γj
<∞

and n
β+γ
β+1 ρ2(β+γ) = a(n)2(β+γ) → 0.

Next, consider B :

B ≤ n−
1−γ
β+1ρ−2(1−γ)

∑
ρ<λj≤α

〈µ, ϕj〉2

λ2γj
= a(n)−(1−γ)

∑
ρ<λj≤α

〈µ, ϕj〉2

λ2γj
→ 0,
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which finishes the proof. �

The condition a(n) → 0 is natural and implies that ρ should be chosen smaller than α.

The third condition in the proposition is less obvious and needs some comments. Suppose

that λj = j−k for some k > 0 (and for any n) and that 〈µ, ϕj〉2/λ2γj ∼ 1/j1+ε for some

arbitrary small ε. By supposing that λj = j−k we obtain a mildly ill-posed problem, which

is in line with the source conditions that we supposed earlier. Moreover, if γ is chosen as

large as possible, so as to maintain the integrability of the series
∑

j〈µ, ϕj〉2/λ
2γ
j , it is natural

to suppose that the series differs very little from the harmonic series :
∑∞

j=1 j
−1 is divergent,

but
∑∞

j=1 j
−1−ε converges for all ε > 0. We can hence write

B = O
(
a(n)−(1−γ)

∑
ρ<λj≤α

1

j1+ε

)
= O

(
a(n)−(1−γ)m(α)−ε

m(ρ)∑
j=m(α)

1

j

)
,

where m(α) is the largest integer smaller than α−1/k (and similar for m(ρ)). Next, note that∑L−1
j=1 j

−1 = Ψ(L) + γ, where Ψ is the digamma function and γ is the Euler constant. By

approximating the function Ψ by the log-function (see Abramowitz and Stegun (1972)), we

have

B = O
(
a(n)−(1−γ)m(α)−ε

(
logm(ρ)− logm(α)

))
= O

(
log(a(n)−1)a(n)−(1−γ)αε/k

)
,

and this converges to zero if for instance a(n)−1 = O(log n) or a(n)−1 = O(nb) for sufficiently

small b so that b < ε/[2k(β + 1)(1 − γ)] . Hence, a(n) should tend to zero, but not faster

than (log n)−1 respectively n−b.

6 Coverage error

Recall that the proposed confidence interval is

I = [θ̂α − t̂τα, θ̂α + t̂τα],

where t̂ is the solution of

Φ
(
t− b̂αρ

τα

)
− Φ

(
− t− b̂αρ

τα

)
= 1− δ.

Let us now calculate the coverage probability of the interval I :

p = P (θ̂α − t̂τα ≤ θ ≤ θ̂α + t̂τα).

11



Some elementary calculations show that

p = Φ
(
t̂− bα

τα

)
− Φ

(
− t− bα

τα

)
+ oP (1).

We will show that under certain conditions p is close to 1− δ.

Proposition 6.1. If E[(b̂αρ − bα)2] = o(b2α) and if α2 is proportional to n−1/(β+1), then

p = 1− δ + oP (1).

Proof. The proof is based on two linear approximations. First of all, we have that[
Φ
(
t̂− b̂αρ

τα

)
− Φ

(
− t̂− b̂αρ

τα

)]
−
[
Φ
(
t− bα

τα

)
− Φ

(
− t− bα

τα

)]
= 0,

where t is chosen such that

Φ
(
t− bα

τα

)
− Φ

(
− t− bα

τα

)
= 0.

The implicit function theorem implies that

t̂− t =
φ
(
t− bα

τα

)
− φ
(
− t− bα

τα

)
φ
(
t− bα

τα

)
+ φ
(
− t− bα

τα

)( b̂αρ − bα
τα

)
+ oP

( b̂αρ − bα
τα

)
,

where φ is the density of the standard normal variable. In addition, a Taylor expansion of

order 1 yields :

p = (1− δ) +
[
φ
(
t− bα

τα

)
+ φ
(
− t− bα

τα

)]
(t̂− t) + oP (t̂− t)

= (1− δ) +
[
φ
(
t− bα

τα

)
− φ
(
− t− bα

τα

)]( b̂αρ − bα
τα

)
+ oP

( b̂αρ − bα
τα

)
. (6.1)

In addition, note that bα is of the same order as τα if α2 is proportional to n−1/(β+1). Hence the

expression between square brackets in (6.1) is O(1). Finally, if E[(b̂αρ−bα)2] = o(b2α) = o(τ 2α),

then b̂αρ − bα = oP (τα), and hence the result follows. �

7 Simulations

We consider our two leading examples (functional linear regression and instrumental regres-

sion) in a simulation study, in order to investigate the small sample performance of the

proposed bias-corrected confidence intervals.
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The regularisation parameter α is chosen as the optimal one :

α = argminα
(
b̂2αρ + τ 2α

)
,

where ρ is chosen as ρ = αn−1. This empirical choice of ρ satisfies the conditions needed at

the end of Section 5 for appropriate values of β, γ, k and ε, and works well in practice for a

wide range of models and sample sizes. Note that the above choice of α is legitimate, since

b̂2αρ+τ 2α is asymptotically equivalent to b2α+τ 2α if b̂αρ = bα+o(τα), and this is the case thanks

to Proposition 5.1.

7.1 Functional linear regression

We consider the following model :

Yi = 〈Zi, ϕ〉+ Ui (i = 1, . . . , n),

where Ui ∼ N(0, σ2), 〈Zi, ϕ〉 =
∫
Zi(x)ϕ(x) dx, ϕ(x) = exp(−ax) with a > 0,

Zi(x) = Pi
BAi
i

Γ(Ai)
xAi−1 exp(−Bix),

which corresponds (upto the constant Pi) to the curve of a Gamma density for different

values of Ai and Bi. Here we take Ai ∼ Unif[0.5, 2.5], Bi ∼ Unif[0, 1] and Pi ∼ Unif[1, 3] in

order to obtain a rich collection of curves of different shapes and amplitudes. The vectors

(A1, B1, P1, U1), . . . , (An, Bn, Pn, Un) are independent. It is easy to show that

〈Zi, ϕ〉 = Pi
BAi
i

(Bi + a)Ai
.

We consider two choices for the function µ(·) : µ(x) = exp(−0.5x) which corresponds to

θ = 〈ϕ, µ〉 = 1/(a + 0.5), and µ(x) = I(0.5 ≤ x ≤ 1.5), which leads to θ = [exp(−0.5a) −
exp(−1.5a)]/a. Table 1 (which is based on 500 simulated samples) shows that the bias

correction works well in practice. The coverage error is most of the time reduced by at least

50%, depending on the situation.

7.2 Instrumental regression

Next, consider the regression model

Y = E(ϕ(Z)|W ) + U,
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µ(x) = exp(−0.5x) µ(x) = I(0.5 ≤ x ≤ 1.5)

a σ n Non-corrected Corrected Non-corrected Corrected

0.5 0.2 100 .926 .942 .878 .956

200 .856 .912 .858 .958

400 .892 .910 .834 .928

0.3 100 .926 .942 .908 .972

200 .882 .920 .896 .976

400 .916 .950 .888 .966

1.0 0.2 100 .916 .940 .856 .950

200 .830 .884 .798 .942

400 .906 .930 .786 .904

0.3 100 .924 .944 .902 .970

200 .870 .924 .882 .970

400 .894 .930 .872 .954

Table 1: Coverage probabilities of the classical (non-corrected) and the bias-corrected 95%

confidence intervals for several choices of ϕ(x) = exp(−ax), σ, n and µ(·).

where U is independent of (Z,W ) and is normally distributed with variance s2. The function

ϕ equals ϕ(z) = az2 for some a ∈ IR, the instrumentW has density fW (w) = 2wI(0 ≤ w ≤ 1)

and the endogenous variable Z is defined as Z = RW , where R is independent of all other

variables and has a uniform distribution on the interval [1− b, 1 + b] for some b > 0. Hence,

it can be easily seen that E(ϕ(Z)|W ) = a(1 + b2/3)W 2.

We can also write the model as

Y = ϕ(Z) + V,

where V = E(ϕ(Z)|W )− ϕ(Z) + U = a(1 + b2/3)W 2 − aZ2 + U has mean zero and it can

be easily seen that its variance is equal to

σ2 = Var(V ) = s2 + a2
( 1

12
+
b2

2
+

7b4

180

)
− a2

12

(
1 +

b2

3

)2
.

In addition, V is uncorrelated with W ,

ρ(Z, V ) = Corr(V, Z) = − 12ab2

45σ
√

1
18

+ b2

6

,
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and

ρ(Z,W ) = Corr(Z,W ) =
1√

1 + 3b2
.

Hence, b determines the strength of the instrument, and a, b and σ determine the degree of

endogeneity. We carry out simulations for several choices of a, b and σ, leading to a variety

of values for ρ(Z, V ) and ρ(Z,W ). They can be found in Table 2.

Consider now i.i.d. data (Zi,Wi, Yi), i = 1, . . . , n having the same distribution as (Z,W, Y ).

We are interested in constructing a confidence interval for θ = 〈ϕ, µ〉, where µ(z) = z−2.

Hence, θ = a. We calculate the proposed bias-corrected confidence interval, as well as the

classical confidence interval. The corresponding coverage probabilities (based on 500 simu-

lations) for samples of size 100, 200 and 400 are given in Table 3. The table shows that the

proposed interval reduces the coverage error substantially compared to the classical confi-

dence interval, and that the performance is better when the degree of endogeneity is small

and/or the instrument is strong, as can be expected.

σ = 0.3 σ = 0.4

a b ρ(Z,W ) ρ(Z, V ) ρ(Z,W ) ρ(Z, V )

0.25 0.4 .822 -.124 .822 -.093

0.6 .693 -.235 .693 -.177

0.5 0.4 .822 -.248 .822 -.186

0.6 .693 -.471 .693 -.353

Table 2: Correlations ρ(Z,W ) and ρ(Z, V ) for several choices of ϕ(z) = az2, b and σ.
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σ = 0.3 σ = 0.4

a b n Non-corrected Corrected Non-corrected Corrected

0.25 0.4 100 .922 .952 .866 .934

200 .908 .980 .870 .954

400 .900 .974 .864 .944

0.6 100 .816 .904 .868 .936

200 .822 .912 .842 .936

400 .826 .950 .828 .964

0.5 0.4 100 .906 .950 .900 .948

200 .902 .954 .890 .970

400 .878 .966 .892 .954

0.6 100 .822 .866 .780 .858

200 .766 .872 .792 .878

400 .696 .836 .764 .900

Table 3: Coverage probabilities of the classical (non-corrected) and the bias-corrected 95%

confidence intervals for several choices of ϕ(z) = az2, b, n and σ.
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