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Abstract

This paper considers two-sided tests for the parameter of an endogenous variable
in an instrumental variable (IV) model with heteroskedastic and autocorrelated er-
rors. We develop the finite-sample theory of weighted-average power (WAP) tests
with normal errors and a known long-run variance. We introduce two weights which
are invariant to orthogonal transformations of the instruments; e.g., changing the
order in which the instruments appear. While tests using the MM1 weight can be
severely biased, optimal tests based on the MM2 weight are naturally two-sided when
errors are homoskedastic.

We propose two boundary conditions that yield two-sided tests whether errors are
homoskedastic or not. The locally unbiased (LU) condition is related to the power
around the null hypothesis and is a weaker requirement than unbiasedness. The
strongly unbiased (SU) condition is more restrictive than LU, but the associated WAP
tests are easier to implement. Several tests are SU in finite samples or asymptotically,
including tests robust to weak IV (such as the Anderson-Rubin, score, conditional
quasi-likelihood ratio, and I. Andrews’ (2015) PI-CLC tests) and two-sided tests
which are optimal when the sample size is large and instruments are strong.

We refer to the WAP-SU tests based on our weights as MM1-SU and MM2-SU
tests. Dropping the restrictive assumptions of normality and known variance, the
theory is shown to remain valid at the cost of asymptotic approximations. The
MM2-SU test is optimal under the strong IV asymptotics, and outperforms other
existing tests under the weak IV asymptotics.



1 Introduction

In an instrumental variable (IV) model, researchers often rely on asymptotic ap-
proximations when making inference on the structural coefficients. These approx-
imations, however, can be poor when instruments are weakly correlated with the
endogenous regressors as explained by Nelson and Startz (1990), Bound, Jaeger, and
Baker (1995), Dufour (1997), and Staiger and Stock (1997). The goal is to find
reliable econometric methods regardless of how strong the instruments are.

There has been some progress in the IV model with one endogenous variable and
k instruments when errors are homoskedastic. Anderson and Rubin (1949) propose a
test statistic which has an asymptotic chi-square-k distribution regardless of how weak
the instruments are. Moreira (2001, 2009) shows that the Anderson-Rubin statistic
is optimal in the just-identified model, but points out potential power gains when
there exists more than one instrument. Kleibergen (2002) and Moreira (2002) show
that a score (LM) test statistic has a standard chi-square-one distribution whether
the instruments are weak or not. Moreira (2003) proposes to replace the critical value
number by conditional quantiles of test statistics. These conditional tests are similar
by construction, hence have correct size. He applies the conditional method to the
likelihood ratio (LR) statistic and the two-sided Wald statistic. Andrews, Moreira,
and Stock (2006a) (hereinafter, AMS06) show that the conditional likelihood ratio
(CLR) test satisfies natural orthogonal invariance conditions and is nearly optimal.
Andrews, Moreira, and Stock (2007) find that conditional Wald (CW) tests, however,
have poor behavior and object to their use in empirical work. Mills, Moreira, and
Vilela (2014a) show that the bad performance of CW tests is due to the asymmetric
distribution of one-sided Wald statistics when instruments are weak. By extending
Moreira’s (2003) conditional approach, they find approximately unbiased Wald tests
whose power is comparable to the CLR test.

While use of the IV model with homoskedastic errors was important to advance
the literature on weak identification, the IV model with heteroskedastic and autocor-
related (HAC) errors is considerably more relevant for applied researchers. Some of
the theoretical findings for homoskedastic errors are easily extended for more com-
plicated stochastic processes, whereas others are not. Important work by Stock and
Wright (2000), Guggenberger and Smith (2005), Kleibergen (2006), Otsu (2006), and
Andrews and Mikusheva (2015), among others, extends the tests conceived for the
simple homoskedastic IV model to the generalized method of moments (GMM) and
generalized empirical likelihood (GEL) frameworks. Their tests are of course applica-
ble to the HAC-IV model, but it is unknown whether these adaptations are optimal.
The purpose of this paper is exactly this: to develop a theory of optimal two-sided
tests for the HAC-IV model.

We are able to find a statistic that is pivotal and independent of a second statistic,
which is sufficient and complete for the instruments’ coefficients under the null. We
show that the invariance argument of AMS06 for homoskedastic errors is only appli-
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cable if a (long-run) variance has a Kronecker product structure. This limitation has
profound consequences for the behavior of weighted-average power (WAP) tests. We
choose two priors for the structural parameter and the instruments’ coefficients and
denote the associated test statistics MM1 and MM2. The priors are chosen to illus-
trate the effect of a poor weight choice on the power of WAP tests. Although priors
vanish asymptotically as in the Bernstein-von Mises theorem, the associated tests can
behave quite differently in finite samples (or under the weak-instrument asymptotics).
When a variance matrix has a Kronecker product structure, both test statistics are
orthogonally invariant, but only MM2 satisfies an additional sign invariance argument
that preserves the two-sided hypothesis testing problem. As a consequence, a WAP
similar test based on the MM1 statistic can behave as a one-sided test and have poor
power even with homoskedastic errors (this problem is analogous to the conditional
Wald tests documented by Andrews, Moreira, and Stock (2007)) while the WAP sim-
ilar test using the MM2 statistic has overall good power with a Kronecker-product
variance matrix. Other weight choices face the same difficulties as the MM1 statistic
for the HAC-IV model, including the recently proposed WAP similar test by Olea
(2015), denoted ECS (HAC-IV).

When the (long-run) variance matrix does not have a Kronecker product represen-
tation and the model is identified, the Anderson-Rubin test (among other equivalent
tests) is the uniformly most powerful unbiased test. In the over-identified model, we
show theoretically that it is possible to find a weight so that the test is approximately
unbiased and admissible. The lack of invariance, however, makes it harder to con-
struct such weights. In practice, we endogeneize this search by imposing in the WAP
maximization problem a boundary condition based on the local power around the
null hypothesis. This locally unbiased (LU) condition is a weaker requirement than
unbiasedness, so it does not rule out admissibility. The WAP-LU tests are found with
non-linear algorithms, which makes it difficult to implement them. We then propose
a stronger requirement than LU, denoted the strongly unbiased (SU) condition. The
resulting class of tests includes several two-sided tests robust to weak IV, including
the Anderson-Rubin, score, (pseudo) likelihood ratio tests by Kleibergen (2006) and
Andrews and Guggenberger (2014b), and I. Andrews’ (2015) PI-CLC tests. Two-
sided optimal tests also satisfy the SU condition asymptotically when the sample
size is large and instruments are strong. The WAP-SU tests have power close to
the WAP-LU tests based on the MM1 and MM2 weights, with the advantage being
that the WAP-SU tests are easy to implement with a standard linear programming
software package. We refer to the WAP-SU tests based on our weights as MM1-SU
and MM2-SU tests.

We follow I. Andrews (2015) and implement numerical simulations based on Yogo
(2004). We choose, however, Yogo’s (2004) design where the endogenous variable is
the real stock return and the instruments are genuinely weak. We find that, as our
theory predicts, the WAP similar tests can be quite erratic. In some designs, they
behave as usual two-sided tests and have good power. In other designs they behave
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as one-sided tests and have power near zero. We do not recommend the MM1 and
MM2 similar tests for empirical researchers. The MM2-SU test, however, outperforms
other tests (including the MM1-SU test) and when it occasionally has less power than
competing tests, the power loss is small. We recommend the use of the MM2-SU test
in empirical work. Our asymptotic analysis is quite general and encompasses all WAP
similar and WAP-SU tests whose weight does not depend strongly on the sample size.

The remainder of this paper is organized as follows. Section 2 introduces the HAC-
IV model and presents the test statistics, including the MM1 and MM2 statistics.
Sections 3 and 4 discuss the power maximization problem and the WAP-LU and
WAP-SU tests. Section 5 presents power curves and the role of LU and SU conditions
in obtaining WAP tests with overall good power. Section 6 develops an asymptotic
framework that encompasses the weak IV and strong IV asymptotics. Section 7
revisits the work of I. Andrews (2015) and Yogo (2004) on testing the intertemporal
rate of substitution, with one important modification. Section 8 contains concluding
remarks. All proofs are given in the appendices.

2 The IV Model and Statistics

Consider the instrumental variable model

y1 = y2β + u

y2 = Zπ + v2,

where y1 and y2 are n × 1 vectors of observations on two endogenous variables, Z
is an n × k matrix of nonrandom exogenous variables having full column rank, and
u and v2 are n × 1 unobserved disturbance vectors having mean zero. The goal
here is to test the null hypothesis H0 : β = β0 against the alternative hypothesis
H1 : β 6= β0, treating π as a nuisance parameter. We do not not include covariates in
this model, but we note that can be easily handled by the usual projection arguments;
see AMS06.

We look at the reduced-form model for Y = [y1, y2]:

Y = Zπa′ + V, (2.1)

where a = (β, 1)′ and V = [v1, v2] = [u+ v2β, v2] is the n × 2 matrix of reduced-
form errors. We allow the errors to be heteroskedastic and autocorrelated. Let
P1 = Z (Z ′Z)−1/2 and let [P1, P2] ∈ On, the group of n×n orthogonal matrices. Pre-
multiplying the reduced-form model (2.1) by [P1, P2]′, we obtain the pair of statistics

P ′1Y and P ′2Y . In this section, we assume that (Z ′Z)−1/2 Z ′V is normally distributed
with known variance matrix Σ (this assumption will be relaxed later at the cost
of asymptotic approximations). The statistic P ′2Y is ancillary and we do not have
previous knowledge about the correlation structure on V . In consequence, we consider
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tests based on R = P ′1Y :

R = µa′ + (Z ′Z)
−1/2

Z ′V,

where µ = (Z ′Z)1/2 π.
It is convenient to find the one-to-one transformation of R given by the pair

S = [(b′0 ⊗ Ik) Σ (b0 ⊗ Ik)]−1/2
(b′0 ⊗ Ik)R and (2.2)

T =
[
(a′0 ⊗ Ik) Σ−1 (a0 ⊗ Ik)

]−1/2
(a′0 ⊗ Ik) Σ−1R,

where R = vec
[
(Z ′Z)−1/2 Z ′Y

]
, a0 = (β0, 1)′ and b0 = (1,−β0)′. The pair S and T

have three important properties: (i) they are independent; (ii) S is pivotal; and (iii)
T is complete and sufficient for µ under the null. More specifically, the statistics S
and T have distribution

S ∼ N
(
(β − β0)Cβ0

µ, Ik
)

and T ∼ N (Dβµ, Ik) , where (2.3)

Cβ0
= [(b′0 ⊗ Ik) Σ (b0 ⊗ Ik)]−1/2

and

Dβ =
[
(a′0 ⊗ Ik) Σ−1 (a0 ⊗ Ik)

]−1/2
(a′0 ⊗ Ik) Σ−1 (a⊗ Ik) .

The joint density fβ,µ (s, t) is given by

fβ,µ (s, t) = (2pi)−k/2 exp

(
−
∥∥s− (β − β0)Cβ0

µ
∥∥2

2

)
× (2pi)−k/2 exp

(
−‖t−Dβµ‖2

2

)
= fSβ,µ (s)× fTβ,µ (t) ,

where pi = 3.1415... and fSβ,µ (s) and fTβ,µ (t) are the marginal densities for S and T .
Examples of test statistics based on S and T are the Anderson-Rubin (AR), the

score or Lagrange multiplier (LM), and the quasi likelihood ratio (LR) statistics.
Anderson and Rubin (1949) propose to use a pivotal statistic. In our model the
Anderson-Rubin statistic is given by

AR = S ′S. (2.4)

In Appendix A, we derive the LM and LR statistics under that the assumption the
errors are normal. For any full column rank matrix X, let NX = X (X ′X)−1X ′ and
MX = I −NX . Then the LM statistic simplifies to

LM = S ′NCβ0D
−1
β0
TS. (2.5)

The likelihood ratio statistic is given by

LR = max
a
R
′
Σ−1/2NΣ−1/2(a⊗Ik)Σ

−1/2R− T ′T. (2.6)

4



The LR statistic is apparently not a simple function of S and T (which makes it
difficult to implement the test coupled with conditional critical values). Kleibergen
(2006) instead adapts the formula for the likelihood ratio statistic derived by Moreira
(2003) in the homoskedastic IV model to the GMM framework. For the HAC-IV
model, this quasi likelihood ratio statistic becomes

QLR =
AR− r (T ) +

√
(AR− r (T ))2 + 4LM · r (T )

2
, (2.7)

where AR and LM are defined in (2.4) and (2.5), and r (T ) = T ′T . Andrews and
Guggenberger (2014b) use a Kronecker product Ω⊗ Φ (where Ω and Φ are positive-
definite matrices respectively with dimensions 2× 2 and k× k) approximation to the
variance Σ; see Van Loan and Ptsianis (1993) for more details on Kronecker product
approximations.

We now present two novel WAP statistics based on the weighted-average density

hΛ (s, t) =

∫
fβ,µ (s, t) dΛ (β, µ) . (2.8)

These weight functions use the Kronecker product Ω ⊗ Φ approximation to Σ with
the Frobenius norm (i.e., the norm of a matrix X is given by ‖X‖ =

√
tr (X ′X)).

For the MM1 statistic h1 (s, t), we choose Λ (β, µ) to be N (β0, 1) × N (0, σ2Φ). For
the MM2 statistic h2 (s, t), we first define the identity tan (θ) ≡ dβ(θ)/cβ(θ), where

cβ = (β − β0) · (b′0Ωb0)−1/2 and dβ = a′Ω−1a0 · (a′0Ω−1a0)−1/2. (2.9)

We choose Λ (β, µ) so that the prior for θ and µ are Unif [−pi, pi]×N
(

0,
∥∥lβ(θ)

∥∥−2
ζ · Φ

)
,

where lβ = (cβ, dβ)′.
In Appendix A, we show that the MM1 and MM2 statistics are

h1 (s, t) = (2pi)−k−1/2

∫
|Ψβ,σ2|−1/2 exp

(
−

(s′, t′) Ψ−1
β,σ2 (s′, t′)′ + (β − β0)2

2

)
dβ (2.10)

h2 (s, t) = (2pi)−(k+1)

∫ pi

−pi

∣∣∣∣Ψβ(θ),‖lβ(θ)‖−2
ζ

∣∣∣∣−1/2

exp

−(s′, t′) Ψ−1

β(θ),‖lβ(θ)‖−2
ζ

(s′, t′)′

2

 dθ,

where the matrix Ψβ,σ2 is given by

Ψβ,σ2 = I2 ⊗ Ik + σ2

[
(β − β0)2Cβ0

ΦCβ0
(β − β0)Cβ0

ΦD′β
(β − β0)DβΦCβ0

DβΦD′β

]
. (2.11)
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2.1 Kronecker Variance Matrix

We consider here the special case where Σ = Ω ⊗ Φ exactly. This framework is
particularly interesting for two reasons. First, it encompasses the homoskedastic case
by taking Φ to be the identity matrix. We will show that the S and T statistics for
general error structure simplify to the original statistics of Moreira (2001, 2009) for the
homoskedastic model. Second, the model where Σ has a Kronecker product structure
enjoys natural invariance properties. Some statistics are invariant but others are
not. This has profound consequences for testing procedures based on these statistics.
Indeed, typical tests based on noninvariant statistics (such as those using a constant
or Moreira’s (2003) conditional critical value function) behave as one-sided tests for
parts of the parameter space. We will illustrate this problem numerically in Section
5.

When Σ = Ω⊗ Φ, the statistics S and T defined in (2.2) simplify to

S = Φ−1/2(Z ′Z)−1/2Z ′Y b0 · (b′0Ωb0)−1/2 and (2.12)

T = Φ−1/2(Z ′Z)−1/2Z ′Y Ω−1a0 · (a′0Ω−1a0)−1/2.

Their distribution is given by

S ∼ N
(
cβΦ−1/2µ, Ik

)
and T ∼ N

(
dβΦ−1/2µ, Ik

)
. (2.13)

AMS06 use invariance arguments for the special case Φ = Ik. However, the parameter
µΦ = Φ−1/2µ is unknown because µ is unknown. Hence, AMS06’s invariance argument
applies to the new parameter µΦ = Φ−1/2µ. Specifically, let g ∈ On and consider the
transformation in the sample space

g ◦ (S, T ) = (gS, gT ) .

The induced transformation in the parameter space is

g ◦ (β, µΦ) = (β, gµΦ) .

Invariant tests depend on the data only through

Q =

[
QS QST

QST QT

]
=

[
S ′S S ′T
S ′T T ′T

]
. (2.14)

The density of Q at q for the parameters β and λ = π′ (Z ′Z)1/2 Φ−1 (Z ′Z)1/2 π is
given by

fβ,λ(qS, qST , qT ) = K0 exp(−λ(c2
β + d2

β)/2) |q|(k−3)/2

× exp(−(qS + qT )/2)(λξβ(q))−(k−2)/4I(k−2)/2(
√
λξβ(q)),
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where K−1
0 = 2(k+2)/2pi1/2Γ(k−1)/2, Γ(·) is the gamma function, I(k−2)/2(·) denotes the

modified Bessel function of the first kind, and

ξβ(q) = c2
βqS + 2cβdβqST + d2

βqT . (2.15)

The following proposition shows that the WAP densities h1 (s, t) and h2 (s, t) are
invariant when the covariance matrix is a Kronecker product. Indeed, the Kronecker
product approximation Ω⊗Φ to Σ in the definition of the weights was chosen exactly
to guarantee the test statistics are orthogonal invariant.

AMS06 show there also exists a sign transformation that preserves the two-sided
hypothesis testing problem. Consider the groupO1, which contains only two elements:
g ∈ {−1, 1}. The group transformation in the sample is

g ◦ (QS, QST , QT ) = (QS, g ·QST , QT ) ,

whose maximal invariant is QS, |QST |, and QT . This group yields a transformation
in the parameter space. For g = −1, AMS06 show that this transformation is

g ◦ (β, λ) =

(
β0 −

dβ0
(β − β0)

dβ0
+ 2jβ0

(β − β0)
, λ

(dβ0
+ 2jβ0

(β − β0))2

d2
β0

)
, where

jβ0
=

e′1Ω−1a0

(a′0Ω−1a0)−1/2
and e1 = (1, 0)′. (2.16)

(by the definition of a group, the parameter remains unaltered at g = 1). The
transformation in (2.16) flips the sign of β − β0 for β 6= βAR defined as

βAR =
ω11 − ω12β0

ω12 − ω22β0

where Ω = [ωi,l] . (2.17)

So the sign transformation preserves the two-sided hypothesis testing problem H0 :
β = β0 against H1 : β 6= β0, but not the one-sided, e.g., testing H0 : β ≤ β0 against
H1 : β > β0.

Proposition 1. The following holds when Σ = Ω⊗ Φ:
(i) The weighted-average densities h1 (s, t) and h2 (s, t) are invariant to orthogonal
transformations. That is, they depend on the data only through Q; and
(ii) The weighted-average density h2 (s, t) is invariant to sign transformations. It de-
pends on the data only through QS, |QST |, and QT .

The MM1 statistic is not sign invariant. We can create a weighted-average statistic
that is sign invariant by replacing the weight in h1 =

∫
fβ0,λ (qS, qST , qT ) dΛ1 (β, λ)

by

Λ (β, λ) =
Λ1 (β, λ) + Λ1 (g ◦ (β, λ))

2
, (2.18)
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for g = −1. We note that∫
fβ,λ(qS, qST , qT ) dΛ (β, λ) =

∫ ∫
fβ,λ(qS, qST , qT ) dΛ1 (g ◦ (β, λ)) ν (dg) ,

where ν is the Haar probability measure on the group O1: ν ({1}) = ν ({−1}) = 1/2.
Because∫

fβ,λ(qS,−qST , qT ) dΛ (β, λ) =

∫
f(−1)◦(β,λ)(qS, qST , qT ) dΛ (β, λ)

=

∫
fβ,λ(qS, qST , qT ) dΛ (β, λ) ,

the weighted-average statistic based on (2.18) only depends on qS, |qST | , qT . But the
MM2 statistic is already sign invariant for having chosen a clever prior for β and µ.
In fact, the MM2 prior was chosen so that the final statistic is sign invariant. Tests
based on h2 (s, t) are naturally two-sided tests for the null H0 : β = β0 against the
alternative H1 : β 6= β0 when Σ = Ω ⊗ Φ. This important property does not hold
for standard tests based on h1 (s, t). The WAP test (denoted ECS-HACIV) proposed
recently by Olea (2015) is not sign invariant either. Sections 5 and 7 present numerical
simulations showing that all these WAP similar tests can behave like one-sided tests
for some parameter values. In the next section, we will discuss ways to circumvent
this problem whether Σ has a Kronecker product structure or not.

3 Weighted-Average Power Tests

So far, we have only described test statistics. Coupled with critical values, we obtain
the test procedures commonly used in the literature. The Anderson-Rubin test rejects
the null when AR > c (k), where c (d) is the 1−α quantile of a chi-square distribution
with d degrees of freedom. The LM test rejects the null when LM > c (1). The
conditional tests reject the null when each test statistic ψ (S, T ) > κ (T ). Each
critical value function κ (T ) is the null conditional quantile of ψ given T = t; see
Moreira (2003) for details (we omit the dependence of the critical value function on
the statistic ψ when there is no ambiguity). For example, the CQLR test rejects the
null when the QLR statistic defined in (2.7) is larger than the conditional critical
value.

Our goal in this section is to find optimal tests. Specifically, a test is defined to
be a measurable function φ (s, t) that is bounded by 0 and 1. For a given outcome,
the test rejects the null with probability φ (s, t) and accepts the null with probability
1 − φ (s, t), e.g., the Anderson-Rubin test is simply I (AR > c (k)) where I (·) is the
indicator function. The test is said to be nonrandomized if φ only takes values 0 and
1; otherwise, it is called a randomized test. We note that

Eβ,µφ (S, T ) ≡
∫
φ (s, t) fβ,µ (s, t) d (s, t)

8



is the probability of rejecting the null when the parameters are β and µ. The object
Eβ,µφ (S, T ) taken as a function of β and µ gives the power curve for the test φ. In
particular, Eβ0,µφ (S, T ) gives the null rejection probability. By Tonelli’s theorem, we
can write

EΛφ (S, T ) =

∫
Eβ,µφ (s, t) dΛ (β, µ) =

∫
φ (s, t)hΛ (s, t) d (s, t) , (3.19)

where hΛ (s, t) is defined in (2.8). Hence, EΛφ (S, T ) is the weighted-average power
for the measure Λ (β, µ).

A natural first step is to find tests that maximize WAP and have size no larger
than α. That is,

max
0≤φ≤1

EΛφ (S, T ) , where Eβ0,µφ (S, T ) ≤ α, ∀µ. (3.20)

Since the parameter µ is unknown, finding a WAP test with correct size is nontrivial.
The task entails finding a least favorable distribution Λ0 to construct the WAP test
as described in Section 3.8 of Lehmann and Romano (2005). This test rejects the
null when the likelihood ratio is large:

hΛ (s, t)∫
fTβ0,µ

(t) dΛ (µ)
> κ, (3.21)

where κ·Λ is really a Lagrange multiplier in an infinite-dimensional space; see Lemma
3 of Moreira and Moreira (2010) for details1. For a parameter µ of small dimension,
we can apply numerical algorithms to approximate the WAP test (such as the one by
Elliott, Mueller, and Watson (2015) or the linear programming algorithm of Moreira
and Moreira (2013)).

The task of finding tests with correct size is simplified if we can find optimal
similar tests:

max
0≤φ≤1

EΛφ (S, T ) , where Eβ0,µφ (S, T ) = α, ∀µ. (3.22)

Because the statistic T is sufficient and complete under the null, any similar test is
conditionally similar (for almost all levels T = t). Hence, we can solve

max
0≤φ≤1

EΛφ (S, t) , where Eβ0
φ (S, t) = α.

The WAP similar test rejects the null when

hΛ (s, t)

fSβ0
(s) · hTΛ (t)

> κ (t) , (3.23)

1Also available as Lemma 2 in the most recent version, Moreira and Moreira (2013). Both versions
are available on Marcelo Moreira’s website: http://www.fgv.br/professor/mjmoreira/
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where κ (t) is a conditional critical value function and hTΛ (t) =
∫
hΛ (s, t) ds. By

Tonelli’s theorem,

hTΛ (t) =

∫ ∫
fβ,µ (s, t) dΛ (β, µ) ds

=

∫ ∫
fβ,µ (s, t) ds dΛ (β, µ)

=

∫
fTβ,µ (t) dΛ (β, µ) .

For arbitrary weights Λ, neither the WAP test with correct size nor the WAP
similar test is guaranteed to have overall good power in finite samples2. Take for
a moment the case where Σ = Ω ⊗ Φ. The WAP tests based on h1 (s, t) can have
very low power for some parameter values. Because the WAP test with correct size
and the WAP similar test based on the MM1 weight are not sign invariant, they can
actually behave like one-sided tests for parts of the parameter space.

This issue is analogous to the problem with conditional Wald tests found by
Andrews, Moreira, and Stock (2007) which leads them to give a very specific rec-
ommendation: “The evident conclusion for applied work is that researchers choosing
among these tests (including conditional Wald) should use the CLR test. The strong
asymptotic bias and often low power of the conditional Wald tests indicate that they
can yield misleading inferences and are not useful, even as robustness checks.” For
our purposes we can of course circumvent this problem by replacing h1 (s, t) by a
sign invariant weight given by (2.18) or by the density h2 (s, t). However, this solu-
tion relies on model symmetries (i.e., sign invariance) and only works for Kronecker
covariance matrices.

On the other hand, Mills, Moreira, and Vilela (2014a) find approximately unbiased
Wald tests which have overall good power. Their procedure only works for the model
with homoskedastic errors, but it does hint that imposing additional constraints can
actually help to obtain optimal tests with overall good power for general Σ.

4 Two-Sided Boundary Conditions

The WAP similar test based on h2 (s, t) is a two-sided test in the homoskedastic case
precisely because the sign-group of transformations preserves the two-sided testing
problem when Σ = Ω ⊗ Φ. More specifically, because this test depends only on
QS, |QST |, and QT it is locally unbiased; see Corollary 1 of Andrews, Moreira, and
Stock (2006b). When errors are autocorrelated and heteroskedastic, however, the

2As the geneticist and statistician Anthony W. F. Edwards (1992, p. 60) remarks, “It is sometimes
said, in defence of the Bayesian concept, that the choice of prior distribution is unimportant in
practice, because it hardly influences the posterior distribution at all when there are moderate
amounts of data. The less said about this ‘defence’ the better.”
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covariance Σ typically does not have a Kronecker product structure. In this case, the
WAP similar test (or a WAP test with correct size) based on h2 (s, t) may not have
good power for parts of the parameter space. Worse yet, when the covariance matrix
lacks Kronecker product structure, there is actually no sign invariance argument to
accommodate two-sided testing.

Proposition 2. Assume that we cannot write Σ as Ω⊗ Φ for a 2× 2 matrix Ω and
a k × k matrix Φ, both symmetric and positive definite. Then for the data group
of transformations [S, T ] → [±S, T ], there exists no group of transformations in the
parameter space which preserves the testing problem.

Proposition 2 asserts that we cannot simplify the two-sided hypothesis testing
problem using sign invariance arguments. It is then much more difficult to find a
weight so that the test is, loosely speaking, two-sided. An unbiasedness condition
instead adjusts the weights automatically (whether Σ has a Kronecker product or
not). Hence, we can seek approximately optimal unbiased tests.

An important property of WAP tests is admissibility. Theorem 1 below shows that
the WAP unbiased tests are admissible. The proof follows exactly the same steps as
the proof for admissibility of WAP similar tests of Moreira and Moreira (2013) (see
Comment 1 after their Theorem 4)3. For completeness, we provide a proof in the
appendix for the following theorem.

Theorem 1. Let (β, µ) ∈ B×P, where both sets compact. Assume that the weight Λ
appearing in (2.8) has full support on B× P. Then there exists a sequence of Bayes’
tests φm (s, t) which weakly converges (in the weak* topology to the L∞(R2k) space)
to the WAP unbiased test. In particular, the WAP unbiased test is admissible.

Comments: 1. The weak convergence guarantees, for example, that the limiting
power function of φm (s, t) is the power function of the WAP unbiased test. See
Moreira and Moreira (2013) for details on weak convergence of tests.

2. The theorem assumes the parameter space is compact. It may be possible
to drop this assumption with some additional technical conditions; see Lehmann
(1952). The compactness assumption, however, may not be overly restrictive in
practice. First, one could argue that we can pin down a region large enough in which
the parameter lies. Second, the usual mathematical and statistical software packages
have limited numerical accuracy, so for all practical purposes the weight Λ in the
average density hΛ (s, t) has support in a compact set.

Proposition 2 shows that there is no sign group structure which preserves the null
and alternative. This makes the task of finding a weight function hΛ (s, t) which yields

3Olea (2015) provides an alternative proof that similar tests are admissible by contradiction.
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a WAP unbiased test difficult with HAC errors. Instead of seeking a weight function
Λ so that the WAP test is approximately unbiased, we can select an arbitrary weight
and find the optimal test among unbiased tests; see Moreira and Moreira (2013).
In practice, it would be computationally intensive to handle so many constraints of
the form Eβ,µφ (S, T ) ≥ Eβ0,µ0φ (S, T ) for any scalar β and k-dimensional vectors
µ and µ0, especially when k is large. Instead we choose two different restrictions.
The first condition is based on the local power around the null hypothesis. It is a
weaker condition than unbiasedness, so it does not rule out admissibility. The second
condition is a stronger requirement but is easier to implement. Better yet, numerical
simulations will show it yields little power reduction compared to the first condition.
Both conditions and their associated WAP tests are presented next.

4.1 Locally Unbiased (LU) Condition

If the test is unbiased, the derivative of the power function must be equal to zero
under the null. The next proposition uses this fact and completeness of T to provide
a necessary condition for a test to be unbiased. This locally unbiased (LU) condition
states that the test must be similar and uncorrelated with linear combinations (which
depend on the instruments’ coefficient µ) of the pivotal statistic S.

Proposition 3. A test is said to be locally unbiased (LU) if

Eβ0,µφ (S, T ) = α and Eβ0,µφ (S, T )S ′Cβ0
µ = 0, ∀µ. (LU)

If a test is unbiased, then it is LU.

In the case k = 1 where the model is exactly identified, we have an optimality
result for any choice of Λ. The Anderson-Rubin test is the uniformly most power-
ful unbiased (UMPU) test and has power function depending on the noncentrality
parameter (β − β0)2C2

β0
µ2. We can prove this result directly from Theorem 2-(a) of

Moreira (2001, 2009) for homoskedastic errors (with the scalar µ and matrix Ω being
replaced by µΦ and Σ). As this setup resembles the just-identified model with ho-
moskedastic errors, optimality of the Anderson-Rubin test for HAC errors and k = 1
follows straightforwardly.

Proposition 4. If k = 1, the Anderson-Rubin test is the uniformly most powerful
unbiased test and has a power function given by

Pβ,µ (AR > c (1)) = 1−G
(
c (1) ;

(β − β0)2 µ2

b′0Σb0

)
,

where G
(
·; δ2

)
is the noncentral χ2 (1) distribution function with noncentrality param-

eter δ2. Furthermore, the LM and CQLR tests are equivalent to the Anderson-Rubin
test, and are also optimal.
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Following Proposition 3, the WAP-LU test solves

max
0≤φ≤1

EΛφ (S, T ) , where Eβ0,µφ (S, T ) = α and Eβ0,µφ (S, T )S ′Cβ0
µ = 0,∀µ. (4.24)

The optimal tests based on h1 (s, t) and h2 (s, t) are denoted respectively MM1-LU
and MM2-LU tests. In the just-identified model, the MM1-LU test is shown to be
the uniformly most powerful unbiased test. The MM2-LU test is equivalent to the
MM2 similar test and is also optimal.

Proposition 5. The following hold when k = 1:
(a) The MM2-LU and MM2 similar tests are equivalent and uniformly most powerful
unbiased tests.
(b) Both MM1-LU and MM2-LU tests are uniformly most powerful unbiased tests.

Comments: 1. The MM2 similar test automatically satisfies the LU condition
when k = 1. Hence, the MM2-LU and MM2 similar tests are equivalent when the
model is exactly identified.

2. The MM1 similar test is not locally unbiased even when k = 1. Close inspection
of the weighted density h1 (s, t) shows that dβ/cβ is the relative contribution of the
one-sided S ·T statistic to the AR = S2 statistic. If Σ is close to being singular (that
is, |Σ| is near zero), the ratio dβ/cβ can diverge to infinity. The MM1 test can then
behave as a one-sided test. We will illustrate this problem numerically in Section 5.

In the case k > 1 where the model is overidentified, we no longer have a uniformly
most powerful unbiased test. However, we can still find WAP tests which are locally
unbiased. Relaxing both constraints in (4.24) assures us the existence of Lagrange
multipliers; see Moreira and Moreira (2013). Therefore, we solve the approximated
maximization problem:

max
0≤φ≤1

EΛφ (S, T ) , where α− ε ≤ Eβ0,µφ (S, T ) ≤ α + ε,∀µ (4.25)

and Eβ0,µlφ (S, T )S ′Cβ0
µl = 0, for l = 1, ...,m,

when ε is small and the number of discretizations m is large. The optimal test rejects
the null hypothesis when

hΛ (s, t)− s′Cβ0

m∑
l=1

cεlµlfβ0,µl (s, t) >

∫
fβ0,µ (s, t) dΛε (µ) , (4.26)

where the measure Λε and the scalars cεl , l = 1, ...,m, are multipliers associated to
boundary constraints in the maximization problem (4.25).

We can use fβ0,µ (s, t) = fSβ0
(s)× fTβ0,µ

(t) to write (4.26) as

hΛ (s, t)

fSβ0
(s)
− s′Cβ0

m∑
l=1

cεlµlf
T
β0,µl

(t) >

∫
fTβ0,µ

(t) dΛε (µ) . (4.27)
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Letting ε ↓ 0, the optimal test rejects the null hypothesis when

hΛ (s, t)

fSβ0
(s)
− s′Cβ0

m∑
l=1

clµlf
T
β0,µl

(t) > κ (t) , (4.28)

where κ (t) is the conditional 1− α quantile of

hΛ (S, t)

fSβ0
(S)

− S ′Cβ0

m∑
l=1

clµlf
T
β0,µl

(t) . (4.29)

This representation is very convenient as we can find

κ (t) = lim
ε↓0

∫
fTβ0,µ

(t) dΛε (µ) (4.30)

by numerical approximations of the conditional distribution instead of searching for
an infinite-dimensional multiplier Λε. We then search for the values cl so that

Eβ0,µlφ (S, T )S ′Cβ0
µl =

∫
φ (s, t) s′Cβ0

µlf
S
β0

(s) fTβ0,µl
(t) = 0, (4.31)

by taking into consideration that κ (t) depends on cl, l = 1, ...,m. We can find cl,
l = 1, ...,m with a nonlinear numerical algorithm4.

As an alternative procedure, we consider a condition stronger than the LU condi-
tion which is simpler to implement numerically. This strategy turns out to be useful
because it provides a simple way to implement tests with overall good power. We
explain this alternate condition next.

4.2 Strongly Unbiased (SU) Condition

The LU condition asserts that the test φ is uncorrelated with a linear combination
indexed by the instruments’ coefficients µ and the pivotal statistic S. We note that
the LU condition trivially holds if

Eβ0,µφ (S, T ) = α and Eβ0,µφ (S, T )S = 0,∀µ. (SU)

That is, the test φ is uncorrelated with the k-dimensional statistic S itself under the
null. This strongly unbiased (SU) condition states that the test φ (S, T ) is uncor-
related with S for all instruments’ coefficients µ. The WAP-SU test based on the
weight Λ solves

max
0≤φ≤1

EΛφ (S, T ) , where Eβ0,µφ (S, T ) = α and Eβ0,µφ (S, T )S = 0,∀µ. (4.32)

4The two-step procedure just described is the usual substitution method for a system of equations,
but here we have an uncountable number of equations and unknowns.
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The optimal tests based on h1 (s, t) and h2 (s, t) are denoted respectively MM1-SU
and MM2-SU tests.

When k = 1, the LU and SU conditions are equivalent (hence, the MM1-SU and
MM2-SU tests are uniformly most powerful unbiased). When k > 1, the following
lemma proves the LU condition is strictly weaker than the SU condition. Hence,
finding WAP similar tests that satisfy the SU instead of the LU condition in theory
may entail unnecessary power losses. In practice, numerical simulations in Section 5
indicate that there is little power gain –if any– by using the LU instead of the SU
condition (with the MM1-SU and MM2-SU tests having the advantage of being easier
to implement).

Lemma 1. Define the integral

Fφ(µ1, µ2) = Eβ0,D
−1
β0
µ2
φ (s, t) s′Cβ0

µ1 =

∫
φ (s, t) s′Cβ0

µ1·fSβ0
(s) fT

β0,D
−1
β0
µ2

(t) d (s, t) .

For k > 1, there exists a test function φ : [S, T ]→ [0, 1] such that Fφ(µ1, µ1) = 0 for
all µ1, and Fφ(µ1, µ2) 6= 0, for some µ1 and µ2.

Because the statistic T is complete, we can carry on power maximization in (4.32)
for each level of T = t:

max
0≤φ≤1

EΛφ (S, t) , where Eβ0
φ (S, t) = α and Eβ0

φ (S, t)S = 0, (4.33)

where the expectation is taken with respect to S only. The WAP-SU test rejects the
null when

hΛ (s, t)

fSβ0
(s) · hTΛ (t)

> κ (s, t) ,

where the function κ (s, t) = κ0 (t) + s′κ1 (t) is such that the optimal test satisfies the
SU condition. The term hTΛ (t) can be absorbed in the critical value function. For
numerical stability, however, we recommend keeping it so that the numerator and
denominator are of the same order of magnitude.

In practice, we can find κ0 (t) and κ1 (t) using linear programming based on sim-
ulations for the statistic S. Consider the approximated problem

max
0≤x(j)≤1

J−1

J∑
j=1

x(j)hΛ

(
s(j), t

)
hTΛ (t)

exp
(
s(j)′s(j)/2

)
(2pi)k/2

s.t. J−1

J∑
j=1

x(j) = α and

J−1

J∑
j=1

x(j)s
(j)

l = 0, for l = 1, ..., k.

15



Each j-th draw of S is iid standard-normal:

S(j) =

 S
(j)
1
...

S
(j)

k

 ∼ N (0, Ik) .

We note that for the linear programming, the only term which depends on T = t
is hΛ

(
s(j), t

)
/hTΛ (t). The multipliers for this linear programming problem are the

critical value functions κ0 (t) and κ1 (t). To speed up the numerical algorithm, we
can use the same sample S(j), j = 1, ..., J, for every level T = t.

Finally, we use the WAP test found in (4.33) to find a useful two-sided power
envelope. The next proposition finds the optimal test for any given alternative which
satisfies the SU condition.

Proposition 6. The optimal SU test for a point alternative (β, µ) rejects the null
hypothesis when (

s′Cβ0
µ
)2

µC2
β0
µ

> c(1). (4.34)

This test is denoted the Point Optimal Strongly Unbiased (POSU) test and has power
given by

Pβ,µ

((
s′Cβ0

µ
)2

µC2
β0
µ

> c (1)

)
= 1−G

(
c (1) ; (β − β0)2 µ′C2

β0
µ
)
,

where G
(
·; δ2
)

is the noncentral χ2 (1) distribution function with noncentrality pa-

rameter δ2.

Comments: 1. The POSU test does not depend on β but does depend on the
direction of the vector Cβ0

µ.
2. When k = 1, the Anderson-Rubin and POSU tests are the same.

The power plot of 1 − G
(
c (1) ; (β − β0)2 µ′C2

β0
µ
)

as β and µ change yields the

two-sided power envelope. This power envelope is the two-sided analogue of the one-
sided power envelope among similar tests. This power upper bound, based on the
Point Optimal Similar (POS) test for the alternative (β, µ), is given by the plot of

1− Φ
(√

c (1)− |β − β0|
√
µC2

β0
µ
)

, where Φ (·) is the standard normal distribution.

5 Numerical Evaluation of WAP Tests

In this section, we provide numerical simulations for WAP tests based on the MM
statistics. The MM tests are WAP similar tests based on h1 (s, t) and h2 (s, t). The
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MM-LU and MM-SU tests also satisfy respectively the locally unbiased and strongly
unbiased conditions. The goal in this section is to numerically illustrate the impor-
tance of using two-sided conditions to obtain tests with overall good power.

We can write

Ω =

[
ω

1/2
11 0

0 ω
1/2
22

]
PΩ

[
1 + ρ 0

0 1− ρ

]
P ′Ω

[
ω

1/2
11 0

0 ω
1/2
22

]
,

where PΩ is an orthogonal matrix and ρ = ω12/ω
1/2
11 ω

1/2
22 . For the numerical simula-

tions, we specify ω11 = ω22 = 1.
We use the decomposition of Ω to perform numerical simulations for a class of

covariance matrices:

Σ = PΩ

[
1 + ρ 0

0 0

]
P ′Ω ⊗ diag (ς1) + PΩ

[
0 0
0 1− ρ

]
P ′Ω ⊗ diag (ς2) ,

where ς1 and ς2 are k-dimensional vectors.
We consider two possible choices for ς1 and ς2. For the first design, we set ς1 =

ς2 = (1/ε− 1, 1, ..., 1)′. The covariance matrix then simplifies to a Kronecker product:
Σ = Ω ⊗ diag (ς1). For the non-Kronecker design, we set ς1 = (1/ε− 1, 1, ..., 1)′

and ς2 = (1, ..., 1, 1/ε− 1)′. This setup captures the data asymmetry in extracting
information about the parameter β from each instrument. For small ε, the angle
between ς1 and ς2 is nearly 90◦. We report numerical simulations for ε = (k + 1)−1.
As k increases, the vector ς1 becomes orthogonal to ς2 in the non-Kronecker design.

We set the parameter µ =
(
λ1/2/

√
k
)

1k for k = 2, 5, 10, 20 and ρ = −0.5, 0.2, 0.5, 0.9.

We choose λ/k = 0.5, 1, 2, 4, 8, 16, which span the range from weak to strong instru-
ments. We focus on tests with significance level 5% for testing β0 = 0. To conserve
space, we report here only power plots for k = 5, ρ = 0.9, and λ/k = 2, 8. The full
set of simulations is available on Marcelo Moreira’s website.

We present plots for the power envelope and power functions against various alter-
native values of β and λ. All results reported here are based on 1,000 Monte Carlo sim-
ulations. We plot power as a function of the rescaled alternative (β − β0)λ1/2, which
reflects the difficulty in making inference on β for different instruments’ strength.

Figure 1 reports numerical results for the Kronecker product design. All four
pictures present the power envelope and power curves for two existing tests, the
Anderson-Rubin (AR) and score (LM) tests.

The first two graphs plot the power curves for the three WAP tests based on the
MM1 statistic with σ2 = 10. All three tests reject the null when the h1 (s, t) statistic
is larger than an adjusted critical value function. In practice, we approximate these
critical value functions with 10,000 replications. The MM1 test sets the critical value
function to be the 95% empirical quantile of h1 (S, t). The MM1-SU test uses a
conditional linear programming algorithm to find its critical value function. The
MM1-LU test uses a nonlinear optimization package.
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Figure 1: Power Comparison (Kronecker Variance)
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The AR test has power considerably lower than the power envelope when instru-
ments are both weak (λ/k = 2) and strong (λ/k = 8). The LM test does not perform
well when instruments are weak, and its power function is not monotonic even when
instruments are strong. These two facts about the AR and LM tests are well doc-
umented in the literature; see Moreira (2003) and AMS06. The figure also reveals
some salient findings for the tests based on the MM1 statistic. First, all MM1-based
tests have correct size. Second, the MM1 similar test can have large bias to the point
that it has zero power for parts of the parameter space. Hence, a naive choice for
the density can yield a WAP test which can have overall poor power. We can elimi-
nate this problem by imposing an unbiased condition when selecting an optimal test.
The MM1-SU test is easy to implement and has power closer to the power upper
bound. When instruments are weak, its power lies moderately below the reported
power envelope. This is expected as the number of parameters is too large5. When
instruments are strong, its power is virtually the same as the power envelope.

To support the use of the MM1-SU test we also consider the MM1-LU test, which
imposes a weaker unbiased condition. Close inspection of the graphs show that the
derivative of the power function of the MM1 test is different from zero at β = β0. This

5The MM1-SU power is nevertheless close to the two-sided power envelope for orthogonally
invariant tests as in AMS06 (which is applicable to this design, but not reported here).
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observation suggests that the power curve of the WAP test would change considerably
if we were to force the power derivative to be zero at β = β0. Indeed, we implement
the MM1-LU test where the locally unbiased condition is true at only one point, the
true parameter µ. This parameter is of course unknown to the researcher and this
test is not feasible. However, by considering the locally unbiased condition for other
values of the instruments’ coefficients, the WAP test would be smaller —not larger.
The power curves of MM1-LU and MM1-SU tests are very close, which shows that
there is not much to be gained by relaxing the strongly unbiased condition.

The last two graphs plot the power curves for the three WAP tests based on the
MM2 statistic with ζ = 10. By using the density h2 (s, t), we avoid the pitfalls for
the MM1 test. Recall that h2 (s, t) is invariant to those data transformations which
preserve the two-sided hypothesis testing problem. Hence, the MM2 similar test
is unbiased and has overall good power without imposing any additional unbiased
conditions. The graphs illustrate this theoretical finding, as the MM2, MM2-SU, and
MM2-LU tests have numerically the same power curves. This conclusion changes
dramatically when the covariance matrix is no longer a Kronecker product.

Figure 2: Power Comparison (Non-Kronecker Variance)
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Figure 2 presents the power curves for all reported tests for the non-Kronecker
design. Both MM1 and MM2 tests are severely biased and have overall bad power.
For each design, we can make the tests approximately unbiased by choosing the σ2
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and ζ parameters large enough. However, this unbiasedness control is pointwise in the
parameter space. We can always find a design such that each test behaves as a one-
sided test and has very low power in parts of the parameter space. Hence, the strong
asymptotic bias and often-low power of the conditional Wald tests found by Andrews,
Moreira, and Stock (2007) also hold for the MM1 (even for the homoskedastic IV
model) and MM2 similar tests (only for the HAC-IV model). These WAP similar
tests are highly biased with power equal to zero in some parts of the parameter
space. Therefore, just as Andrews, Moreira, and Stock (2007) object to the use of
conditional Wald tests, we do not recommend the MM1 and MM2 similar tests for
empirical researchers.

Proposition 2 shows that we cannot find a group of data transformations which
preserve the two-sided testing problem with heteroskedastic-autocorrelated errors.
Hence, a choice for the density for the WAP test based on symmetry considerations
is not obvious. The correct density choice can be particularly difficult due to the
large parameter-dimension (the coefficients µ and covariance Σ). Instead, we can
endogenize the weight choice so that the WAP test will be automatically unbiased.
This is done by the MM1-LU and MM2-LU tests. These two tests perform as well as
the MM1-SU and MM2-SU tests. Because the latter two tests are easy to implement,
we recommend their use in empirical practice.

6 Asymptotic Theory

All theoretical and numerical results so far do not rely on the sample size n at all
as we have assumed the statistics S and T to be exactly normally distributed with
known variance Σ. In this section we relax this assumption at the cost of asymptotic
approximations.

Let zi and vi denote the i-th row of Z and V , respectively, written as column
vectors of dimensions k and 2. We make the following two assumptions as the sample
size n grows.

Assumption 1. n−1Z ′Z = n−1
∑n

i=1 ziz
′
i →p DZ for some positive definite k × k

matrix DZ .

Assumption 2. n−1/2
∑n

i=1 (vi ⊗ zi)→d N(0,Σ∞) for some positive definite 2k×2k
matrix Σ∞.

Assumption 1 holds under Birkhoff’s Ergodic Theorem. Assumption 2 holds under
suitable conditions by a central limit theorem (CLT). It also assumes that the long-
run covariance matrix of Σ∞ is positive definite, as is usual in the literature. We
no longer omit the dependence of Σ on the sample size n and, hereinafter, write
Σn. Assumption 2 asserts that Σ∞ is the limit of Σn as n grows. Let Σ̂n be a
consistent estimator of Σ∞ based on {(v̂i ⊗ zi) : i ≤ n}, where v̂i are reduced-form
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residuals. There are many HAC estimators in the literature that can be used for
this purpose; see, e.g., Newey and West (1987) and Andrews (1991). For brevity, we
do not provide an explicit set of conditions under which one or more of these HAC
estimators is consistent; see Jansson (2002) for details. We note, however, that the
presence of weak instruments does not complicate standard proofs of the consistency
of HAC estimators. Indeed, the convergence for most estimators holds uniformly over
all true parameters β and π.

We now introduce feasible versions of Sn and Tn with the variance Σn replaced by
the estimator Σ̂n:

Ŝn =
[
(b′0 ⊗ Ik) Σ̂n (b0 ⊗ Ik)

]−1/2

(b′0 ⊗ Ik)Rn and (6.35)

T̂n =
[
(a′0 ⊗ Ik) Σ̂−1

n (a0 ⊗ Ik)
]−1/2

(a′0 ⊗ Ik) Σ̂−1
n Rn,

where Rn = vec
[
(Z ′Z)−1/2 Z ′Y

]
. Likewise, we define the feasible statistic ψ̂n as

ψ (S, T,Σ, DZ) with the arguments being replaced by their sample analogues:

ψ̂n = ψ(Ŝn, T̂n, Σ̂n, D̂Z), where D̂Z = n−1Z ′Z. (6.36)

Assumption 3. The prior distribution for (β, π) is absolutely continuous to the
Lebesgue measure in Rk+1. Its density

w(β, π, D̂Z) = w1(π| β, D̂Z) · w2(β, D̂Z)

has full support and is a continuous function of π and β.

Assumption 3 allows the density w(β, π, D̂Z) to depend on the data through D̂Z .
This generalization allows us to cover all tests considered here and asymptotically
behaves as w(β, π,DZ) (and so we will omit the dependence of the weights on D̂Z out
of convenience). Although the conditional density w1(π| β) does not depend on β for
the MM1 tests, it does depend on β for the MM2 tests. Assumption 3 also guarantees
that the priors for β and π are not dogmatic and will vanish asymptotically as in the
Bernstein-von Mises theorem. If we set the prior on µ, then the associated prior
on π = (Z ′Z)1/2 µ depends on the sample size. For example, the MM statistics
introduced in (2.10) use the prior µ ∼ N (0, σ2Φ). For the associated prior on π ∼
N
(

0, (σ2/n) D̂
−1/2
Z ΦD̂

−1/2
Z

)
not to be sensitive to the sample size, the parameters σ2

and ζ present in the MM1 and MM2 statistics must eventually grow at the rate n.
We make the dependence of Λ (β, µ) on the sample size n explicit and, hereinafter,
use the notation Λn.

We now analyze the asymptotic behavior of the WAP similar and WAP-SU tests.
Recall that both of these types of tests depend on the test statistic

hΛn (s, t)

fSβ0
(s) · hTΛn (t)

. (6.37)
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When instruments are weak, the numerator and denominator have the same order of
magnitude. When instruments are strong, the integrands in the weighted densities
hΛn (s, t) and hTΛn (t) grow exponentially fast and we can apply the Laplace approx-
imation. Because both densities involve k + 1 integrals, the test statistic in (6.37)
is again well-behaved. The caveat is that a simple, closed-form approximation for
hTΛn (t) does not seem available under strong instruments. The WAP similar and
WAP-SU tests, however, remain the same if we standardize (6.37) by any function of
t. We replace hTΛn (t) by (1 + ‖t‖)−1 hTΛβ0,n

(t), where

hTΛβ0,n
(t) =

∫
fT
β0,(Z

′Z)1/2π
(t)w (β0, π) dπ. (6.38)

The WAP similar and WAP-SU tests reject the null when

WAP =
hΛn (S, T )

fSβ0
(S) · (1 + ‖T‖)−1 hTΛβ0,n

(T )
(6.39)

is larger than κn (t) and κn (s, t), respectively6.
Whether the instruments are weak or strong, we are able to obtain an approxi-

mation to (6.39). Define

n ·Qn(β, π) =
1

2

∥∥∥Σ−1/2
(
R− (a⊗ (Z ′Z)

1/2
π)
)∥∥∥2

=
1

2

∥∥∥[S : T ]−
[
(β − β0)Cβ0

: Dβ

]
(I2 ⊗ (Z ′Z)

1/2
π)
∥∥∥2

.

Lemma ?? in Appendix B shows that the WAP statistic is asymptotically equivalent
to∫

exp (−n ·Qn (β, π (β)))w (β, π (β))
∣∣∣(a′ ⊗ D̂1/2

Z

)
Σ−1
n

(
a⊗ D̂1/2

Z

)∣∣∣−1/2

dβ

exp
(
−S′S

2

)
[1 + ‖T‖]−1w (β0, π (β0))

∣∣∣(a′0 ⊗ D̂1/2
Z

)
Σ−1
n

(
a0 ⊗ D̂1/2

Z

)∣∣∣−1/2
, (6.40)

where the constrained maximum likelihood estimator (MLE) for π is

π (β) = (Z ′Z)
−1/2 [

(a′ ⊗ Ik)Σ−1
n (a⊗ Ik)

]−1
(a′ ⊗ Ik)Σ−1

n R and (6.41)

R = Σ1/2
n

[
[(b′0 ⊗ Ik) Σn (b0 ⊗ Ik)]−1/2 (b′0 ⊗ Ik) Σ

1/2
n

[(a′0 ⊗ Ik) Σ−1
n (a0 ⊗ Ik)]−1/2

(a′0 ⊗ Ik) Σ
−1/2
n

]′ [
S
T

]
.

6The use of a Laplace approximation of the ratio of weighted average under the alternative and
the null is standard under the usual asymptotics. What is perhaps not standard is the additional
term to absorb different rates and unify nonstandard asymptotics. Indeed, if we were to replace
hTΛ (t) only by hTΛ0,n

(t), the numerator and denominator in (6.37) would have different orders of
magnitude under strong instruments.
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The same approximation (6.40) holds for the ŴAP statistic where we replace S,
T , and Σ by their feasible versions given in (6.35). The resulting approximation to the

ŴAP statistic is a function of Ŝn, T̂n, Σn, and D̂Z . The critical values for the WAP
conditional tests and WAP-SU tests, respectively κn (t) and κn (s, t), are taken under

the assumption that the k-dimensional vector Ŝn has a standard normal distribution
(in practice, these critical values are also functions of the consistent estimators Σ̂n

and D̂Z as well, but we omit this dependence out of convenience). For example, for a
given weight density w (β, π), the critical function κn (t) is simply the 1− α quantile
of (6.40) given T = t.

We now find the asymptotic distribution for the WAP tests under the WIV asymp-
totics. We make the following assumption.

Assumption WIV-FA. (a) π = C/n1/2 for some non-stochastic vector C.
(b) β is a fixed constant for all n ≥ 1.
(c) k is a fixed positive integer that does not depend on n.

Under WIV, π (β) is op (1) and the WAP statistics behave the same as if the
weights were simply w (β, 0). As n → ∞, the finite-sample critical value functions
κn (t) and κn (s, t) respectively converge to their asymptotic counterparts κ∞ (t) and
κ∞ (s, t), which are based on (6.40) with w (β, π (β)) replaced by w (β, 0). We then
obtain the following convergence by the continuous mapping theorem and the joint
distribution[

S∞
T∞

]
∼ N

([
(β − β0)Cβ0,∞

Dβ0,∞

]
(DZ)1/2C, I2k

)
, where (6.42)

Cβ0,∞ = [(b′0 ⊗ Ik) Σ∞ (b0 ⊗ Ik)]−1/2
and

Dβ0,∞ =
[
(a′0 ⊗ Ik) Σ−1

∞ (a0 ⊗ Ik)
]−1/2

(a′0 ⊗ Ik) Σ−1
∞ (a⊗ Ik) .

Theorem 2. Under Assumptions WIV-FA and 1-3:

(i)
(
Ŝn, T̂n

)
→d (S∞, T∞) ;

(ii) P
(
WAP

(
Ŝn, T̂n

)
> κn

(
T̂n

))
→ P (WAP (S∞, T∞) > κ∞ (T∞)) ; and

(iii) P
(
WAP

(
Ŝn, T̂n

)
> κn

(
Ŝn, T̂n

))
→ P (WAP (S∞, T∞) > κ∞ (S∞, T∞)) .

Both WAP conditional and WAP-SU tests have asymptotic null rejection proba-
bilities being equal to α. The asymptotic power of the WAP tests has a complicated
form under WIV asymptotics. We can, of course, rely on numerical simulations to
compare their performance with other available tests. In Section 7, we present power
plots for testing the intertemporal elasticity of substitution based on the designs of
Yogo (2004).
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For strong instruments with local alternatives (SIV-LA), we consider the Pitman
drift where β is local to the null value β0 as n→∞.

Assumption SIV-LA. (a) β = β0 +B/n1/2 for some constant B ∈ R.
(b) π is a fixed non-zero k-vector for all n ≥ 1.
(c) k is a fixed positive integer that does not depend on n.

Under the SIV-LA asymptotics, the WAP statistics are shown to be increasing
transformations of the LR statistic. This result is general and holds for any prior
which satisfies Assumption 3.

Theorem 3. Suppose Assumptions SIV-LA and 1-3 hold. The long-run variance
Σ∞ is known, or unknown but consistently estimable by Σ̂n. Then the WAP similar
and WAP-SU tests are asymptotically equivalent to the LR test given in (2.6).

Comment. 1. In the proof, we apply the Laplace approximation twice, first
with respect to the integral for π and then for β. For the MM1 and MM2 statistics,
we can alternatively find a simple expression after integrating out the prior for the
instruments’ coefficients (expression (9.45) in Appendix A) with σ2 or ζ growing at
rate n and then applying the Laplace approximation for β. Both approaches coincide.

2. The SIV-LA behavior of the ECS (HAC-IV) test appears to be just a special
case of our theory using Laplace approximations.

3. For higher-order expansions, we can use Watson’s lemma; for references, we
recommend Olver (1997) for deterministic functions and Onatski, Moreira, and Hallin
(2014a, 2014b) for random functions.

4. Because Tn/n
1/2 →p Dβ0

D
1/2
Z π under SIV-LA, ‖Tn‖ diverges to infinity w.p.1

(with probability approaching one). The critical value functions for both the WAP
conditional and WAP-SU tests collapse then to the 1−α asymptotic (unconditional)
quantile. As a result, the WAP conditional and WAP-SU tests are asymptotically
similar and efficient under the SIV asymptotics.

The null rejection probability of WAP tests is α under WIV and SIV asymp-
totics. Pointwise convergence of the null rejection probability, of course, does not
necessarily imply the size is asymptotically α (in a uniform sense). Moreira (2003, p.
1037) suggests to use Parzen (1954) and Andrews (1986) to assure size is uniformly
controlled. A series of papers, including Andrews, Cheng, and Guggenberger (2011)
and Andrews and Guggenberger (2014a), develop several powerful methods to check
uniform size control and have been applied to many econometric models; see Andrews
and Guggenberger (2010), Andrews and Guggenberger (2014a), and Mills, Moreira,
and Vilela (2014b), among others. Conceivably, we can apply those methods to the
WAP statistics coupled with the critical value functions κn (t) and κn (s, t). This line
of research will be considered in a separate paper.
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We can also analyze the WAP tests under strong instruments with fixed alterna-
tives (SIV-FA). We follow Mills, Moreira, and Vilela (2014a) and make the following
assumption.

Assumption SIV-FA. (a) β = β0 +B for some nonzero B ∈ R.
(b) π is a fixed non-zero k-vector for all n ≥ 1.
(c) k is a fixed positive integer that does not depend on n.

It is natural to expect that the power converges to one if the parameter β is fixed.
However, not all tests have this property even in the IV model with homoskedastic
errors; see Andrews, Moreira, and Stock (2004) and Mills, Moreira, and Vilela (2014a)
for examples. Hence, it is important to establish consistency for the WAP tests.

If the parameter β is fixed, the WAP statistics are proportional to the exponential
of LR. Because LR/n converges to a non-zero constant, the WAP tests are consistent.
The next theorem formalizes this result.

Theorem 4. Suppose Assumptions SIV-FA and 1-3 hold. The long-run variance Σ∞
is known, or unknown but consistently estimable by Σ̂n. Then the following hold:

(i) 2.
(

log ŴAP
)
/n = L̂R/n+ op (1) ; and

(ii) L̂R/n = LR/n+ op (1)→ γ > 0.

Comment: If Dβ 6= 0, the functions κn (t) and κn (s, t) converge to a constant
obtained under SIV-FA. If Dβ = 0, the critical functions do not converge. However,
they are bounded, and so WAP tests are consistent.

7 Power Comparison

In this section, we follow I. Andrews (2015) who calibrates designs for power compar-
ison based on the work of Yogo (2004) on the elasticity of intertemporal substitution
in eleven developed countries.

Yogo (2004) tests the effect of interest rates on the level of aggregate demand
in an IV model. He considers a linear regression in which asset return affects con-
sumption growth, and the reverse form of this regression. In both equations, the
endogenous variable (consumption or asset return) can be correlated with the error
(innovation). To remedy this problem, he chooses four instruments: lagged values of
nominal interest rate, inflation, consumption growth, and log dividend-price ratio.

I. Andrews (2015) selects the real interest rate (rf in Yogo’s (2004) notation) as the
endogenous variable. Several tests perform well in his design, including MM2-SU, PI-
CLC, and (WAP similar) ECS tests. In fact, only in a few countries do these tests have
slightly different performance; see Section 7.2.1 of I. Andrews (2015). The difficulty in
assessing the relative performance of each test arises because the instruments are not
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particularly weak in this design. Indeed, the first-stage F-statistic reported by Yogo
(2004) (see his Table I) is below 10 in only four countries (Japan, Switzerland, United
Kingdom, and the United States). We instead join de Castro (2015) in choosing the
real stock return (re in Yogo’s (2004) notation) as the endogenous variable. The
instruments are considerably weaker in this design: the F-statistic is smaller than 4.18
in all countries, and always less than the F-statistic for interest rate. Our decision to
use stock returns aims to highlight the differences between the tests proposed for the
HAC-IV model. Apart from using stock returns instead of interest rates, our design
is akin to that of I. Andrews (2015). We use the Newey-West estimator with three
lags, and the resulting power curves are based on 5,000 Monte Carlo simulations. In
parallel to our asymptotic theory, we choose the ratio of the tuning parameters σ2 and
ζ to the sample size to be one-tenth for the MM1 and MM2 statistics, respectively.

Figure 3 plots power curves for the two-sided power envelope, Anderson-Rubin
(AR), score (LM), WAP similar MM1, WAP similar MM2, and ECS (HAC-IV) tests.
Although the AR and LM tests are unbiased, the MM1, MM2, and ECS tests perform
unreliably. To illustrate the problem, we mention three countries. For Australia, the
MM1 and ECS tests have low power for parts of the parameter space, while the MM2
test behaves more like a two-sided test. For France, the ECS test performs well, while
both MM1 and MM2 tests can have low power. For the USA, the ECS test has power
near zero and behaves more as a one-sided test while the MM1 and MM2 tests are
nearly unbiased. In some countries, these three tests have power even lower than the
Anderson-Rubin test (e.g., the ECS test for Germany and Italy).
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Figure 3: Power Comparison (WAP similar tests)
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We then compare power among two-sided tests which have arguably better per-
formance. Figure 4 plots power curves for the two-sided power envelope, MM1-SU,
MM2-SU, CQLR, CQLR-kron, and PI-CLC tests. All tests are adequate for two-sided
hypothesis testing. The PI-CLC and CQLR-kron test show some improvements over
the CQLR test for some, but not all, countries. The MM1-SU test behaves near the
MM2-SU test for several countries, but it has considerably lower power for Japan
and the United States7. The MM2-SU test outperforms these tests and when it occa-

7Conceivably, this power loss can be due to numerical integration over the whole real line. Power
may be improved by transforming the parameter β to the quantity θ = tan−1 (dβ/cβ). This im-
provement is left for future work.
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sionally has less power, the power loss is small. This application based on real data
supports our theoretical contribution and the use of the MM2-SU test in practice.

Figure 4: Power Comparison (two-sided tests)
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8 Concluding Remarks

In this paper, we study the instrumental variable (IV) model with one endogenous
regressor and heteroskedastic and autocorrelated (HAC) errors. The HAC-IV model
with a known variance matrix is simpler than the model with an unknown but con-
sistently estimable long-run variance. However, inference in both models is approx-
imately the same whether or not the instruments are weakly correlated with the
endogenous variable. This simplification allows us to develop a theory of optimal
two-sided tests when the error stochastic process is of unknown form.
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We find that a test that has correct size and is optimal under standard asymp-
totics may still have unacceptably low power in finite samples. This issue appears
in several econometric models. For the HAC-IV model, we solve this problem by
finding weighted-average power tests satisfying additional two-sided conditions. In
this paper, we consider two possibilities: the locally unbiased (LU) and strongly unbi-
ased (SU) conditions. While the local condition yields admissible tests, the stronger
condition is easier to implement. Better yet, the MM1-SU and MM2-SU tests have
power numerically very close to their LU versions. Numerical simulations also show
that the MM2-SU test outperforms other tests proposed for the HAC-IV model.

The only other paper that satisfactorily addresses optimality of two-sided tests in
the HAC-IV model is that of I. Andrews (2015). He explores linear combinations of
the Anderson-Rubin and score statistics, with weights dependent on the conditioning
statistic T . A class of these conditional linear combination (CLC) tests is unbiased
and admissible in the conditional problem. By proposing a minimax regret criterion,
he delivers a test which plugs in a nuisance-parameter estimator. There is some
power gained by broadening the focus beyond those three statistics. On the other
hand, we impose k additional constraints which are related to the SU condition. It
would be interesting to reduce the required computational time while maintaining
the power gains of the MM2-SU test by reducing the number of boundary conditions
when finding a WAP test.

Finally, the asymptotic theory based on Laplace approximations, developed in
this paper, is easily adaptable to other econometric models. For the HAC-IV model,
it relies on priors for the parameters β and π being insensitive to the sample size.
For the MM1 and MM2 weights, this implies that the tuning parameters σ2 and ζ
(used in the prior for µ = (Z ′Z)1/2 π) eventually grow at the sample size n. Some
power gains with weak instruments may be possible when the tuning parameters are
held constant. Another alternative is to find an automatic rate for σ2 and ζ using
a plug-in method. For example, we could let these parameters be proportional to
either ‖T‖2 or n · ‖π (β0)‖2. These quantities are stochastically bounded under weak
instruments and grow at the rate n under strong instruments (which assures asymp-
totic optimality). Since the constrained MLE π (β0) is a one-to-one transformation
of T , these modifications of WAP-SU tests are still similar and uncorrelated with the
pivotal statistic S (hence, satisfy the SU Condition)8. We will consider this possibility
in future work.

9 Appendix A: Derivation of Test Statistics

In this section, we derive the likelihood ratio (LR), Lagrange multiplier (or score),
and both MM statistics.

8See Moreira (2001, 2009) for selecting among similar tests without creating size distortions; the
argument uses completeness of T and is applicable to the SU condition as well.
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9.1 The LR statistic

For the statistic R =
[
vec (Z ′Z)−1/2 Z ′Y

]
, the log-likelihood is proportional to

Ln (β, µ) = −1

2

(
R− (a⊗ Ik)µ

)′
Σ−1

(
R− (a⊗ Ik)µ

)
. (9.43)

Taking the derivative with respect to µ,

∂Ln (β, µ)

∂µ
= (a′ ⊗ Ik)Σ−1

(
R− (a⊗ Ik)µ

)
= 0,

yields the constrained maximum likelihood estimator (MLE)

µ (β) =
[
(a′ ⊗ Ik)Σ−1(a⊗ Ik)

]−1
(a′ ⊗ Ik)Σ−1R.

The concentrated log-likelihood function, Lcn (β) is

Ln (β, µ (β)) = −1

2
R
′
Σ−1/2MΣ−1/2(a⊗Ik)Σ

−1/2R (9.44)

= −1

2
R
′
Σ−1R +

1

2
R
′
Σ−1/2NΣ−1/2(a⊗Ik)Σ

−1/2R.

The LR statistic follows from

LR = 2 ·
[
max
β

Ln (β, µ (β))− Ln (β0, µ (β0))

]
= max

β
R
′
Σ−1/2NΣ−1/2(a⊗Ik)Σ

−1/2R−R′Σ−1/2NΣ−1/2(a0⊗Ik)Σ
−1/2R.

9.2 The LM statistic

The score is given by

∂Lcn (β)

∂β
= R

′
Σ−1(a⊗ Ik)

[
(a′ ⊗ Ik)Σ−1(a⊗ Ik)

]−1
(e′1 ⊗ Ik)Σ−1R

−1

2
R
′
Σ−1(a⊗ Ik)

[
(a′ ⊗ Ik)Σ−1(a⊗ Ik)

]−1

×
{

(e′1 ⊗ Ik)Σ−1(a⊗ Ik) + (a′ ⊗ Ik)Σ−1(e1 ⊗ Ik)
}

×
[
(a′ ⊗ Ik)Σ−1(a⊗ Ik)

]−1
(a′ ⊗ Ik)Σ−1R.

At β = β0:

∂Lcn (β0)

∂β
= R

′
Σ−1(a0 ⊗ Ik)

[
(a′0 ⊗ Ik)Σ−1(a0 ⊗ Ik)

]−1

×(e′1 ⊗ Ik)Σ−1/2MΣ−1/2(a0⊗Ik)Σ
−1/2 [(e1, e2)⊗ Ik]R

= R
′
Σ−1(a0 ⊗ Ik)

[
(a′0 ⊗ Ik)Σ−1(a0 ⊗ Ik)

]−1

×(e′1 ⊗ Ik)Σ−1/2MΣ−1/2(a0⊗Ik)Σ
−1/2 ((e1, a0 − β0e1)⊗ Ik)R.
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Note that

C−1
β0

= (e′1 ⊗ Ik)Σ−1(e1 ⊗ Ik)− (e′1 ⊗ Ik)Σ−1(a0 ⊗ Ik)
×
[
(a′0 ⊗ Ik)Σ−1(a0 ⊗ Ik)

]−1
(a′0 ⊗ Ik)Σ−1(e1 ⊗ Ik).

Indeed, define

[X1, X2] =
[
Σ−1/2(e1 ⊗ Ik),Σ−1/2(a0 ⊗ Ik)

]
= Σ−1/2 [e1, a0]⊗ Ik.

Using

(
[X1, X2]′ [X1, X2]

)−1
=

(
X ′1X1 X ′1X2

X ′2X1 X ′2X2

)−1

=

(
X11 X12

X21 X22

)
,

we obtain(
[X1, X2]′ [X1, X2]

)−1
=

[(
[e1,a0]′ ⊗ Ik

)
Σ−1 ([e1, a0]⊗ Ik)

]−1

=
(
[e1, a0]−1 ⊗ Ik

)
Σ
(
[e1,a0]−1′ ⊗ Ik

)
=

((
1 −β0

0 1

)
⊗ Ik

)
Σ

((
1 0
−β0 1

)
⊗ Ik

)
.

Therefore, the top-left submatrix X11 of the matrix
(
[X1, X2]′ [X1, X2]

)−1
equals Cβ0

:

(e′1 ⊗ Ik)Σ−1/2MΣ−1/2(a⊗Ik)Σ
−1/2e1 = [(b′0 ⊗ Ik)Σ(b0 ⊗ Ik)]−1

.

We obtain

∂Lcn
∂β

= R
′
Σ−1(a0 ⊗ Ik)

[
(a′0 ⊗ Ik)Σ−1(a0 ⊗ Ik)

]−1

× [(b′0 ⊗ Ik)Σ(b0 ⊗ Ik)]−1
(b′0 ⊗ Ik)R

= S ′Cβ0
D−1
β0
T.

We can standardize it by a consistent estimator of the asymptotic variance. In par-
ticular, we can choose T ′D−1

β0
C2
β0
D−1
β0
T and obtain the LM statistic.

9.3 The MM statistics

The weighting functions are chosen after approximating the covariance matrix Σ
by the Kronecker product Ω ⊗ Φ. Let ‖Σ‖F = (tr (Σ′Σ))1/2 denote the Frobenius
norm of Σ. For a positive-definite covariance matrix Σ, we rely on Van Loan and
Ptsianis (1993, p. 14) to find symmetric and positive definite matrices Ω and Φ with
dimensions 2× 2 and k × k which minimize ‖Σ− Ω0 ⊗ Φ0‖F .
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For the MM1 statistic h1 (s, t), we choose Λ1 (β, µ) to be N (β0, 1) × N (0, σ2Φ).
For the prior µ ∼ N (0, σ2Φ), the integrated likelihood is

(2pi)−k |Ψβ,σ2|−1/2 exp

(
−

(s′, t′) Ψ−1
β,σ2 (s′, t′)′

2

)
(9.45)

where the 2k× 2k covariance matrix is given by (2.11). The integrated likelihood for
S and T is then

h1 (s, t) = (2pi)−k−1/2

∫ ∞
−∞
|Ψβ,σ2|−1/2 exp

(
−

(s′, t′) Ψ−1
β,σ2 (s′, t′)′ + (β − β0)2

2

)
dβ.

For the MM2 statistic h2 (s, t), we first make a change of variables from β to θ
given by tan (θ) = dβ/cβ. It is now convenient to change variables:

(cos (θ) , sin (θ))′ = lβ/ ‖lβ‖ .

Using equation (2.8) of AMS06, we can show that the one-to-one mapping β (θ) is

β = β0 +
b′0Ωb0

e′2Ωb0 + tan (θ) · |Ω|1/2
.

We then choose the density for θ and µ to be Unif [−pi, pi] × N(0,
∥∥lβ(θ)

∥∥−2
ζ · Φ),

where lβ = (cβ, dβ)′. For the prior on µ, the integrated likelihood is

(2pi)−k
∣∣∣∣Ψβ,‖lβ‖−2

ζ

∣∣∣∣−1/2

exp

−(s′, t′) Ψ−1

β,‖lβ‖−2
ζ

(s′, t′)′

2

 .

The integrated likelihood for S and T using the prior on both µ and θ yields

h2 (s, t) = (2pi)−(k+1)

∫ pi

−pi

∣∣∣∣Ψβ(θ),‖lβ(θ)‖−2
ζ

∣∣∣∣−1/2

exp

−(s′, t′) Ψ−1

β(θ),‖lβ(θ)‖−2
ζ

(s′, t′)′

2

 dθ.
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