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CENTRAL LIMIT THEOREMS AND BOOTSTRAP IN
HIGH DIMENSIONS

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

ABSTRACT. This paper derives central limit and bootstrap theorems for
probabilities that sums of centered high-dimensional random vectors hit
hyperrectangles and sparsely convex sets. Specifically, we derive Gauss-
ian and bootstrap approximations for probabilities P(rfl/2 X €
A) where X1,...,X, are independent random vectors in R” and A is
a hyperrectangle, or, more generally, a sparsely convex set, and show
that the approximation error converges to zero even if p = p,, — oo as
n — oo and p > n; in particular, p can be as large as O(eC"C) for some
constants ¢, C' > 0. The result holds uniformly over all hyperrectangles,
or more generally, sparsely convex sets, and does not require any re-
striction on the correlation structure among coordinates of X;. Sparsely
convex sets are sets that can be represented as intersections of many
convex sets whose indicator functions depend only on a small subset of
their arguments, with hyperrectangles being a special case.

1. INTRODUCTION

Let X4, ..., X, be independent random vectors in RP where p > 3 may be
large or even much larger than n. Denote by X;; the j-th coordinate of X,
so that X; = (Xj1,...,X;p)". We assume that each X; is centered, namely
E[X;;] =0, and E[XZQJ} <ooforalli=1,...,nand j =1,...,p. Define the
normalized sum

S = (S S ZX

We consider Gaussian approximation to S;X, and to this end, let Y1,...,Y,
be independent centered Gaussian random vectors in RP such that each Y;
has the same covariance matrix as Xj, that is, Y; ~ N (0, E[X;X]]). Define
the normalized sum for the Gaussian random vectors:

Sy = (Sh,....80) ZY
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We are interested in bounding the quantity

pu(A) = sup [P(S; € A) = P(S, € 4)|, (1)
AcA

where A is a class of Borel sets in RP.

Bounding p,, (A) for various classes A of sets in R?, with a special emphasis
on explicit dependence on the dimension p in the bounds, has been studied
by a number of authors; see, for example, [6], [7], [8], [23], [29], [35], [36], [37],
and [38]; we refer to [18] for an exhaustive literature review. Typically, we
are interested in how fast p = p,, — oo is allowed to grow while guaranteeing
pn(A) — 0. In particular, Bentkus [7] established one of the sharpest results
in this direction which states that when X1, ..., X, arei.i.d. with E[X;X]] =
I (I denotes the p x p identity matrix),

E[Hjcﬁm?)y )

where C)(.A) is a constant that depends only on p and A; for example, Cp(A)
is bounded by a universal constant when A is the class of all Euclidean balls
in RP, and C,(A) < 400p*/* when A is the class of all Borel measurable
convex sets in RP. Note, however, that this bound does not allow p to be
larger than n once we require p,(A) — 0. Indeed by Jensen’s inequality,
when E[X,X!] = I, E[| X1]]*] > (B[|X1]?])*/? = p*/?, and hence in order
to make the right-hand side of (2) to be o(1), we at least need p = o(n'/3)
when A is the class of Euclidean balls, and p = o(n?7) when A is the
class of all Borel measurable convex sets. Similar conditions are needed in
other papers cited above. It is worthwhile to mention here that, when A
is the class of all Borel measurable convex sets, it was proved by [29] that
pn(A) > cE[||X1]|3]/+/n for some universal constant ¢ > 0.

In modern statistical applications, such as high dimensional estimation
and multiple hypothesis testing, however, p is often larger or even much
larger than n. It is therefore interesting to ask whether it is possible to
provide a nontrivial class of sets A in RP for which we would have

pn(A) < Cp(A)

pn(A) — 0 even if p is potentially larger or much larger than n. (3)

In this paper, we derive bounds on p,(A) for A = A™ being the class
of all hyperrectangles, or more generally for A C A% (a,d) being a class of
simple convex sets, and show that these bounds lead to results of type (3).
We call any convex set a simple convex set if it can be well approximated
by a convex polytope whose number of facets is (potentially very large but)
not too large; see Section 3 for details. An extension to simple convex sets is
interesting because it allows us to derive similar bounds for A = A% (s) being
the class of (s-)sparsely convex sets. These are sets that can be represented
as an intersection of many convex sets whose indicator functions depend
nontrivially at most on s elements of their arguments (for some small s).

The sets considered are useful for applications to statistics. In particular,
the results for hyperrectangles and sparsely convex sets are of importance
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because they allow us to approximate the distributions of various key sta-
tistics that arise in inference for high-dimensional models. For example,
the probability that a collection of Kolmogorov-Smirnov type statistics falls
below a collection of thresholds

P (néz}xSflg < tg for all k = 1,...,5) :P(Sf € A)
J€Jk

can be approximated by P(SY € A) within the error margin p,(A™); here
{Jx} are (non-intersecting) subsets of {1,...,p}, {tx} are thresholds in the
interval (—o0,00), £ > 1 is an integer, and A € A™ is a hyperrectangle of
the form {w € RP : maxjej, w; <ty for all k =1,...,x}. Another example
is the probability that a collection of Pearson type statistics falls below a
collection of thresholds

P(H(s,ig)jgkuz <ty forallk=1,... ,Fv) =P (SX e 4),

which can be approximated by P(SY € A) within the error margin p,, (A%(s));
here {J} are subsets of {1,...,p} of fixed cardinality s, {tx} are thresholds
in the interval (0,00), k > 1 is an integer, and A € A%(s) is a sparsely
convex set of the form {w € RP : ||(wj)jes > < tx forall k =1,...,x}. In
practice, as we demonstrate, the approximations above could be estimated
using the empirical or multiplier bootstraps.

The results in this paper substantially extend those obtained in [17] where
we considered the class A = A™ of sets of the foom A = {w € RP :
maxjcyw; < a} for some a € R and J C {1,...,p}, but in order to obtain
much better dependence on n, we employ new techniques. Most notably, as
the main ingredient in the new proof, we employ an argument inspired by
Bolthausen [10]. Our paper builds upon our previous work [17], which in
turn builds on a number of works listed in the bibliography (see [18] for a
detailed review and links to the literature).

The organization of this paper is as follows. In Section 2, we derive
a Central Limit Theorem (CLT) for hyperrectangles in high dimensions;
that is, we derive a bound on p,(A) for A = A™ being the class of all
hyperrectangles and show that the bound converges to zero under certain
conditions even when p is potentially larger or much larger than n. In Section
3, we extend this result by showing that similar bounds apply for A C
A% (a,d) being a class of simple convex sets and for A = AP(s) being the
class of all s-sparsely convex sets. In Section 4, we derive high dimensional
empirical and multiplier bootstrap theorems that allow us to approximate
P(SY € A) for A € A*, A%(a,d), or A®(s) using the data Xi,..., X,.
In Section 5, we state an important technical lemma, which constitutes the
main part of the derivation of our high dimensional CLT. Finally, we provide
all the proofs as well as some technical results in the Appendix.

1.1. Notation. For a € R, [a] denotes the largest integer smaller than or
equal to a. For w = (wy,...,wp) € RP and y = (y1,...,yp) € RP, we write
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w<yifw; <y;forall j=1,...,p. Fory = (y1,...,yp) € R? and a € R,
we write y+a = (y1+a,...,yp+a). Throughout the paper, E,[] denotes the
average over index ¢ = 1,...,n; that is, it simply abbreviates the notation
n~t3°" []. For example, E,fz;] = nt Y0 2. We also write XJ' :=
{X1,...,X,}. For v € RP| we use the notation ||v||o := ?:1 1{v; # 0} and
loll = 25—, v]z)l/Q. For a > 0, we define the function v, : [0, 00) — [0, 00)
by ¥q(z) := exp(z®) — 1, and for a real-valued random variable &, we define

1€]lpe := inf{A > 0= E[a(|€]/A)] < 1}

For av € [1,00), || - ||, is an Orlicz norm, while for o € (0,1), || - ||y, is not a
norm but a quasi-norm, that is, there exists a constant K, depending only
on a such that [[&1 + &y, < Ka(|&1]l¢a + [|&2]|4. ). Throughout the paper,
we assume that n > 4 and p > 3.

2. HigH DIMENSIONAL CLT FOR HYPERRECTANGLES

This section presents a high dimensional CLT for hyperrectangles. We
begin with presenting an abstract theorem (Theorem 2.1); the bound in
Theorem 2.1 is general but depends on the tail properties of the distri-
butions of the coordinates of X; in a nontrivial way. Next we apply this
theorem under simple moment conditions and derive more explicit bounds
(Proposition 2.1).

Let A™ be the class of all hyperrectangles in RP; that is, A™ consists of
all sets A of the form

A={weRl:q; <w; <bjforalj=1,...,p} (4)

for some —oo < a; < b; < o0, 5 =1,...,p. We will derive a bound on
pn(A*), and show that under certain conditions it leads to p,(A™) — 0
even when p = p,, is potentially larger or much larger than n.

To describe the bound, we need to prepare some notation. Define

n

Ly = E[| X,;|?

n gfgp. - [1X351°]/m,
1=

and for ¢ > 1, define
1 13 .
V(@)= Y o 1651 { e 11> v/ aotoen) | 6)

Similarly, define M, y(¢) with X;;’s replaced by Y;;’s in (5), and let
M (9) == M x(¢) + My,y (9).
The following is the first main result of this paper.

Theorem 2.1 (Abstract High Dimensional CLT for Hyperrectangles). Sup-
pose that there exists some constant b > 0 such that n=1 Y ", E[Xf]] >
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forallj=1,...,p. Then there exist constants K1, K2 > 0 depending only b
such that for every constant L, > L,, we have

—9 1/6
L,log"p L Ma(6n)
T n L.

pn(A™) < K ( (6)

with ,
R N YL
L lo
b = Ko <ngp> , (7)

n

Remark 2.1 (Key features of Theorem 2.1). (i) The bound (6) should be
contrasted with Bentkus’s [7] bound (2). For the sake of exposition, assume
that the vectors Xj,..., X, are such that E[XZQJ] = 1 and for some sequence
of constants B,, > 1, |X;j| < B, foralli=1,...,nand j =1,...,p. Then
it can be shown that the bound (6) reduces to

pu(A) < K (n B2 10g" (o)) " s)

for some universal constant K; see Proposition 2.1 below. Importantly, the
right-hand side of (8) converges to zero even when p is much larger than
n; indeed we just need B2 log”(pn) = o(n) to make p,(A™) — 0, and if in
addition B,, = O(1), the condition reduces to logp = o(n'/7). In contrast,
Bentkus’s bound (2) requires \/p = o(n'/7) to make p,(A) — 0 when A is
the class of all Borel measurable convex sets. Hence by restricting the class
of sets to the smaller one, A = A, we are able to considerably weaken the
requirement on p, replacing ,/p by log p.

(ii) On the other hand, the bound in (8) depends on n through n=/6, so
that our Theorem 2.1 does not recover the Berry-Esseen bound when p is
fixed. However, given that the rate n~1/6 is optimal (in a minimax sense) in
CLT in infinite dimensional Banach spaces (see [5]), the factor n~1/6 seems
nearly optimal in terms of dependence on n in the high-dimensional settings
as considered here. In addition, examples in [19] suggest that dependence
on B, is also optimal. Hence we conjecture that up to a universal constant,

(nB2008p)") "

for some @ > 0 is an optimal bound (in a minimax sense) in the high di-
mensional setting as considered here. The value a = 3 could be motivated
by the theory of moderate deviations for self-normalized sums when all the
coordinates of X; are independent. [

Remark 2.2 (Relation to previous work). Theorem 2.1 extends Theorem
2.2 in [17] where we derived a bound on p,(A") with A™ C A" consisting
of all sets of the form

A={weRP:w;<aforall j=1,...,p}
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for some a € R. In particular, we improve the dependence on n from n~—1/8
in [17] to n~1/6. In addition, we note that extension to the class A from the
class A™ is not immediate since in both papers we assume that Var(S’,ig) is

bounded below from zero uniformly in j = 1,..., p, so that it is not possible
to directly extend the results in [17] to the class of hyperrectangles A4 = A™®
by just rescaling the coordinates in S-X. ]

The bound (6) depends on M, (¢,) whose values are problem specific.
Therefore, we now apply Theorem 2.1 in two specific examples that are
most useful in mathematical statistics (as well as other related fields such
as econometrics). Let b,q > 0 be some constants, and let B, > 1 be a
sequence of constants, possibly growing to infinity as n — co. Assume that
the following conditions are satisfied:

(M.1) n= 1570, E[XEJ] >bforallj=1,...,p,
(M.2) n= 1Y B[ X% < BE forallj=1,...,p and k =1,2.
We consider examples where one of the following conditions holds:
(E.1) Elexp(|Xi;l/Bn)] <2 foralli=1,...,nandj=1,...,p,
(E.2) E[(maxi<j<p |Xij|/Bn)? <2 foralli=1,...,n,
In addition, denote

B21 7 1/6 321 3 1/3
PO _ < » log (Zm)> D@ — ( »log (pn)> ' ()

An application of Theorem 2.1 under these conditions leads to the following
proposition.

n n ng — nl—2/q

Proposition 2.1 (High Dimensional CLT for Hyperrectangles). Suppose
that conditions (M.1) and (M.2) are satisfied. Then under (E.1), we have

pn(A™) < CDLY,
where the constant C' depends only on b; while under (E.2), we have
re 1 2
pn(A™) < C{D{ + DQ)},

where the constant C' depends only on b and q.

3. HicH DIMENSIONAL CLT FOR SIMPLE AND SPARSELY CONVEX SETS

In this section, we extend the results of Section 2 by considering larger
classes of sets; in particular, we consider classes of simple convex sets, and
obtain, under certain conditions, bounds that are similar to those in Section
2 (Proposition 3.1). Although an extension to simple convex sets is not
difficult, in high dimensional spaces, the class of simple convex sets is rather
large. In addition, it allows us to derive similar bounds for classes of sparsely
convex sets. These classes in turn may be of interest in statistics where
sparse models and techniques have been of canonical importance in the past
years.
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3.1. Simple convex sets. Consider a closed convex set A C RP. This set
can be characterized by its support function:

Sa: Pt S RU{oo), v Sa(v) :=sup{w'v : w € A},

where SP~! := {v € R? : ||v|| = 1}; in particular, A = Nyegp-1{w € RP :
w'v < Sp(v)}. We say that the set A is m-generated if it is generated by the
intersection of m half-spaces (that is, A is a convex polytope with at most
m facets). The support function Sy of such a set A can be characterized
completely by its values {Sa(v) : v € V(A)} for the set V(A) consisting of
m unit vectors that are outward normal to the facets of A. Indeed,

A = Nyeyay{w € RP : w'v < Sx(v)}.
For € > 0 and an m-generated convex set A™, we define

A" = Nyepamy{w € R s w'v < Sam (v) + €},
and we say that a convex set A admits an approximation with precision e
by an m-generated convex set A™ if
A" C AC A™E

Let a,d > 0 be some constants. Let 4% (a,d) be the class of all Borel sets
A in RP that satisfy the following condition:

(C) The set A admits an approzimation with precision € = a/n by an
m-generated convex set A™ where m < (pn)?.

We refer to sets A that satisfy condition (C) as simple convex sets. Note
that any hyperrectangle A € A" satisfies condition.(C) witha =0and d =1
(recall that n > 4), and so belongs to the class A%(0,1). For A € A%(a,d),
let A™(A) denote the corresponding set A™ that appears in condition (C).

We will consider subclasses A of the class A%(a,d) consisting of sets A
such that for A™ = Am(A) and Xz = (Xi17' . -;Xim)/ = (v/Xi>veV(Am)7
i=1,...,n, the following conditions are satisfied:

(M.1) n=t S0 E[X2] > b forallj=1,...,m,
(M.2') LSS B[| X% < BE forallj=1,...,m and k = 1,2,
and, in addition, one of the following conditions is satisfied:
(E.1") E[exp(|)zij|/Bn)] <2foralli=1,....,nandj=1,...,m,
(E.2") E[(maxi<j<m |Xij|/Bn)? <2 foralli=1,...,n.

Conditions (M.1"), (M.2), (E.1'), and (E.2’) are similar to those used in

the previous section but they apply to X1, ..., X, rather than to X1,..., X,.

Recall the definition of p,(A) in (1) and the definitions of DY and DT(E’()J
in (9). An extension of Proposition 2.1 leads to the following result.

Proposition 3.1 (High Dimensional CLT for Simple Convex Sets). Let A
be a subclass of A% (a,d) such that conditions (M.1"), (M.2'), and (E.1") are
satisfied for every A € A. Then

pn(A) < CDY, (10)
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where the constant C depends only on a, b, and d. If, instead of condition
(E.1"), condition (E.2") is satisfied for every A € A, then

1 2
pa(A) < C{DY) + D)}, (11)
where the constant C depends only on a, b, d, and q.

It is worthwhile to mention that a notable example where the transformed
variables X; = (v'X;)yep(am) satisfy condition (E.1") is the case where each
X; obeys a log-concave distribution. Recall that a Borel probability measure
w on RP is [og-concave if for any compact sets Aj, Ay in RP and A € (0, 1),

POAL + (1= N Ag) > (A1) u(A2) 2,
where A1+ (1= NAs={ z+ (1 - Ny :z € A,y € As}.

Corollary 3.1 (High Dimensional CLT for Simple Convex Sets with Log—
concave Distributions). Suppose that each X; obeys a centered log-concave
distribution on RP and that all the eigenvalues of E[X; X]] are bounded from
below by a constant k1 > 0 and from above by a constant ko > ki for every
i1=1,...,n. Then

pn(A%(a,d)) < Cn~01og™5 (pn),
where the constant C depends only on a,b,d, k1, and ks.

3.2. Sparsely convex sets. We next consider classes of sparsely convex
sets defined as follows.

Definition 3.1 (Sparsely convex sets). For integer s > 0, we say that
A C RP is an s-sparsely conver set if there exist an integer ) > 0 and
convex sets A, CRP,¢g=1,...,Q, such that A = ﬁ(?:lAq and the indicator
function of each Ay, w— I(w € A,), depends at most on s elements of its
argument w = (w1, ..., wp) (which we call the main components of 4,). We

also say that A = O(?:lAq is a sparse representation of A.

Observe that for any s-sparsely convex set A C RP, the integer @) in
Definition 3.1 can be chosen to satisfy @ < CF < p*, where C¥ is the
number of combinations of size s from p objects. Indeed, if we have a sparse
representation A = ﬂ(?:lAq for Q > C¥, then there are at least two sets Ay,
and Ay, with the same main components, and hence we can replace these
two sets by one convex set A, N Ay with the same main components; this
procedure can be repeated until we have Q < C%.

Example 3.1. The simplest example satisfying Definition 3.1 is a hyper-
rectangle as in (4), which is a 1-sparsely convex set. Another example is the
set

A={weRl :vw<ayforall k=1,...,m}

for some unit vectors vy € SP~! and coefficients ay, k = 1,...,m. If the
number of non-zero elements of each v does not exceed s, this A is an
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s-sparsely convex set. Yet another example is the set
A={weRP:qa; <wj <b; for all j =1,...,p and w? 4+ w3 < ¢}

for some coefficients —oo < a; < b; <oo,j=1,...,p,and 0 < ¢ < oco. This
A is a 2-sparsely convex set. A more complicated example is the set

A:{wERp:aj§wj§bj,w,%+wl2§ckl, for all j,k,l=1,...,p}

for some coefficients —oo < a; < b; < 00, 0 < ¢y < 00, 5, k1 =1,...,p.
This A is a 2-sparsely convex set. Finally, consider the set

A={weRP: |(w))jes|® <tp forall k=1,..., K},

where {J} are subsets of {1,...,p} of fixed cardinality s, {t;} are thresholds
in (0,00), and 1 < x < C¥ is an integer. This A is an s-sparsely convex set.
[

As the proof of Proposition 3.2 below reveals, s-sparsely convex sets are
closely related to simple convex sets. In particular, we can split any s-
sparsely convex set A C RP into AN B and AN B’ for a cube B = {w €
RP : maxi<j<, |w;| < R}. Setting R = pn®/?, it is easy to show that both
P(SX € AN B') and P(SY € AN B') are negligible. On the other hand,
AN B is a simple convex set with parameters ¢ = 1 and d depending only s
as long as AN B contains a ball of radius 1/n, and if AN B does not contain
such a ball, both P(SX € AN B) and P(SY € AN B) are also negligible.

Fix an integer s > 0, and let A°P(s) denote the class of all s-sparsely
convex Borel sets in RP. We assume that the following condition is satisfied:

(M.1") n= 13" E[(v'X:)%] > b for all v € SP~Y with ||v]|o < s.
Then we have the following proposition:
Proposition 3.2 (High Dimensional CLT for Sparsely Convex Sets). Sup-

pose that conditions (M.1") and (M.2) are satisfied. Then under (E.1), we
have

pn(A®(s)) < CDY, (12)
where the constant C' depends only on b and s; while under (E.2), we have
pu(AP(s)) < C{DV + D)}, (13)

where the constant C depends only on b, q, and s.

Remark 3.1 (Dependence on s). In many applications, it may be of in-
terest to consider s-sparsely convex sets with s = s, depending on n and
potentially growing to infinity: s = s, — co. It is therefore interesting to
derive the optimal dependence of the constant C' in (12) and (13) on s. We
leave this question for future work. ]
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4. EMPIRICAL AND MULTIPLIER BOOTSTRAP THEOREMS

So far we have shown that the probabilities P(S;X € A) can be well
approximated by the probabilities P(SY € A) under weak conditions for hy-
perrectangles A € A, simple convex sets A € A% (a, d), or sparsely convex
sets A € A®(s). In practice, however, the covariance matrix of SY is typi-
cally unknown, and direct computation of P(S) € A) is infeasible. Hence,
in this section, we derive high dimensional bootstrap theorems which allow
us to approximate the probabilities P(SY € A), and hence P(SX ¢ A),
by data-dependent techniques. We consider here multiplier and empirical
bootstrap methods (we refer to [32] for various versions of bootstraps).

4.1. Multiplier bootstrap. We first consider the multiplier bootstrap.
Let e1,...,e, be a sequence of i.i.d. N(0,1) random variables that are

independent of X7 = {X;,..., X,}. Let X := (Xy,...,X,) :=E,[X;], and
consider the normalized sum:

e e e 1 - Y
SN = (SeX, ..., 8X) = %Zei(Xi - X).
=1

We are interested in bounding
pn'P(A) = sup [P(S; € A| XT) = P(S, € A)
AeA

for A= A", AP(s), or A C ASi(a7 d).
We begin with the case A C A% (a,d). Let

n n
So=nt ) (X - X)X - X)), Si=n') EXX])
i=1 i=1
Observe that E[SX(5¢X) | X7 = S and E[SY(SY)] = . For A C
A% (a, d), define
A, (A) = su max V(S = 2oyl
A = S e ay [107 22
Then we have the following theorem for classes of simple convex sets.

Theorem 4.1 (Abstract Multiplier Bootstrap Theorem for Simple Convex
Sets). Let A be a subclass of A% (a,d) such that condition (M.1') is satisfied
for every A € A. Then for every constant A, > 0, on the event A, (A) <
A, we have

—~1/3 _
ot P (A) < € { B, 1og? (pn) + 0~ log!2(pm) |
where the constant C depends only on a,b, and d.

Remark 4.1 (Case of hyperrectangles). From the proof of Theorem 4.1, we
have the following bound when A = A™: under (M.1), for every constant
Ay > 0, on the event A, < A,, we have

pMB( Ay < CAY log?/? p,
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where the constant C' depends only on b, and A, , is defined by

A = max i'k—E'k
r 1Sj,1c3p| I sl

where ijk and ¥j;, are the (7, k)-th elements of 3 and Y, respectively. =

Next, we derive more explicit bounds on pMP(A) for A C A% (a, d) under
suitable moment conditions as in the previous section. We will consider sets
A € A%(a,d) that satisfy the following condition:

(S) The set A™ = A™(A) satisfies ||v]jo < s for all v e V(A™).
Condition (S) requires that the outward unit normal vectors to the hy-
perplanes forming the m-generated convex set A™ = A™(A) are sparse.
Assuming that (S) is satisfied for all A € A C A% (a,d) helps to control
Ap(A).

For a € (0,e 1), define

D) — (B0 ) 108’ 1/e)\ 1 o) (BRlog(pn))
n (04 - n 5 n,q Q) = a2/‘In1—2/q .

Then we have the following proposition.

Proposition 4.1 (Multiplier Bootstrap for Simple Convex Sets). Let a €
(0,e71) be a constant, and let A be a subclass of A% (a, d) such that conditions
(S) and (M.1") are satisfied for every A € A. In addition, suppose that
condition (M.2) is satisfied. Then under (E.1), we have with probability at
least 1 — a,

P (A) < CDM (),

where the constant C depends only on a,b,d and s; while under (E.2), we
have with probability at least 1 — «,

pr'P(A) < C{D{P () + DY) ()},
where the constant C depends only on a,b,d,q, and s.

Remark 4.2 (Bootstrap theorems in a.s. sense). Proposition 4.1 leads to
the following multiplier bootstrap theorem in the a.s. sense. Suppose that
A is a subclass of A% (a, d) as in Proposition 4.1 and that (M.2) is satisfied.
We allow p = p,, — oo and B,, — o0 as n — oo but assume that a,b,d, q, s
are all fixed. Then by applying Proposition 4.1 with o = a,, = n~!(logn)~2,
together with the Borel-Cantelli lemma (note that >-°° , n~!(logn)~2 < o),
we have with probability one

{0{D9>(an)} under (E.1)

MB — '
A =00 ) v D) e (),
)

and it is routine to verify that D,(Ll)(an) = o(1) if B2log"(pn) = o(n), and
D7(12,2](an) = o(1) if B2(log?(pn))log*?n = o(n'~*/9). Similar conclusions
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also follow from other propositions and corollaries below dealing with dif-
ferent classes of sets and approximations based on multiplier and empirical
bootstraps. ]

When each X; obeys a log-concave distribution, we have the following
corollary analogous to Corollary 3.1. In this case, instead of condition (S),
we will assume that A C A%(a,d) is such that the cardinality of the set
UaeaV(A™(A)) is at most (pn)?.

Corollary 4.1 (Multiplier Bootstrap for Simple Convex Sets with Log-con-
cave Distributions). Let a € (0,e™!) be a constant, and let A be a subclass
of A% (a,d) such that the cardinality of the set UacAV(A™(A)) is at most
(pn)d. Suppose that each X; obeys a centered log-concave distribution on RP
and that all the eigenvalues of E[X; X[] are bounded from below by a constant
k1 > 0 and from above by a constant ko > k1 for every i = 1,...,n. Then
with probability at least 1 — «,

B (A) < Cn 0 (10g™5 (pn)) log'*(1/a),
where the constant C depends only on a,d, k1, and ks.
When A = A™, we have the following corollary.

Corollary 4.2 (Multiplier Bootstrap for Hyperrectangles). Let a € (0,e1)
be a constant, and suppose that conditions (M.1) and (M.2) are satisfied.
Then under (E.1), we have with probability at least 1 — a,

P (A7) < CDY (),

where the constant C' depends only on b; while under (E.2), we have with
probability at least 1 — a,

pa' P (A%) < D) () + D))},

n,

where the constant C depends only on b and q.

Finally, we derive explicit bounds on pMZ(A) in the case where A is the
class of all s-sparsely convex sets: A = A% (s).

Proposition 4.2 (Multiplier Bootstrap for Sparsely Convex Sets). Let
a € (0,e7!) be a constant. Suppose that conditions (M.1”) and (M.2) are
satisfied. Then under (E.1), we have with probability at least 1 — «,

pal P (A% (5)) < OD (), (14)

where the constant C' depends only on b and s; while under (E.2), we have
with probability at least 1 — «,

P (AP (5)) < C{D{P(a) + DE)(a)}, (15)

n,

where the constant C depends only on b, s, and q.
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4.2. Empirical bootstrap. Here we consider the empirical bootstrap. For
brevity, we only consider the case A = A™. Let X7,..., X} be iid.
draws from the empirical distribution of Xi,...,X,,. Conditional on X7 =
{X1,..., Xn}, X§,..., X} are ii.d. with mean X = E,[X;]. Consider the
normalized sum:

. ) 1 «
X X
Sy = (S S ) n§

2*1
We are interested in bounding

piP(A) := sup |P(S)" € A| XT) —P(S) € A)]
AcA
for A = A™. To state the bound, define

Ly = max ZIXU X5 /n,

which is an empirical analog of L,,, and for ¢ > 1, define

n
M, x(¢) :==n"" Z max |X;; — X;|°1 { rgjax X, — X;| > \/ﬁ/(ﬁlqﬁlogp)},
= <

1<5<p

1<5<p

Moy (6) = B [max 521 { o 551> Vi taotoen) b | X1
<<
which are empirical analogs of M, x(¢) and M, y(¢), respectively. Let
My () := My, x(¢) + Mn,y ().
We have the following theorem.

Theorem 4.2 (AEstract Empirical Bootstrap Theorem). For arbitrary pos-
itive constants b, L,, and M,, the inequality

2o p\* W1
EB(Are> SP;VIB(Are)‘f’Kl ( n 108 p) _i_jn
n L,
holds on the event
{En[(Xij — X;)2) > b for all j =1,...,p} N {Ln < L} N {My(¢) < M},

where

Here K1, Ko > 0 are constants that depend only on b.

As for the multiplier bootstrap case, we next derive explicit bounds on
EB(Ar¢) under suitable moment conditions.
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Proposition 4.3 (Empirical Bootstrap for Hyperrectangles). Let a € (0,e7!)
be a constant, and suppose that conditions (M.1) and (M.2) are satisfied. In
addition, suppose that log(1/a) < Klog(pn) for some constant K. Then
under (E.1), we have with probability at least 1 — «,

PP (A®) < CDY, (16)

where the constant C' depends only on b and K ; while under (E.2), we have
with probability at least 1 — «,

PP (A) < C{D{V) + D7) (@)}, (17)

where the constant C depends only on b, q, and K.

5. KEY LEMMA

In this section, we state a lemma that plays a key role in the proof of our
high dimensional CLT for hyperrectangles (Theorem 2.1). Define

o= sup [P (VoS +V1-uSy <y)-P(Sy <y,
yERP ve(0,1]
where the random vectors Y7,...,Y, are assumed to be independent of the

random vectors X1,..., Xy, and recall that M, (¢) := M, x(¢) + My y(¢)
for ¢ > 1. The lemma below provides a bound on g,.

Lemma 5.1 (Key Lemma). Suppose that there exists some constant b > 0
such that n=1Y " E[Xf]] >0 forall j =1,...,p. Then g, satisfies the
following inequality for all ¢ > 1:

¢*log?p

10g1/2p
On S W {¢LnQn + Ly, 10g1/2p + ¢Mn(¢)} +

¢

up to a constant K that depends only on b.
Lemma 5.1 has an immediate corollary. Indeed, define

o= sup  |P(VuSE +V1—-wSY € A) —P(SY € A)
AeAre ve(0,1]

where A" is the class of all hyperrectangles in RP. Then we have:
Corollary 5.1. Suppose that there exists some constant b > 0 such that

n~ty E[XZQJ] >0 forall j = 1,...,p. Then ¢, satisfies the following
inequality for all ¢ > 1:

/ ¢2 10g2 p

lo 1/2
On S SV {¢LnQ;«L + Ly log"?p + ¢Mn(2¢)} +2F

¢
up to a constant K' that depends only on b.
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APPENDIX A. ANTI-CONCENTRATION INEQUALITIES

One of the main ingredients of the proof of Lemma 5.1 (and the proofs of
the other results indeed) is the following anti-concentration inequality due
to Nazarov [30].

Lemma A.1 (Nazarov’s inequality, [30]). Let Y = (Y1,...,Y,) be a cen-
tered Gaussian random vector in RP such that E[Yf] >bforallj=1,...,p
and some constant b > 0. Then for every y € RP and a > 0,

P(Y <y+a)—-P(Y <y) < Cay/logp,

where C' is a constant depending only on b.

Remark A.1. This inequality is less sharp than the dimension-free anti-
concentration bound CaE[maxi<j<,Y;] proved in [20] for the case of max
hyperrectangles. However, the former inequality allows for more general
hyperrectangles than the latter. The difference in sharpness for the case of
max-hyperrectangles arises due to dimension-dependence +/logp, in partic-
ular the term /logp can be much larger than E[max;<;<,Y;]. This also
makes the anti-concentration bound in [20] more relevant for the study of
suprema of Gaussian processes indexed by infinite classes. It is an interest-
ing question whether one could establish a dimension-free anti-concentration
bound similar to that in [20] for classes of hyperrectangles other than max
hyperrectangles. [ ]

Proof of Lemma A.1. Let ¥ = E[YY’]; then Y has the same distribution
as XY/2Z where Z is a standard Gaussian random vector. Write ©1/2 =
(01,...,0p) where each o; is a p-dimensional vector. Note that |oj| =
(E[Y])/? > b'/2. Then

P(Y <y+a)=PEY2Z <y+a)

=P((0;/llojll)'Z < (y; + a)/lloj for all j =1,....p),
and similarly

P(Y < ) = P((oy/llo; 1)/ Z < g3/l for all j =1,....,p)

Since Z is a standard Gaussian random vector, and a/||o;|| < a/b'/? for all
j=1,...,p, the assertion follows from Theorem 20 in [25], whose proof the
authors credit to Nazarov [30]. [

We will use another anti-concentration inequality by [30] in the proofs for
Sections 3 and 4, which is an extension of Theorem 4 in [3].

Lemma A.2. Let A be a p X p symmetric positive definite matriz, and let
va = N(0, A7), Then there exists a universal constant C > 0 such that for
every convex set Q C RP, and every hi,ho > 0,

7A@\ Q™) AT
hl _|_ hQ S C HAHHS7
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where || A s is the Hilbert-Schmidt norm of A, Q" = {x € RP : p(z,Q) <
h}, Q" ={z € RP: B(z,h) C Q}, B(z,h) = {y € RP : ||y — z|| < h}, and
ple, Q) = infyeq |y — x|

Proof. 1t is proven in [30] that for every convex set @ C R and every h > 0,

’WQZ\@ < cyAlas.

Therefore, the asserted claim follows from the arguments in Proposition 2.5
of [16] or in Section 1.3 of [9]. [

APPENDIX B. PROOF FOR SECTION 5

We begin with stating the following variants of Chebyshev’s association
inequality.

Lemma B.1. Let ¢; : R — [0,00), ¢ = 1,2 be non-decreasing functions,
and let &,1 = 1,2 be independent real-valued random variables. Then

Elp1(&1)]|E[p2(81)] < E[p1(§1)92(&1)], (18)
Elp1(§1)]E[p2(8§2)] < Elp1(&1)p2(§1)] + Elp1(&2)p2(82)], (19)
Elp1(£1)92(62)] < Elp1(&1)92(61)] + Elp1(&2)p2(82)], (20)

where we assume that all the expectations exist and are finite. Moreover,

(20) holds without independence of &1 and &;.

Proof of Lemma B.1. The inequality (18) is Chebyshev’s association inequal-
ity; see Theorem 2.14 in [12]. Moreover, since & and & are independent,
(19) follows from (20). In turn, (20) follows from

E[p1(81)p2(82)] < E[p1(§1)p2(82)] + Elpa(§1)p1(82)]
< Elp1(&1)p2(61)] + E[p1(&2)p2(82)],

where the first inequality follows from the fact that ¢2(&1)¢1(£2) > 0, and
the second inequality follows from rearranging the terms in the following
inequality:

E[(¢1(&1) — ¢1(&2))(w2(81) — ¥2(82))] > 0,

which follows from monotonicity of ¢ and ps. ]

Proof of Lemma 5.1. The proof relies on a Slepian-Stein method devel-
oped in [17]. Here the notation < means that the left-hand side is bounded
by the right-hand side up to some constant depending only on b.

We begin with preparing some notation. Let Wi,..., W, be a copy of
Y1,...,Y,. Without loss of generality, we may assume that Xi,...,X,,
Y1,...,Y,, and Wy, ..., W, are independent. Consider S}V := n—1/2 Yo Wi
Then P(SY < y) =P(SY <y), so that

on=sup [P(VoSyX+V1—0vS) <y)-P(S) <y
y€ERP ve[0,1]
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Pick any y € RP and v € [0,1]. Let 8 := ¢logp, and define the function

Fs(w) := B log (Z?:l exp (B(w; — y]))) , we RP,
The function Fg(w) has the following property:
0 < Fy(w) — max (w; —y;) <A logp= ¢!, forallw €RZ. (21
<j<p

Pick a thrice continuously differentiable function go : R — [0,1] whose
derivatives up to the third order are all bounded such that go(t) = 1 for
t <0 and go(t) =0 for ¢t > 1. Define g(t) := go(¢t),t € R, and

m(w) = g(Fg(w)), w € RP.

For brevity of notation, we will use indices to denote partial derivatives of
m; for example, 0;0,0m = mji. The function m(w) has the following
properties established in Lemmas A.5 and A.6 of [17]: for every j, k,l =

1,...,p, there exists a function Ujz;(w) such that
Imk(w)] < Ujpa(w), (22)
> ki Uin(w) S (6 + 68 + 66°) < 667, (23)
Ujki(w) < Ujri(w + w) S Ujpa(w), (24)

where the inequalities (22) and (23) hold for all w € RP, and the inequality
(24) holds for all w,w € RP with maxi<j<p|w;|8 < 1 (formally, [17] only
considered the case where y = (0,...,0)" but the extension to y € RP is
trivial). Moreover, define the functions

h(w,t) = 1{—¢_1 —t/B < m x (wj —y;) < ¢t —I—t/ﬁ}, weRPt >0,

<j<p
(25)
) ! te(0,1)
w(t) i = ———, ,1).
VEAVT =t
The proof consists of two steps. In the first step, we show that
2 lo 2
BIZI| S 082 (6Lnon + Lulog? p + 614,(6)) (26)
where

T, = m(v0SX +V1—vSY) —m(SY).
In the second step, we combine this bound with Lemma A.1 to complete the
proof.

Step 1. Define the Slepian interpolant
Z(t) =Y Z(t), t€[0,1],
=1

where
1
Zl(t) = % {\/E(\/EXZ +v1-— UYVZ) +v1-— th} .
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Note that Z(1) = y/vSX + /1 —vSY and Z(0) = S}V, and so

znzm(ﬁstr\/mSﬁ)—m(sy):/lm(Z(t))

dt. (27
T (27)

Denote by Z()(t) the Stein leave-one-out term for Z(t):

Finally, define

. 1 1 1
Zi(t) == 7n {\/i(ﬁXi +V1-vY;) - sz} :

For brevity of notation, we omit the argument ¢; that is, we write Z = Z(t),
Zi = Zi(t), 2O = Z2WO(t), and Z; = Zi(t).
Now, from (27) and Taylor’s theorem, we have

1 [t : 1
E[Z,] = 2;;/{) E[m;(Z2)Z;;)dt = i(I-l—II—i-III),
where
P n '
I :ZZ/ E[m;(Z2%D)Z,;)dt,
j=1i=1"0
p n 1 . .
HEDY Z/ Elm;i(2') Zi; Zi]dt,
jk=1i=1"0
Pon 1 gl ' ‘
III := Z Z/ / (1—T)E[mjkl(Z(Z)+TZZ')ZijZikZil]det.
jki=1i=170 JO

By independence of Z() from Z;; together with E[Z;;] = 0, we have I = 0.
Also, by independence of Z @) from Zi; Zyy, together with

. 1
ElZijZin] = _E [(VoXij + V1 = 0Yy) (VoXip + V1 — oY) — Wi Wi
1
= —E[vX;; Xip + (1 = v)Y5;Yie — Wi;Wii] =0,
n

we have II = 0. Therefore, it suffices to bound I11.
To this end, let

Xi = 1{max ’XU| V ‘Y;]’ V ’WZ]’ < \/ﬁ/(45)}, 1=1,...,n
1<j<p
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and decompose II1 as I1I = I11; + I115, where

p n 1 1
In = ) Z/ /(1—T)E[Ximjkl(z(l>+rzi)zijzikzﬂ]d7dt,
jkil=1i=170 JO

L S B |
II[Q = Z Z/ / (1 — T)E[(l — Xz‘)mjkl(Z(i) + TZi)ZijZikZil]det.
jkl=14=170 /0
We shall bound 11} and 1115 separately. For 111, we have

p n 1 1
IIL[ < ) Z/ / E[(1 — x:)Ujn(Z9 + 72:)| Zi; Zir. Za| | drdt
0 0

k=1 i=1
n 1
So8 Y. [ Bl- ) max |ZZuzZaldi
i=1 0 =JHb >

¢B2 - ! 3 3 3
< 2 v . . .
S 3 2, “(OBL ) g X VIV W Plar, (29

where the first and the second inequalities follow from (22) and (23), respec-

tively. Moreover, by letting 7 = y/n/(45) and using the union bound, we
have

1-x; <1 {1rgjlg}(p‘X’]’ > T}+1 {fgjaécpﬁﬁﬂ > T}+1 {@%'mﬂ, > T}

Hence, using the inequality
D' HEAVAN AL LIS X3 Y3 |3
max 1 X[V Y[V Wi [T < max X517 + max [V + max [Wil

together with the inequality (20) in Lemma B.1, we conclude that the inte-
gral in (28) is bounded from above up to a universal constant by

E [max 1 X131 { max | X;;| > TH +E [max Vi1 { max |Yj;| > TH
1<j<p 1<j<p 1<j<p 1<j<p
since W;’s have the same distribution as that of Y;’s. Therefore,
[I1D] S (M x () + M,y (#)) 05 /n'/? = My(6)05° /2.
To bound 1714, recall the definition of h(w, t) in (25). Note that m (2@ +
77;) = 0 for all 7 € [0, 1] whenever h(Z(®,1) = 0 and y; = 1, so that
Xilmu(Z9 + 12;)] = h(ZD, 1) xilmja (2D + 72;)). (29)

Indeed if x; = 1, then maxi<j<p|Z;;| < 3/(46) < 1/8, and so when
R(Z® 1) = 0 and x; = 1, we have h(Z® + 7Z;,0) = 0, which in turn
implies that either F5(Z®) 4+ 72;) <0 or F5(Z® 4 7Z;) > ¢~ because of
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(21); in both cases, the assertion follows from the definitions of m and g.
Hence

1I11] < Z Z// Ixilmn(Z9 + 72:) Zi; Zig Zag || drdt

],kl 1i=1

Z Z/ / P (ZD V) U (ZD + 72)| Zij Zi Za| ) drdt

],k:l 1i=1

Z Z/ / XZ )Ujkl( (i))’Z.z‘jZikZilHdet

j,kl 11=1
p n

Y Z/ ZD V) Up(ZD) B Zij Zin Zadt, (30)

],k,l 1i=1

where the second inequality follows from (22) and (29), the third inequal-
ity from (24), and the fourth inequality from the indepence of Z() from
ZijZikZil. Then we split the integral in (30) by inserting x; 4+ (1 — x;) under
the first expectation sign. We have

p n 1 )
3 / E[(1 = xo)h(ZD, 1)Uy 2OV 22y Zon Zadt
jkd=114=1"0
noopl
< 2 — v ) < 2/,1/2
S 6B ;/0 E[l — xi]E Lgﬁ?ﬂ | Zi; ZirZa| | dt S My (9)pB%/n'/?,

where the last inequality follows from the argument similar to that used
to bound III, with applying (18) and (19) instead of (20) in Lemma B.1.
Moreover, since h(Z®¥,1) = 0 whenever h(Z,2) = 0 and x; = 1 (which
follows from the same argument as before), so that

xih(ZD 1) = x;h(ZD, 1)h(Z,2),
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we have

Z Z/ P (2D, V) Ui (ZNE| Zij Ziw Zua it
7.k, l=11=1
Z/ (20, 1)U ()l iy Zis et
1
[ Bz 20 2y 2020

2)Ui(2)) El|Zi; Zir Zy ) dt

1
M-~
S~
o
=
N
[\
M-

1

B[\ Zij Zin Zul dt. (31)

Fﬂﬁﬁ

1
S0t | BnzZ2)

1<5,k,l<p

Il
—

7

To bound (31), observe that

|ZZjZZkIZZl| S 5/3 (’X’LJ|3 + |}/1]|3 + |Wz]|3

+ Xl + Vil + Wi + [ Xal® + [Yal® + |Wil|3>,
which, together with the facts that E[|[W;;|*] = E[|Y;;|*] and E[|Y;;]?] <
(E[Y51?)%? = (B[ X,5]?)%? < E[\Xij|3] implies that

- w(t

1<I;,11?¥<p IEHZ”Z”“Z”H 3/2 Efgpz (1% ] + E[Yi]) S 7/

\_/

Meanwhlle, observe that
E[h(Z,2)=P(Z <I)-P(Z < I),

where

ﬁéw%ay+vﬂl—vﬂa+¢1—ﬂm)

1

7 > (VX + V1Y),

=1

7 =

§\H

s

and [ =y —¢ ' =281, T =y+ ¢! +287L; here the notation 2 denotes
equality in distribution, and I and I are vectors in RP (recall the rules
of summation of vectors and scalars defined in Section 1.1). Now by the
definition of g,

P(Z<T)<P(Sy <I)+o0n, P(Z<I)>P(S) <I)— on,
and by Lemma A.1,

P(SY <T)—P(SY <I)< ¢ tlog'?p
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since 7! < ¢! and E[(SZ])Q] = E[(Sﬁg)Q] =n 130, E[ij] > b for all
j=1,...,p. Hence
E(h(Z,2)] S on+ ¢ log!? p.

By these bounds, together with the fact that fo t)dt < 1, we conclude
that

¢B>L _ ¢*log”p
7z (o0 + 07 log!?p) S T (@Lnon + Lalog!?p),

B <

where we have used 5 = ¢logp. The desired assertion (26) then follows.

Step 2. We are now in position to finish the proof. Let
Vi = VoS + V1 —vSY.

Then we have
P(V, <y—¢7") <P(F(Va) <0) <E[m(Vy)]
< P(Fp(S,)) < ¢~ 1) + (E[m(V,)] — E[m(S)))])
<P(SY <y+9¢")+ [E[L
P(S) <y—¢ ')+ Co 'log'?p+|E[L,]],

IN

where the first three lines follow from the properties of Fg(w) and g(t) (recall
that m(w) = g(Fg(w))), and the last inequality follows from Lemma A.1.
Here the constant C depends only on b. Likewise we have

P(Va<y—¢ 1) >P(SY <y—9¢ ') —Cotlog"?p— [E[Z,]|.

The conclusion of the lemma follows from combining these inequalities with
the bound on |E[Z,]| derived in Step 1. [

Proof of Corollary 5.1. Pick any hyperrectangle

A={weRP:wje€la;bj] forall j=1,...,p}.

For ¢ = 1,...,n, consider the random vectors X and Yi in R? defined
by XU = X” and Yi] = ng for j = 1,...,p, and XZJ = —X;jp and
Y”——wpfor]—p—l—l .,2p. Then

P(SX € A)=P(SY <y), P(S) € A)=P(S) <y),

where the vector y € R?” is defined by y; = bj for j =1,...,pand y; =
—a;_pfor j=p+1,...,2p, and SX and S are defined as SX and S¥ with
X;’s and Y;’s replaced by )A(:i’s and 17;’5. Hence the corollary follows from
applying Lemma 5.1 to )}1,...,;{” and }71,...,17n. ]
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APPENDIX C. PROOFS FOR SECTION 2

Proof of Theorem 2.1. The proof relies on Lemma 5.1 and its Corollary
5.1. Let K’ denote a constant from the conclusion of Corollary 5.1. This
constant depends only on b. Set Ky :=1/(K’'V 1) in (7), so that

o 4\ -1/6
1 L, log™p
b=y ()

:K’\/l n

Without loss of generality, we may assume that ¢, > 2; otherwise, the
assertion of the theorem holds trivially by setting K7 = 2(K’ V 1).
Then applying Corollary 5.1 with ¢ = ¢,,/2, we have

g oo G BEVIPL gy Ma(o)
" 8(K'V1)2 nl/6 8(K' V1)L,

Since 8(K’ Vv 1)2 > 1, solving this inequality for o/, and observing that
pn(A™) < gl leads to the desired assertion. [

Before proving Proposition 2.1, we shall verify the following elementary
inequality.

Lemma C.1. Let £ be a non-negative random wvariable such that P(§ >
x) < Ae /B for all z > 0 and for some constants A, B > 0. Then for every
t >0, E[€31{€ > t}] < 6A(t + B)3e /B,

Proof of Lemma C.1. Observe that

t
0

E[1{¢ >t} = 3/ P(¢ > t)adr + 3/ P(¢ > z)a?dx
¢
=P(¢>t)t° + 3/ P(¢ > z)2?dr.
t
Since P(€ > z) < Ae~*/B using integration by parts, we have
/ P(¢ > s)a?de < A(Bt? 4+ 2B%* + 2B%)e /B,
¢
which leads to
E[€31{¢ > t}] < A(t® + 3Bt? + 6Bt + 6B%)e /P < 6A(t + B)?e /B,
completing the proof. ]

Proof of Proposition 2.1. The proof relies on application of Theorem

2.1. Without loss of generality, we may assume that
B2 log”
"Oi(p”) < ¢:=min{(e1/2)?, (K2/2)°}, (32)

where Ky appears in (7) and ¢; > 0 is a constant that depends only on b
(c1 will be defined later), since otherwise we can make the assertions trivial
by setting C' large enough.
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Now by Theorem 2.1, we have

. 1/6
Lilog7p> + Mn,X(¢n> + Mn,Y((bn)

)

re < K
pn(A ) ay 1 ( n Ln
where ¢,, = Kg{n_lfi log* p} =1/, and L, is any constant such that L, >
L,. Recall that

n

L, = B[l X;:|?
n 1%1]5.2(1)' - H l]| ]/n,
1=

1<j<p

My x(¢n) =n"' ) E {max X1 {lgaggplxij > v/n/(4n 1ogp)H :
=1 -

and M,y (¢n) is defined similarly with X;;’s replaced by Yj;’s.

It remains to choose a suitable constant L,, such that L,, > L,, and bound
M, x(¢n) and My, y(¢y). To this end, we consider cases (E.1) and (E.2)
separately. In what follows, the notation < means that the left-hand side is
bounded by the right-hand side up to a positive constant that depends only
on b under case (E.1), and on b and ¢ under case (E.2).

Case (E.1). Set L, := B,,. By condition (M.2), we have L,, < B,, = L.
Observe that (E.1) implies that || Xj|ly, < B, for all i and j. In addition,
since each Yj; is Gaussian and E[Yg] = E[Xizj], 1Yijllp, < CiBy, for all i and
j and some universal constant C; > 0. Hence by Lemma 2.2.2 in [42], we
have for some universal constant Cy > 0, || maxi<;j<p Xijlly, < C2Bplogp
and || maxi<j<p Yijllyy, < CoBjlogp. Together with Markov’s inequality,
this implies that for every ¢ > 0,

t
P X <2 —_ .
<1r£1?<xp| il > t) =P ( CyB,y, logp)

Applying Lemma C.1, we have

Mn,an)s<ﬁ/<¢nlogp>+3nlogp>3exp(— v )

4CQ¢an 10g2 p
Here
Vn B cint/3 <c 1 >
4CahuBalog’p  Blogh3p \ | 4KaCh
> c1c /3 log(pn) > 2log(pn). (by (32)).

Moreover, by (32) and ¢, ' = Ky {n"'B2log*p}'/0 < /S/Ky < 1, we
have (y/n/(¢n logp) + By logp)® < n3/2) which implies that

My x () < /% exp(~2log(pn)) < n”!2,

The same reasoning also gives M,y (¢n) S n~1/2. The conclusion of the

(1)

proposition in this case now follows from the fact that n~=/ Bl <Dy
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Case (E.2). Without loss of generality, in addition to (32), we may
assume that
Bylog®?p
nl/2—1/q

_ B2 }
L, :=<B, + n )
{ n1/272/q 10g1/2 P

< (K/2)%2. (33)

Set

Then L, < By, < L,. Asthe map z — z'/3 is sub-linear, {n~'L log” p}/6 <
DY + Dg’g < Ky, so that ¢! = K;l{n_lfi log*p}!/6 < 1.

Note that for any real-valued random variable Z and any t > 0, E[|Z|>1(| Z]| >
0] < E[1ZP(Z]/6)-1(12] > )] < £*9F[| Z]9). Hence

Blah?1og?3 p
nQ/2_3/2

Mn,X(Cbn) S

Here using the bound f;l < Bgznl/Q*Q/q log1/2p, we have that ¢, <
n1/3_2/(3‘1)B;2/3(logp)_1/2, so that

B> (log p)1/2-3/2
na/6+1/6-2]q

which implies that

B BZ/3+2(logp)q/2_3/2 n1/2=2/410g1/2 p
MmX((an)/Ln S nd/6+1/6-2/q ' B?L

21003
< 1 (Bnlog p)tI/6<

D@
~logp\ nl-2/a

~ n,q:

Meanwhile, as in the previous case, we have M, y (¢n) < n~1/2, which leads
to the desired conclusion in this case. [

APPENDIX D. PROOFS FOR SECTION 3

Proof of Proposition 3.1. Here C denotes a generic positive constant
that depends only on a,b, and d if (E.1’) is satisfied, and on a,b,d, and ¢
if (E.2') is satisfied; the value of C' may change from place to place. Pick
any A € A C A%(a,d). Let A™ = A™(A) be an approximating m-generated
convex set as in condition (C). By assumption, A™ C A C A™*, so that by
letting

p:=|P(SX € A™) —P(SY € A™)| v |P(SX € A™¢) —P(SY € A™)],

we have P(S;X € A) < P(SX € A™<) < P(SY € A™¢)+p. Here observe that
(v'SY )vev(am) is a Gaussian random vector with dimension Card(V(A™)) =
m < (pn)? such that, by condition (M.1"), the variance of each coordinate
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is bounded from below by b. Hence by Lemma A.1, we have
P(SY € A™¢) = P{v/SY < Sam(v) + ¢ for all v € V(A™)}
< P{/SY < Spm(v) for all v € V(A™)} + Celog?m
=P(SY € A™) + Celog?(pn),
so that
P(SX € A) <P(SY € A™) + Celog'?(pn) +p
< P(SY € A) 4 Celog'?(pn) +p. (by A™ C A)

Likewise we have P(SX € A) > P(SY € A) — Celog/?(pn) — 5, by which
we conclude

IP(SX € A) —P(SY € A)| < Celog?(pn) + p.

Recalling that € = a/n and B, > 1, we have elogl/Q(pn) < CDSLI). Hence
the assertions of the proposition follow if we prove

_ cpY if (E.1) is satisfied,

P=10(pM + D2} if (B.2') is satisfied.
However, this follows from application of Proposition 2.1 to X Lyeees X, in-
stead of X1,...,X,. [

Proof of Corollary 3.1. Since X; is a centered random vector with a log-
concave distribution in R?, Borell’s inequality [see 11, Lemma 3.1] implies
that [|v' X[y, < c(B[(v'X;)?])'/? for all v € R? for some universal constant
¢ > 0 [see 28, Appendix ITI]; hence if the maximal eigenvalue of each E[X; X
is bounded by a constant ks, then every simple convex set A € A% (a, d) obeys
conditions (M.2') and (E.1’) with B, replaced by a constant that depends
only on ¢ and kp. Besides if the minimal eigenvalue of each E[X;X]] is
bounded from below by a constant ki, then every simple convex set A €
A% (a, d) obeys condition (M.1) with b replaced by a positive constant that
depends only on k. Hence the conclusion of the corollary follows from
application of Proposition 3.1. []

Proof of Proposition 3.2. Here C denotes a positive constant that de-
pends only on b and s if condition (E.1) is satisfied, and on b, s, and ¢ if
condition (E.2) is satisfied; the value of C' may change from place to place.
Without loss of generality, we may assume that B2 < n since otherwise the
assertions are trivial.

Let R :=pn°®/? and VF := {w € R? : max;<;<p|w;| > R}. Fix any A €
A%P(s). Then A= AU(ANVE) for some s-sparsely convex set A C RP such
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that sup,,. j maxi<j<, |w;| < R. Now observe that by Markov’s inequality,

Xijl] < E[>>, ;1 Xl]
pn? - pn?

E [maxz- J

p (maXIij! > pn2> <
17-7
< maxE[|Xj;[]/n < OB, /n < C/n'/?,
[2¥}

where max; ; stands for max;<;<, maxi<;<,. Hence
P (SX e V) <Co/mt/?,
and similarly,
P (SY e VE) < c/nl/2
So,
IP(SX € A)—P(SY € A)| < |P(SX € A) —P(SY € A)|+ C/n'/?.
Therefore it suffices to consider the case where the sets A € A% (s) are such

that

sup max |w;| < R. 34
w631§j§p| il = (34)

Further, let ¢ = n~1, and define AJ"(s) as the class of all sets A € AP(s)
satisfying (34) and containing a ball with radius £ and center at, say, wa.
Also define A (s) as the class of all sets A C AP(s) satisfying (34) and
containing no ball of radius e. We bound p,, (A (s)) and p, (A5 (s)) sepa-
rately in two steps. In both cases, we rely on the following lemma, whose
proof is given after the proof of this proposition.

Lemma D.1. Let A be an s-sparsely convex set with a sparse representation
A= ﬁqulAq for some Q < p°. Assume that A contains the origin, that
supyea llw| < R, and that all sets A, satisfy —A,; C pAq for some p > 1.
Then for any v > e/8, there exists g = €o(y) > 0 such that for any 0 < e <
€0, the set A admits an approrimation with precision Re by an m-generated

convez set A™ where
1 1ys?
m< Q" 10s-)"
€ €

Moreover, the set A™ can be chosen to satisfy
lvllo < s for all v e V(A™). (35)

Therefore, since Q < p°, if R < (pn)®™ and p < (pn)% for some constant
do > 1, then the set A satisfies condition (C) with a = 1 and d depending only
on s and dy, and the approximating m-generated convexr set A™ satisfying

(35).

Step 1. Here we bound p, (A} (s)). Pick any s-sparsely convex set
A € AP(s) with a sparse representation A = ﬂqulAq for some Q < p°.
Below we verify conditions (C), (M.1"), (M.2'), and (E.1") (or (E.2")) for
this set A. Consider the set B := A —wy = {w € RP : w+ wy € A}
The set B contains a ball with radius € and center at the origin, satisfies
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the inequality ||w| < 2p/2R for all w € B, and has a sparse representation
B = ﬂququ where By = A; — wya. Clearly, each By satisfies —B, C ubB,
with p = 2p1/2R/5 = 2p3/2n7/2. Therefore, applying Lemma D.1 to the set
B and noting that A = B + w4 and Q < p°, we see that the set A satisfies
condition (C) with a = 1 and d depending only on s, and an approximating
m-generated convex set A™ such that ||v]jo < s for all v € V(A™).

Further, since we have [|v|o < s for all v € V(A™), the fact that the set
A satisfies condition (M.1") follows immediately from (M.1").

Next, we verify that the set A satisfies condition (M.2"). For v € V(A™),
let J(v) be the set consisting of positions of non-zero elements of v, so that

Card(J(v)) < s. Using the inequality (3¢ 5, la;])2TF < stF > e |a;|?+k
for a = (ai,...,ap)" € RP (which follows from Hélder’s inequality), we have
ol X2 < ! 2k
ZE\vXI ZE[( > |Xw|) }
jeJ(v

< itk 71ZE{ Z ‘X”’2+k] <32+kBk (B’)
i=1  jeJ(v)

for k = 1 or 2, where B!, = s3B,,, so that the set A satisfies condition (M.2')
with B,, replaced by s3B,,.

Finally, we verify that the set A satisfies condition (E.1’) when (E.1) is
satisfied, or (E.2’) when (E.2) is satisfied. When (E.1) is satisfied, we have
[ Xijllpy < Bn, so that [[v'Xilly, < 375¢ s 1Xijlly, < sBn showing that the
set A satisfies (E.1’) with B, replaced by sB

When (EQ) is satisﬁed, as E[maxvev(Am) |’U/Xi’q] S qu[maXISjSp |Xij’q],
the set A satisfies (E.2") with B, replaced by sB,,.

Thus, all sets A € AT (s) satisfy conditions (C), (M.1"), (M.2"), and (E.1")
(or (E.2)), and so applying Proposition 3.1 shows that the assertions (12)
and (13) hold with p,,(A%P(s)) replaced by p, (AP (s)).

Step 2. Here we bound p, (A (s)). Fix any s-sparsely convex set A €
AP (s) with a sparse representation A = ﬂqulAq for some Q < p°. We
consider two cases separately. First, suppose that at least one A, does not
contain a ball with radius e. Then under condition (M.1”), Lemma A.2
implies that P(SY € A,) < Ce = C/n (since the Hilbert-Schmidt norm
is equal to the square-root of the sum of squares of the eigenvalues of the
matrix, under our condition (M.1”), the constant C' in the bound Ce above
depends only on b and s). In addition, under conditions (M.1”) and (M.2),
the Berry-Esseen theorem [see 23, Theorem 1.3] implies that

|P(SY € Ag) — P(SY € Ay)| < CB,/n'/>
Since A C A,, both P(S:X € A) and P(SY € A) are bounded from above by

CB,,/n'/?, and so is absolute value of their difference. This completes the
proof in this case.
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Second, suppose that each A, contains a ball with radius e (possibly
depending on ¢). Then applying Lemma D.1 to each A, separately shows
that for m < (pn)? with d depending only on s, we can construct an m-
generated convex sets Ag* such that

m m,1/n
Al C Ay c AT

and ||v[lo < s for all v € V(AF"). The set AV = ﬂqulA;n’l/n trivially satisfies
condition (C) with a = 0 and d depending only on s. In addition, it follows
from the same arguments as those used in Step 1 that the set A satisfies
conditions (M.1"), (M.2'), (E.1) (if (E.1) is satisfied), and (E.2") (if (E.2) is
satisfied). Therefore, by applying Proposition 3.1, we conclude that |[P(S;X €
AN —P(SY € AY)|is bounded from above by the quantities on the right-hand
sides of (10) and (11) depending on whether (E.1) or (E.2) is satisfied. Also,
observe that A C AY and that ﬂ?zlA?’_E is empty because ﬂqulAfln cA
and A contains no ball with radius e. This implies that P(SY € A°%) <
C(log?(pn))/n by Lemma A.1 and condition (M.1”). Since A € A°, both
P(SX € A) and P(SY € A) are bounded from above by the quantities on
the right-hand sides of (12) and (13) depending on whether (E.1) or (E.2)
is satisfied, and so is their difference. This completes the proof in this case.
[

Here we prove Lemma D.1 used in the proof of Proposition 3.2.

Proof of Lemma D.1. For convex sets P; and P, containing the origin and
such that P; C Py, define

dBM(Pl,PQ) = inf{e >0: P C (1 + 6)P1}.

It is immediate to verify that the function dpps has the following useful
property: for any convex sets P;, P>, P53, and P, containing the origin and
such that P; C P, and P3 C Py,

dpym(Pr NP3, PoN Py) < dpy(Pr, P2)Vdpn(Ps, Py). (36)

Let A = ﬂqulAq be a sparse representation of A as appeared in the
statement of the lemma. Fix any A,. By assumption, the indicator func-
tion w — I(w € A;) depends only on s, < s elements of its argument
w = (wi,...,wp). Since A contains the origin, A, contains the origin as
well. Therefore, applying Corollary 1.5 in [4] as if A; were a set in R®
shows that one can construct a polytope P, C RP with at most (y((p +
1)/€)'/21og(1/e€))%e vertices such that

PpcAqCc(1+ek,

and such that for all v € V(F,), non-zero elements of v correspond to some
of the main components of A,. Since we need at most s, vertices to form a
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facet of the polytope F,, the polytope P, has

82 32
1 1\ " 1 1
mg < <v Chs log> < <7 Chs 10g> (37)
€ € € €

facets. Now observe that P, is an mg-generated convex set. Thus, we
have constructed an mg-generated convex set F, such that P, C A, C
(1 4+ ¢)P, and all vectors in V(FP,) having at most s non-zero elements.
Hence dpy(Py, Ag) < €, which, together with (36), implies that

dBM(ﬁC?:qu, quzlAq) <e
Therefore, defining A™ = ﬂ?zqu, we obtain from A = ﬂ?zlAq that
A" CAC (14 e)A™ C A™Re

where the last assertion follows from the assumption that sup,c 4 [|[w] <
R. Since A™ is an m-generated convex set with m < 222:1 mg, the first

claim of the lemma now follows from (37). The second claim (35) holds by
construction of A™, and the final claim is trivial. [ ]

APPENDIX E. PROOFS FOR SECTION 4

E.1. Maximal inequalities. Here we collect some useful maximal inequal-
ities that will be used in the proofs for Section 4.

Lemma E.1. Let X1,..., X, be independent centered random vectors in RP
withp 2 2. Deﬁne Z = HlaXlgjgp | Z?:l Xij|a M .= maxi<i<n maXlgjgp |X1J|
and 0* = maxi<j<p > iy B[X7]. Then

E[Z] < K(0+/logp+ /E[M?]log p).

where K is a universal constant.

Proof. See Lemma 8 in [20]. [

Lemma E.2. Assume the setting of Lemma E.1. (i) For everyn > 0,0 €
(0,1] and t > 0,

P{Z > (1 +n)E[Z] + t} < exp{~t?/(30)} + Bexp{—~(t/ (K| M]ly,))"},

where K = K (n, 3) is a constant depending only on n, 3.
(i) For everyn >0,s > 1 andt >0,

P{Z > (1 +n)E[Z] + t} < exp{—t?/(30?)} + K'E[M*]/t*,
where K' = K'(n, s) is a constant depending only on 1, s.

Proof. See Theorem 4 in [1] for case (i) and Theorem 2 in [2] for case (ii).
See also [22]. [
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Lemma E.3. Let Xq,...,X, be independent random wvectors in RP with
p > 2 such that X;; > 0 for all i = 1,...,n and j = 1,...,p. Define
7 = maXlgjgp Z?:l Xij and M = maxi<i<n maXlgjgp XZ] Then

E[Z] <K <max ED- X + E[M] logp> ,
1<j<p
where K is a universal constant.

Proof. See Lemma 9 in [20]. [ |

Lemma E.4. Assume the setting of Lemma E.3. (i) For everyn > 0,8 €
(0,1] and t > 0,

P{Z > (1 +n)E[Z] +t} < 3exp{—(t/(K||M|ly,))"},

where K = K(n, ) is a constant depending only on n, 3. (ii) For every
n>0,s>1andt >0,

P{Z > (1+n)E[Z] + t} < K'E[M°]/¢*,
where K' = K'(n, s) is a constant depending only on 1, s.

The proof of Lemma E.4 relies on the following lemma, which follows from
Theorem 10 in [27].

Lemma E.5. Assume the setting of Lemma FE.3. Suppose that there exists
a constant B such that M < B. Then for every n,t > 0,

P{Z > (1+n)E[Z]+ B (g +717> t} <e .

Proof of Lemma E.5. By homogeneity, we may assume that B = 1. Then
by Theorem 10 in [27], for every A > 0,
log Elexp(A(Z — E[Z]))] < »(ME[Z],

where ¢(\) = e* — A — 1. Hence by Markov’s inequality, with a = E[Z],

P{Z —E[Z] > t} < e MTo¥(N),

The right-hand side is minimized at A = log(1+4t/a), at which —At+ap(\) =
—aq(t/a) where ¢(t) = (14 t)log(1 +t) —t. It is routine to verify that
q(t) > t2/(2(1+t/3)), so that

2

P{Z —E[Z] >t} < ¢ Tari/,
Solving t2/(2(a + t/3)) = s gives t = 5/3 + 1/s2/9 4+ 2as < 2s5/3 + \/2as.

Therefore, we have
P{Z > E[Z] + V2as +2s/3} < e"*.

The conclusion follows from the inequality v/2as < na +n~'s. ]
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Proof of Lemma FE.4. The proof is a modification of that of Theorem 4 in
[1] (or Theorem 2 in [2]). We begin with noting that we may assume that
(1 + n)8E[M] < t/4, since otherwise we can make the lemma trivial by
setting K or K’ large enough. Take

X5 if X<
p = SE[M], Yf{ g i maxiio Xy <,

0, otherwise
Define
n n
Wi = max ) Yij, Wo= max ) (Xij = Yig)
i i
Then

P{Z> 1+ nE[Z] +t} <P{W1 > (1+n)E[Z] + 3t/4} + P(Wy > t/4)
<P{W1 > (1 +n)E[W1] — (1 +n)E[Ws] + 3t/4} + P(Wy > t/4).
Observe that
P{ max max Y (Xij — Vi) > 0} <P(M > p) <1/8,

1<m<n 1<j<p“ 1
1=

so that by the Hoffmann-Jgrgensen inequality [see 26, Proposition 6.8], we
have

E[Ws] < 8E[M] <t/(4(1+n)).
Hence
P{Z > 1+ nE[Z] +t} <P{W) > (1+n)E[W1] +1t/2} + P(Wy > t/4).

By Lemma E.5, the first term on the right-hand side is bounded by e~¢/?

where ¢ depends only on 7. We bound the second term separately in cases

(i) and (ii). Below C1,Cy, ... are constants that depend only on 7, 3, s.
Case (i). By Theorem 6.21 in [26] (note that a version of their theorem

applies to nonnegative random vectors) and the fact that E[Ws] < 8E[M],
Wallys < CLEW2] + [[M[|y,) < Cof|[ M|y,

which implies that P(Wy > t/4) < Qexp{—(t/(C'gHMH%))B}. Since p <
Cy|[M]|ys, we conclude that

e MP L P(Wy > t/4) < Bexp{—(t/(C5]| M||y,))"}.

Case (ii). By Theorem 6.20 in [26] (note that a version of their theorem
applies to nonnegative random vectors) and the fact that E[W5] < 8E[M],

(E[WS)'* < Co(E[Wa] + (E[M*))/*) < Cr(B[M?])"/*,

The conclusion follows from Markov’s inequality together with the simple
fact that e7t/t7% — 0 as t — oo. [

E.2. Proofs for Section 4.
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Proof of Theorem 4.1. In this proof, C is a positive constant that depends
only on a, b, and d but its value may change at each appearance. Fix any
Ac AcC A%a,d). Let A™ = A™(A) be an approximating m-generated
convex set as in (C). By assumption, A™ C A C A™€. Let

7= max {[P(S;¥ € A™ | X}') — P(5) € 4™,
[P(S5¥ € A™< | XT) — P(SY € A™9)]}.
As in the proof of Proposition 3.1, we have
[P(S;Y € A XT) —P(S, € 4)|
< Celog!(pn) +7 < Cn~'log!/*(pn) + 7,
so that the problem reduces to proving that under (M.1), the inequality
o P (A) < OB, log?*p (38)

holds on the event A, < A,, where A, = maxi<; k<p ]f]jk — 3| with
Y, and X, denoting the (j, k)-th elements ¥ and 3, respectively.
To this end, we first show that

oM = sup IP(SSX <y | X7) —P(SY <y)| < CAY3log?p. (39
yeRP

To show (39), fix any y = (y1,...,¥p)" € RP. As in the proof of Lemma 5.1,
for 8 > 0, define

Fa(w) := B log ( ?:1 exp(B(wj — yj))) , we RP.

Note that conditional on X7, S¢¥ is a centered Gaussian random vector with

covariance matrix Y. Then a small modification of the proof of Theorem 1
in [20] implies that for every g € C%(R) with ||¢'[|oo V [|¢”|lec < 00, We have

Blg(F5(557)) | X7 = Elg(Fs(SOI < (19" l00/2 + Bllg lloo) A

Hence, as in Step 2 of the proof of Lemma 5.1, we obtain with ¢ = /logp
that

IP(SE* <y—¢' [ X]) —P(S, <y—¢7")|
< C{o™ log 2 p + (9% + Bo) A, ).
Substituting 5 = ¢logp, optimizing the resulting expression with respect

to ¢, and noting that y € RP is arbitrary lead to (39). Finally (38) follows

from the fact that the inequality oMB < CZ,IL/ 3 log2/ 3 p holds on the event
Ap, < Ay, and applying the same argument as that used in the proof of

Corollary 5.1. ]
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Proof of Proposition 4.1. In this proof, ¢ and C are positive constants
that depend only on a, b, d, and s under (E.1), and on a, b, d, s, and ¢ under
(E.2); their values may vary from place to place. For brevity of notation,

we implicitly assume here that ¢ is varying over {1,...,n}, and j and k are
varying over {1,...,p}. Finally, without loss of generality, we will assume
that

B log®(pn)log*(1/a) < n (40)

since otherwise the assertions are trivial.
We shall apply Theorem 4.1 to prove the proposition. Observe that since

n~1log!/ 2(pn) < CDS)(&), it suffices to construct an appropriate A,, such
that P(A,(A) > A,) < a and to bound Z}/g log?/3(pn).

We begin with noting that since (S) holds for all A € A, A, (A) < CA,,,
where A, , = maxlgj’kgp@jk — Y| As S -9 = pt Yo (XX —
E[X;X!]) — X X', we have A, < Aq(}; + {Aq(f}}z, where

n

A = max |p7! Z(Xinik —E[Xi;; Xu])|, AP := max |Xj].

" 1<5,k<p — ™ 1<5<p
1=

The desired assertions then follow from the bounds on ASZ and Aq(fz« derived

separately for (E.1) and (E.2) cases below.
Case (E.1). Observe that by Holder’s inequality and (M.2),

n

n
o2 = max E [(Xi X — E[Xi; Xi])?] < n?%xz E[|X;; Xi|*] < nB2.
Tl =1

In addition, by (E.1),
[ T}J§§|Xinz‘klllw1/2 =l IggX|Xij|2l|w1/2 = || H}3X|Xij|||12pl < CB;log*(pn),
so that for M, := max; ;1 | X;; Xir, — E[X;;Xit]|, we have
[ Mplly,,, < CHl max | Xij Xkl ) + I}}J&}gE[\Xinikl]}
< C{B;log’(pn) + B;} < CB;log?(pn),

which also implies that (E[M2])Y/? < CB2log?(pn). Hence by Lemma E.1,
we have

E[A()] < On~'{\/oZlogp + /E[M2] log p}
< C{(n"'B2logp)"/? + n7'B2log®(pn)} < C{n"' B2 log(pn)}/?,

where the last inequality follows from (40). Applying Lemma E.2 (i) with
B =1/2 and n = 1, we conclude that for every ¢t > 0,

P (A,(}L > C{n~'B2log(pn)}/? + t)
< exp{—nt*/(3B3)} + 3exp{—cV/nt/(By log(pn))}.
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Choosing t = C{n~'B2log(pn)log?(1/a)}'/? for sufficiently large C' > 0,
the right-hand side of this inequality is bounded by

o /4 + 3exp{—cCV?n1/V10g12(1 /) /(BL/? log* (pn))} < /2,

where the last inequality follows from (40). Therefore

PUAD log?(pn)}/* > CDPY(a)) < /2.
It is routine to verify that the same inequality holds with Agl replaced by
{A,(l2,)ﬂ}2 This leads to the conclusion of the proposition under (E.1).

Case (E.2). Define 02 and M,, by the same expressions as those in the
previous case; then 02 < nB2. For M,, we have

B{M?) < C{Blman | Xi; Xipl %] + maoe (B X35 X))V}
< C{E[ma,ﬁqusz‘k!q/?}} = CE[max | X;[] < CnBj,
1/7]7 7’7]

which also implies that (E[M2])'/? < Cn?*/9B2. Hence by Lemma E.1, we
have

E[AL)] < Cn~ {02 logp + \/E[MZ] log p}
< C{(n" B logp)1/? + n~ /182 log p}.
Applying Lemma E.2(ii) with s = ¢/2 and n = 1, we have for every t > 0,
p {Ag} > C{(n~'B2logp)V/? + n= Y182 1og p} + t}
< exp{—nt?/(3B2)} + ct~¥/?p1=9/2 B4
Choosing
t = C{{n"" By (log(pn)) log*(1/a)}"/* + n~1 /1024 B2}
for sufficiently large C' > 0, we conclude that
P({AaW) 10g2(pn)}'/* > C{DV(0) + DZ(a)}) < a/2.

n,
It is routine to verify that the same inequality holds with Aﬁ}l replaced by

{A%QL}Q This leads to the conclusion of the proposition under (E.2). [

Proof of Corollary 4.1. Here C' is understood to be a positive constant
that depends only on a,d, k; and ks; the value of C' may change from place
to place. To prove this corollary, we apply Theorem 4.1, to which end we
have to verify condition (M.1’) for all A € A and derive a suitable bound on
A, (A). Condition (M.1') for all A € A follows from the fact that the mini-
mum eigenvalue of E[X; X/] is bounded from below by k1. By log-concavity of
the distributions of X;, we have [|[v'X;||y, < C(E[(v'X;)?])"/? < C for all v €
R? with |lv|| = 1 (see the proof of Corollary 3.1). For alli = 1,...,n, let X;
be a random vector whose elements are given by v'X;,v € Uac g V(A™(A));
the dimension of X;, denoted by p, is at most (pn)?, and||X;;||4, < C for all
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j=1,...,p. Then A, (A) coincides with A,,, with X; replaced by X;, that
is,
n

An(A) = nax n~! ;(Xijfgk — E[Xi; Xit]) — En[Xij|En[Xir]| -

Noting that logp < dlog(pn), by the same argument as that used in the
proof of Proposition 4.1 case (E.1), we can find a constant A,, such that
P(A,(A) > A,) <« and

{Bnlog?(pn)}'/* < C{n" (log®(pn)) log?(1/a)}/°.

Here without loss of generality we assume that (log®(pn))log?(1/a) < n.
The desired assertion then follows. u

Proof of Corollary 4.2. Any hyperrectangle A € A™ satisfies conditions
(C) and (S) with @ =0, d = 1, and s = 1. In addition, it follows from (M.1)
that any hyperrectangle A € A" satisfies (M.1’). Therefore, the asserted
claims follow from Proposition 4.1. [

Proof of Proposition 4.2. In this proof, let C be a positive constant
depending only on b and s under (E.1), and on b, ¢, and s under (E.2);
the value of C' may change from place to place. Moreover, without loss of
generality, we will assume that

B2(log? (pn)) log?(1/a) < n

since otherwise the assertions are trivial.
Let Ay, = maxi<jr<p |2k — 2jk|, and

1/2
. (Bﬁ(log(pnzl) log?(1/a) if (E.1) is satisfied
" (B%(log@n))log?(l/a))” 4 _Bller g (g 9) i satisfied.

n a2/‘1n1*Q/2

Then by the proof of Proposition 4.1, in either case where (E.1) or (E.2) is
satisfied, there exists a positive constant C; depending only on b,s,q (C;
depends on ¢ only in the case where (E.2) is satisfied) such that

P(An, > C1A,) < a/2.

We may further assume that C1A,, < b/2, since otherwise the assertions are
trivial.

As in the proof of Proposition 3.2, let R = pn®/? and VE = {w € RP :
maxi<j<p |w;| > R}. Fix any A € A%(s). Then A = AU(ANVE) for some
s-sparsely convex set A with Sup,, j Maxi<j<p |wj| < R. As in Proposition
3.2, P(SY € V) < C/n'/2. Moreover, conditional on X7, Sfé( is Gaussian
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with mean zero and variance E,[(X;; — X;)?] = f]jj, so that

P(S;¥ € VI X{) = P(max [SiY| > R | X7)

~

E[maxi<j<, |57 | X _ C(log p)"/? maxi <<, £/

— R — R )

which is bounded by C/ n'/2 on the event Ap, < C1A,,. Hence on the event

An,r < Cl Ana

[P(S* € A| XT) —P(S) € A)
<P(SX e A| X)) —P(SY € A)|+C/n/?,

so that it suffices to consider the case where the sets A € AP(s) are such
that sup,,c 4 maxi<j<, |w;| < R.

Further, let ¢ = n~!, and define the subclasses Aj’(s) and AP(s) of
AP (s) as in the proof of Proposition 3.2. For all A € AP(s), we can
verify conditions (C), (S), and (M.1") as in the proof of Proposition 3.2
(where (S) is verified implicitly). Therefore, by Proposition 4.1 applied with
/2 instead of a, the bounds (14) and (15) with pMB(A%P(s)) replaced by
pMB(AP(s)) hold with probability at least 1 — a/2. Hence, it remains to
bound pMB (AP (s)).

Fix any A € A(s) with a sparse representation A = ﬂqulAq for some
@ < p®. Asin the proof of Proposition 3.2, we separately consider two cases.
First, suppose that at least one of A, does not contain a ball of radius e;
then by condition (M.1”) and Lemma A.2, P(SY € A4,) < Ce. Moreover,
since S¢X is Gaussian conditional on X7, by condition (M.1”) and Lemma
A.2, we have, on the event A, , < C1A,, P(S¢X € A, | X7') < Cée since
C1A, < b/2. Since A C Ay, we conclude that on the event A, , < CiA,,
|P(SeX € A| XJ) —P(SY € A)| < Ce = C/n.

Second, suppose that each A, contains a ball with radius e. Then by
applying Lemma D.1 to each Ay, for m < (pn)d with d depending only on
s, we can construct an m-generated convex set Ag" such that A" C Ay C

AP with [Jollo < s for all v € V(A). Let Ag = n%, A7""/™; then A c A°
and ﬂ?zlAzn’_a is empty. By the latter fact, together with condition (M.1")
and Lemma A.1, we have P(SY € A%) < C(log!/?(pn))/n. Moreover, since
SeX is Gaussian conditional on X7, by condition (M.1”) and Lemma A.1,
the inequality P(S¢X e A% | X7) < C(log"/?(pn))/n holds on the event
Ay, < C1A,, since C1A,, < b/2. Since A C A% we conclude that on the
event A, , < C1A,, [P(SX € A | X7) —P(SY € A)| < C(log'/?(pn))/n.
This completes the proof since P(A,, > C1A,) < a/2. [ ]
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Proof of Theorem 4.2. By the triangle inequality, pZ B (A™) < pMB(Ar¢)+
EB(Are), where

EB(A™) = sup [P(SX" € A| XP)—P(SX € A| XP)|.

Also conditional on X7, X§ — X ..., X} — X are i.i.d. with mean zero and
covariance matrix 3. In addition, conditional on X nogeX 4 S Y/,
where Y7", ..., Y,  areii.d. centered Gaussian random vectors with the same
covariance matrix 3. Hence the conclusion of the theorem follows from
applying Theorem 2.1 conditional on X{* (with L, and M,;(¢,) in Theo-
rem 2.1 substituted by L, and ]\/Zn(qﬁn)) to bound QEB(AYC) on the event
{En[(Xij — X;)% > bfor all 1 < j < p}y N {Lp < L} N {Myn(6p) < M,}. m

Proof of Proposition 4.3. Here ¢, C are constants depending only on b
and K under (E.1), and on b, ¢, and K under (E.2); their values may change
from place to place. We first note that, for sufficiently small ¢ > 0, we may
assume that

B%log"(pn) < en, (41)
since otherwise we can make the assertion of the lemma trivial by setting
C sufficiently large. To prove the proposition, we will apply Theorem 4.2
separately under (E.1) and under (E.2).

Case (E.1). With (41) in mind, by the proof of Proposition 4.1, we see
that P(A,, > b/2) < /6, so that with probability larger than 1 — «/6,
b/2 < E,[(Xi — X;)?] < CB,, for all j = 1,...,p. We turn to bounding
L,. Using the inequality |a — b> < 4(|a|® + [bJ?) together with Jensen’s
inequality, we have

T < 13 Y. 13) < e
L, < 4(121?ng71[!ng| ]+ nax. | X;]°) < Schingn[lXul ]

< C{B,+ n‘le; log! (pn)}-
Note that H\Xij]?’me < HXU]@ < B2, so that applying Lemma E.4 (i)
with 5 = 1/3, we have for every ¢t > 0,
P(L, > C{B, +n 'B3log*(pn) + n ' B3t?}) < 3¢~
Taking ¢ = log(18/a) < Clog(pn), we conclude that, with L,, = CB,, (recall
(41)), P(Ly, > Ly) < /6.
Next, consider M), x(¢,). Observe that

max |XZJ X;| €2 max max |X;;],
1<j 1<i<n 1<j<p

so that .
P(Mp x(¢n) > 0) < P(Hggx | Xij] > v/ (8¢ 1ogp)).
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Since || X4j]|y¢, < B, the right-hand side is bounded by

2(pn) exp{—v/n/(8Bn¢n logp)}.
Observe that
Bpoplogp < Cn1/6B,2/3 log1/3(pn),

so that using (41) with ¢ being sufficiently small, we conclude that

—~ nl/3
P(Mp,x(¢n) > 0) < 2(pn) exp | —
scBi? log!/®(pn)
nl/3
< 2(pn)exp | - log?(pn)
scpi? log™/®(pn)
log(pn) log(1/a)
<2 — < .
< 2(pn) exp < SABOK < a/6

CB}/Z for all j = 1,...,p on the event maxi<;<, E,[(X;; — X;)?] < CB,,
which holds with probability larger than 1 — /6. Hence, employing the

To bound M\n,y(qbn), observe that conditional on X1,...,X,, ”57615(”11)2 <

same argument as that used to bound ]\/Zn x(¢n), we conclude that
P(Mpy (¢n) > 0) < a/6+ /6 = /3,
which implies that
P(Mp(¢n) =0) > 1— (a/64+a/3) =1 — a/2.
Taking these together, by Theorem 4.2, with probability larger than 1 —
(/6 4+ /6 + a/2) =1—5a/6, we have
pEB(A™) < pMB(A) + O™ B2 logT (pn)}/°.
The final conclusion follows from Proposition 4.1.

Case (E.2). In this case, in addition to (41), we may assume that

B; log®(pn)

—— 2 <<

ani—2q = c<1 (42)
for sufficiently small ¢ > 0, since otherwise the assertion of the proposition
is trivial by setting C sufficiently large. Then as in the previous case, by
the proof of Proposition 4.1, with probability larger than 1 — /6, b/2 <
E,[(Xij — X;)?] <CBy, forall j =1,...,p.

A~

To bound L, recall that L, < 8 maxi<j<p En[|X;j|%], and by Lemma E.3,

E[ max E,[|X;;[*]] < C(Byn + Bjn~"¥/7logp).
1<5<p

Hence by applying Lemma E.4 (ii) with s = ¢/3, we have for every t > 0,
P(L, > C(Bp+B3n~*%1og p)+n~'t) < Ct~¥/3E[max | X;;|9] < Ct~93nBY.
17‘7
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Solving Ct~3nB} = /6, we conclude that P(L, > L,) < a/6 where
L, = C(B, + Bin=H3/103/110g p).
Next, consider M), x(¢n). As in the previous case,

P(My,x(¢n) > 0) < P(max | Xis| > v/n/ (860 10g)).
Since the right-hand side is nondecreasing in ¢,,, and
On < cBy !0l 1 (logp) 7Y,
we have (by choosing the constant C' in L,, large enough)

P(H}gx | Xij] > v/n/ (8¢ logp))

< nmax P(max | X;;| > CB,n"%~Y9) < a/6.
i J

For ]\/4\n7y(qbn), we make use of the argument in the previous case, and con-
clude that e
P(My,y(¢n) > 0) < a/2.

The rest of the proof is the same as in the previous case. Note that

(LZ 1og7<pn>> " (Bl o) v (Liler'm) g ]

n n a?/anl—2/q

and because of (42), the second term inside the bracket on the right-hand

side is at most
B2 log*(pn)\ *
a2/Qn1—2/q )

This completes the proof in this case. [
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