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Abstract: This paper presents a mixed-integer program for the dynamic lot sizing and scheduling problem in a mu lti-level, 

single-machine environment. It turn s out th at in cont rast to sing le-level problems the Integ ration o f initial inve ntory is a 

crucial aspect if generality should not be l ost. It is shown how problem instances can efficiently be solved to suboptimality 

by using a so-called randomized regret based heuristic. 
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1 Introduction 

Lot sizing and scheduling, i.e. deciding which quantities of what items have to be produced at what time to 

meet the (known or estimated) demand, are two of the most serious production planning problems. Hence, 

many researchers tried to find appropriate models and Solution methods for such kind of problems. Some of the 

most well-known models cover the capacitated lot sizing problem (CLSP) [de Both et al. 1984, Günther 1987], 

the discrete lot sizing and scheduling problem (DLSP) [Dinkelbach 1964, Haehling von Lanzenauer 1970, 

Fleischmann 1990, Salomon 1991] and the continuous setup lot sizing problem (CSLP) [Bitran and Matsuo 

1986, Karmarkar et al. 1987, de Matta and Guignard 1989], respectively. A more recent on e is Haase's model 

for proportional lot sizing and scheduling problems (PLSP) [Drexl and Haase 1992, Haase 1993]. While the 

CLSP-models cope with lot sizing only, the other models deal with scheduling, i.e. the problem of sequcncing 

production quantities, as well. ,; 

In the sequeLwe make certain assumptions about the problems to handle: We assume a finite time 

horizon divided into discrete periods with dynamic but deterministic externa! (independent) demands for items. 

No shortages are allowed, i.e. the production must meet the demands promptly. Items may consist of other 

items which are to be produced (with an item specific lead time) before the former items can be manufactured. 

The intermediate items may in turn cause internal (dependent) demand for other items and so on. We impose 

no other restriction on this multi-level product str ucture than being acyclic. Due to the Observation that many 

managers spot one Single machine as a critical resource, e.g. one Single machine is a bottleneck slowing down 

the whole production process, we concentrate on single-machine problems where all items are to be produced 

on that sole machine. The capacity per period of thi s machine is assumed to be constrained (but not necessarily 

constant over time). The production of one item consumes an item specific amount of the capacity. To produce 

an item the machine has tobe setup for this item. Eveiy setup causes item specific setup costs. Setup times and 

sequence dependent setup costs are ignored. Items that are produced within a period without a demand for these 

items within the same period are stored in inventory to mee t future demand. While inventory is assumed to be 

uncapacitated, holding an item in inventory ca uses item specific holding costs. Some items may already be 

stored in inventory before we Start the production. The objective is to find a production plan that is feasible and 

cheap, i.e. the sum of setup and holding costs should be as low as possible. 

In the following section we will present a mixed-integer PLSP-model for lot sizing and scheduling 

problems of the above kind. We chose a PLSP-model because DLSP- and CSLP-models are based on the 
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restriction that at most one item can be produced per period, whereas PLSP-models allow at most one 

changeover per period, i.e. up to two items can be produced per period. Apparently, an optimal Solution of a 

PLSP-instance is at least as good as an optimal Solution of a corresponding DLSP- or CSLP-instance with the 

same data set. To compute a Solution of a problem instance without initial inventory, we adopt a randomized 

regret based heuristic which was successfully used for gen erating suboptimal solutions in the single-level case 

[Haase 1993]. The multi-level extension of this heuristic is described in a later section. Since integrating initial 

inventory turns out to be more complex than in the single-level case (where initial inventory can simply be 

ignored without loss of generality), we will describe the details conceming initial inventory as well. 

2 A PLSP-Model for Multi-Level, Single-Machine Problems 

The multi-level, single-machine lot sizing and scheduling problem (with initial inventory and) with at most one 

changeover per period can be modelled as a mixed-integer program as follows: 

T J 
min 2 Z (SjXjt + hjljt) t=ij = i 1 J ' 1 

(1) 

subject to 

rjt - Ij(t-i) + % ' djt * ^ (aji %) 
ieS(j) 

(j = 1 .. J, t = 1 .. T ) (2) 

min{t+v:,T} 
Ijt ^ Z Z (^ji Qix ) 

t-t+1 ieS(j) 
0=1.. J, t = 0 .. T-l) (3) 

(t= 1 -T) (4) 

+ yj(t.i)) - qjt 2 0 

xjt - yjt+ yj(t-D 2 0 

(Pj qjt) < q 

ö = 1 .. J, t = 1 .. T) 

(j= 1 .. J, t= 1 ..T) 

(t= 1 .. T) 

(5) 

(6) 

(7) 

yjt e (o, i} (j — 1 .. J, t — 1 .. T) (8) 

Ijt ä 0, qjt 2> 0, xjt ä 0 (j = l .. J, t = 1 ,.T) 
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where 

is the "gozinto-factor", i.e. the quantity of item j that is needed to produce one item i; 
. . max { C, | t = 1.. T > 

isalargenumbergreaterthan min{pj | j = l .J} ' 

is the capacity of the machine in period t; 

is the (external) demand for item j in period t; 

are the costs for holding one item j one period in inventory; 

is the quantity of item j held in inventory at the end of period t (Ij0 is the initial inventory); 

is the number of items; 

is the amount of capacity consumed by producing one item j; 

is the quantity of item j tobe produced in period t; 

are the setup costs for item j; 

is the set of successors of item j, i.e. the set of items i where a^ > 0; 

is the number of periods; 

is the (integral) lead time of item j (Vj £ 0); 

is a (binary) variable indicating whether a setup for item j occurs in period t (xj, = 1) or not (xjt = 0); 

is a binary variable indicating whether the machine is setup for item j at the end of period t (y Jt = 1) or 

not (yjt = 0) (yj0 is the initial setup State). 

The objective of this model as it is expressed in (1) is to minimize the sum of setup and holding costs. 

Equations (2) are the inventory balances: A t the end of a period we have in inventory what we had the period 

before, increased by what is produced in this period and decreased by what is consumed by internal and 

external demands in this period. In combination with the restrictions (9) which define inventory to be non­

negative shortages are disallowed. To make sure that all internal demands can be satisfied promptly, the 

restrictions (3) have to be fulfilled: The lower bound of what is to be held in inventory at the end of a certain 

period is the sum of internal demands of the next Vj periods. Note, as long as we consider single-machine 

Problems only (as we do here), positive lead times are not a must to guarantee an in time production. However, 

in the case of positive lead times we could use a more concise formulation to replace (2) and (3): 

Ij0 ^ t Z (:%%) (j = 1 J) (1«) 
t = 1 i e S(j ) 

Iji - Ijo + Qji " dji " Z S (8;; Qk) G ~ 1 • •-D (11) 
x = 1 i e S( j) 

fjt = Ij(t-1) + % - djt - £ (aji %+Vj)) (j = 1 •• J > t = 2 .. T-Vj) (12) 
1 6 S(j) 
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rjt - + Qjt - djt (j = 1 .. J, t = max {1, T-Vj+1}.. T) (13) 

The idea of this set of restrictions is to look in each period Vj peri ods ahead and to put aside from the 

inventory the internal demand of that particular future period. Although this point of view renders it possible to 

decrease the number of constraints when compared to (2) and (3), the (in)equalities (10) to (13) lead to a 

"wrong" assessment of holding costs because items that are being produced to meet an internal demand do not 

cause holding costs for being stored during the lead time. Note, t hat the set of feasible Solutions is the same in 

both cases and that any optimal Solution for one of the programs is an optimal Solution for both programs. In 

the following we will stay with (2) and (3). In contrast to other authors, e.g. [Salomon et al. 1993, Tempelmeier 

1992], we use (2) and (3) instead of 

*jt = Vi) + qj(t-Vj) " djt " . % ( aji lit )' 3 i e S(j ) 

The following drawbacks of these equations persuade us to replace them: External demands are 

interpreted as demands at the very end of periods. Hence, lead times need not to be considered to meet external 

demands. If lead times are considered to meet extern al demands, nevertheless, no external demand that cannot 

be satisfied by initial inventory can be permitted within the first Vj periods. Moreover, the last Vj periods cannot 

be used for production, because this production would mean to meet a demand outside the time horizon T. 

The restrictions (4) ensure that the setup State of the machine is uniquely defined at the end of a period. 

Having in mind that we allow at most one changeover per period the constraints (5) guarantee that the machine 

is setup for an item whenever an item is produced. Noteworthy to say, that the setup State of the machine can be 

maintained during idle periods to avoid unnecessary setups and hence to avoid setup costs. Setup costs are to be 

charged whenever the setup State switches from zero to one. In combination with the minimize objective (1) the 

conditions (6) thus raise the setup flag of an item to one in such cases. Scarce capacities are respected by the 

inequalities (7). Decision variables are to be non-negative (or binary in the case of setup states) which is 

expressed in (8) and (9). In the sequel we assume the initial inventory and the initial setup State to be given. 

3 A Randomized Regret Based Heuristic 

In this section we will present a heuristic procedure to solve both multi-level, single-machine problems with 

and without initial inventory. The basic idea of our algorithm is to move backwards from period T to period one 

while accumulating the demands for each item separately. Within each period we choose one item with a 

positive cumulated demand to be produced and try to satisfy the complete demand. If no such item exists we 

simply step one period backwards. In the case that the whole cumulated demand for this item can be produced, 

i.e. the machine does not run out of capacity, we choose a second item for production. If two items are 

scheduled we step backwards one period to Start all over again. If the machine capacity is exhausted we also 

step backwards one period to complete the production process of the selected item until the cumulated demand 

for this item is met. This scheme is repeatedly applied until period one is reached. Moving backwards instead of 

moving forwards from period one to period T is an appropriate approach for multi-level systems because 
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scheduling an item in period t causes internal demands for predecessing items (with positive lead times) in 

earlier periods. Once that an item is scheduled, the demand matrix may thus simply be updated by internal 

demands of directly predecessing items. 

The major question to be answered is: "How to select an item for production out of a set of items with 

positive cumulated demand?". To decide which item to choose we make use of a regret measure [Drexl 1991] 

that estimates the item specific regret not to schedule the item in the current period. After Computing the 

regrets for all items we randomly select an item in such a way that the higher the regret the more probable it is 

chosen. Despite the existence of items with a positive cumulated demand it ought happen that no item is chosen 

at all. 

The regret measure that we use reflects several crite ria which (in our opinion) determine the regret not 

to schedule an item in a certain period. These criteria are: 

(a) Not to produce the cumulated (future) demand causes additional holding costs. 

(b) Not to produce an item the machine is setup for (maybe) causes setup costs in other periods. 

(c) Not to produce an item with positive depth, i.e. with predecessing items producible under the restriction 

of lead times, (maybe) leads to infeasibility due to the finite time horizon. This criterion may be 

neglected if the depth of an item is much smaller than the distance to the first period. 

(d) Not to produce the cumulated demand, i.e. not making use of the machine capacity in the current period, 

(maybe) leads to infeasibility due to scarce capacity. It may not be paid attention to this criterion if the 

amount of capacity that is needed to produce an item (and all its predecessing items) is much smaller 

than the available capacity. 

More formally the regret measure for item j in period t can be defined as follows: Let CDjt denote the 
T T 

cumulated demand of item j not being satisfied, i.e. CDjt = Z djt - Z % Let y denote the item the machine 
T = t T=t+1 

is setup for at the beginning of period t+1 (assume y = 0, i.e. the machine is setup for no item at all, when 

determining the regrets in period T). The depth of an item j (denoted as depj) can be measured by the maximal 

sum of lead times of the items along a path to item j, where a path to item j (denoted as Pj) is defined as a 

sequence of items i0 -> ij ik iK with iK = j, ai(k ä 1 for all k e {1,...,K} and a^ = 0 for 

all items h e {1,...,J>. This is to say, that the depth of an itemj can be computed as a longest path to item j, i.e. 
K-l 

dep: = max { Z v- | i0 -> ij ik iK is a path to item j}. Let icL, denote the internal demand 
k = 0 k 

for items i to be satisfied for producing one item j, i.e. idy = 1, idx = Z (aih idjh) if i # j and there exists a 
h e S( i) 

path Pj such that i e Pj (where ik e Pj is used to denote that item ik is on path Pj), and idj, = 0 if there is no such 

path Pj. The capacity that is consumed by producing one itemj (and all its predecessing components) can now 

be defined as capj = Z (P; idjj). The total amount of available capacity in period t (denoted as ACj) can easily 

t 
be computed as ACt = Z Cx. The regret measure for an itemj in period t (denoted as ijt) can in correspondence 

T= 1 

to the above criteria now be formulated as follows: 

6 



Case 1: CD:t > 0 and j * y. 
hj CD:. 

rjl max { Sj 1 all items i} 

" ^ max { Sj I all items i } ^ 
+ «> 

• 

Case 2: CDjt > 0 and j = y. 

Just drop (b) in case 1. 

Case 3: CDjt = 0. 

rjt= -oo 

The real-valued parameters Y1. --.Y4 control the influence of each of the criteria (a) to (d) where without 
4 

loss of generality O^Yi Y4 ^ 1 and Z Y; = 1 holds. According to what was said before, the focus of (a) and 
i = 1 

(b) is on the expenses that are incurred (or saved when setups are avoided) if a certain item is not scheduled, 

whereas (c) and (d) make feasible production plans more probable no matter how costly they are. Roughly 

speaking, the combination of these criteria leads to cheap and feasible production plans. Noteworthy, that only 

CDjt nceds to be computed over and over again while moving stepwise from period T to period one. The other 

components of the regret measure are known in advance and can thus be computed a priori. It should be 

mentioned that this definition is not a precise one. Instead of using hj CDj, as an estimate of additional holding 

costs in (a) one could use hj min { CDjt, L ^ J } which would be more precise because even if the item j would 

be produced in period t the capacity must not be exceeded and holding costs may therefore occur in any case. 

Computational studies turned out that a more precise estimate of additional holding costs does not improve the 

quality of the algorithm. Another "incorrect" point is that we consider the setup State a t the beginning of the 

sueeeeding period t+1 although the setup State at the end of the preceding period t-1 would b e of interest. This 

is an inherent problem of backward oriented procedures and seems to be unavoidable. Unless we consider 

sequence dependent setup costs (or times) the impact of this problem is negligible. Other (reasonable) 

definitions of the regret measure, e.g. using y, ^ { h. cti Jauerns i > ^ ̂  max { h, CD^I all items i} 

instead of (a) and (b), respectively, were tried out but gained no improvement. 

Based on the above regret measure we now introduce a modified regret which allows us to take 

differences between the item specific regrets into account and hence enables a more sensitive control: 

f 0 if rj t = -00 

Rit = ] 
l (ijt - min { rit | items i with CDjt > 0 } + e )5 otherwise 

The modified regret measure is an item specific non-negative value and will be used for selecting an item with 

a positive cumulated demand for production. The parameter e is a small positive value (e.g. 0.0001 S e S 0.1) 

which ensures that every item with a positive cumulated demand has a positive regret. This value may bias the 

regret if e is of the same or a larger order of magnitude as the values - min { rit | items i with CDit > 0 }, i.e. 

differences of the (unmodified) regret are smoothed if e is too large. The real-valued parameter 5 amplifies the 
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differences of the item specific (unmodified) regrets if 5 £ 1 is chosen. In the case of 0 £ 5 < 1 the differences of 

the (unmodified) regrets are smoothed. A negative value of S i s unrealistic because this would mean that the 

higher the (unmodified) regret of an item the lower the modified regret and vice versa. A decision criterion 

based on such a regret measure would prefer to choose items with a low (unmodified) regret which would be 

contrary to the idea of regrets. 

Let us now turn to describe the details of a backward orie nted heuristic that is based on randomized 

regrets. As we will see later on, there are some strings attached when initial inventory is considered. For the 

sake of simplicity we will therefore Start without consi dering initial inventory, i.e. in itial inventory is assumed 

to be zero. After we will have developed a Solution method for this simplified problem we will return to address 

the initial inventory problem. The main idea of the heuristic is to repeat the backward oriented scheduling 

algorithm over and over again to generale different production plans and to choose the best (cheapest) one. 

While moving backwards from period T to period one we should terminale the process of scheduling and Start a 

new repetition as soon as we encounter a Situation in which it is clear that no feasible production plan can be 

generated. Detecting such situations as soon as possible decidedly improves the Performance. In our heuristic 

we test two infeasibility conditions: A Situation cannot be completed to a feasible production plan if either the 

depth of an item with a positive cumulated demand is greater than or equal to the number of the current period, 
j 

i.e. depj ä t, or the sum of capacity needs is greater than the available capacity, i.e. I ( CDjt capj) > ACt. A 

feasible production plan is eventually found if no item with a cumulated positive demand is left after period one 

is considered. The details of an Implementation are given in the appendix. 

The described procedura can be used to solve problem instances without initial inventory but fails if 

initial inventory should be considered. This would not reduce the class of feasible problems if we face single-

level problems only because in the single-level case initial inventory can be used to meet the (external) demand 

in a simple way: The basic rule is to satisfy a demand in an early period before a demand in a late period is 

satisfied. A single-level problem instance with initial inventory can thus be converted into a problem instance 

without initial inventory by using a preprocessor that moves forward from period one to period T and "deletes" 

the entries in the item specific demand vectors as long as the demand can be met by the initial inventory. A 

scheduling algorithm may then take over to sol ve the resulting problem (where no initial inventory exists and 

some entries in the original demand matrix are decreased). Every feasible Solution of the latter problem is 

(obviously) a feasible Solution of the former one and vice versa. This is to say that if no feasible Solution of the 

latter problem exists, the former one is insolvable, too. Moreover, the optimal objective function values of both 

problems d iffer by a constant (i.e. the holding costs for the initial inventory) only. For these reasons, both 

problems are equivalent. 

Mapping initial inventory to demands in the multi-level case bears the risk of resulting in an infeasible 

problem aithough the original problem was solvable. The following simple example points this characteristic 

feature out: Suppose J = 3, T = 4, Cj = Cj = 10, C3 = C4 = 1, v, = v2 = v3 = 1, and pt = p2 = p3 = 1. Assume a 
f 0 0 0 ^ 

2 0 0 linear structure with ( a^ )y., , 
V 0 1 0 J 

C 0 0 0 3 \ 

and an initial inventory of Il0 = I20 = 0 and I30 = 3. The 

(external) demand is given as (djt )j _, ,: 
1-1..T 

0 0 0 0 
U200; 

. Let the machine initially be setup for producing item 
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3. The matrix ( qjt , 
I-I.T 

f ° 1 1 1 > 
2 4 0 0 

v 5 o o o y 
then defines a feasible production plan that meets the demands 

promptly. Having a closer look at this example turns out that in contrast to the single-level case a multi-level 

problem with initial inventory cannot be reduced to a problem without initial inventory during a preprocessing 

stage. The reason for this is that we have both external and internal demands for items, but only the externa! 

demands are known by time. To guarantee that a problem with initial inventory when tumed into a problem 

without initial inventory is insolvable only in those cases where the original problem is not solvable, we may 

use the initial inventory to meet a demand (for a n item) in a certain period if and only if the demands (for that 

item) in earlier periods can be satisfied by the initial inventory as well. Hence, initial inventory in multi-level 

problems cannot be reduced a priori. But even if we would (for the sake of simplicity) accept this property and 

would tiy to map the initial inventory to external demands (only), the problem of considering initial inventory 

during the runtime of the scheduling algorithm would not be circumvented because whenever the initial 

inventory is greater than the sum of external demands (see for instance the above example) we would face the 

problem of meeting (internal) demands by the initial inventory again. So, if generality should not be lost, i.e. 

problem instances with initial inventoiy are to be solved (which is the case in most real-world applications), a 

Solution procedura for multi-level problems has initial inventoiy to take into account. 

Let us now investigate if and how the above randomized regret based heuristic can be changed to solve 

problem instances with initial inventory to suboptimality. Reminding the idea of how initial inventory is taken 

into account in single-level problems, i.e. reminding that demands in early periods are met before demands in 

late periods are satisfied, the main idea o f solving multi-level problems with initial inventory is as follows: 

Assume that for each item j the total number of ite ms to be produced (denoted as tbpj), i.e. the number of items 

that are demanded but not met by the initial inventoiy, is known. Whenever items j are scheduled for 

production in a period t the value tbpj is to be decreased by qj t, i.e . tbpj is to be updated by tbpj - q^. The value 

tbpj can be seen as an upper bound of the cumulated demand CDjt to be satisfied which was so far used to 

indicate the number of items to be produced until period t. Within each step from period to period CDj, must 

therefore be computed as CDj, = min { CDj(t+1) + dem^, tbpj } where denij, is the sum of externa! and internal 

demand for item j in period t (see the algorithm given in the appendix). The backward oriented procedura thus 

pays off again because the (internal and externa!) demands of an item are now met by the initial inventory in 

those periods only in which the demands in earlier periods are also met. 

T J 
The computation of tbp= is not straightforward, i.e. tbp; = Z Z (idj: dit) - Ii0 is incorrect. If the 

3 3 t=l i=i 3 3 

demand for an item j can be met by the initial inventory, we have to take into account that no internal demand 

for predecessing items i e Pj is caused. To compute tbpj (j = 1 .. J ) we therefore use the following simple 

program: 

tbpj := 0 (j = 1.. J) /* initialize all tbpj */ 

invj := Ij0 (j = 1 .. J) /* copy the initial inventory */ 

for t = 1 to T /* move from period one to period T */ 

{ for all i e {1,...,J} /* check every item */ 

{ if (djt > 0) then /* external (and internal) demand is caused */ 



add_tbp (i, dit) 

} } 

where 

I* update tbpj (j = 1.. J ) */ 

subroutine add_tbp (j, d) /* consider demand d for itemj */ 

/* the demand exceeds the initial inventory *1 

/* q items are to be produced */ 

/* update tbpj *t 

I* the initia l inventory is exhausted */ 

/* try to satisfy the internal demand */ 

/* move recursively along all paths to itemj */ 

/* demand can be met by the ini tial inventory */ 

{ if (d > invj) then 

{ q := d - invj 

tbpj := tbpj + q 

invj := 0 

for all "direct predecessors k of j" 

add_tbp (k, a%j q) 

} eise invj := invj - d 

} 

Noteworthy to say, that this program can run before the scheduling algorithm starts, i.e. tbpj (j = 1 .. J ) 

can be co mputed in advance. If a positive value of invj remains alter the above routine was executed, no 

production of items j must take place, i.e. all demands for itemj are met by the in itial inventory. The remaining 

invj items j are to be held in inventory for all T periods of time (IjT may thus be a positive value) and thereforc 

cause holding costs. 

The major impact of conceming initial inventory is upon the infeasibility checks that are made to detect 

situations in which no feasible production plan can be reached any more . Neither the comparison of the depths 

of the items with the number of the current period nor the test for insufficient capacity is a valid infeasibility 

condition when initial inventory is considered. The problem in both cases is that some of the internal demands 

that are required to be satisfied in order to produce a particular item may be met by the initial inventory. Hence, 

the depth of an item as well as its capacity needs may be less than predicted. As it was pointed out earlier, 

though we can compute the precise number of items to be produced, we cannot compute the precise time that 

the production takes place (otherwise we would have an exact Solution method and not a heuristic). Both 

infeasibility checks must therefore be omi tted. This is to say, that due to the criterion (c) the (unmodified) 

regret of an itemj whose depth exceeds the time horizon and t - depj thus evaluates to a negative value (or is set 

to one if t = depj) tends to be small. A similar problem is faced when an item is scheduled for production and 

the lead time of a directly predecessing item exceeds the time horizon (when the demand matrix is to be 

updated). Again, it cannot be decided wh ether or not this leads to infeasibility. AI though it is apparent that 

such predecessing items must be taken from the initial inventory it is unclear if all of these items can indeed be 

taken from the initial inventory until period one is considered. Thus again the scheduling algorithm cannot be 

terminated to Start a new repetition. The demand matrix is to be updated only in those cases where the lead 

time does not exceed the time horizon. If period one is eventually considered, a final infeasibility check can be 

performed by testing the variables tbpj. If there exists at least one positive value, the production plan is 

infeasible (because more items should have been produced) and can thus be dismissed. 

Finally, the evaluation of a production plan, i.e. the computation of the objective function value, shall 

now be discussed. While the setup costs can trivially be computed by scanning a production plan from period 
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one to period T, some efforts have to be made for the determination of the holding costs. In the case of single-

level problems (without initial inventory) the holding costs can be caJculated by 

T J 
2 Z, (h: (qjt - d:t) (T + 1 -1)). 

t=ij=i 1 3 3 

If multi-level problems are considered, the subject becomes a bit more complex because items that are produced 

to meet an internal demand may have a positive lead time, i.e. the items of the kind j are to be held in inventory 

for at least Vj periods. Thus 

T J j j 
Z ( Z(hj (qjt-cLt) - Kh^a,) ) (T+l-t) ) + Z(hjIj0T) 

t=i j=i J J 1 i=i 3 3 j=i 

defines the holding costs in the multi-level case. 

4 Computational Study 

To study t he presented heuristic it was coded in C [Kernighan and Ritchie 1990] and executed on a 486 PC 

with 25 MHz. The computational results were promising: 

We tested a total of 144 sample problems with 5 items and 10 periods of time and without initial 

inventory. Since the only difference between the heuristic which solves problems with initial inventory and the 

one which solves problems without initial inventory is that the former one computes the number of items to be 

produced in a preprocessing stage and performs no infeasibility checks, computational results for problem 

instances with initial inventory are not given. The control parameters e and 8 of the heuristic were chosen at 

random from the intervals [ 0.0001 , 0.1 ] and [ 0 , 10 ], respectively. 4 different product structures were 

considered (see figure below). For each of these structures we defined 3 problems with external demand for end 

items only and 3 problems with external demand for all items, i.e. a total of 24 combinations were constructed. 

The demand patterns were chosen as follows: 

(1) External demand in period 10. 

(2) External demand in periods 6 and 10. 

(3) External demand in periods 6, 8 and 10. 

v © A 

© © © 

Linear Structure Assembly Structure Divergent Structure General Structure 
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Table 4.1: Setup and holding costs 

item setup costs holding costs 

1 30 5 

2 20 4 

3 20 3 

4 10 2 

5 10 1 

A problem is named by a triple of the form a/71/v where C T e { L, A, D, G } indicates the underlying 

product structure (i.e. linear, assembly, divergent or general), n e { E, A } indicates if external demand occurs 

for end items only or for all items, and v e { 1, 2, 3 } indicates the demand pattern in correspondence to what 

is defined above. Each of these 24 problems were tested in combination with 6 different sets of data: 

(a) Holding and setup costs are defined as in table 4.1. Lead times and production coefficients are 

equal to one in all cases, i.e. Vj = 1 and = 1. The production of one item (of any kind) 

consumes one capacity u nit, i.e. pj = 1 for all items, while the capacity of the machine is 

assumed to be constant over time. More precisely, we assume the capacity constraints per time 

period to be defined as in table 4.2. The external demands per period (with respect to the 

demand pattern v) are assumed to be 20 per item in the case that % = E and 10 per item in the 

case that rt = A. 

(b) The same data set as (a) out of setup costs being multiplied by 20. 

(c) The same data set as (a) out of external demand sizes being half of what is defined above, i.e. 

10 items if n = E and 5 items if % = A. 

(d) The same data set as (b) out of external demand sizes being chosen as in (c). 

(e) The same data set as (c) out of pj = 0.5 for all items and all production coefficients are 

doubled, i.e. a^ = 2 for all i tems j and i with respect to t he product structures defined above. 

(f) The same data set as (d) out of pj and a^ being chosen alike (e). 

Each of these 144 problems has more than one feasible Solution. 

Table 4.2: Capacity constraints per period of time 

W
 11 e 

<
 11 e 

v=l v = 2 v = 3 v = 1 v = 2 < 11 w
 

35 35 100 35 35 100 

35 35 100 35 35 100 

35 100 100 35 100 100 

35 100 200 100 100 200 

Tables 4.3 to 4.8 provide the computational results when 1000 repetitions are performed. The objective 

function values are compared to the optimal solutions which were computed by means of Standard MlP-solver s 

(i.e. OSL [IBM 1992] and LINDO [Schräge 1991]). As a measure of the quality of a Solution we use 

F* - F* 
deviation =100* ——001 

^ opt 
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where F*H denotes the best Solution found by the heuristic and F*opt denotes the optimal Solution 

computed by the Standard solvers. Furtherm ore we give the infeasibility ratio, i.e. the percentage of iterations 

which did not find a feasible production plan. The utilization of the machine capacity is determined by 

scarcity = 100 * Z Z ^ ^J1 ^ 
t = 1 j = 1 

though a low value does not mean that a feasible production plan can easily be found. Even if th is value is very 

low it may happen that no production plan can be found at all. The reason for this is that as long as shortages 

are not allowed positive lead times as well as demands in early periods force capacity units (in late periods) to 

be unused. 

Table 4.3: Deviation for problem instances with v = 1 and data sets (a) to (f) 

(a) (b) (c) (d) (e) (f) average 

L/E/l 28.30 3.80 0 0 0 0 5.35 

L/A/l 10.34 1.50 7.89 0.79 5.88 0.76 4.53 

A/E/l 15.38 2.46 0 0 0 0 2.97 

A/A/l 28.57 6.07 6.82 0 4.48 0.73 7.79 

D/E/l 28.41 6.74 8.33 1.03 10.26 0.46 9.21 

D/A/1 25.40 2.93 14.63 1.57 10.91 0.50 9.32 

G/E/l 24.65 9.50 0 0 13.87 2.43 8.41 

G/A/l 8.89 1.85 7.41 1.01 12.79 0 5.33 

average 21.24 4.36 5.64 0.55 7.27 0.61 6.61 

Table 4.3 provides the results of problem ins tances with v = 1 when applied to different data sets. As it 

can be seen in table 4.4, only few iterations lead to an infeasible production plan. One could therefore say, that 

these problems were easily solved by the heuristi c. Problem instances applied to data set (a) were badly solved 

when compared to the other results. 

Table 4.4: Infeasibility ratio and scarcity for problem instances with v = 1 and data sets (a) to (f) 

la) £b) (£} (d) (e) £ 

L/E/l 0/28.57 0/28.57 0/14.29 0/14.29 0/28.57 0/28.57 

L/A/l 0/25.71 0/25.71 0/12.86 0/ 12.86 0/21.43 0/21.43 

A/E/l 0 / 28.57 0/28.57 0/14.29 0/14.29 0/37.14 0/37.14 

A/A/l 0.20/31.43 0.40/31.43 0.30/15.71 0.40/15.71 0.40 / 30.00 1.00/30.00 

D/E/l 0/45.71 0/45.71 0 / 22.86 0/22.86 0/48.57 0/48.57 

D/A/1 0/31.43 0/31.43 0/15.71 0.10/15.71 0 / 30.00 0.10/30.00 

G/E/l 0.70/62.86 8.50/62.86 0/31.43 0.50/31.43 0.20 / 80.00 1.00/80.00 

G/A/l 2.60 /16.00 17.60/ 16.00 5.20 / 8.00 20.60 / 8.00 7.30/17.50 19.90/17.50 

It is interesting to note, that those G/A/l-instances which were applied to data sets (b), (d) and (f) lead to 

a high number of infeasible solutions but were solved nearly optimal, i.e. with a deviation of less than 2 %. 
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Table 4.5: Deviation for problem instances with v = 2 and data sets (a) to (f) 

(a) (b) (c) (d) (e) (f) average 

L/E/2 35.90 34.70 11.11 65.91 6.67 40.40 32.45 

L/A/2 14.29 25.95 14.10 30.42 10.68 30.00 20.91 

A/E/2 22.38 41.55 2.33 60.18 3.61 41.26 28.55 

A/A/2 23.75 26.76 9.38 31.72 9.93 28.38 21.65 

D/E/2 12.36 29.30 11.32 32.52 21.95 29.80 22.88 

D/A/2 23.88 31.29 20.24 32.53 22.81 26.85 26.27 

G/E/2 0 20.34 0 18.79 9.92 27.68 12.79 

G/A/2 15.63 26.09 14.41 14.90 23.53 24.05 19.77 

average 18.52 29.50 10.36 35.87 13.64 31.05 23.16 

The resuits of problem instances with v = 2 are given in table 4.5. Most of these problems, especially 

those with external demand for all items, were hardly solved by the heuristic as indicated in table 4.6. 

Table 4.6: Infeasibility ratio and scarcity for problem instances with v = 2 and data sets (a) to (f) 

(b) Q (d) (e) (f) 

L/E/2 0/57.14 0/57.14 0/28.57 0 / 28.57 0/57.14 0/57.14 

L/A/2 16.80/51.43 33.40/51.43 15.80/25.71 29.70/25.71 15.20/42.86 29.00/42.86 

A/E/2 0.30/57.14 0.10/57.14 0/28.57 0 / 28.57 0 / 74.29 0 / 74.29 

A/A/2 40.50/62.86 64.60 / 62.86 32.30/31.43 34.30/31.43 28.60/60.00 34.70 / 60.00 

D/E/2 23.40 / 32.00 30.30/32.00 23.20 / 16.00 34.10/16.00 87.80 / 34.00 40.50/34.00 

D/A/2 79.70 / 22.00 60.30/22.00 74.80/11.00 61.30/11.00 90.70/21.00 61.70/21.00 

G/E/2 18.10/44.00 38.80/44.00 19.70/22.00 30.10/22.00 85.00 / 56.00 51.60/56.00 

G/A/2 73.00 / 32.00 58.10/32.00 60.10/16.00 42.80/ 16.00 80.50/35.00 50.80/35.00 

Table 4.7 presents the resuits of problem instances with v = 3 when applied to different data sets. As one 

can see in table 4.8, it was hard to solve these problems by the heuristic. 

Table 4.7: Deviation for problem instances with v - 3 and data sets (a) to (f) 

(a) (b) (c) (d) (e) (f) average 

L/E/3 13.40 28.67 14.29 38.75 5.62 34.74 22.58 

L/A/3 17.78 12.18 18.10 15.85 13.48 14.47 15.31 

A/E/3 11.93 39.74 9.52 49.79 4.69 46.05 26.95 

A/A/3 15.25 23.12 6.16 14.08 11.17 18.07 14.64 

D/E/3 16.56 11.56 13.10 19.44 22.40 14.56 16.27 

D/A/3 30.10 6.18 24.17 14.18 22.29 15.29 18.70 

G/E/3 3.17 19.27 6.03 28.71 10.24 19.76 14.53 

G/A/3 12.24 19.37 12.27 20.97 19.62 20.64 17.52 

average 15.05 20.01 12.96 25.22 13.69 22.95 18.31 

The problem instances that we used here, especially those with v = 2 and v = 3, could be termed hard 

because many items had to be scheduled within a narrow time horizon. It is thus a promising thing to note that 

the heuristic was able to find a feasible Solution in all cases. Basier problems which are expected to be solved 
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better when compared to the results above were not tested here because of two reasons: First, we could have 

decreased the number of items, but co nsidering less than 5 items to study multi-level problems is not an 

interesting thing to do. Second, we could have increased the number of time periods (and the number of items), 

but larger problems could not have been solved to optimality within reasonable time. 

Table 4.8: Infeasibility ratio and scarcity for problem instances with v = 3 and data sets (a) to (f) 

i5} (b) £c) (d) (e) 0. 

L/E/3 41.80/30.00 21.50/30.00 32.90/15.00 19.20/15.00 22.10/30.00 24.20 / 30.00 

L/A/3 59.80 / 27.00 64.70 / 27.00 60.50 / 13.50 66.30/ 13.50 49.50 / 22.50 66.80 / 22.50 

MEß 25.30 / 30.00 15.10/30.00 26.50 / 15.00 13.40/15.00 27.40 / 39.00 12.60 / 39.00 

A/A/3 42.00 / 33.00 37.90 / 33.00 47.80 / 16.50 39.90 / 16.50 39.10/31.50 39.70/ 31.50 

D/E/3 63.30/48.00 54.10/48.00 43.00 / 24.00 15.80 / 24.00 83.10/51.00 36.90/51.00 

D/A/3 72.60/33.00 31.80/33.00 55.90 / 16.50 19.10/16.50 75.20/31.50 23.70/31.50 

G/E/3 93.70 / 33.00 94.80 / 33.00 84.20 / 16.50 60.80 / 16.50 97.90/42.00 92.30/42.00 

G/A/3 92.40 / 24.00 97.00 / 24.00 88.50 /12.00 74.00 / 12.00 96.30 / 26.25 79.70/26.25 

Noteworthy, that the time needed by the heuristic to solve the above problems was between 4 to 8 

seconds per problem running on a 486 PC with 25 MHz. On the other hand Standard MlP-sol vers (i.e. OSL 

[IBM 1992] and LINDO [Schräge 1991]) took several days to solve all the sample problems running on an IBM 

RS/6000-550 AlX-workstation. In some cases our Computer run out of memory space when we used OSL while 

in some other cases LINDO terminated with wrong results because of errors introduced by rounding (we 

assume). So the advantage of using a heuristic is not only the Short response time, it is the capability of solving 

problems that cannot be solved by exact methods as well. 

5 Conclusion and Future Work 

On the basis of the PLSP we have presented a mixed-integer model for multi-level, single-machine lot sizing 

and scheduling problems. To solve problem instances to suboptimality an efficient backward oriented 

randomized regret based heuristic was developed. Surprisingly, (almost) all components that have an influenae 

on the regret measure could have been determined in advance, so that the calculation of regrets does not 

decrease the Performance when compared to a corresponding single-level heuristic. The backward oriented 

Solution approach paid off because the multi-level nature of the problem instances has neatly been taken into 

account by simply updating the demand matrix. Another advantageous side-effect of the backward oriented 

algorithm is that it facilitates the early detection of infeasible production plans. It was shown that in contrast to 

single-level problems the consideration of initial inventory is a crucial aspect since neglecting this case reduces 

the class of solvable problems. Again, the backward oriented method, in combinaüon with the capability to 

compute the precise number of items to be produced a priori, helps to generale feasible production plans. 

Unfortunately, it tumed out that solving problems with initial inventory allows no infeasibility checks to be 

done until a complete production plan is scheduled. 
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Future work should be about the extension of the presented model and heuristic for meeting real-world 

requirements iike setup times, sequence dependent setup costs and times, capacitated inventory or shortage 

management. Moreover, the heuristic should be applied to multi-machine problems as well. The random choice 

of the regret parameters could be guided by selection criteria [Haase 1993] to improve the resuits. Work in this 

field would also be of interest. 
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Appendix: Implementation of the Heuristic 

/* Randomized Regret Based Heuristic for Multi-Level, Single-Machine Problems without Initial Inventory */ 

/* for the sake of simplicity we assume positive lead times for all items */ 

/* Initialization: */ 
F* := oo 

repeat #repetitions 

{ /* Initialization: */ 

CDj(T+l):= 0 

demjt := djt 
% =o 

t := T 

y := 0 

setups := 0 

carry := false 

"choose yy4,E and 8 at random" 

/* Move backwards from period T to period one: */ 

while (t 2 1) do 

/* F* denotes the best objective function value */ 

/* repeat the scheduling algorithm */ 

(j = 1 .. J) /* there is no demand when we Start */ 

(j = 1.. J, t = 1.. T) /* copy demand matrix */ 

(j = 1 .. J, t = 1.. T ) /* a new production plan */ 

/* start in period T */ 

/* the machine is setup for no item */ 

/* number of setups within the current period */ 

/* carry on the production of an item */ 

/* select parameters from specified intervals */ 

{ CD, := CD: j(t+D denijt 

/* stop after period one is considered */ 

(j = 1.. J) /* accumulate the unsatisfied demand */ 

/* infeasibility check */ if (3 j: (depj 2t)) then goto "next repetition" 

if ( Z ( CDjt capj) > ACt) then goto "next repetition" /* infeasibility check */ 

"compute pjt" 

if (not carry) then 

(j = 1.. J) /* determine the item specific regrets */ 

/* select a new (first) item i */ 

"select an item i at random proportional to pj t" /* maybe no item is selected */ 

eise "select item i = y" /* continue the production of an item i *1 
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if ("an item i is selected") then 

{ if ((p; CDit )SC,) then 

{ setups := setups + 1 

schedule (i, CDit) 

if (3j*i: (CD^>0 )) then 

{ if ( setups < 2) then 

{ if (t = 1) then 

/* the total demand can be produced */ 

/* a setup must take place */ 

/* schedule item i *1 

/* try to produce a second item */ 

/* at most two items are allowed */ 

/* take the initial setup State into account */ 

{ if ("the machine is initially setup for an item h") then 

{ if (CDht > 0) then "select the item h" /* there is a positive demand for item h */ 

} 

eise /* the machine is not setup */ 

{ if (setups = 0 ) then /* at most one changeover */ 

"select an item h * i at random proportional to Pjt" 

} } 

eise /* t > 1 */ 

{ "select an item h * i at random proportional to pJt" 

setups := setups + 1 /* a setup must take place */ 

} 

if ("an item h is selected") then 

{ if ((Ph CDht) £ Cj - (pj qit)) then I* the total demand can be produced */ 

schedule (h, CDht) 

eise 

schedule (h, L q'' ̂  J) 
Ph 

} } } } 

eise 

{ setups := setups + I 

schedule (i, L ^ J) 

if (setups < 2 ) then setups := 0 

eise setups := 1 

} 

eise setups := 0 

t := t -1 

/* schedule item h *1 

/* the capacity is exceeded */ 

/* schedule item h */ 

/* the capacity is exceeded */ 

/* a setup must take place */ 

/* schedule item i *1 

/* at most one changeover is done in t */ 

/* one setup must be done in t-1 */ 

/* t is an idle period */ 

/* step backwards */ 

/* leave loop when t = 0 */ } 

if ((setups = 1) and "the machine is not initially setup for y") then /* infeasibility check */ 

goto "next repetition" 

if (3 j : ( CDjj > 0)) then goto "next repetition" I* infeasibility check *1 

"evaluate the production plan" /* compute the objective function value F *1 

if (F < F*) then /* a cheaper production plan is found */ 
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{ F* := F 

"memorize the current production plan" 

} } 

display "the best production plan" 

where 

subroutine schedule (j , q ) 

{ qjt~q 

if (q < CDjt) then 

{ CDjt := CDj, - q 

carry := true 

} 

eise 

{ CDjt := 0 

carry := false 

} 
y •=j 

for all "direct predecessors k of j" 

demk(t.vk);= demk(t-vk)+ (akj q) 
} 

/* end of repetition */ 

/* schedule q items j */ 

/* produce q items in period t */ 

/* the total demand cannot be produced */ 

/* decrease the cumulated demand */ 

/* continue the production in t-1 */ 

/* the total demand can be produced */ 

/* decrease the cumulated demand */ 

/* there is no production to be continued */ 

/* change the setup State */ 

/* raise the internal demand */ 

/* update the demand matrix */ 
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