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Abstract. There is evidence that estimates of long-run impulse responses
of structural vector autoregressive (VAR) models based on long-run identi-
fying restrictions may not be very accurate. This finding suggests that using
short-run identifying restrictions may be preferable. We compare structural
VAR impulse response estimates based on long-run and short-run identifying
restrictions and find that long-run identifying restrictions can result in much
more precise estimates for the structural impulse responses than restrictions
on the impact effects of the shocks.
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1 Introduction

Some authors have pointed out that standard estimators of the long-run
multiplier matrix of a structural vector autoregressive (VAR) model identified
with long-run restrictions may not be very precise (e.g., Faust and Leeper
(1997), Christiano, Eichenbaum and Vigfusson (2006)). Moreover, it was
found that confidence intervals around impulse responses from structural
VARs identified by restrictions on the long-run effects of the structural shocks
tend to be wide (e.g., Erceg, Guerrieri and Gust (2005), Gust and Vigfusson
(2009)). Such results suggest that it may be preferable to use short-run
restrictions for identifying shocks in structural VAR models, as argued by
Faust and Leeper (1997). In practice, it may not be an option to replace
long-run restrictions by short-run restrictions because the former are typically
used when no convincing restrictions for the impact effects of the shocks are
available. Hence, the question arises how much estimation precision is lost
by not committing to identifying short-run restrictions and using long-run
restrictions instead.

The aim of this study is to compare the relative estimation precision im-
plied by short-run and long-run identifying restrictions for structural VAR
models. Usually short-run and long-run restrictions will result in quite dif-
ferent structural impulse responses. In that case, comparing the relative
accuracy is difficult. Therefore, we set up the following experiment to per-
form a fair comparison between the two alternative identification methods.
We consider data generation processes (DGPs) and identifying restrictions
which lead to exactly the same structural impulse responses. Then we have a
proper basis for comparing the two alternative approaches. We use a Monte
Carlo simulation experiment to compare the small sample mean squared er-
rors (MSEs) of estimated impulse responses.

In practice the VAR order is unknown and may be infinite. Such features
of a VAR model were seen as a main problem in some of the related liter-
ature that has pointed out problems with long-run identifying restrictions
(e.g., Christiano et al. (2006)). Therefore we use model selection criteria for
specifying the VAR order and we also consider infinite order VAR DGPs such
that the finite order VAR model used for impulse response analysis is just
an approximation to the true DGP.

We focus on simple recursive restrictions on the impact effects of the
structural shocks and compare them to recursive restrictions on the long-run
multipliers. Moreover, we consider bivariate and three-dimensional DGPs
only. Thus, our DGPs have features of many models that have been used
in structural VAR analysis in that they include a small number of variables
and use recursive restrictions which are perhaps the most commonly used
identifying restrictions in structural VAR analysis. We find that the relative
accuracy of the impulse response estimates obtained with short-run and long-
run identifying restrictions depends on specific characteristics of the DGP. As
suggested in the aforementioned literature, short-run restrictions lead to more
accurate estimates of the impact effects of shocks. However, long-run multi-
pliers and impulse responses for intermediate and larger propagation horizons
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may be estimated more accurately when long-run identifying restrictions are
used. The latter result holds specifically for persistent processes with a root
close to one.

The study is structured as follows. Section 2 presents the basic model
setup and the impulse responses of interest. The experimental design of the
Monte Carlo study is considered in Section 3 and the results are discussed in
Section 4. Section 5 concludes.

2 The Model

We consider the reduced-form VAR model of possibly infinite order,

yt = ν +
∞∑
i=1

Aiyt−i + ut, (2.1)

where yt = (y1t, . . . , yKt)
′, the Ai, i = 1, 2, . . ., are K×K coefficient matrices,

ν is a fixed K × 1 intercept term and ut = (u1t, . . . , uKt)
′ is a zero mean

white noise error process such that ut ∼ (0,Σu). The covariance matrix Σu

is positive definite.
For simplicity we exclude processes with integrated or cointegrated vari-

ables and assume that the VAR is stable and stationary satisfying

detA(z) = det

(
IK −

∞∑
i=1

Aiz
i

)
6= 0 for z ∈ C, |z| ≤ 1, (2.2)

such that the roots are bounded away from the unit circle and the process
has the moving average (MA) representation

yt = A(1)−1ν + A(L)−1ut = µ+
∞∑
i=0

Φiut−i, (2.3)

where µ = A(1)−1ν, Φ0 = IK and
∑∞

i=0 ΦiL
i = A(L)−1. Clearly, the MA co-

efficient matrices are functions of the Ai parameter matrices (e.g., Lütkepohl
(2005)).

The structural shocks εt are obtained by a linear transformation of the
reduced form residuals ut, that is, εt = B−1ut. The structural shocks are
instantaneously uncorrelated and the variances are normalized to one. In
other words, εt ∼ (0, IK) and the matrix B has to be such that BB′ =
Σu. The corresponding structural impulse responses are the elements of the
coefficient matrices of the infinite order polynomial A(L)−1B =

∑∞
i=0 ΘiL

i.
In our comparison of estimated impulse responses we focus on cumulated
impulse responses Ξn =

∑n
i=0 Θi because these quantities are typically of

interest when long-run restrictions are imposed. Note that the elements of
B = Ξ0 = Θ0 are the impact multipliers or short-run multipliers of the
structural shocks. We denote the matrix of long-run multipliers or total
impact multipliers of the structural shocks by Ξ∞ =

∑∞
i=0 Θi = A(1)−1B.
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The relation BB′ = Σu does not uniquely specify the transformation ma-
trix B. For uniquely identifying these multipliers and, hence, the shocks,
zero restrictions are imposed on B in many structural VAR models. We con-
sider recursive short-run restrictions obtained by choosing a lower-triangular
matrix Bs by a Cholesky decomposition of Σu. In other words,

Bs = chol(Σu), (2.4)

where chol denotes the Cholesky decomposition. These restrictions are the
most common short-run identifying restrictions for structural shocks in VAR
analysis.

Alternatively, we consider long-run restrictions imposed on the total im-
pact multiplier matrix of impulse responses, Ξ∞ = A(1)−1B. Cumulated
impulse responses are typically of interest when yt contains growth rates of
economic variables. Imposing a zero restriction on the cumulated long-run
effect of a shock on a growth rate implies that the underlying variable in the
long-run will return to its initial value where it has come from before the
shock occurred. Such a restriction indirectly constrains the impact effects of
the shocks and, hence, can be used for identifying the structural shocks. In
the spirit of Blanchard and Quah (1989), we choose Bl such that the long-run
multiplier matrix Ξ∞ is lower-triangular. More precisely, Bl is chosen such
that

Bl = A(1) chol
(
A(1)−1ΣuA(1)−1′

)
. (2.5)

This choice uniquely identifies the structural shocks.
It can be shown that the impulse responses implied by the short-run

and long-run restrictions incorporated in Bs and Bl, respectively, are identi-
cal if A(1) and, hence, also A(1)−1 are lower triangular and A(L) is such that
A(1)−1Bs has positive diagonal elements. Note that the matrixA(1)−1ΣuA(1)−1′

can be expressed as:

A(1)−1ΣuA(1)−1
′
= A(1)−1BsBs′A(1)−1

′
= A(1)−1Bs(A(1)−1Bs)′.

If A(1) is lower triangular, A(1)−1Bs is the product of two lower-triangular
matrices and, hence, it is also lower triangular. If all its diagonal ele-
ments are positive, it is the Cholesky factor of A(1)−1ΣuA(1)−1

′
because

the Cholesky decomposition uniquely decomposes a positive definite matrix
in lower-triangular Cholesky factors with positive diagonal elements. Thus,
if A(1)−1Bs has positive diagonal elements, the long-run restrictions imply
the same matrix B as the short-run restrictions:

Bl = A(1) chol
(
A(1)−1ΣuA(1)−1′

)
= A(1)A(1)−1Bs = Bs.

In practice, finite order VAR(p) models are fitted to the data and the ap-
proximating estimated process is used for impulse response analysis. While
the true impulse responses are identical, the estimated impulse response func-
tions will differ, if the alternative identification approaches are used, because
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the estimator Â(1) is not lower triangular and, hence, B̂l = Â(1)chol(Â(1)−1Σ̂uÂ(1)−1′)

differs from B̂s = chol(Σ̂u) even if both are based on the reduced-form or-
dinary least squares (OLS) estimates of the VAR parameters. This is true
even if the true DGP is a finite order VAR(p) process and the true order p
is used in estimating the parameters.

Since B̂l involves the inverse Â(L)−1, it may not be estimated accurately
if the matrix A(1) is near-singular. This problem is well-known in the scalar
case, where an estimator α̂−1 tends to have a large variance if the true pa-
rameter value α is close to zero. In that case, even if α̂ is a very accurate
estimator of α, 1/α̂ may be a very imprecise estimator of 1/α. By analogy,

the estimator B̂l of the impact multiplier matrix B may not be very precise
if some variables are very persistent and the process has roots close to 1, in
which case A(1) is near-singular.

Note that the structural impulse responses are estimated as Â(L)−1B̂,

where B̂ is either B̂s or B̂l. Since the estimator Â(L) is based on reduced-form
parameters only, it is unaffected by just-identifying structural restrictions.
Thus, for the estimation precision of the structural impulse responses the
crucial question is how accurately we are able to estimate the matrix B. Of
course, it is possible that if the estimator of Bs turns out to be more precise
than that based on Bl, the latter estimator may still lead to more accurate
estimates of impulse responses at propagation horizons greater than 0. In
the next section we explore the small sample accuracy of structural impulse
responses.

3 Monte Carlo Setup

The aim of the Monte Carlo experiment is to compare the estimation pre-
cision for the two competing identification approaches. We use DGPs char-
acterized by a lower-triangular matrix A(1), for which the true impulse re-
sponses obtained using the short-run and long-run restrictions are the same.
In the simulations, we study MSEs of the OLS estimators of the coefficients
of Bs, Bl, Ξs

n and Ξl
n, including Ξs

∞ = A(1)−1Bs, Ξl
∞ = A(1)−1Bl. We

focus on those elements which are not restricted to zero for either type of
identification scheme and present the results as relative MSEs,

MSE(B̂s
ij)

MSE(B̂l
ij)

and
MSE(Ξ̂s

n,ij)

MSE(Ξ̂l
n,ij)

,

where a subscript ij denotes the ijth element of the respective matrix and
the superscripts s and l denote estimates based on short- and long-run re-
strictions, respectively.

In the experiments, the parameters of finite-order VAR(p) models with

intercepts are estimated. The estimator for Σu is Σ̂u = 1
T−Kp−1 Û Û

′, where

Û = (û1, . . . , ûT ) is a K × T matrix of OLS residuals. We choose the lag
order p by Akaike’s information criterion AIC using a maximum lag order of
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12 and report results for sample size T = 100. The number of replications is
fixed at 10,000. All DGPs are Gaussian.

The first type of the data generating process (DGP1) is:

yt =

[
α11 0
0.5 0.5

]
yt−1 + ut, ut ∼ i.i.d. N

(
0,

[
1 σ12
σ12 1

])
,

where α11 ∈ {−0.9,−0.5, 0, 0.5, 0.9} and σ12 ∈ {0.3, 0.7}. This type of
DGP has been used in a number of other studies of estimation and infer-
ence properties of structural impulse responses (see Kilian (1998), Lütkepohl,
Staszewska-Bystrova and Winker (2015a, 2015b)). The parameter α11 deter-
mines the persistence of the process. A value close to one implies a process
with a root near unity and a near-singular matrix A(1), while smaller values
of α11 imply a well-conditioned A(1) matrix. As mentioned earlier, identify-
ing long-run restrictions are often used for variables in growth rates which are
typically not very persistent. There may still be some persistence in variables
whose long-run responses are not restricted. Therefore we consider a value of
α11 of 0.9. If some variables are very persistent and there are autoregressive
unit roots, one would typically consider modelling and estimation techniques
for cointegrated variables. In particular, one would consider other types of
long-run restrictions for identifying the structural shocks. Hence, we do not
consider values of α11 greater than 0.9.

For DGP1 the matrix of impact effects of the structural shocks is

B = chol(Σu) =

[
1 0

σ12
√

1− σ2
12

]
and the matrix of long-run multipliers is

Ξ∞ = A(1)−1B =

[
1

1−α11
0

1
1−α11

+ 2σ12 2
√

1− σ2
12

]
.

For all parameter values used in the simulations the diagonal elements of Ξ∞
are positive such that Bl = Bs.

Our second DGP (DGP2) is three dimensional and has the form:

y1 =

 α11 0 0
0.3 0.7 0
0.2 0.2 0.5

 yt−1+ut, ut ∼ i.i.d. N

0,

 1 0.4 0.3
0.4 1 0
0.3 0 1

 ,

where α11 ∈ {−0.9,−0.5, 0, 0.5, 0.9}. The persistence of the process is de-
termined by the diagonal elements of the VAR parameter matrix A1. Since
the second and third diagonal elements are fixed at values not very close to
one, the persistence of the process varies with α11. A value of α11 close to
one implies a potential invertibility problem for A(1). The largest value of
α11 = 0.9 is close to one but still far enough away to ensure a well-conditioned
matrix A(1).
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The impact multiplier matrix of DGP2 is

B = chol(Σu) =

 1 0 0
0.4 0.9165 0
0.3 −0.1309 0.9449


and the long-run multipliers are

Ξ∞ = A(1)−1B =


1

1−α11
0 0

1
1−α11

+ 1.3333 3.0551 0
0.8

1−α11
+ 1.1333 0.9602 1.8898

 .
Note that the diagonal elements of Ξ∞ are positive implying that the short-
and long-run identifying restrictions lead to identical impulse responses.

The third DGP (DGP3) is the bivariate MA(1) (VAR(∞)) process

yt = ut +

[
α11 0
0.5 0.5

]
ut−1, ut ∼ i.i.d. N

(
0,

[
1 σ12
σ12 1

])
,

where α11 ∈ {−0.9,−0.5, 0, 0.5, 0.9} and σ12 ∈ {0.3, 0.7}.
The matrix of impact effects of the structural shocks is the same as in

the case of DGP1:

B = chol(Σu) =

[
1 0

σ12
√

1− σ2
12

]
and the matrix of long-run multipliers is

Ξ∞ = A(1)−1B =

[
1 + α11 0

0.5 + 1.5σ12 1.5
√

1− σ2
12

]
.

Again, for all parameter values used in the simulations the diagonal elements
of Ξ∞ are positive such that Bl = Bs.

4 Monte Carlo Results

The simulation results for the three DGPs are presented in Tables 1 - 3 for
the impact and long-run multipliers and in Figures 1 - 3 for small and in-
termediate propagation horizons. As expected, the short-run multipliers are
estimated more efficiently when zero restrictions are imposed on the impact
multiplier matrix B directly. All the MSE ratios for the elements of B are
smaller than one for all parameter values in Tables 1 - 3. It is remarkable
that for DGP1 variations in α11 in the range from −0.9 to 0.9 do not affect
the relative estimation precision of the short-run multipliers substantially if
the reduced-form residual correlation is small (see the results for DGP1 and
σ12 = 0.3 in Table 1). Increasing the reduced-form residual correlation to
σ12 = 0.7 makes a difference, however. In that case, the estimation precision
based on short-run restrictions improves for B21 and B22 when α11 moves
closer to one.
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The results for DGP2 and DGP3 are similar in that all elements of B are
estimated more accurately if short-run restrictions are imposed for identifi-
cation. All related MSE ratios in Tables 2 and 3 are clearly smaller than one.
For some elements of B the gains in precision are quite dramatic (see, e.g.,
the relative MSEs of B21 in Table 2). Note that the reduced-form residual
correlations of DGP2 are rather small. So the results for DGP2 are best
compared to those of DGP1 with σ12 = 0.3.

The picture changes for all three DGPs when we consider the estimated
long-run multipliers. In Tables 1 - 3 the MSE ratios are partly clearly larger
than 1, implying that long-run identifying restrictions lead to more accurate
estimates of the long-run multipliers. In some cases the MSE reductions
due to long-run restrictions are rather dramatic (see Ξ∞,22 in Table 1, Ξ∞,22,
Ξ∞,32 and Ξ∞,33 in Table 2 and Ξ∞,22 in Table 3). For the long-run multipliers
the relative estimation precision depends substantially on the persistence of
the process which is governed by α11 for DGP1 and DGP2. In fact, the
MSE ratios increase with α11 implying that using long-run restrictions can be
beneficial for estimating the long-run multipliers of more persistent processes.
Moreover, an α11 close to 1 for DGP3 implies that an accurate approximation
requires a large VAR order. This feature apparently improves the value of
long-run restrictions relative to short-run restrictions, as seen in Table 3.

In summary, if one is interested in the long-run effects of structural shocks,
using long-run restrictions can result in more precise estimates. The gains
in estimation precision are especially large for persistent processes and they
can also be substantial if the true DGP is an infinite order VAR process.

It is also interesting to look at the MSE ratios of impulse responses for
short and intermediate propagation horizons in Figures 1 - 3. They show that
the relative estimation precision often is close to the value for the long-run
multipliers already after a few periods. Thus, even though the MSE ratios
are smaller than 1 for the impact multipliers they are in many cases greater
than 1 after a few propagation periods for those cases where the long-run
multipliers have MSE ratios greater than 1. It is remarkable that this result
also holds for DGP3 which is an infinite-order VAR process and, hence, the
empirical model only approximates the DGP (see Figure 3). This result is
in contrst to the view that long-run identifying restrictions are particularly
problematic for infinite-order VARs which are approximated by finite order
models (see Christiano et al. (2006)).

We have done a range of further simulations which confirm our general
results. First, we have also used larger samples of size T = 200 and obtained
similar, qualitatively identical results to those for T = 100. Therefore we do
not show them in tables. Second, we have done simulations using the true
VAR order for DGP1 and DGP2. The results were numerically similar to
those in Tables 1 and 2, respectively. In other words, for these DGPs it does
not make much difference for the impulse response estimates whether the true
VAR order is used or the order is estimated by AIC, if a sample of size T =
100 is available. Third, structural impulse responses are often based on bias-
adjusted estimators of the VAR parameters because they were found to imply
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more precise estimates and confidence intervals for impulse responses (see,
e.g., Kilian (1998)). We have also worked with bias-adjusted estimates in
some of our simulations. They did not lead to MSE improvements, however.
In fact, in most cases the MSEs were inferior to the corresponding OLS
results, in some cases even substantially so. Therefore we do not present the
results.

Despite our limited simulation design, we emphasize that our Monte Carlo
results have brought about an insight that is not clear from the related lit-
erature, namely that long-run restrictions can lead to much more precise
estimates of some impulse responses than short-run restrictions if compara-
ble impulse responses are considered.

5 Conclusions

In this study we have compared the precision of structural impulse response
estimates based on short-run and long-run identifying restrictions. In the
structural VAR literature concerns have been raised regarding the estimation
accuracy of impulse response estimates when long-run identifying restrictions
are used, in particular for persistent processes. Since many macro variables
are quite persistent, the use of long-run identifying restrictions has been
questioned.

To see whether long-run restrictions are more problematic than short-run
restrictions in estimating impulse responses, we have simulated processes
for which short-run and long-run restrictions lead to identical impulse re-
sponses. We find that the impact multipliers are indeed estimated more
accurately when identification is based on short-run restrictions. However,
if intermediate or longer propagation horizons are of interest, this result is
not maintained. We find that in many cases the impulse responses at inter-
mediate propagation horizons and long-run multipliers are estimated much
more precisely in terms of MSE than the corresponding quantities obtained
with short-run restrictions. Particularly substantial MSE improvements from
using long-run restrictions are obtained for more persistent processes.
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Table 1: Relative MSEs for the OLS estimators of unrestricted elements of
B and Ξ∞ comparing the two identifications schemes for DGP1. The sample
size is T = 100, the number of Monte Carlo replications is 10,000, the lag
order p is estimated using AIC.

Impulse responses
σ12 α11 B11 B21 B22 Ξ∞,11 Ξ∞,21 Ξ∞,22
0.3 -0.9 0.7959 0.2873 0.6400 0.9668 0.4333 1.3397

-0.5 0.8073 0.2884 0.6485 0.9940 0.4804 1.3255
0.0 0.8061 0.2906 0.6532 0.9970 0.5394 1.5743
0.5 0.8039 0.2889 0.6395 1.0072 0.7060 2.3765
0.9 0.8010 0.2884 0.6378 0.9877 0.9588 23.6527

0.7 -0.9 0.8515 0.4364 0.2832 0.9992 0.6310 2.3636
-0.5 0.8607 0.4321 0.2746 1.0063 0.6469 2.5350
0.0 0.8389 0.4083 0.2545 1.0057 0.6866 3.1317
0.5 0.8249 0.3790 0.2193 1.0069 0.8045 5.0748
0.9 0.7794 0.3235 0.1774 0.9913 0.9744 45.8236

Note: In the simulations, two Monte Carlo samples were substituted with new

samples to avoid nonstationarity of the estimated system.
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Figure 1: Relative MSEs for the OLS estimators of cumulated impulse re-
sponses for DGP1 with selected values of α11, σ12 = 0.7, T = 100 and lag
order estimated using AIC.
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Table 2: Relative MSEs for the OLS estimators of unrestricted elements of
B and Ξ∞ comparing the two identifications schemes for DGP2. The sample
size is T = 100, the number of Monte Carlo replications is 10,000, the lag
order p is estimated using AIC.

Impulse responses
α11 B11 B21 B22 B31 B32 B33

-0.9 0.6001 0.2022 0.4326 0.3128 0.2710 0.5831
-0.5 0.6141 0.2040 0.4362 0.3106 0.2740 0.5853
0.0 0.6079 0.2036 0.4237 0.3085 0.2734 0.5795
0.5 0.5968 0.2029 0.4006 0.3081 0.2735 0.5648
0.9 0.5979 0.2076 0.3710 0.3093 0.2720 0.5519

Ξ∞,11 Ξ∞,21 Ξ∞,22 Ξ∞,31 Ξ∞,32 Ξ∞,33
-0.9 1.0295 0.3965 1.3008 0.4626 1.0280 1.7103
-0.5 1.0281 0.4189 1.3365 0.4873 1.0579 1.7792
0.0 1.0352 0.4657 1.4492 0.5358 1.1833 1.9459
0.5 1.0313 0.5875 1.9049 0.6571 1.6423 2.5997
0.9 0.9481 0.9052 11.9891 0.9122 11.8429 19.4528

Note: In the simulations, one Monte Carlo sample was substituted with a new one

to avoid nonstationarity of the estimated system.
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Figure 2: Relative MSEs for the OLS estimators of cumulated impulse re-
sponses for DGP2 with selected values of α11, T = 100 and lag order esti-
mated using AIC.
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Table 3: Relative MSEs for the OLS estimators of unrestricted elements of
B and Ξ∞ comparing the two identifications schemes for DGP3. The sample
size is T = 100, the number of Monte Carlo replications is 10,000, the lag
order p is estimated using AIC.

Impulse responses
σ12 α11 B11 B21 B22 Ξ∞,11 Ξ∞,21 Ξ∞,22
0.3 -0.9 0.4540 0.0652 0.7053 0.7899 0.2092 0.8482

-0.5 0.7716 0.2139 0.6284 0.9099 0.5283 1.1265
0.0 0.7643 0.2762 0.5893 0.9857 0.6710 1.3907
0.5 0.6862 0.2233 0.4894 0.9932 0.7054 1.4434
0.9 0.6143 0.2253 0.3444 0.9643 0.6710 1.5937

0.7 -0.9 0.1492 0.0323 0.0605 0.5322 0.2005 0.2832
-0.5 0.7742 0.2363 0.1549 0.9393 0.6322 1.3441
0.0 0.7546 0.3250 0.1726 0.9809 0.7551 2.6451
0.5 0.6702 0.2624 0.1278 0.9915 0.8009 2.8307
0.9 0.6604 0.3031 0.0862 0.9621 0.8162 3.2410
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Figure 3: Relative MSEs for the OLS estimators of cumulated impulse re-
sponses for DGP3 with selected values of α11, σ12 = 0.7, T = 100 and lag
order estimated using AIC.
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