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Agreeing to agree

Ehud Lehrer
School of Mathematical Sciences, Tel Aviv University

Dov Samet
Faculty of Management, Tel Aviv University

Aumann (1976) shows that agents who have a common prior cannot have com-
mon knowledge of their posteriors for event E if these posteriors do not coincide.
But given an event E, can the agents have posteriors with a common prior such
that it is common knowledge that the posteriors for E do coincide? We show that
a necessary and sufficient condition for this is the existence of a nonempty finite
event F with the following two properties. First, it is common knowledge at F that
the agents cannot tell whether E occurred. Second, this still holds true at F , when
F itself becomes common knowledge.

Keywords. Agreement theorem, common knowledge, common prior, no trade
theorem.

JEL classification. C70, D82.

1. Introduction

1.1 Agreeing to disagree and agreeing to agree

Can agents have common knowledge of their beliefs? In a seminal paper Aumann (1976)
demonstrates the impossibility of agreeing to disagree: For any posteriors with a com-
mon prior, if the agents’ posteriors for an event E are different (= they disagree), then
the agents cannot have common knowledge (= agreeing) of these posteriors. Thus, the
short answer to our opening question is that agents cannot have common knowledge of
their beliefs when they are different.

But can there be other reasons why agents may fail to have common knowledge of
their beliefs, even when these beliefs are the same? Obviously, agents may fail incidently
to know each others posteriors, and thus, a fortiori they cannot have common knowl-
edge of them, even if they coincide. Our question here is not concerned with such an in-
cidental lack of common knowledge of the posteriors, but rather with the impossibility
of having such common knowledge in principle. That is, we examine the impossibility
of having such common knowledge regardless of the beliefs held by the agents.

We investigate the conditions under which there exist posteriors with a common
prior, such that it is common knowledge that the agents’ posteriors for an event E

Ehud Lehrer: ehudlehrer@gmail.com
Dov Samet: dovsamet@gmail.com

Copyright © 2011 Ehud Lehrer and Dov Samet. Licensed under the Creative Commons Attribution-
NonCommercial License 3.0. Available at http://econtheory.org.
DOI: 10.3982/TE578

http://econtheory.org/
mailto:ehudlehrer@gmail.com
mailto:dovsamet@gmail.com
http://creativecommons.org/licenses/by-nc/3.0/
http://econtheory.org/
http://dx.doi.org/10.3982/TE578
http://creativecommons.org/licenses/by-nc/3.0/


270 Lehrer and Samet Theoretical Economics 6 (2011)

coincide. Using the terminology of Aumann’s theorem, we ask, “When is agreeing to
agree about the posteriors of E possible?” We clarify this question by examining several
examples.

Example 1. Each of two firms can be either profitable or losing. Thus, there are four
possible states of the world (profitable�profitable), (profitable� losing), (losing�profita-
ble), and (losing� losing). Each firm knows only how well it does.

Consider first the event E that both firms have the same financial situation. That
is, E = {(profitable�profitable)� (losing� losing)}. There are many posteriors that have a
common prior such that the firms have common knowledge that the posterior proba-
bilities of E coincide. For instance, consider a common prior, μ, with

μ(profitable�profitable) = μ(losing� losing) = p

and

μ(profitable� losing) = μ(losing�profitable)= q�

where 2p + 2q = 1. Then, in each of the four states, both firms have the same posterior
for E: p/(p + q). Thus, it is common knowledge in every state that the posteriors for E
are the same. ♦

Example 2. In the state space of the previous example, consider the event E = {(los-
ing�profitable)}. Note that the only event about which there is common knowledge is
the whole state space. Therefore, if for some posteriors it is common knowledge that
both posteriors for E are p, then the posteriors for E must be p in all four states. How-
ever, for any posterior on this space, when firm 1 is profitable, its posterior for E is 0.
Thus, the only value p can have is 0.

Consider the complement of E, denoted ¬E. When firm 2 is losing, its posterior
for ¬E is 1. Thus, by the same argument as above, the only p for which there can be
common knowledge that both posteriors for ¬E are p, is 1.

As opposed to the event E in Example 1, in this example the possibility of agreeing
to agree about the posteriors of E, or ¬E, is limited to trivial ones, i.e., 0 or 1. ♦

1.2 A necessary condition for the possibility of agreeing to agree

The difference between the events in Examples 1 and 2 suggests a simple necessary con-
dition for agreeing to agree. In any state at which the firm’s posterior for E is nontrivial,
the firm cannot tell whether E is the case or not E is the case. We say in this case that
the firm is ignorant of E. Therefore, we can state the following condition.

If there exist posteriors with a common prior for which it is common knowledge that both
posteriors for E are p for some 0 < p < 1, then it is necessarily common knowledge that
both firms are ignorant of E.

Now, in the first example, the firms are ignorant of E in each state. Thus, it is com-
mon knowledge that they are ignorant of E and the necessary condition for agreeing to
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agree is satisfied. In the second example, in contrast, in all states there is no common
knowledge that the firms are ignorant of E. Therefore, no matter what nontrivial pos-
teriors for E the agents may have, the event where their posteriors coincide cannot be
common knowledge.

Surprisingly, this necessary condition is not sufficient, as demonstrated by the next
example.

Example 3. The profit of each of two firms can be any integer, positive or negative. Each
firm is informed only of its profit. Let E be the event that firm 2’s profit is higher. That is,
E is the event (i < j). In each state, no firm can tell whether 2’s profit is higher. Therefore,
it is common knowledge in each state that both firms are ignorant of E. Nevertheless,
no matter what posteriors with a common prior the firms may have, there can be no
common knowledge that both posteriors for E are p for some 0 <p< 1.

To see this, assume to the contrary that μ is a common prior and it is common knowl-
edge that both posteriors of E are p with 0 < p < 1. As the only event that is common
knowledge is the whole space, it follows that the posteriors of E are p at each state of
the world. Fix k and consider the right half-space Rk = (i ≥ k), the upper half-space
Uk = (j > k), the quadrants Q1

k =Q1 = Uk∩¬Rk and Q2
k = Q2 = Rk∩¬Uk, and the cones

C1
k = C1 = E ∩ Rk and C2

k = C2 = ¬E ∩ Uk. It is easy to see that E ∩ Uk = C1 ∪ Q1 and
¬E∩Rk = C2 ∪Q2, and the unions are disjoint. By our assumption, μ(C1 ∪Q1)/μ(C2) =
μ(E ∩ Uk)/μ(¬E ∩ Uk) = p/(1 − p) and μ(C2 ∪ Q2)/μ(C1) = μ(¬E ∩ Rk)/μ(E ∩ Rk) =
(1 − p)/p. It follows from these equations that μ(Q1) = [p/(1 − p)]μ(C2) − μ(C1) and
μ(Q2) = [(1 − p)/p]μ(C1) − μ(C2). Thus, μ(Q1) = −[p/(1 − p)]μ(Q2). This implies
that μ(Q1) = 0. As this holds for each k and E = ⋃

kQ
1
k, it follows that μ(E) = 0, which

contradicts our assumption. ♦

1.3 Necessary and sufficient conditions

Our first result provides a necessary and sufficient condition for the possibility of agree-
ing to agree in terms of the information structure only. Although the notion of agreeing
to agree involves posteriors and common priors, our characterization does not employ
any probabilistic notions.

Agreeing to agree on nontrivial posteriors for E is possible if and only if there is a nonempty
finite event F at which it is common knowledge that the agents are ignorant of E, and this
holds true at F also after F becomes common knowledge.

Since agreeing to agree is impossible in Example 3, such a nonempty finite event F
cannot exist in this example. Indeed, suppose that there exists such an event F . Let im
be the maximal profit of 1 in all the states of F . By the property of F , 1 is still ignorant of
E after being informed of F . In particular, 1 cannot tell that ¬E is the case. Therefore,
there must exist a point (im� j0) in F that is also in E. By the definition of E, im < j0. By
the definition of im, for each point (i� j0) ∈ F , i ≤ im and hence i < j0. Thus, (i� j0) ∈ E.
But this means that when firm 2’s profit is j0 and it is informed of F , it knows E. This
contradicts the assumption that it is ignorant of E.

Another characterization of the possibility of agreeing to agree is given in probabilis-
tic terms.



272 Lehrer and Samet Theoretical Economics 6 (2011)

Agreeing to agree about nontrivial posteriors for E is possible if and only if it is possible
with a common prior that has a finite support.

While firms cannot agree on the probability that one is more profitable than the
other, as shown in the previous example, firms can still agree on the probability that
they are equally profitable. To see this, consider the following example.

Example 4. In the same state space as in Example 3, define E to be the event where
both firms are equally profitable, that is, E = (i = j). The conditions for the pos-
sibility of agreeing to agree hold in this case. Indeed, consider the finite set F =
{(1�1)� (1�0)� (0�1)� (0�0)}. It is common knowledge at every state, and in particular at
every state of F , that the agents are ignorant of E. Second, when this finite set becomes
common knowledge, the firms are still ignorant of E; moreover, their ignorance is also
common knowledge.

Using the set F , it is easy to construct posteriors with a common prior for which
agreeing to agree holds for E. Consider the common prior μ, where μ(1�1) = μ(1�0) =
μ(0�1) = μ(0�0) = 1

4 . When a firm’s profit is either 0 or 1, the posterior for E is 1
2 . Since

any information set of a firm whose profit is neither 0 nor 1 has probability zero accord-
ing to μ, one may define the posteriors in these elements in an arbitrary fashion. In
particular, one may define these posteriors for E to be 1

2 . Defining the posteriors in this
way makes the fact that the posteriors for E are 1

2 common knowledge at each state. ♦

1.4 Positive common priors

In the previous example, agreeing to agree is made possible by a degenerate common
prior. It vanishes on all but two elements in each partition. Our next result gives a
necessary and sufficient condition for the possibility of agreeing to agree with a posi-
tive common prior. That is, a common prior that assigns a positive probability to every
information set.

For any given event E, we define simple-structured, nonempty, and finite events
called loops on E (see Definition 4 and Figure 1). One of the conditions that define a loop
implies that when a loop on E becomes common knowledge, it is common knowledge
at the loop that the agents are ignorant of E. This property links the notion of loops to
the condition in our main result.

When the information set of an agent intersects a loop, we say that this agent does
not exclude loops. Our third result is the following statement.

Agreeing to agree is possible with a common prior that is positive on all information sets if
and only if it is common knowledge at some state that the agents do not exclude loops.

1.5 The role of finiteness

The less obvious part of our characterizations is the finiteness. It has to do with the way
E and ¬E are entangled in the information structure. When there is no finite F with
the required property, it is possible to separate E and ¬E by arranging the partitions in
a way that resembles the structure of the events in Example 3. When there is such F ,
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the sets E and ¬E are “mixed” together like those in Examples 1 and 4. The separation
is described in Proposition 3. In Proposition 4 it is shown why this separation implies
the nonexistence of posteriors that makes agreeing to agree possible. This proposition
generalizes an argument made in Samet et al. (2004) for the special case of Example 3,
which is also related to an intriguing puzzle due to Cover (1987).

1.6 No trade

Suppose the posterior probabilities of E at some state for player 1 and 2 are p and q,
respectively, with p > q. Consider a bet on event E in which if E obtains, player 1 pays
x > 0 to player 2, and if ¬E obtains, player 2 pays y > 0 to player 1. If x/y is in the interval
((1−q)/q� (1−p)/p), then the expected payoff of the bet at this state is positive for both
players and both are willing to bet.

However, by expressing their will to accept the bet, the players convey information
to each other, which results in a refinement of their partitions. Given this new informa-
tion, the two players reassess the probability of E and their willingness to bet. When
the process is repeated, it converges to limit partitions for which the two posteriors of
E are common knowledge, and hence, by Aumann’s disagreement theorem, they coin-
cide. Obviously, at this stage there is no trade, namely, one of the parties refuses to bet
(Sebenius and Geanakoplos 1983).

Thus, the dynamics that leads to no trade ends with an agreement to agree on the
posterior of E. The result of this paper shows that the limit partitions of this process are
not arbitrary, and provides the precise relationship between the limit partitions and the
event E.

1.7 Agreement theorems

The literature abounds with generalizations of Aumann’s agreement theorem. In this
theorem the disagreement concerns the posterior of an event. Milgrom and Stokey
(1982), Sebenius and Geanakoplos (1983), and Rubinstein and Wolinsky (1990) study
agreement theorems where the disagreement concerns the value or expected value of
random variables.

Aumann’s theorem provides a necessary condition for the existence of a common
prior. Feinberg (1995), Morris (1994), Bonanno and Nehring (1966), and Samet (1998)
show that when disagreements are extended to random variables, then the impossibility
of agreeing to disagree is a necessary condition for the existence of a common prior.

McKelvey and Page (1986) and Nielsen et al. (1990) show that when the agents have
different posteriors, then not only can these posteriors not be common knowledge, but
also certain aggregates of the posteriors cannot be common knowledge.

Geanakoplos and Polemarchakis (1982), Sebenius and Geanakoplos (1983), Parikh
and Krasucki (1990), and Heifetz (1996) study the dynamics of information exchange
that leads from disagreement to agreement.

In Bacharach (1985) and Samet (1990), Aumann’s theorem is generalized to a non-
partition information structure. In Monderer and Samet (1989), common p-belief,
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rather than common knowledge, is shown to imply a bound on the probabilistic
disagreement.

All the above-mentioned agreement theorems study the impossibility of commonly
sharing probabilistic disagreements. This paper, in contrast, studies the impossibility
of common knowledge of probabilistic agreements. As it turns out, the impossibility
of having common knowledge of agents’ posterior for an event may be the result not
of the probabilistic disagreement, but rather the structure of the event and the parti-
tions. While the starting point of the literature on agreement theorems is the probabilis-
tic structure juxtaposed with the knowledge structure, here it is the knowledge struc-
ture alone. We look for conditions that characterize the events for which there exists a
probabilistic structure that makes it possible to have common knowledge of agreements
regarding the posterior of these events.

1.8 Outline

In the next section, we introduce the basics of the model of knowledge and belief. The
main elements of our agreeing theorems, ignorance and the possibility of agreeing to
agree are defined in Section 3, and the main results are stated. A counterexample for
uncountable information structures is presented in Section 4. Two open problems are
discussed in Section 5 and the proofs are given in the last section.

2. Preliminaries

2.1 Information structures

We fix a state space (�� B), with a set of states � and a σ-field of events B. An information
structure on the state space, for agents 1 and 2, is a pair (�1��2) of countable measurable
partitions of �. For every state ω, we denote by �i(ω) the element in �i that contains ω.

For an event F and agent i, we denote by �F
i the partition �i ∨ {F�¬F}, which is the

join of the partitions �i and {F�¬F}.1 It describes the information of the agent when, in
addition to the information given by �i, she is also informed whether F occurred.

2.2 Knowledge and common knowledge

We say that agent i knows event E at ω when �i(ω) ⊆ E. Thus, the event that i knows E

is Ki(E)= {ω | �i(ω) ⊆E}. The event that both agents know E is K(E)=K1(E)∩K2(E).
The event that E is common knowledge is K∞(E) = ⋂∞

n=1 K
n(E). It is the union of all

the elements of the join �1 ∨ �2 contained in E. For further discussion of knowledge
and common knowledge, see Aumann (1976), Monderer and Samet (1989), Geanakoplos
(1994), Fagin et al. (1995), and Aumann (1999).

Note that the epistemic operators Ki, K, and K∞ are defined with respect to the
information structure (�1��2). In the sequel we consider also the information structure
(�F

1 ��
F
2 ) on the same state space. We make it clear when we use the epistemic operators

with respect to this latter information structure.

1The join of two partitions is their finest common coarsening.
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The event F belongs to the join �F
1 ∨ �F

2 . Thus, in the information structure
(�F

1 ��
F
2 ), F = K∞(F) and ¬F = K∞(¬F). Indeed, this information structure can be

defined as the one obtained from making F and ¬F common knowledge.

2.3 Posteriors and priors

A posterior of agent i, for the information structure (�1��2), is a family of probability
measures {μω

i } on (�� B) for i = 1�2 and each ω, such that μω
i (�i(ω)) = 1 and for each

ω′ ∈ �i(ω), μω′
i = μω

i . A common prior for the posteriors of the agents is a probability
measure μ on (�� B) such that μω

i (·) = μ(· | �i(ω)) whenever μ(�i(ω)) > 0.

3. Agreeing to agree: Definitions and main results

3.1 Agreements

An agreement is an event that the posteriors of the agents coincide at some given prob-
ability. The formal definition follows.

Definition 1. Let E be an event in the state space (�� B) with information structure
(�1��2) and posteriors {μω

i }. An agreement on E is an event

A= {ω | μω
1 (E)= μω

2 (E)= p} (1)

for some 0 <p< 1.

Note that this definition requires that the agreed upon posteriors be strictly between
0 and 1.

Next we formally define the possibility that there is common knowledge of an
agreement.

Definition 2. Let E be an event in the state space (�� B) with information structure
(�1��2). Agreeing to agree is possible for E if there are posteriors with a common prior μ
and an agreement A on E for these posteriors such that μ(K∞(A)) > 0.

Definition 3. The event that agent i is ignorant of E is

Ii(E)= ¬Ki(E)∩ ¬Ki(¬E)�

The event that both agents are ignorant of E is I(E) = I1(E)∩ I2(E).

Thus, I(E) is the event that none of the agents can tell whether E is the case or ¬E

is the case.2

2The negation of the operator Ii is the knowing whether operator, Ji(E) =Ki(E)∪Ki(¬E), the properties
of which were studied in Hart et al. (1996).
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3.2 The main results

Our first theorem states that agreeing to agree is possible for E if and only if there exists a
nonempty finite event F , at which it is common knowledge that both agents are ignorant
of E. Moreover, this holds true also after F becomes common knowledge. Formally and
succinctly, we can state the following theorem.

Theorem 1. Agreeing to agree is possible for event E if and only if there exists a nonempty
finite event F such that

F ⊆ K∞(I(E)) (2)

with respect to both (�1��2) and (�F
1 ��

F
2 ).

The fact that at F it is common knowledge that both agents are also ignorant of E is
expressed by F ⊆ K∞(I(E)), with respect to (�1��2). The fact that it remains common
knowledge that both agents are also ignorant of E after F becomes common knowledge
is conveyed by F ⊆ K∞(I(E)), with respect to (�F

1 ��
F
2 ). When the information structure

is finite, the condition for agreeing to agree becomes simpler.

Corollary. If the information structure is finite, then agreeing to agree is possible for E,
if and only if

K∞(I(E)) �= ∅� (3)

To see this, note first that since F �= ∅, (2) implies K∞(I(E)) �= ∅. Conversely, if
(3) holds, define F = K∞(I(E)), where F is obviously nonempty and finite. Moreover,
since F is an element of the join partition, �1 ∨ �2, it follows that �F

i = �i for i = 1�2.
Therefore, (2) holds with respect to both (�1��2) and (�F

1 ��
F
2 ).

Notice that the condition for agreeing to agree in Theorem 1 is formulated solely in
terms of the information structure. The next theorem provides a condition in proba-
bilistic terms.

Theorem 2. Agreeing to agree is possible for E if and only if it is possible with a common
prior that has a finite support.

3.3 Positive priors

A common prior determines the posteriors only on elements of the partition to which
it assigns positive probability; on elements of probability zero, the posteriors can be
defined arbitrarily. Of special interest are common priors that determine uniquely the
posteriors, that is, common priors that assign a positive probability to all the elements
in both partitions. We next characterize events for which agreeing to agree is possible
with such a common prior. This characterization is done in terms of events called loops,
which play a central role also in the proof of Theorem 1.

Definition 4. A loop on E is an event L that consists of 2n distinct points ω1�ω
′
1� � � � �

ωn�ω
′
n for some integer n ≥ 1, such that
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Figure 1. A loop on E with 6 points. The dot shaped states, ω1, ω2, ω3, are in E, and the dia-
mond shaped states, ω′

1, ω′
2, ω′

3, are in ¬E.

(i) ωk ∈E and ω′
k ∈ ¬E for any k = 1� � � � � n, and

(ii) ω′
k ∈�1(ωk) and ωk ∈�2(ω

′
k−1) for any k= 1� � � � � n, where ω′

0 =ω′
n.

Figure 1 illustrates a loop. The following two propositions relate loops to events F

that satisfy (2).

Proposition 1. If F is a nonempty finite event such that F ⊆ K∞(I(E)) with respect to
(�F

1 ��
F
2 ), then F contains a loop on E.

Proposition 2. If L is a loop on E, then L⊆ K∞(I(E)) with respect to (�L
1 ��

L
2 ).

In the next theorem, we state formally that agreeing to agree is possible for E with a
common prior that assigns positive probability to each element of each partition, if and
only if it is common knowledge at some state that neither of the players excludes the
possibility of loops.

Theorem 3. Agreeing to agree is possible for E with a common prior that assigns a posi-
tive probability to each element of �1 or �2 if and only if K∞(¬K1(¬L̂)∩¬K2(¬L̂)) �= ∅,
where L̂ is the union of all loops on E.

4. Uncountable information structures

So far we have assumed that the partitions are countable. To study the question of agree-
ing to agree in models with uncountable partitions, we need first to define in such mod-
els posteriors and common priors.

4.1 Posteriors and common prior for the uncountable case

Posteriors {μω
i } are defined as in the countable case with an additional measurability

requirement: μω
i (E) is measurable as a function of ω for any fixed event E and i = 1�2.

Equivalently, for i = 1�2, any fixed event E, and p, {ω | μω
i (E)≥ p} is a measurable set.
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A probability measure μ is a common prior for these posteriors if for i = 1�2 and
each event E,

μ(E) =
∫

μω
i (E)dμ(ω)� (4)

In particular, using the properties of posteriors,

μ(�i(ω0)∩E)=
∫
�i(ω0)

μω
i (E)dμ(ω) = μ

ω0
i (E)μ(�i(ω0))�

This implies that if μ(�i(ω0)) > 0, then μω
i (E) = μ(E | �i(ω)), which shows that (4) in-

deed generalizes the definition of a common prior in the countable partitions case.3

4.2 Theorem 1 and the uncountable case

The proof that the condition in Theorem 1 is sufficient does not make use of the count-
ability of the information structure and, therefore, it holds also for uncountable infor-
mation structures. The proof that the condition is necessary relies on the countability
assumption. As shown by the following example, depicted in Figure 2, the assumption
is essential: the condition is not necessary in the uncountable case.

Example 5. Consider a state space � that consists of the union of the following
four disjoint sets Ai, i = 1� � � � �4, in R2: A1 = {(x�x + 1) | −1 < x < 0}, A2 = {(x�x) |

Figure 2. Theorem 1 fails in the uncountable case. The state space consists of the three di-
agonals A1, A2, and A3, and of A4. The latter is obtained by a rightward shift of the top-right
diagonal by an irrational number c. Agent 1 is informed of the first coordinate of the state and
agent 2 is informed of the second. The event E is the union of A1 and A3. There are no loops
on E; nevertheless, agreeing to agree is possible with the common prior that is uniform on the
sets Ai.

3See Samet (1999, 2000) for studies of belief systems with uncountable information structures.
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−1 < x < 0}, A3 = {(x�x − 1) | 0 < x < 1}, and A4 = {(x�ϕ(x)) | 0 < x < 1}, where ϕ(x) =
x− c(mod 1) for a fixed irrational c in (0�1). The σ-field on � is the Borel σ-field on the
sets Ai.

Agent 1 is informed of the first coordinate of the state and agent 2 is informed of the
second. Thus, each element of �1 contains the two points on the vertical line that con-
tains the state. Similarly, �2 contains the two points on the horizontal line that includes
the state.

The posterior μω
i for each of the two points in �i(ω) is 1

2 . To see that the measura-
bility condition is satisfied, consider P :� → R, the projection of the state space on the
first coordinate. Note that both P and P−1 map measurable sets to measurable sets.
Now, if p ∈ ( 1

2 �1] and E is a measurable set, then {ω | μω
1 (E) ≥ p} = P−1(P(E ∩ A1) ∩

P(E∩A2))∪P−1(P(E∩A3)∩P(E∩A4)), which is measurable. Alternatively, if p ∈ (0� 1
2 ],

then {ω | μω
1 (E) ≥ p} = P−1(P(E∩A1)∪P(E∩A2))∪P−1(P(E∩A3)∪P(E∩A4)), which

is also measurable. A similar argument shows that the measurability condition holds for
the second agent’s posterior as well.

Let μ be the probability measure 1
4
∑4

i=1 μi, where μi is the Lebesgue measure on Ai.
It is easy to see that μ is a common prior for {μω

i }. Denote E = A1 ∪A3. For i = 1�2 and
every ω, μω

i (E) = 1
2 . Thus agreeing to agree is possible for E. We show that there is no

loop for E and, therefore, by Proposition 1, Theorem 1 does not hold in this case.
Suppose that ω1 = (a − 1� a) ∈ A1 ⊆ E is the first point in a loop. Then ω′

1 is nec-
essarily (a − 1� a − 1) ∈ A2 ⊆ ¬E. The next two points must be ω2 = (a�a − 1) ∈ A3
and ω′

2 = (a�ϕ(a)) ∈ A4. Thus ω3 = (ϕ(a) − 1�ϕ(a)) ∈ A1. Continuing this way, we ob-
tain that the second coordinates of the points {ω2k+1}k≥0 are {ϕ)k(a)}k≥0. Since c is
irrational, all the numbers in the latter sequence are distinct and, therefore, so are all
the points in the first sequence. A similar argument shows that each of the sequences
{ω′

2k+1}k≥0, {ω2k}k≥1, and {ω′
2k}k≥1 also consists of distinct points. These four sequences

are disjoint as they belong to different sets Ai. Thus, the sequence starting with ω1 ∈A1
is infinite. This also shows that any sequence starting with ω1 ∈ A3 is also infinite and,
therefore, there cannot be a loop L on E. ♦

4.3 The pathology in this example

Each element of the join �1 ∨�2 can be written as a doubly infinite countable sequence

� � � �ω−k�ω
′
−k� � � � �ω1�ω

′
1� � � � �ωk�ω

′
k� � � � �

such that ({ωk�ω
′
k})∞k=−∞ ⊆ �1 and ({ω′

k�ωk+1})∞k=−∞ ⊆ �2. This sequence is con-
structed in both directions in the same way as the sequence above. If such a sequence is
considered a subspace, there is no common prior on this subspace. Indeed, a common
prior ν should satisfy, for each k, ν(ωk) = ν(ω′

k) and also ν(ω′
k) = ν(ωk+1). Thus, all the

states must have the same probability, which is impossible.
The pathology in this example concerns the question of the existence of a common

prior for given posteriors. On one hand, there exists a common prior since the mea-
sure μ satisfies (4). On the other hand, for any element of the join �1 ∨ �2, there is
no common prior. It seems that the subspace relevant to the agents at a given state is
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the event of the join containing this state. This is the smallest event that is commonly
known by the agents at this state. In our space, at any state there is no common prior on
the relevant subspace containing it.

This example raises conceptual difficulties concerning the notion of a common prior
in the case of uncountable information structures. The problem was first observed (in a
different state space) and discussed in Simon (1998).

5. Open problems

5.1 Uncountable information structures

The necessity of the condition in Theorem 1 is proved by negation. We show that if
agreeing to agree holds for E and the condition fails, then the prior probability of each
element of �1 is zero. This constitutes a contradiction because the partition is count-
able. Here we use the countability of only one of the partitions, but as we explain next,
the proof requires that both be countable.

Propositions 3 and 4 are the two main parts of the proof that the condition in The-
orem 1 is necessary. In the proof of the first one, we define a binary relationship on �1.
Using this relation, we coarsen both partitions by grouping together the elements of the
partitions. The second proposition uses this grouping to show that elements of �1 that
do not intersect a loop must be assigned zero probability by the common prior.

The grouping of the elements of the partitions in the proof of Proposition 3 does not
require countable partitions. However, the countability of the partitions is used to estab-
lish that the grouped elements are measurable sets. Although the statement of Proposi-
tion 4 refers solely to elements in �1, the proof makes use also of the measurability of
events resulting from the grouping procedure over �2. These events are measurable due
to countability. Therefore, our proofs hinge on the countability of both partitions.

The countability assumption in Theorem 1 is essential, because, as has been shown
in the previous section, the condition in the theorem is not necessary in the uncountable
case. It has been noted, though, that the common prior, which enables the agreeing to
agree in the previous section, is pathological in the sense that it fails to induce common
priors on the elements of the join of the partitions. This suggests the following problem.

Open Problem 1. Consider a state space with an uncountable information structure.
Assume that there is a common prior that induces a common prior on each nonnull ele-
ment of the join of the partitions.4 Does this imply that agreeing to disagree is possible if
and only if the condition in Theorem 1 is satisfied?

5.2 More than two agents

All our results were formulated and proved for models with two agents. Generalizing the
notion of a loop to many agents may enable a generalization of the sufficiency part of
Theorem 1 to more than two agents. However, the proof of the necessity part strongly
depends on having two agents.

4This is the case, for instance, when the whole space is the only element of the join.
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The binary relationship employed in the proof of Proposition 3, as well as the group-
ing of the elements of the partitions, is defined only for two agents. We know of no way
to generalize it to more than two agents.

Open Problem 2. Find a necessary and sufficient condition in terms of the information
structure for the possibility of agreeing to agree in models with more than two agents.

6. Proofs

Proof of Proposition 1. Let F be a nonempty event that satisfies (2) with respect
to the information structure (�F

1 ��
F
2 ). For each ω ∈ F and i = 1�2, we have �F

i (ω) ⊆
F ⊆ K∞(I(E)) ⊆ I(E) (where K∞ and I are considered as operators with respect to
(�F

1 ��
F
2 )). Hence, �F

i (ω) ∩ E �= ∅ and �F
i (ω) ∩ ¬E �= ∅, i = 1�2. Therefore, there is

a sequence5 ω1�ω
′
1� � � � �ωk�ω

′
k� � � � in F such that ωk ∈ E, ω′

k ∈ ¬E, ω′
k ∈ �F

1 (ωk), and
ωk+1 ∈ �F

2 (ω
′
k), for every k ≥ 1. Since for each ω ∈ F and i = 1�2, �F

i (ω) = �i(ω) ∩ F , it
follows that ω′

k ∈�1(ωk) and ωk+1 ∈�2(ω
′
k) for every k ≥ 1.

Note that since ωk ∈E and ω′
k ∈ ¬E, then ωk �= ω′

k. Thus, as F is finite, the sequence
must contain a subsequence ωk+1�ω

′
k+1� � � � �ωk+n�ω

′
k+n of 2n distinct points, for n ≥ 1

such that ωk+n+1 =ωk+1. This sequence is a loop on E. �

Proof of Proposition 2. Consider a loop on E,

L= {ω1�ω
′
1� � � � �ωn�ω

′
n}�

By the first condition of Definition 4, L⊆ I(E). By the second condition, some coarsen-
ing of {{ω1�ω

′
1}� � � � � {ωn�ω

′
n}} is included in �F

1 and some coarsening of {{ω′
1�ω2}� � � � �

{ω′
n�ω1}} is included in �F

2 . Therefore, L⊆�1 ∨�2. Thus, L⊆K∞(I(E)) with respect to
(�F

1 ��
F
2 ). �

The proof of Theorem 1 requires the following two propositions.

Proposition 3. Let P0 ∈ �1. Suppose that for every loop L on E, L∩ P0 = ∅. Then there
is a coarsening of �1, {PE�P¬E�P0}, and a coarsening of �2, {QE�Q¬E}, such that6

(PE ∪ P0)∩QE ⊆E (5)

and

(P¬E ∪ P0)∩Q¬E ⊆ ¬E� (6)

Proof. In this proof, P and Q denote generic elements of �1 and �2, respectively. We
define a binary relation ρ on �1: PρP ′ if for some Q, P ∩Q∩E �= ∅ and P ′ ∩Q∩¬E �= ∅.
We denote by  the transitive closure7 of ρ.

5The sequence may be constructed inductively.
6We allow each of the sets PE , P¬E , QE , and Q¬E to be empty.
7That is, P  P ′ if there are P1� � � � �Pn in �1, with n≥ 2, such that P1 = P , Pn = P ′, and, for j = 1� � � � � n− 1,

Pj ρ Pj+1.
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Figure 3. An illustration for Proposition 3. The elements of �1 are horizontal; those of �2 are
vertical.

Obviously,  is transitive. We show that P0 � P0. Suppose to the contrary that
P0  P0. Then there is a sequence P0� � � � �Pn, such that

P0 = Pn ρ · · · ρ P1 ρ P0� (7)

Moreover, by taking the shortest sequence of this kind, we can assume that P1� � � � �Pn are
distinct. By (7), there are Q0� � � � �Qn−1 in �2 such that for k = 1� � � � � n, Pk ∩Qk−1 ∩E �= ∅
and Pk−1 ∩Qk−1 ∩ ¬E �= ∅.

For each k = 1� � � � � n choose ωk ∈ Pk ∩ Qk−1 ∩ E and ω′
k ∈ Qk ∩ Pk ∩ ¬E, where

Qn = Q0. All 2n points are distinct. Indeed, ωk �= ω′
k because ωk ∈ E and ω′

k ∈ ¬E.
Moreover, since {ωk�ω

′
k} ⊆ Pk and P1� � � � �Pn are all distinct, each pair {ωk�ω

′
k} belongs

to a different element of �1. Thus, the points ω1�ω
′
1� � � � �ωn�ω

′
n form a loop on E that

intersects P0 at ωn. This contradicts the assumption and we conclude that P0 � P0.
Define PE to be the union of all elements P that satisfy P  P0. Since P0 � P0, it

follows that P0 ∩PE = ∅. The set P¬E is the complementary set of PE ∪P0. An element Q
is a subset of Q¬E if and only if there exists P , such that P ⊆ PE ∪P0 and P ∩Q∩¬E �= ∅.
The set QE is the complement of Q¬E .

By the definition of QE , for each Q ⊆ QE and P ⊆ PE ∪ P0, P ∩ Q ∩ ¬E = ∅, which
proves (5). To prove (6), suppose to the contrary that for some P ⊆ P¬E∪P0 and Q ⊆Q¬E ,
P ∩Q∩E �= ∅. By the definition of Q¬E , there is P ′ ⊆ PE ∪P0 such that P ′ ∩Q∩ ¬E �= ∅.
Thus, P  P ′. (See Figure 3.)

Now, if P ′ = P0, then P  P0. Else P ′ ⊆ PE , in which case P  P ′  P0. Thus, in ei-
ther case P  P0, which implies that P ⊆ PE . This contradicts the assumption that P ⊆
P¬E ∪ P0 and the proof of (6) is also complete. �
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Proposition 4. Let E be an event, let {μω
i } be posteriors with a common prior μ, and let

A be the agreement {ω | μω
1 (E) = μω

2 (E) = p} for some 0 <p< 1. If P0 ∈�1, P0 ⊆K∞(A),
and P0 ∩L= ∅ for all loops L on E, then μ(P0) = 0.

Proof. In case μ(K∞(A)) = 0, the proof is complete since P0 ⊆ K∞(A). Otherwise,
define ν(·) = μ(· | K∞(A)). Note that ν is also a common prior for the posteriors8 {μω

i }.
Moreover, if ν(�i(ω)) > 0, then μω

i (E) = p.
By Proposition 3, there are partitions {PE�P¬E�P0} and {QE�Q¬E} that satisfy (5) and

(6). The events PE and Q¬E are unions of elements of �1 and �2, respectively, and since
the partitions are countable, these events are measurable. From the definitions of A
and ν, it follows that ν(E ∩ PE) = pν(PE) and ν(¬E ∩ PE) = (1 − p)ν(PE). Thus (recall,
1 −p> 0),

ν(E ∩ PE)= (p/(1 −p))ν(¬E ∩ PE)� (8)

By a similar argument,

ν(E ∩Q¬E)= (p/(1 −p))ν(¬E ∩Q¬E)� (9)

By (6), the relation between the events on the left sides of (8) and (9) is E ∩ Q¬E ⊆
E ∩ PE . Hence, by comparing the right sides of (8) and (9), we obtain (after dividing
by p/(1 −p) �= 0)

ν(¬E ∩ PE) ≥ ν(¬E ∩Q¬E)�

By (5), the event on the left side is a subset of the event on the right side. Thus their
difference must have probability 0. This difference is

(¬E ∩Q¬E) \ (¬E ∩ PE) = ¬E ∩ (Q¬E \ PE)

= ¬E ∩ (Q¬E ∩ (P¬E ∪ P0))

= Q¬E ∩ (P¬E ∪ P0)�

where the last equality holds by (6).
We conclude that ν(Q¬E ∩ (P¬E ∪ P0)) = 0 and, in particular, ν(Q¬E ∩ P0) = 0. By

(5), Q¬E ∩ P0 ⊆ ¬E. Hence, Q¬E ∩ P0 = ¬E ∩ P0. Thus, ν(¬E ∩ P0) = 0 and, therefore,
μ(¬E ∩ P0) = 0. However, by assumption, P0 ⊆ K∞(A) and, therefore, for every ω ∈ P0,
μω

1 (¬E)= 1 −p> 0. This is possible only when μ(P0) = 0. �

Proof of Theorem 1. Suppose that a nonempty finite F is a subset of K∞(I(E)) with
respect to both (�1��2) and (�F

1 ��
F
2 ). Thus, K∞(I(E)) with respect to (�1��2) is

nonempty.
From now on (in this proof), the operators K∞ and I are used with respect to

(�1��2). We construct posteriors {μω
i } with a common prior μ such that μ(K∞(I(E))) >

8This is so since K∞(A) is in the join of the partitions. Therefore, ν(·) induces over K∞(A) the same
posteriors as μ, while on the complement of K∞(A), the posteriors can be defined so as to coincide with
{μω

i }.
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0 and K∞(I(E)) ⊆ A, where A = {ω | μω
1 (E) = μω

2 (E) = 1
2 }. This inclusion implies

K∞(I(E)) ⊆ K∞(A), which shows that μ(K∞(A)) > 0 and thereby establishes the fact
that agreeing to agree is possible for E.

By Propositions 1 and 2, there exists a loop L = {ω1�ω
′
1� � � � �ωn�ω

′
n} on E such

that L ⊆ K∞(I(E)). Define a common prior μ such that μ(ωk) = μ(ω′
k) = 1/(2n) for

k= 1� � � � � n. Consider P ∈�1 such that P ⊆ K∞(I(E)).
Suppose that P ∩L �= ∅. Then ωk ∈ P if ω′

k ∈ P . Since all the points in L are distinct,
it follows that P contains the same number of points in E ∩ F and in ¬E ∩ F . Thus for
ω ∈ P , μω

1 (E) = 1
2 .

If P ∩ L = ∅, then μ(P) = 0 and, therefore, the posteriors on P can be defined ar-
bitrarily. Since P ⊆ K∞(I(E)), it follows that P ⊆ I(E) and, therefore, P ∩ E �= ∅ and
P ∩ ¬E �= ∅. We define the posterior μω

1 for ω ∈ P such that μω
1 (E)= μω

1 (E)= 1
2 .

A similar argument holds for elements Q ∈ �2. This shows that K∞(I(E)) ⊆ A, as
required.

The proof of the converse direction makes use of Propositions 3 and 4. Suppose
that agreeing to agree is possible for E for posteriors with a common prior μ and the
agreement A (recall (1)). This means that

μ(K∞(A)) > 0� (10)

Obviously, A⊆ I(E) and, therefore,

K∞(A) ⊆K∞(I(E))� (11)

By (10) and (11), K∞(I(E)) is not empty.
Since K∞(I(E)) is a union of elements of the join �1 ∨�2, it follows that for a loop L,

if L∩K∞(I(E)) �= ∅� then L⊆ K∞(I(E))� (12)

Assume that there exists a loop L on E such that L ⊆ K∞(I(E)). By Proposition 2,
F = L is a nonempty finite set that satisfies (2) and the proof is complete. Otherwise,
for every loop L on E, L � K∞(I(E)), which implies by (12) that L ∩ K∞(I(E)) = ∅.
Thus, by (11), L ∩ K∞(A) = ∅. Therefore, by Proposition 4, for each P0 ∈ �1 such
that P0 ⊆K∞(A), μ(P0) = 0. Since the partitions are countable, this implies that
μ(K∞(A)) = 0, which contradicts (10). �

Proof of Theorem 2. If agreeing to agree is possible for E, then the condition of The-
orem 1 holds. As was shown in the first part of its proof, this condition implies that
agreeing to agree is made possible by a common prior supported on a loop, which is a
finite event. �

Proof of Theorem 3. Assume first that the event

�̂ = K∞(¬K1(¬L̂)∩ ¬K2(¬L̂))

is not empty. Then, for each P ∈ �i, i = 1�2, if P ⊆ �̂, then P ⊆ ¬K1(¬L̂)∩ ¬K2(¬L̂) and
thus P ∩ L̂ �= ∅.
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Since �̂ is a union of elements of the join of �1 ∨ �2, it follows that for a loop L, if

L ∩ �̂ �= ∅, then L ⊆ �̂. Let {L1�L2� � � �} be the set of all the loops contained in �̂. For
each n, let μn be a probability distribution on Ln such that for each ω ∈ Ln, μn(ω) =
1/(2|Ln|).9 Let μ = ∑

2−nμn. Then, for P ∈ �i, i = 1�2, μ(P ∩ E) = ∑
2−nμn(P ∩ E) =∑

2−n(1/2)μn(P) = (1/2)μ(P).
Since for each P ∈ �i that is a subset of �̂, P ∩ L̂ �= ∅, it follows that μ(P) > 0. In

addition, μ vanishes on the complement of �̂. Let μ′ be any measure on � that vanishes
on �̂ and is positive on the elements of �1 and �2 that are not subsets of �̂. Define
ν = μ/2 +μ′/2. Then ν is positive on �1 and �2. Let {νωi } be the posteriors defined by ν.

Then �̂ ⊆ K∞(A) for A = {ω | νω1 (E) = νω1 (E) = 1/2} and ν(�̂) > 0, which shows that
agreeing to agree is possible for E with the prior ν that assigns a positive probability to
every element of either partition.

As for the converse direction, assume that there are posteriors {μω
i } with a com-

mon prior μ that is positive on every element of �1 or �2. Furthermore, assume that
A is an event of the sort {ω | μω

1 (E) = μω
2 (E) = p} for some 0 < p < 1 that satisfies

μ(K∞(A)) > 0. It is sufficient to show that K∞(A) ⊆ K∞(¬K1(¬L̂) ∩ ¬K2(¬L̂)). For
this it suffices to show that for i = 1�2 and any P ∈ �i such that P ⊆ K∞(A), P ∩ L̂ �= ∅.
Indeed, if to the contrary, P ∩ L̂ = ∅ for such P , then by Proposition 4, μ(P) = 0. This
contradicts the positivity of μ on every element of either partition. �
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