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Price discrimination through communication

Itai Sher
Department of Economics, University of Minnesota

Rakesh Vohra
Department of Economics and Department of Electrical and Systems Engineering,

University of Pennsylvania

We study a seller’s optimal mechanism for maximizing revenue when a buyer
may present evidence relevant to her value. We show that a condition very
close to transparency of buyer segments is necessary and sufficient for the op-
timal mechanism to be deterministic—hence, akin to classic third degree price
discrimination—independently of nonevidence characteristics. We also find an-
other sufficient condition depending on both evidence and valuations, whose
content is that evidence is hierarchical. When these conditions are violated, the
optimal mechanism contains a mixture of second and third degree price discrim-
ination, where the former is implemented via sale of lotteries. We interpret such
randomization in terms of the probability of negotiation breakdown in a bargain-
ing protocol whose sequential equilibrium implements the optimal mechanism.

Keywords. Price discrimination, communication, bargaining, commitment, evi-
dence, network flows.

JEL classification. C78, D82, D83.

1. Introduction

This paper examines the problem of selling a single good to a buyer whose value for
the good is private information. The buyer, however, is sometimes able to support a
claim about her value with evidence. Evidence can take different forms. For example,
evidence may consist of an advertisement showing the price at which the consumer
could buy a substitute for the seller’s product elsewhere. It is not essential that a buyer
present a physical document; a buyer who knows the market—and, hence, knows of
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attractive outside opportunities—may demonstrate this knowledge through her words
alone, whereas an ignorant buyer could not produce those words.

Our model is relevant whenever a monopolist would like to price discriminate on
the basis of membership in different consumer segments but disclosure of membership
in a segment is voluntary. This is the case with students, senior citizens, AAA members,
and many other groups. Moreover, consumer segments often overlap (e.g., many AAA
members are senior citizens). If the seller naively sets the optimal price within each seg-
ment without considering that consumers in the overlap will select the cheapest avail-
able price, she implements a suboptimal policy. So an optimal pricing policy must gen-
erally account for the voluntary disclosures that pricing induces.

Our model allows the monopolist not only to set prices conditional on evidence, but
to sell lotteries that deliver the object with some probability. Probabilistic sale can be in-
terpreted as delay or quality degradation.1 Thus, our model entails a mixture of second
and third degree price discrimination. Evidence and, moreover, voluntary presentation
of evidence, plays a crucial role in generating the richness of the optimal mechanism. In
the absence of all evidence, the optimal mechanism is a posted price. When segments
are transparent to the seller, which corresponds to the case where evidence disclosure
is nonvoluntary or where all consumers can prove membership and the lack of it for all
segments, the optimal mechanism in our setting is standard third degree price discrim-
ination. More generally, segments may not be transparent, and some consumers may
not be able to prove that they do not belong to certain segments. For example, how does
one prove that one is not a student? In this case, the optimal mechanism must deter-
mine prices for lotteries as a function of submitted evidence. The same lottery may sell
to different types for different prices. The allocation need not be monotone in buyers’
values in the sense that higher value types may receive the object with lower probability
than lower value types. This can be so even when the higher value type possesses all
evidence possessed by the lower value type.

We organize the analysis of the problem via the notion of an incentive graph. The
vertices of the incentive graph are the buyer types. The graph contains a directed
edge from s to t if type t can mimic type s in the sense that every message avail-
able to type s is available to type t. The optimal mechanism is the mechanism that
maximizes revenue subject not to all incentive constraints, as in standard mecha-
nism design, but rather only to incentive constraints corresponding to edges in the
incentive graph; type t needs to be discouraged from claiming to be type s only if
t can mimic s. Similar revelation principles have appeared in the literature with-
out reference to incentive graphs (Forges and Koessler 2005, Bull and Watson 2007,
Deneckere and Severinov 2008). Our innovation is to explicitly introduce the notion of
an incentive graph, and to link the analysis and specific structure of the optimal mecha-
nism to the specific structure of the incentive graph. While much of the literature deals
with abstract settings, we work within the specific price discrimination application.

1When explicit bargaining is possible, probabilistic sale can be interpreted in terms of the chance of
negotiation breakdown. See Section 7.
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A key result of our paper is a characterization of the incentive graphs that yield an
optimal deterministic mechanism independent of the distribution over types or the as-
signment of valuations to types; this characterization is in terms of a property we call
essential segmentation (Proposition 6). Essential segmentation is very close to trans-
parency of segments. So our characterization shows that once one departs slightly from
transparency, the distribution of nonevidence characteristics may be such that third
degree price discrimination is no longer optimal. We also obtain a weaker sufficient
condition for the optimal mechanism to be deterministic that relies on information on
valuations (Proposition 4). This sufficient condition can be interpreted as saying that
evidence is hierarchical, and it allows for solution of the model via backward induction
(Proposition 15).

In our setting, the absence of some incentive constraints makes it difficult to say a
priori which of them will bind at optimality; if type t can mimic both lower value types
s and r, but s and r cannot mimic each other, which type will t want to mimic under
the optimal mechanism? In this sense, our model exhibits the essential difficulty at the
heart of optimal mechanism design when types are multidimensional.

Our results have both a positive and negative aspect. On the positive side, we show
how to extend known results beyond the case usually studied, where types are linearly
ordered, to the more general case of a tree (corresponding to hierarchical evidence). On
the negative side, we establish a limit on how far the extension can go, embedding the
standard revenue maximization problem in a broader framework that highlights how
restrictive it is. However, even when standard results no longer apply, we develop tech-
niques for analyzing the problem despite the ensuing complexity (Propositions 2 and 9).

In our model, randomization can be interpreted as quality degradation, but it can
also be interpreted literally: We show that the optimal direct mechanism can be im-
plemented via a bargaining protocol that exhibits some of the important features of
bargaining observed in practice (Proposition 11). This model interprets random sale
in terms of the probability of a negotiation breakdown. In this protocol, the buyer and
seller engage in several rounds of cheap talk communication followed by the presenta-
tion of evidence by the buyer and then a take-it-or-leave-it offer by the seller. This sug-
gests that in addition to the usual determinants of bargaining (patience, outside option,
risk aversion, commitment), the persuasiveness of arguments is also relevant.

Communication in the sequential equilibrium of our bargaining protocol is mono-
tone in two senses: The buyer makes a sequence of concessions in which she claims to
have successively higher valuations, and, at the same time, the buyer admits to having
more and more evidence as communication proceeds (Proposition 12).

The seller faces an optimal stopping problem: Should he ask for a further conces-
sion from the buyer that would yield additional information about the buyer’s type but
risk the possibility that the buyer will be unwilling to make an additional concession
and thus drop out? The seller’s optimal stopping strategy is determined by the optimal
mechanism. The seller asks for another cheap talk message when the buyer claims to
be of a type that is not optimally served, and requests supporting evidence in prepa-
ration for an offer and sale when the buyer claims to be of a type that is served. Most
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interesting is when the buyer claims to be of a type that is optimally served with an in-
termediate probability; then the seller randomizes between asking for more cheap talk
and proceeding to the sale. An interesting by-product of the analysis is that the optimal
mechanism can be implemented with no more commitment than the ability to make a
take-it-or-leave-it offer.

The outline of the paper is as follows: Section 2 presents the model. Section 3
presents the benchmark of the standard monopoly problem without evidence. Section 4
highlights the properties of the benchmark that may be violated in our more general
model. Section 5 studies the optimal mechanism. Section 6 presents a revenue for-
mula for expressing the payment made by each type in terms of the allocation. Section 7
presents our bargaining protocol. The Appendix contains proofs that were omitted from
the main body.

1.1 Related literature

This paper is a contribution to three distinct streams of work. The first, and most appar-
ent, is the study of mechanism design with evidence. Much work in this area (Green and
Laffont 1986, Singh and Wittman 2001, Forges and Koessler 2005, Bull and Watson 2007,
Ben-Porath and Lipman 2012, Deneckere and Severinov 2008, Kartik and Tercieux 2012)
examines general mechanism design environments, establishing revelation principles,
and necessary and sufficient conditions for partial and full implementation. Our fo-
cus is on optimal price discrimination instead. The papers most closely related to this
one are Celik (2006) and Severinov and Deneckere (2006). Celik (2006) studies an ad-
verse selection problem in which higher types can pretend to be lower types but not
vice versa, and shows that the weakening of incentive constraints does not alter the op-
timal mechanism.2 In our setting, this would correspond to an incentive graph where
directed edge (s� t) exists if and only if t has a higher value than s, and our Proposition 4
applies. Severinov and Deneckere (2006) study a monopolist selling to buyers only some
of whom are strategic. Strategic buyers can mimic any other type, whereas nonstrategic
types must report their information truthfully. This setting can be seen as a special case
of ours where the type of agent is a pair (S� v) that represents a strategic agent with value
v or a pair (N � v), that represents a nonstrategic agent with value v.

The second stream is third degree price discrimination. The study of third degree
price discrimination has focused mainly on the impact of particular segmentations on
consumer and producer surplus, output, and prices. That literature treats the seg-
mentation of buyers as exogenous. The novelty of this paper is that segmentation is
endogenous.3

The third stream is models of persuasion (Milgrom and Roberts 1986, Shin 1994,
Lipman and Seppi 1995, Glazer and Rubinstein 2004, 2006, Sher 2011, 2014). These
models deal with situations in which a speaker attempts to persuade a listener to take
some action. Our model deals with arguments attempting to persuade the listener, i.e.,

2Technically, a closely related analysis is that of Moore (1984).
3A recent paper by Bergemann et al. (2015) also examines endogenous segmentation. However, they

assume a third party who can segment buyers by valuation. Thus, buyers are not strategic in their setting.
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seller, to choose an action like lowering the price. Indeed, Glazer and Rubinstein’s model
can be reinterpreted as a price discrimination model where the buyer has a binary val-
uation for the object, assigning it either a high or low value. Our model can then be
seen as a generalization from the case of binary valuations to arbitrary valuations (see
Section 7.5).

A related line of work is Blumrosen et al. (2007) and Kos (2012). These papers as-
sume that bidders can only report one of a finite number of messages. However, unlike
the model we consider, all messages are available to each bidder. Hard evidence can
be thought of as a special case of differentially available or differentially costly actions.
One such setting is that of auctions with financially constrained bidders who cannot
pay more than their budget (Che and Gale 1998, Pai and Vohra 2014). This relation po-
tentially links our work to a broader set of concerns. In relation to our credible imple-
mentation of the optimal mechanism via a bargaining protocol (see Section 7), there is
also a body of literature that studies the relation between incentive compatible mech-
anisms and outcomes that can be implemented in infinite horizon bargaining games
with discounting (Ausubel and Deneckere 1989, Gerardi et al. 2014). This literature does
not study the role of evidence, which is our main focus. Moreover our results are quite
different, both in substance and technique. Finally, our work contributes to the linear
programming approach to mechanism design (Vohra 2011).

2. The model

2.1 Primitives

A seller possesses a single item he does not value. A buyer may be one of a finite num-
ber of types in a set T . The terms πt and vt denote, respectively, the probability of and
valuation of type t. Let M be a finite set of hard messages, and σ :T ⇒M is a message
correspondence that determines the evidence σ(t)⊆M available to type t. For any sub-
set S of σ(t), the buyer can present S. It is convenient to define: St := {m :m ∈ σ(t)}.
Formally, St and σ(t) are the same set of messages. However, we think of σ(t) as encod-
ing the buyer’s choice set, while we think of St as encoding a particular choice: namely,
the choice to present all messages in σ(t). Observe that if σ(t) ⊆ σ(s), then type s can
also present St .

Assume a zero type 0 ∈ T with v0 = π0 = 0 and σ(0) = {m0} � σ(t) ∀t ∈ T \ 0. Thus,
all types possess the single hard message available to the zero type. The zero type plays
the role of the outside option. For all t ∈ T \ 0, vt > 0 and πt > 0. In addition to the
hard messagesM , we assume that the buyer has access to an unlimited supply of cheap
talk messages, which are equally available to all types, as in standard mechanism design
models without evidence.

2.2 Incentive graphs

A graphG= (V �E) consists of a set of vertices V and a set of directed edges E, where an
edge is an ordered pair of vertices. The incentive graph is the graph G such that V = T
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and E is defined by

(s� t) ∈E ⇔ [σ(s)⊆ σ(t) and s �= t]� (1)

So (s� t) ∈ E means that t can mimic s in the sense that any evidence that s can present,
t can also present. Our assumptions on the zero type imply

∀t ∈ T \ 0� (0� t) ∈ E and (t�0) /∈E� (2)

A graph G = (V �E) is transitive if, for all types r, s, and t, [(r� s) ∈ E and (s� t) ∈ E] ⇒
(r� t) ∈ E. The incentive graph is not transitive (because it is irreflexive), but (1) implies
that the incentive graph satisfies a slightly weaker property we call weak transitivity:

[(r� s) ∈E and (s� t) ∈E and r �= t] ⇒ (r� t) ∈E ∀r� s� t ∈ T (= V )�

Say that an edge (s� t) ∈E is good if vs < vt and bad otherwise.

2.3 Graph-theoretic terminology

Here we collect some graph-theoretic terminology used in the sequel. We suggest that
the reader skip this section and return to it as needed. A path in G = (V �E) is a se-
quence P = (t0� t1� � � � � tn) of vertices with n≥ 1 such that for i= 1� � � � � n and j = 0� � � � � n,
(i) (ti−1� ti) ∈ E, and (ii) i �= j ⇒ ti �= tj . If for some i = 1� � � � � n, s = ti−1 and t = ti, we
write (s� t) ∈ P and t ∈ P (and also s ∈ P). Path P is an s − t path if t0 = s and tn = t,
and Ps−t is the set of all s − t paths in G. The set Pt := P0−t is the set of all 0 − t paths
and P =: ⋃

t∈T\0 Pt is the set of all paths originating in 0. We sometimes use the nota-
tion P : t0 → t1 → ·· · → tn for the path P . A cycle in G is a sequence C = (t0� t1� � � � � tn)

of vertices such that for i� j = 1� � � � � n, (i) (ti−1� ti) ∈ E, (ii) i �= j ⇒ ti �= tj , and (iii)
t0 = tn. Graph G is acyclic if G does not contain any cycles. An undirected path is a
sequence (t0� t1� � � � � tn) such that for i = 1� � � � � n and j = 0� � � � � n, (i) either (ti−1� ti) ∈ E
or (ti� ti−1) ∈ E, and (ii) i �= j ⇒ ti �= tj . A graph G= (V �E) is strongly connected if for all
vertices s� t ∈ V , there is an s − t path in G. Graph G is weakly connected if there is an
undirected path connecting each pair of its vertices. Graph G0 = (V0�E0) is a subgraph
of G= (V �E) if V0 ⊆ V and E0 := {(s� t) ∈ E : s� t ∈ V0}. We refer to G0 as the subgraph of
G generated by V0. A subgraph G0 = (V0�E0) of G is a strongly (resp., weakly) connected
component of G if (i) G0 is strongly (resp., weakly) connected, and (ii) if V0 � V1 ⊆ V ,
the subgraph of G generated by V1 is not strongly (resp., weakly) connected. Finally the
outdegree of a vertex t is the number of vertices s such that (t� s) ∈E.

2.4 The seller’s revenue maximization problem

We consider an optimal mechanism design problem that is formulated below. The term
qt is the probability that type t receives the object and pt is the expected payment of
type t.
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Primal Problem (Edges). The seller’s problem is

maximize
(qt �pt)t∈T

∑
t∈T

πtpt (3)

subject to

∀(s� t) ∈E� vtqt −pt ≥ vtqs −ps (4)

∀t ∈ T� 0 ≤ qt ≤ 1 (5)

p0 = 0� (6)

The seller’s objective is to maximize expected revenue (3). In contrast to standard
mechanism design, (3)–(6) does not require one to honor all incentive constraints, but
only incentive constraints for pairs of types (s� t)with (s� t) ∈E. Indeed, the label “edges”
refers to the fact that there is an incentive constraint for each edge of the incentive graph,
and is to be contrasted with the formulation in terms of paths to be presented in Sec-
tion 6. The interpretation is that we only impose an incentive constraint saying that t
should not want to claim to be s if t can mimic s in the sense that any evidence that s
can present can also be presented by t. The individual rationality constraint is encoded
by (6) and the instances of (4) with s = 0 (recall that (0� t) ∈ E for all t ∈ T \ 0). An alloca-
tion q= (qt : t ∈ T) is said to be incentive compatible if there exists a vector of payments
p= (pt : t ∈ T) such that (q�p) is feasible in (3)–(6).

Although they did not explicitly study the notion of an incentive graph, the fact that
in searching for the optimal mechanism, we only need to consider the incentive con-
straints in (4) follows from Corollary 1 of Deneckere and Severinov (2008), which may be
viewed as a version of the revelation principle for general mechanism design problems
with evidence. More specifically, given a social choice function f mapping types into
outcomes, these authors show that when agents can reveal all subsets of their evidence,
there exists a (possibly dynamic) mechanism � that respects the right of agents to decide
which of their own evidence to present, and is such that � implements f if and only if f
satisfies all (s� t) incentive constraints for which σ(s)⊆ σ(t). This justifies the program
(3)–(6) for our problem. For further details, the reader is referred to Deneckere and Sev-
erinov (2008). Related arguments are presented by Bull and Watson (2007). (Note that
our model satisfies Bull and Watson’s normality assumption because each type t buyer
can present all subsets of σ(t).4)

3. The standard monopoly problem

This section summarizes a special case of our problem that will serve as a benchmark:
the standard monopoly problem. Call the incentive graph complete if for all s� t ∈ T with
t �= 0, (s� t) ∈ E; with a complete incentive graph, every (nonzero) type can mimic ev-
ery other type. The standard monopoly problem is (3)–(6) with a complete incentive

4Bull and Watson (2007) also explain the close relation of their normality assumption to the nested
ranged condition of Green and Laffont (1986) and relate their analysis to that of the latter paper.
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graph. Here, we assume without loss of generality that T = {0�1� � � � � n} with 0< v1 ≤ v2 ≤
· · · ≤ vn.

For each t ∈ T , define

�t =
n∑
i=t
πt� (7)

where �t , viewed as a function of t, is the complementary cumulative distribution func-
tion (c.c.d.f.). Define the quasi-virtual value of type t ∈ T \ n as5

ψ̂(t) := vt − (vt+1 − vt)�t+1

πt
� (8)

The quasi-virtual value of type n is simply ψ̂(n) := vn. Use of the qualifier “quasi” is
explained in Section 5.2. Say that quasi-virtual values are monotone if

ψ̂(t)≤ ψ̂(t + 1)� t = 0� � � � � n− 1� (9)

The following proposition summarizes the well known properties of the standard
monopoly problem.

Proposition 1 (Standard monopoly benchmark). Any instance of the standard monop-
oly problem satisfies the following properties.

(i) The allocation q ∈ [0�1]T is incentive compatible exactly if q satisfies allocation
monotonicity:

qt ≤ qt+1� t = 0�1� � � � � n− 1�

(ii) For any allocation q satisfying allocation monotonicity, the revenue maximizing
vector of payments p such that (q�p) is feasible in (4)–(6) is given by the revenue
formula

pt = vtqt −
t−1∑
i=1

qi(vi+1 − vi)− v1q0� (10)

(iii) There exists an optimal mechanism satisfying the following statements:

(a) Deterministic allocation. Each type is allotted the object with probability 0
or 1.

(b) Uniform price. Each type receiving the object makes the same payment.

(iv) Assume quasi-virtual values are monotone. Then in any optimal mechanism, the
buyer is served with probability 1 if she has a positive quasi-virtual value and with
probability 0 if she has a negative quasi-virtual value.6 The seller’s expected rev-
enue is equal to the expected value of the positive part of the quasi-virtual value:∑
t∈T {ψ̂(t)�0}πt .

5Notice that because π0 = 0, ψ̂(0)= −∞.
6If the buyer has a zero virtual value, then for every α ∈ [0�1], there is an optimal mechanism in which

the buyer is served with probability α.
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Part (i) follows from standard arguments (as in Myerson 1982), part (ii) follows from
Lemmas 3 and 5 (in the Appendix), and part (iii) is an easy corollary of Proposition 4.
The proof of part (iv) is given in the Appendix.

4. Deviations from the benchmark

Using the case of the complete incentive graph as a benchmark (as cataloged in Propo-
sition 1), this section highlights various anomalies that arise when the incentive graph
is incomplete.

Observation 1 (Nonstandard properties of feasible and optimal mechanisms).

(i) When the incentive graph is incomplete, all allocations may be feasible (i.e., in-
centive compatible). Acyclicity of the incentive graph is a necessary and sufficient
condition for all allocations to be incentive compatible.

(ii) When the incentive graph is incomplete, the optimal mechanism may involve any
of the following properties:

(a) Price discrimination. Two types may pay different prices for the same
allocation.

(b) Random allocation. Some types may be allotted the object with a probability
intermediate between 0 and 1.7

(c) Violations of allocation monotonicity. For some good edge (s� t), type t may be
allotted the object with lower probability than s.

Remark 1. Whereas (ii)(a) refers to third degree price discrimination, (ii)(b) can be in-
terpreted as a form of second degree price discrimination so that the optimal mecha-
nism contains a mix of the two. Part (ii)(c) generalizes allocation monotonicity to arbi-
trary incentive graphs, and shows that allocation monotonicity, which was implied by
feasibility for the complete graph (Proposition 1(i)), is not even implied by optimality
for arbitrary incentive graphs.

The proof of Observation 1(i) is omitted because it is not used directly as a lemma in
any of our main results. The other parts are illustrated by the following example.

Example 1. Consider the market for a book. Some students are required to take a class
for which the book is required and, consequently, they have a high value of 3 for the

7Strictly speaking, what differentiates this from the standard monopoly problem is that for a fixed incen-
tive graph and assignment of values and probabilities to types, all optimal mechanisms may require ran-
domization, so that randomization is essential rather than incidental. Moreover, in the standard monopoly
problem (the discrete version), the set of parameter values for which there even exists an optimal mecha-
nism involving randomization has zero measure. In contrast, when the incentive graph is incomplete, the
set of parameter values inducing all optimal mechanisms to randomize is nondegenerate. See Remark 2.
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book. Students who are not required to take the class have a low value of 1. More than
half the students are required to take the class. All nonstudents have a medium value
of 2.

If no type had any evidence, a posted price would be optimal. Suppose next, for
illustrative purposes, all buyers have an ID card that records their student status or lack
of it. Then it would be optimal to set a price of $2 to nonstudents and $3 to students.

Suppose more realistically that only students possess an ID identifying their student
status and nonstudents have no ID. If the seller now attempted to set a price of $2 to
nonstudents and $3 to students, no student would choose to reveal his student status.
Thus, the natural form of third degree price discrimination is ruled out.8

In this case, the seller can benefit from a randomized mechanism. If students did
not exist, the optimal mechanism would be a posted price of 2. So by a continuity argu-
ment, if the proportion of nonstudents is large enough, the optimal mechanism is such
that without a student ID, a buyer faces a posted price of 2. The seller cannot charge
a price higher than 2 with a student ID, since a student can receive this price when he
withholds his ID. Suppose, however, that the seller can offer to sell a lower quality ver-
sion of the product that yields the same payoff as receiving the object with a probability
of 1/2. Let the seller offer this option only with a student ID for a price of 1/2. The low
student type would be willing to select this option, while the high student type would
be willing to mimic a nonstudent and obtain the high quality version for a price of 2.
Indeed, it is easy to see that under our assumptions, this randomized mechanism is
optimal.

Finally, let us introduce a small proportion of students who have a value 2 + ε,
where ε is a small positive number. If these students form a sufficiently small pro-
portion of the student population, it will still be optimal for the seller to offer a price
of 2 for the high quality product without a student ID, and a price of 1/2 for the low
quality product (equivalent to receiving the object with probability 1/2) with a stu-
dent ID. The new medium value students will prefer the lower price of 1/2 with a
student ID. However, this is a violation of allocation monotonicity, as these new stu-
dents can mimic the nonstudents who have a lower value and receive the item with
probability 1. ♦

Remark 2 (Nondegeneracy). Example 1 shows that random allocation is not a knife-
edge phenomenon. For sufficiently small changes in the parameters—the values and
probabilities of the (nonzero) types—the optimum in the last paragraph of the example
remains unique, and still has the properties of random allocation and failure of allo-
cation monotonicity. With a view to Proposition 2, types with zero virtual valuation as
defined by (19) (the only types eligible for random allocation at the optimum) are not a
knife-edge phenomenon, but rather can be robust to small changes in the parameters.

8Since more than half of the students have a high value, the seller would prefer to sell the object for $2
regardless of student status rather than to offer a discounted price of $1 to students.
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5. The optimal mechanism

5.1 Virtual values and general properties of the optimal mechanism

Here we analyze the revenue maximization problem on arbitrary incentive graphs via a
generalization of the classical analysis of optimal auctions in terms of virtual valuations.
To do so, we display the dual of the seller’s problem.9

Dual Problem (Edges). The dual is

minimize
(μt)t∈T �(λ(s�t))(s�t)∈E

∑
t∈T

μt (11)

subject to

∀t ∈ T \ 0�
∑

s : (s�t)∈E
λ(s� t)−

∑
s : (t�s)∈E

λ(t� s)= πt (12)

∀t ∈ T� vtπt −
∑

s : (t�s)∈E
λ(t� s)(vs − vt)≤ μt (13)

∀(s� t) ∈E λ(s� t)≥ 0 (14)

∀t ∈ T� μt ≥ 0� (15)

We now use the dual to derive a generalization (19) of the classical notion of virtual value,
a key to our analysis. The standard virtual value (8) employs the complementary cumu-
lative distribution function (c.c.d.f.) �t (see (7)). As we now show, the dual variables
λ(s� t) can be interpreted as providing a generalization of the c.c.d.f. to arbitrary incen-
tive graphs. However, whereas �t is exogenous, the quantities λ(s� t) used to construct
the analog of�t are endogenous. For the complete incentive graph,�t is the probability
of all types “above” type t (including t), in the sense of having a higher value than t. On
an arbitrary incentive graph, types differ not only by value (and probability), but also ac-
cording to which other types they can mimic. Thus, there is no obvious way to linearly
order types such that some types are above others. Nevertheless, we construct an analog
of the c.c.d.f.

Next we provide insight into how the generalization is achieved. Consider first the
case of the complete incentive graph (where we recall T = {0�1� � � � � n} and 0 = v0 < v1 ≤
· · · ≤ vn; see Section 3). If quasi-virtual values are monotone, then, by well known rea-
soning, at an optimum of the primal, the downward adjacent constraints (i.e., those

9The derivation of (13) requires some manipulation: When one takes the dual of (3)–(6), one initially gets
the constraint ∑

s : (s�t)∈E
vtλ(s� t)−

∑
s : (t�s)∈E

vsλ(t� s)−μt ≤ 0 ∀t ∈ T

instead of (13). Using (12) to substitute πt + ∑
s : (t�s)∈E λ(t� s) for

∑
s : (s�t)∈E λ(s� t) in the above inequality,

we obtain

μt ≥ vt
(
πt +

∑
s : (t�s)∈E

λ(t� s)

)
−

∑
s : (t�s)∈E

vsλ(t� s)= vtπt −
∑

s : (t�s)∈E
λ(t� s)(vs − vt)�

which is constraint (13).



608 Sher and Vohra Theoretical Economics 10 (2015)

of the form (t� t + 1)) bind. Moreover, we can eliminate all other incentive constraints
without altering the optimal solution.10 As λ(s� t) is the multiplier on the (s� t) incentive
constraint, it follows that there is a dual optimum satisfying

λ(s� t) > 0 only if t = s+ 1� (16)

So (12) simplifies to

λ(t − 1� t)− λ(t� t + 1) = πt� t = 1� � � � � n− 1
(17)

λ(n− 1� n) = πn�

It follows that ∑
s : (t�s)∈E

λ(t� s) = λ(t� t + 1)

=
(
n−1∑
i=t+1

[λ(i− 1� i)− λ(i� i+ 1)]
)

+ λ(n− 1� n)

=
n∑

i=t+1

πi�

where the first equality follows from (16), the second equality is a telescoping sum, and
the third follows from (17). To summarize,∑

s : (t�s)∈E
λ(t� s)=�t+1� (18)

Equation (18) delivers the promised relationship between the dual solution and the
c.c.d.f. when the incentive graph is complete. When the incentive graph is not com-
plete, then (18) suggests that we use

∑
s : (t�s)∈E λ(t� s) instead of �t+1 for the cumulative

probability mass “above” t.11

We are now in a position to construct an analog of the virtual value. This is done
by means of constraints (13), which we call virtual value constraints. If we divide the

10If virtual values were not monotone, eliminating the nonadjacent constraints would require us to in-
troduce allocation monotonicity as an additional set of constraints, which in turn would introduce new
variables into the dual.

11To make this vivid, imagine that all the probability (of mass 1) is concentrated on the zero type. We
would like to transport this probability mass to the other types along the edges of the incentive graph so
that each type t receives her allotted share πt . The quantity λ(s� t) is the total probability mass that travels
along edge (s� t). Then

∑
s : (s�t)∈E λ(s� t) is the total probability mass flowing into type t and

∑
s : (t�s)∈E λ(t� s)

is the total mass flowing out of type t, in other words, the probability mass above t. Equation (12) then says
that the difference between the inflow and the outflow of t is πt , the mass that t receives. For this reason,
the constraints (12) are called flow conservation constraints. Such constraints have been extensively studied
in the literature on network flow problems. See Ahuja et al. (1993) for an extensive treatment.
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constraint (13) corresponding to t by πt , and call the resulting expression on the left-
hand side ψ(t), then12

ψ(t) := vt −
∑
s : (t�s)∈E λ(t� s)(vs − vt)

πt
� (19)

In the case of the complete incentive graph (assuming also (9)), using (16) and (18), at a
dual optimum, (19) reduces to (8), the quasi-virtual value. This suggests that, in general,
we interpret ψ(t) as the virtual valuation of type t, an analog of the virtual valuation
in traditional mechanism design. Constraints (13) and (15), and the minimization (11)
establish the following relation at any dual optimum:

μt = max{ψ(t)�0}πt�
In words, μt is the positive part of the virtual valuation of type t multiplied by the proba-
bility of type t. Proposition 2 below now follows from strong duality and complementary
slackness. This proposition—an analog of the standard result from the theory of optimal
auctions and of Proposition 1(iv)—validates our interpretation in terms of virtual values.

Proposition 2. At any optimal mechanism, a buyer type is served with probability 1 if
she has a positive virtual valuation and with probability 0 if she has a negative virtual
valuation. Types with zero virtual valuation are served with some (possibly zero) proba-
bility. The seller’s revenue is equal to the expected value of the positive part of the virtual
valuation: ∑

t∈T
max{ψ(t)�0}πt�

This result establishes one link between the standard analysis and our model. We
conclude this section with additional results that a general optimal solution in our
model shares with an optimum of the standard problem. These results will also be useful
in the sequel. Call a feasible solution to the dual good if

λ(s� t) > 0 ⇒ vs < vt ∀(s� t) ∈E� (20)

In words, a dual solution is good if the variables λ(s� t) are only positive on good edges.
For our next result, we present an elementary definition: For any feasible solution z =
(q�p) to the primal (3)–(6) and (s� t) ∈ E, we say that the (s� t) incentive constraint binds
at z if the incentive constraint (4) corresponding to (s� t) holds with equality.

Proposition 3. (i) Elimination of bad edges. Eliminating incentive constraints corre-
sponding to bad edges in the primal does not alter the optimal expected revenue.
Consequently, there exists a dual optimum that is good.

(ii) Monotonicity along binding constraints. If z = (q�p) is an optimal mechanism
and the (s� t)-incentive constraint binds at z, then qs ≤ qt .

12Notice, in particular, that because π0 = 0, ψ(0)= −∞.
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By part (i), only incentive constraints corresponding to good edges are relevant. By
part (ii), we have allocation monotonicity along good edges, provided those edges cor-
respond to binding constraints, a partial antidote to Observation 1(ii)(c).13

 Proposi-
tion 3(ii) does not follow from the definition of a binding constraint alone. If we replace
the word “optimal” in the proposition by “feasible,” the proposition is false. This high-
lights a contrast with the standard problem with complete incentive graph: Whereas in
the standard problem, monotonicity follows from feasibility (i.e., incentive compatibil-
ity), with an incomplete incentive graph, monotonicity—restricting attention to binding
constraints—requires optimality. Feasibility is insufficient because the standard argu-
ment requires not only the downward incentive constraint saying the higher type does
not want to mimic the lower type, but also the upward constraint. In our model, we
may have the downward constraint without having the upward constraint. However, for
binding constraints, a higher allocation must be accompanied by a higher price, so that
a violation of monotonicity would allow an increase in revenue to be achieved by al-
lowing the higher type to receive the lower type’s higher price and allocation, which the
higher type desires.

5.2 Optimality of deterministic mechanisms

This section presents an essentially complete solution for the case where the opti-
mal mechanism is deterministic. Proposition 4 presents a sufficient condition—tree
structure—for the optimal mechanism to be deterministic. This sufficient condition de-
pends on the valuations assigned to types. Proposition 6 presents a characterization,
a necessary and sufficient condition—essential segmentation—on the incentive graph
alone for the optimal mechanism to be deterministic regardless of the assignment of val-
ues to types. Lemma 1 relates the two previously mentioned results: The incentive graph
satisfies our characterization (essential segmentation) if and only if our sufficient con-
dition (tree structure) holds for all (nondegenerate) assignments of valuations to types.
This justifies studying deterministic optima through the lens of our sufficient condition
of tree structure. We go on to relate the optimal solution to the classic analysis of opti-
mal auctions. Appendix A.3 provides a simple algorithm to find the optimum under tree
structure.

To proceed, we require some definitions. A tree is a graph such that for every two
distinct vertices s and t, the graph contains a unique undirected path from s to t. The
monotone incentive graph is the graph G′ = (V �E′), where E′ is the set of good edges in
E (see Section 2.2). Proposition 3(i) suggests the relevance of G′ to the seller’s problem.
Observe that possibly unlike G, G′ is acyclic. It follows from Observation 1(i) that if
G′ rather than G were the true incentive graph, then all allocations would be incentive
compatible, yet by Proposition 3(i), the optimal expected revenue induced by G and G′
is the same.

13Another partial antidote to Observation 1(ii)(c) is that σ(s)= σ(t) and vs < vt imply qs ≤ qt . This con-
dition holds at all feasible mechanisms, not just at the optimal mechanism. Note also that if σ(s) = σ(t),
then if s and t receive the same allocation, s and t also receive the same price.
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The transitive reduction G∗ = (V �E∗) of G′ is the smallest subgraph of G′ with the
property that G∗ and G′ have the same set of (directed) paths.14 So, for example, if
G′ contains edges (r� s), (s� t), and (r� t), then in G∗, we eliminate (r� t). Because G′ is
acyclic,G∗ is well defined. IfG∗ is a tree, then we say that the environment satisfies tree
structure. Observe that tree structure is a property not just of the incentive graph, but
of the assignment of values to types because the monotone incentive graph depends on
this assignment. Indeed, as the set of good edges depends on the valuation profile, G′
and G∗ depend on the assignment of values to types v = (vt : t ∈ T), and we sometimes
write G′

v and G∗
v to make this dependence explicit. Unlike G and G′, the graph G∗ is

not (weakly) transitive.15 Finally, it is easy to verify that G∗ is a tree exactly if for every
t ∈ T \ 0, there exists a unique directed 0 − t path inG∗.

Tree structure can be interpreted as imposing a hierarchical structure on evidence:
The condition means that if vr < vs < vt , and type t can mimic both r and s, then type s
can mimic type r, so that there is a clear hierarchy among (lower value) types that any
type t can mimic. This condition holds if there is no evidence. Alternatively, suppose
evidence consists of a set of provable characteristics and that the more of these charac-
teristics one has, the more attractive the item becomes. If every pair of characteristics
is either incompatible, so that no agent can have both, or clearly ranked, so that anyone
who has the higher ranked characteristic also has the lower ranked characteristic, then
evidence is hierarchical. While this is natural, it is also restrictive.

We now provide a sufficient condition for a deterministic optimum.

Proposition 4 (Tree structure). If G∗ is a tree, then the optimal mechanism is
deterministic.

The feature of the tree structure that we exploit to prove Proposition 4 is that it allows
one to determine the binding incentive constraints a priori.16 These are analogous to the
downward adjacent constraints that typically bind in standard problems, but now occur
in the context of a tree rather than a line. This feature also accounts for the other nice
properties associated with tree structure detailed below.

Example 2. This example illustrates tree structure. Let T = {0�1� � � � �7}, and consider
Figure 1, which illustrates the graphG∗.

Edge (s� t) ∈E′ (the edge set for the monotone incentive graph) if in Figure 1 there is
a directed path from s to t. For example, the arrow from 3 to 4 means that 4 can mimic
3 and the path 1 → 3 → 4 means that 4 can mimic 1. Let the numbers of the types also
represent their values. As usual, π0 = 0. Suppose that π1 = π2 = π3 =: πa and π4 = π5 =

14In other words, G∗ is the unique subgraph of G′ such that (i) G′ and G∗ have the same set of directed
paths, and (ii) for any subgraphG′′ ofG′ with the same set of directed paths asG′,G∗ is a subgraph of G′′.

15The one exception is the (uninteresting) case where for each nonzero type t, the unique type s such
that (s� t) ∈E is 0. In this case,G∗ is weakly transitive.

16The key result in this connection is Lemma 5.
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Figure 1. A tree.

HS

NS

����������

LS

����������

0

�����������

��									

Figure 2. The graphG∗ for the student ID example.

π6 = π7 =: πb. If πb/πa is sufficiently small, then the unique optimal mechanism sells
the object to all types except 0 and 1, sets a price of 2 for types 2, 5, and 6, and sets a price
of 3 for types 3, 4, and 7. In contrast, if πb/πa is sufficiently large, only types 4, 5, 6, and 7
are served, and each is charged a price equal to her value. As stated by Proposition 4, in
both cases, the optimal mechanism is deterministic. However, the optimal mechanism
does involve price discrimination as different types receive different prices. ♦

In light of Propostion 4, it is instructive to reconsider the student ID example (Exam-
ple 1). When only students have an ID, the optimal mechanism was randomized. Let HS
and LS stand for the high and low value students, respectively, and let NS stand for the
nonstudents. Then the graphG∗ is given by Figure 2.

Although LS can mimic NS, there is no edge from LS to NS because nonstudents have
a higher value than low value students and G∗ does not contain bad edges. As there are
two paths from 0 to HS,G∗ is not a tree.

Tree structure is also sufficient to guarantee allocation monotonicity.

Proposition 5 (Allocation monotonicity). IfG∗ is a tree, then every optimal mechanism
(q�p) is monotone in the sense that if (s� t) is a good edge in E, then qs ≤ qt .
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This strengthens the form of allocation monotonicity of Proposition 3(ii), and
approaches the form of allocation monotonicity present in the standard monopoly
problem.17

Tree structure depends on the assignment of values to types. Next we provide a char-
acterization of the incentive graphs that induce a deterministic optimum independently
of the value assignment.

Let V ◦ be the set of vertices with outdegree zero in G, so that V ◦ represents the set
of types that cannot be mimicked by other types. Define

Ṽ := V \ (V ◦ ∪ 0)� Ẽ := {(s� t) ∈E : s �= 0� t /∈ V ◦}� G̃= (Ṽ � Ẽ)�
Let {Gi = (Vi�Ei) : i= 1� � � � � n} be the set of weakly connected components of G̃. Say that
G is essentially segmented if (i) Gi is strongly connected for i= 1� � � � � n, and (ii) for each
t ∈ V ◦, there exists i such that {s ∈ V \ 0 : (s� t) ∈E} ⊆ Vi. (For the definition of weakly and
strongly connected components, see Section 2.3.)

Proposition 6 (Essential segmentation). GraphG induces a deterministic optimum for
all assignments of values and probabilities if and only ifG is essentially segmented.

Essential segmentation is similar to, but slightly weaker than, the standard assump-
tion associated with third degree price discrimination that the seller can distinguish be-
tween different consumer segments.18 This corresponds in our model to the situation
where (nonzero) types can be partitioned into segments such that all types within a seg-
ment can mimic one another and no type in any segment can mimic any type in a differ-
ent segment. This means that incentive constraints must be honored within segments
but not across segments. Such an incentive graph would be induced if agents within a
segment have the same evidence and the evidence of any one segment is not a subset
of the evidence of any other segment. Essential segmentation is weaker than standard
segmentation only insofar as it allows for types t with outdegree zero (i.e., types who
cannot be mimicked by any other types), such that t can mimic types in at most one
segment. When there are no such zero outdegree types, that is, when V ◦ = ∅, then
essential segmentation reduces to the standard notion of segmentation. As under es-
sential segmentation, each type can claim mimic types in only one segment, so we can
interpret Proposition 6 to mean that transparency of segments is very close to a neces-
sary and sufficient condition for third degree price discrimination to be always optimal
(independent of the values and probabilities of types).

Say that valuation assignment (vt : t ∈ T) is nondegenerate if ∀s� t ∈ T , s �= t ⇒ vs �= vt .
Lemma 1 relates tree structure to essential segmentation (Propositions 4 and 6).

Lemma 1. Graph G is essentially segmented if and only if for all nondegenerate values
assignments v,G∗

v is a tree.

17Whereas in the standard monopoly problem, allocation monotonicity follows from feasibility, when
G∗ is a tree, allocation monotonicity requires the stronger assumption of optimality. See the discussion
following Proposition 3.

18Equivalently, the seller observes a signal correlated with the consumer’s value.
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In the deterministic case, under an additional assumption, we can strengthen
Proposition 2 to arrive at a stronger characterization of the optimum in terms of virtual
values. WhenG∗ is a tree, define the quasi-virtual value of type t as

ψ̂(t) := vt −
∑

s : (t�s)∈E∗
(vs − vt)�s

πt
� (21)

where

�s := πs +
∑

r : (s�r)∈E′
πr� (22)

Observe that �s is defined with respect to the edge set E′ in the monotone incentive
graph and ψ̂(t) is defined with respect to the edge set E∗ of the transitive reduction.

Whereas the virtual value as defined by (19) is endogenous, in that it depends on an
optimal solution to the dual of the seller’s problem, the quasi-virtual value defined by
(21) is exogenous, defined purely in terms of primitives. Terminologically, (21) is more
similar to the notion of virtual value in Myerson (1982), whereas (19) is more similar to
the notions in Myerson (1991) and Myerson (2002). Because the sign of the expression
in (19) is always a reliable guide to the allotment of the object, whereas the sign of (21)
is only a reliable guide to the allotment of the object under special assumptions, we call
the expression in (19) the virtual value and call the expression in (21) the quasi-virtual
value.

Say that quasi-virtual values are single-crossing if

(s� t) ∈E′ ⇒ (ψ̂s ≥ 0 ⇒ ψ̂t ≥ 0) ∀s� t ∈ V �
In the standard case of the complete incentive graph, single-crossing monotone virtual
values is a weakening of the common assumption of monotone quasi-virtual values (see
Section 3 and especially (9)). Under tree structure and single-crossing quasi-virtual val-
ues, we attain a strengthening of Proposition 2, which is also an analog of the character-
ization of optimal auctions due to Myerson (1982).

Proposition 7. Assume that G∗ is a tree and that quasi-virtual values are single-
crossing. Then an optimal mechanism serves each type exactly if her quasi-virtual value
is nonnegative.19 Formally, an optimal mechanism (q∗�p∗) is

q∗
t =

{
1 if ψ̂(t)≥ 0
0 otherwise

(23)

p∗
t =

{
min({vt} ∪ {vs : (s� t) ∈E� ψ̂(s)≥ 0}) if ψ̂(t)≥ 0
0 otherwise.

Remark 3. Single-crossing virtual values are sufficient for Proposition 7 because we
deal with the single agent case. In the multi-agent case, we would need to assume mono-
tone virtual values.

19One could replace the term “nonnegative” by “positive” and, correspondingly, replace the weak in-
equalities by strict inequalities in (23), and the proposition would continue to be true.
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Assuming tree structure and single-crossing quasi-virtual values, Proposition 2
shows that the optimal mechanism can be found simply by computing the quasi-virtual
values. When tree structure holds, but the assumption of single-crossing quasi-virtual
values fails, then it is only slightly more difficult to find the optimal mechanism. The
optimal mechanism can then be found by solving a simple perfect information game
between the seller and nature by backward induction. We describe this game in Ap-
pendix A.3.

6. A revenue formula

Section 5 described the properties of the optimal mechanism when the incentive graph
is incomplete. The analysis revealed analogies (and disanalogies) to the classical anal-
ysis. Specifically, an analog of the classical notion of virtual value plays a prominent
role in our analysis. This section explores another related analogy between classical
mechanism design and mechanism design with an incomplete incentive graph: revenue
equivalence.

In classical mechanism design, when types are continuous, the allocation deter-
mines the revenue (up to a constant). Even in the classical case with complete incentive
graph, when types are discrete as in Section 3, we do not attain exact revenue equiva-
lence, but we do attain a formula for expressing the maximal revenue consistent with an
allocation in terms of that allocation, which is analogous to the formula for expressing
the unique revenue in terms of the allocation in the continuous case. In this section, we
derive an analog of the classical discrete revenue formula when the incentive graph is
incomplete. In addition to its intrinsic interest, Proposition 9 served as a useful lemma
for proving several of the results in previous sections.

On the way to our result, it is useful and instructive to reformulate the seller’s
problem.

Primal Problem (Paths). The reformulation is

maximize
(qt �pt)t∈T

∑
t∈T

πtpt (24)

subject to

∀(t0� t1� � � � � tk) ∈ P� ptk ≤ vtkqtk −
k−1∑
r=1

qtr (vtr+1 − vtr )− vt1qt0 (25)

∀t ∈ T� 0 ≤ qt ≤ 1 (26)

p0 = 0� (27)

We call this the path formulation, as opposed to the edge formulation (3)–(6), be-
cause whereas the edge formulation contained an incentive constraint for every edge
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in the incentive graph, the path formulation contains a related constraint for every

path in the incentive graph.20 The path formulation is a relaxation of the edge for-
mulation, but the following proposition shows that the two are equivalent for our

purposes.

Proposition 8. The path and edge formulations of the primal have the same set of

optima.

Then the next proposition follows.

Proposition 9 (Discrete revenue formula). Given any incentive compatible allocation

q, the revenue maximizing prices that implement that allocation are

pt = max
P=(t0�����tnP )∈Pt

vtnP qtnP −
nP−1∑
i=1

qti(vti+1 − vti)− vt1qt0 � (28)

A path P , solving the maximization (28) will always bind at the revenue maximizing
prices implementing q.

Proposition 9 is a corollary of Proposition 8 because it follows by setting each price
pt equal to the lowest upper bound determined by (25) in the path formulation of the

primal. This result generalizes the revenue formula in Proposition 1(ii). That formula
does not contain a maximization because we know a priori that the downward adjacent

constraints are binding. Similarly, whenG∗ is a tree, there is a unique 0− t path P = t0 →
·· · → tn = t in G∗ and for any monotone feasible allocation (i.e., an allocation satisfying

(s� t) ∈E′ ⇒ qs ≤ qt ),21 Proposition 9 simplifies to

pt = vtnqtn −
n−1∑
i=1

qti(vti+1 − vti )− vt1qt0 �

We conclude this section by displaying the dual of (24)–(27), which we call the path for-

mulation of the dual; it is an alternative to the edge formulation of the dual.
The path formulation of the dual will be useful for describing the credible imple-

mentation of the optimal mechanism in Section 7.

20The constraints (25) can be interpreted in terms of path lengths: Given an allocation q= (qt : t ∈ T), for
each edge (s� t) ∈E, interpret vt(qt −qs) as the “length” of the edge. Given any path t0 → t1 → ·· · → tk inG,
the induced path length is the sum of its edge lengths

∑k
j=1 vtj (qtj − qtj−1). Regrouping terms, (25) can then

be interpreted as saying that the price pt is bounded above by the length of any path from 0 to t.
21In the case of the complete incentive graph, we did not need to specify that (10) was monotone over

and above being feasible (i.e., incentive compatible), because with the complete incentive graph, every
incentive compatible allocation is monotone.
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Dual Problem 1 (Paths). The path formulation is

minimize
(μt)t∈T �(λP)P∈P

∑
t∈T

μt (29)

subject to

∀t ∈ T \ 0�
∑
P∈Pt

λP = πt (30)

∀t ∈ T� vtπt −
∑

s : (t�s)∈E

∑
{P∈P : (t�s)∈P}

λP(vs − vt)≤ μt (31)

∀P ∈ P� λP ≥ 0 (32)

∀t ∈ T� μt ≥ 0� (33)

Dual variables indexed by edges λ(s� t) in (11)–(15) have been replaced by vari-
ables λP indexed by paths in (29)–(33). Any feasible solution to the path formulation
(λP :P ∈ P) of the dual induces a feasible solution to the edge formulation (11)–(15), for
the same vector (μt : t ∈ T), via the relation22

λ(s� t)=
∑
P�(s�t)

λP ∀(s� t) ∈ E� (34)

where the summation on the right-hand side of (34) is over paths in P containing the
edge (s� t). Say that λ= (λP :P ∈ P) is good if the corresponding vector (λ(s� t) : (s� t) ∈E)
defined by (34) is good (see (20)). Say that λ is to proportional if

∀P = (t0� � � � � tn) ∈ P� λP =
[
n∏
i=1

∑
P ′�(ti−1�ti)

λP ′∑
P ′�ti λP ′

]
πtn� (35)

Under the network flow interpretation mentioned above,23 λP can be interpreted as a
flow on paths, λ(s� t) can be interpreted as a flow on edges, and the property of pro-
portionality (35) can be interpreted as factoring the flow on paths into a (normalized)
product of flows on edges. The following result will be useful for our credibility result in
Section 7.

Proposition 10. Let μ = (μt : t ∈ T) and λ = (λ(s� t) : (s� t) ∈ E). Suppose that (λ�μ)
is optimal in the edge formulation of the dual and that λ is good. (An optimal solution
that is also good exists by Proposition 3(i).) Then there exists a unique proportional vector

22To see why (λ(s� t) : (s� t) ∈ E) defined by (34) is feasible in the edge formulation of the dual (given the
fixed vector μ), note first that (34) and the fact that (μ� (λP :P ∈ P)) satisfy (31) immediately imply that
(μ�λ(s� t) : (s� t) ∈E) satisfies (13). Moreover, (30) and (34) imply∑
s : (s�t)∈E

λ(s� t)−
∑

s : (t�s)∈E
λ(t� s)=

∑
s : (s�t)∈E

∑
P�(s�t)

λP −
∑

s : (t�s)∈E

∑
P�(t�s)

λP =
∑
P�t

λP −
∑

P�t : P /∈Pt
λP =

∑
P∈Pt

λP = πt�

So (λ(s� t) : (s� t) ∈E) satisfies (12).
23See Ahuja et al. (1993) for a comprehensive treatment of network flows.
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λ̃ = (λP :P ∈ P) related to λ by (34). Moreover, (λ̃�μ) is optimal in the path formulation
of the dual.

In light of Proposition 10, when discussing a good optimal solution (μ� (λ(s� t) :
(s� t) ∈ E)), we freely interchange (λ(s� t) : (s� t) ∈ E) with (λP :P ∈ P), where the latter
is the unique proportional vector corresponding to the former via (34).

7. A credibility result

7.1 Motivation

This section considers how the optimal mechanism might be implemented. Consider
first a naive approach. The seller requests that the buyer present a cheap talk message
about his type along with evidence. The seller claims, without commitment, that if the
buyer submits cheap talk claim t and evidence St , the seller will offer to sell the object
with probability qt for an expected price of pt .24 (The precise details of whether pay-
ment is made prior to the randomization or conditional on receipt of the object can be
spelled out in various ways.) A problem with this approach is that if the buyer always
reported truthfully, the seller would know the buyer’s value and so would often prefer to
charge a higher price, and, moreover, to sell the object with probability 1 regardless of
the allocation qt .

There are many alternatives to the naive approach, whose plausibility would depend
on, among other things, the seller’s commitment power. Here we pursue a particularly
simple and natural approach based on minimal commitment power. We introduce a
simple bargaining protocol with back-and-forth communication in which the seller can
commit to honoring a take-it-or-leave-it offer once she has made it. The seller cannot
commit to making any specific offer in the future contingent on various events, such as
presentation of evidence. She can only commit to honoring an offer for sale with proba-
bility 1 and not to any form of randomization. Our bargaining protocol implements the
optimal mechanism as a sequential equilibrium.

In effect, what we have done is to reduce the entire commitment problem—the com-
mitment to a complex randomized mechanism requiring price discrimination on the
basis of evidence—to the commitment to a take-it-or-leave-it offer. Any foundation for
this latter simpler commitment has a potential to serve as a foundation for commit-
ment to our more complex mechanism as well.25 Our bargaining model applies best in
settings where the seller deals directly with the buyer and has the discretion to lower
prices. This is the case in many firms that employ sales agents who are permitted, at

24Assume that if the evidence submitted is not the maximum evidence of the type t in the cheap talk
claim, the buyer neither receives the object nor makes a payment.

25For example, Ausubel and Deneckere (1989) provide a foundation for seller commitment to take-it-or-
leave-it offers in terms of the equilibrium of an infinite horizon bargaining game. However, further analysis
would be required to integrate their approach to founding commitment to take-it-or-leave-it offers on the
equilibrium of a repeated interaction with our quite different approach to founding commitment to a com-
plex randomized price discrimination mechanisms on commitment to take-it-or-leave-it offers. This is
beyond the scope of the current paper. For an analysis related to Ausubel and Deneckere (1989), see also
Gerardi et al. (2014).



Theoretical Economics 10 (2015) Price discrimination through communication 619

their discretion, to offer discounts off the list price.26 It may not be appropriate for set-
tings where interaction is more anonymous and distant.

One virtue of our bargaining protocol is that it has a closer resemblance to real-world
negotiation than the direct mechanism. Specifically, a random allocation is not gener-
ated by commitment to randomize in response to certain messages and evidence, but
rather arises naturally out of the randomized equilibrium strategies that can lead nego-
tiations to break down. Another virtue of our protocol is that it provides an appealing
interpretation of the dual of the seller’s revenue maximization problem: At an optimal
solution, the dual variables can be interpreted as encoding the buyer’s reporting strategy
in the bargaining protocol.

7.2 The bargaining game

We now describe our bargaining game.

Dynamic Bargaining Protocol. 1. Nature selects a type t ∈ T for the buyer with
probability πt .

2. The buyer either

(a) drops out and the interaction ends or

(b) makes a cheap talk report of t̂ (where t̂ is a type in T ).

3. The seller either

(a) requests another cheap talk message, in which case we return to Step 2 (this
occurs at most |T | times) or

(b) requests evidence.

4. The buyer can

(a) drop out and the interaction ends or

(b) present evidence S ⊆ σ(t).
5. The seller makes a take-it-or-leave-it-offer.

Note. At Step 3, when the seller requests a cheap talk message or evidence, the seller
does not specify which cheap talk message or which evidence is to be furnished.

To summarize, the buyer opens with a cheap talk claim t̂, which implicitly includes
an offer to pay vt̂ , the value of type t̂. The seller responds either by asking for another
offer or by demanding proof in return for sale at an announced price. Note that the
buyer’s cheap talk claims contain information about the evidence that she possesses as
well as her value. There is no discounting, so that we think of this as a fast interaction.

26For example, a recent survey by the consulting firm Oliver Wyman reports that discretion is allowed
in approximately 50% of the unsecured loans and more than 60% of the secured loans offered by major
European banks (Efma and Oliver Wyman 2012).
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7.3 Credible implementation

We now state our main result concerning the bargaining game.

Proposition 11 (Credibility result). There is a sequential equilibrium of the dynamic
bargaining protocol that implements the optimal mechanism.27

We call a sequential equilibrium implementing the optimal mechanism a credible
implementation. The remainder of this section describes the equilibrium of Proposi-
tion 11 and highlights the main qualitative features of the equilibrium.

7.3.1 Equilibrium strategies We now describe the strategies in the equilibrium of
Proposition 11. The description omits details of off-path play, which are to be found
in the Appendix.

It is of interest that the seller’s strategy depends on an optimal solution to the seller’s
revenue maximization problem (the primal (3)–(6)), and the buyer’s strategy depends
on an optimal solution to the dual.

The buyer’s strategy. We may assume that after her type t is realized, the buyer performs
a private preliminary randomization that guides her behavior throughout the game.
Specifically, the buyer randomizes over paths leading to t (i.e., those in Pt ), selecting
path P with probability

λP
πt
�

where λ is an optimal proportional and good solution of the path formulation of the
dual. (For the meanings of “proportionality” and “good,” see (35) and the surrounding
discussion in Section 6.) Equation (30) implies that these probabilities sum to 1. When

P : 0 = t∗0 → ·· · → t∗k → ·· · → t∗n = t (36)

is the outcome of the preliminary randomization, the type t buyer reports along path
(36), so that her first cheap talk claim is t∗0 (= 0), if she is asked to make a kth cheap
talk claim, she will report t∗k, and so on. If evidence is requested following cheap talk
report t∗k, she presents evidence St∗k .28 She drops out if asked for more cheap talk after
t∗n (= t). The buyer accepts any take-it-or-leave-it offer up to her value vt , and rejects
higher offers.

The seller’s strategy. Let (qt : t ∈ T) be an allocation in an optimal solution to the
seller’s revenue maximization problem. On the equilibrium path, when the buyer has
made the sequence of reports (t0� � � � � tk), the seller requests evidence with probability
(qtk −qtk−1)/(1 −qtk−1) and requests another cheap talk report with the remaining prob-
ability.29 (If k= 0, the buyer requests another cheap talk report with probability 1.) If the

27If there is more than one optimal mechanism, then for every optimal mechanism, there is a sequential
equilibrium of the bargaining protocol that implements it.

28That P ∈ Pt implies that it is feasible for the type t buyer to present evidence St∗k .
29On the equilibrium path, qtk ≥ qtk−1 and 1> qtk−1 .
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buyer presents Stk in response to the seller’s evidence request, the seller makes a take-it-
or-leave-it offer at price vtk . If the seller presents any other evidence S, the seller makes
an offer at the price equal to the maximum value of any type that has access to S.

7.3.2 Qualitative properties of equilibrium Call any strategy profile in which the play-
ers’ strategies satisfy the properties specified in Section 7.3.1 canonical.30 A credible
implementation is canonical if the strategies it employs are canonical. The proof of
Proposition 11 establishes the existence of a canonical credible implementation. The
following propositions provide key qualitative features of canonical equilibria.

Proposition 12. Let (t0� t1� � � � � tk) be any sequence of cheap talk reports that occurs
with positive probability in a canonical credible implementation. Then

vt0 < vt1 < · · ·< vtn
St0 ⊆ St2 ⊆ · · · ⊆ Stn �

In words, both the buyer’s claimed value and the amount of claimed evidence increase
as bargaining proceeds, so the buyer makes a sequence of concessions and brings up ad-
ditional evidence without retracting her claim to possess previously mentioned evidence.
Moreover, when the true type is t,

Sti ⊆ σ(t) for i= 0�1� � � � �k�

The buyer never claims to possess evidence that she does not possess.

For a proof, see the Appendix.

Proposition 13. For each natural number n, there exists an environment—a set of
types, values, and probabilities, and an incentive graph—such that in any canonical cred-
ible implementation, there is a positive probability that the players communicate for at
least n rounds.

Proposition 13 relates our analysis to the literature on long cheap talk (Aumann and
Hart 2003, Forges and Koessler 2008). The proof constructs a sequence of environments,
one for each natural number n, such that in the nth environment, any canonical credi-
ble implementation involves approximately n rounds of communication. Proposition 13
applies only to canonical credible implementations, but we believe that it is difficult to
see how one could possibly bound communication in the sequence of environments
constructed in the proof in some other noncanonical credible implementation. The key
property generating the long communication in these environments is that the opti-
mal mechanism contains a long chain of types linked by binding incentive constraints
along which the allocation probability strictly increases. The length of these chains ap-
proaches infinity as n becomes large. If the reader is interested in a concrete illustration
of how a credible implementation works, we recommend the proof of Proposition 13 as
an illustration.

30For a strategy profile to be canonical, it is not required that it satisfies the off-path properties specified
in the Appendix.
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7.3.3 Proof outline The proof of Proposition 11 must establish four claims:

1. The equilibrium strategies described in Section 7.3.1—if followed—will implement
the optimal mechanism. That is, if (qt�pt : t ∈ T) is an optimal mechanism, these
strategies will lead buyer type t to receive the object with probability qt and to make
an expected payment of pt .

2. The buyer’s strategy is a best reply to the seller’s strategy.

3. The seller’s strategy is a best reply to the buyer’s strategy.

4. The off-equilibrium path requirements of sequential equilibrium are met.

The Appendix establishes the first two claims and the last. Next we informally describe
the argument for the seller’s best reply, which turns out to be the most interesting argu-
ment. That claim too is formally established in the Appendix.

7.3.4 Optimal stopping interpretation of the seller’s equilibrium problem Given the
buyer’s equilibrium strategy, the seller’s problem in the dynamic bargaining protocol
becomes an optimal stopping problem. We argue in the Appendix that the seller can
restrict attention to stopping strategies, which are strategies such that

• if the buyer made reports (t0� � � � � tk) prior to the seller’s request for evidence and
presented evidence Stk , the seller offers price vtk .31

Because on the equilibrium path, the buyer always presents evidence Stk if asked for ev-
idence after type reports (t0� � � � � tk), the seller’s problem becomes an optimal stopping
problem: Following history (t0� � � � � tk), if the seller stops, requesting evidence, he re-
ceives a payoff of vtk . If the seller continues, requesting more cheap talk, the buyer may
drop out, yielding the seller a zero payoff. If the buyer does not drop out, presenting
another cheap talk claim tk+1, the seller can secure a payoff of vtk+1 by stopping in the
following round. As mentioned in Proposition 12, vtk < vtk+1 , so, by waiting, the seller
may attain a higher reward.

The stochastic process facing the seller in his optimal stopping problem is endoge-
nous because it depends not only on the distribution of types, but also on the buyer’s
reporting strategy. If the buyer reported (t1� � � � � tk) and then the seller continued, re-
questing more cheap talk, the probability that the seller assigns to the event that the
buyer will not drop out but instead will report tk+1 = t is

λ(tk� t)∑
s : (s�tk)∈E λ(s� tk)

� (37)

where the variables λ come from an optimal solution to the dual of the seller’s revenue
maximization problem (11)–(15). Equation (12) implies that the remaining probability,
which is the probability that the buyer drops out, is

πtk∑
s : (s�tk)∈E λ(s� tk)

� (38)

31Ultimately, in constructing the equilibrium, we will modify the seller’s optimal stopping strategy off
the equilibrium path to insure buyer optimization.
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The probabilities (37) and (38) depend only on tk, and not the entire history (t0� � � � � tk).

So the stochastic process facing the seller is a Markov chain with n+ 1 states, where n is

the number of types (including the zero type). The first n states correspond to the types

and state t is interpreted to occur when the buyer claims to be of type t. The last state d—

the drop-out state—corresponds to the event where the buyer drops out. For two types, r

and t, the transition probability between r and t is given by (37) when r is substituted for

tk.32 The transition probability from type t to d is (38) when t is substituted for tk. State d

is the unique absorbing state. The process begins in state 0. It follows from the fact that

on the equilibrium path, reported values are strictly increasing (see Proposition 12), that

no state other than d is accessible from itself, and so the process reaches the absorbing

state d in at most n+ 1 steps.

Say that a sequence of type reports P = (t0� � � � � tk) is buyer on-path if33

in the preliminary randomization, some type t selects a path P ′

with initial subsequence P with positive probability.
(39)

The use of the term “buyer” in buyer on-path is motivated by the fact that whether a se-

quence of reports occurs on the equilibrium path depends not only on the buyer’s strat-

egy, but also on the seller’s strategy. A buyer on-path sequence of reports P is one such

that there exists some seller strategy that, when coupled with the buyer’s equilibrium

strategy, leads P to occur with positive probability.

The seller’s equilibrium strategy is such that on a sequence (t0� � � � � tk), the seller

stops with positive probability if qtk > 0 and continues with positive probability if qtk < 1.

The key to establishing that the seller’s equilibrium strategy is a best reply to the buyer’s

equilibrium strategy is, therefore, the following lemma, which is proven via the com-

plementary slackness conditions relating optimal solutions of the seller’s revenue maxi-

mization problem to its dual.

Lemma 2. Let (qt : t ∈ T) be the allocation in some revenue maximizing mechanism and

let P = (t0� � � � � tk) be a buyer on-path report sequence. If the buyer uses her equilibrium

strategy and the seller is restricted to stopping strategies, the following statements hold:

(i) If qtk > 0, then, conditional on P , the seller is weakly better off stopping immedi-

ately than continuing for one more step and then stopping.

(ii) If qtk < 1, then, conditional on P , the seller is weakly better off continuing for one

more step and then stopping than stopping immediately.

32The transition probability is 0 if (r� t) /∈E.
33Interestingly, (39) holds exactly if, in the preliminary randomization, type tk selects path P with positive

probability.
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Proof. Using the probabilities (37), the seller’s preference between stopping now and
stopping in one step is determined according to the resolution of the inequality

vtk︸︷︷︸
stopping now

�
∑

t : (tk�t)∈E
vt

λ(tk� t)∑
s : (s�tk)∈E λ(s� tk)︸ ︷︷ ︸

stopping in one step

� (40)

where the variables λ come from a good optimal dual solution. Using (13) to substitute
πtk − ∑

s : (tk�s)∈E λ(tk� s) for the denominator in the fraction on the right-hand side of
(40) and rearranging terms, the resolution of (40) is equivalent to the resolution of

ψ(tk)� 0�

So stopping now is preferable to stopping in exactly one step exactly if the virtual value
of type tk is nonnegative. Using the same logic as in the proof of Proposition 2, if qt < 1,
then by complementary slackness, μt = 0, implying via (14) and (19) that � becomes
≤, establishing part (ii) of the lemma. Alternatively, if qt > 0, then by complementary
slackness, (13) holds with equality, which implies via (15) and (19) that � becomes ≥,
establishing part (i) of the lemma. �

To complete the proof, we now use Lemma 2 to argue by backward induction that a
stopping strategy that coincides with the seller’s equilibrium strategy following all his-
tories containing a buyer on-path sequence of type reports is optimal among stopping
strategies. The remaining details of the proof are given in the Appendix.

7.4 The deterministic case

We now discuss the credible implementation in the deterministic case. Section 5.2 above
characterized conditions under which the optimal mechanism is deterministic.

First, consider the standard monopoly problem studied in Section 3. Then Proposi-
tion 6 implies an optimal mechanism that is deterministic. Indeed, the optimal mech-
anism is simply a posted price. We could describe the canonical credible equilibrium,
but in this case, there is a simpler credible implementation. Letp∗ be the optimal posted
price. Then p∗ = vt∗ for some type t∗. There is an equilibrium in which all types t∗ with
vt < p

∗ drop out immediately. All remaining types claim to be of type t∗. In the latter
case, the seller immediately requests evidence. As with the complete graph, all types
have the same evidence; this common evidence is presented. The seller makes a take-
it-or-leave-it offer of p∗ that is accepted.34 This sort of equilibrium can be generalized
to the case whereG∗ is a tree.

Proposition 14. IfG∗ is a tree—so that by Proposition 4, there is an optimal mechanism
that is deterministic—then there is a pure strategy credible implementation with only one
round of cheap talk communication.

34The equilibrium can be supported off the equilibrium path in several ways.
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Let (q∗�p∗) be an optimal deterministic mechanism. In the equilibrium described
by Proposition 14, all types with q∗

t = 0 drop out immediately. All types with q∗
t = 1 claim

to be the first type r on the unique 0 − t path in G∗ with q∗
r = 1. Notice that here the ar-

gument already relies not only on the fact that the optimal mechanism is deterministic,
but also on the assumption that G∗ is a tree. In response, the seller requests evidence,
and if the buyer presents Sr , the seller offers price p∗

s . If the seller had an incentive to
offer a higher or lower price, then similarly (q∗�p∗) would not be optimal. For exam-
ple, if the seller had an incentive to offer a higher price, then the seller could do better
with a mechanism (q�p) with qr = pr = 0. If any buyer were to deviate from the pre-
scribed behavior, then after the buyer presents evidence S, the seller offers the price
max{vt :S ⊆ σ(t)}.

7.5 Relation to Glazer and Rubinstein (2004, 2006)

This section discusses the connection—centering on our credibility result—between
the monopolist’s optimal price discrimination problem and the literature on optimal
persuasion. Glazer and Rubinstein (2004, 2006) studied a persuasion game with a bi-
nary decision in which a privately informed speaker attempts to persuade a listener to
accept a request by presenting evidence.35 They showed that the optimal persuasion
mechanism—optimal for the listener—when the listener moves first—committing to a
response rule—is an equilibrium of the game when the speaker moves first and the lis-
tener moves second. Their credibility results are closely related to our Proposition 11.
Indeed, Proposition 11 may be viewed as a “partial” generalization of their results. This
is surprising as, at first glance, the monopolist’s problem appears quite different from
the persuasion problem studied by Glazer and Rubinstein.

We now briefly describe a few more details of the model of Glazer and Rubinstein
(2006).36 The speaker knows the state in a set x ∈X and the listener does not. In state
x, the speaker has a set of hard messages σ(x). The listener would like to accept the
speaker’s request if the state belongs to A (the accept states) and reject on the comple-
mentary setR (the reject states). If uncertain, the listener aims to minimize the probabil-
ity of error (i.e., accepting inR or rejecting inA). Glazer and Rubinstein (2006) assumed
that the speaker can only present one message in σ(x), whereas we assume that the
buyer can present any subset of σ(t). However, one can encode the possibility where
an agent can present any subset of his messages as a special case within a model where
the speaker can present only one message. Specifically, suppose that there is some sub-
set B of the set of messages, which we can call base messages, and for every subset S of
B, there exists a message mS such that mS ∈ σ(t) exactly if S ⊆ σ(t). Call this case the
case of unrestricted evidence. Henceforth, we restrict attention to the special case of the

35Strictly speaking, in Glazer and Rubinstein (2004), the speaker makes a cheap talk claim, and the lis-
tener partially verifies the speaker’s claim. This can equivalently be translated into a model where the
speaker presents evidence.

36Sher (2014) discusses the relation between the models of Glazer and Rubinstein (2004, 2006), and
presents a more general model embedding both.
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Glazer–Rubinstein model with unrestricted evidence. Our result is a partial generaliza-
tion of the Glazer–Rubinstein result insofar as it generalizes their result in this special
case.

A persuasion rule maps every message in the range of σ to a probability of ac-
ceptance. The listener commits to a persuasion rule. Knowing this rule, the speaker
presents a message and the rule determines the outcome. The optimal persuasion rule
is thus the persuasion rule that minimizes the probability of listener error. Glazer and
Rubinstein (2006) showed that deterministic persuasion rules are optimal.37 In the game
without commitment, the speaker presents a message and the listener responds by ei-
ther accepting or rejecting the speaker’s request, without having committed to a re-
sponse. The Glazer and Rubinstein (2006) credibility result is that there exists a sequen-
tial equilibrium of the game without commitment that implements the optimal persua-
sion rule. We refer to this equilibrium as the credible implementation of the optimal
rule.

With unrestricted evidence, the Glazer–Rubinstein model may be viewed as a special
case of our model. Specifically, suppose that there are two values, a low value vL and a
high value vH with 0 < vL < vH . All types other than the zero type value the object at
either vL or vH . We refer to types with the low value as low types and types with a high
value as high types. In general, there are many low types and many high types that differ
according to the evidence that they possess. We refer to this special case as the binary
values model. The correspondence between the binary values model and the persua-
sion model is as follows. The states in the persuasion model correspond to the nonzero
types in the binary values model, the accept states corresponding to the low types, and
the reject states corresponding to the high types. The probability of a state is the prob-
ability of the corresponding type. The buyer corresponds to the speaker and the seller
corresponds to the listener. The buyer is attempting to persuade the seller to offer a low
price. The seller accepts the request by offering a low price and rejects the request by
offering a high price. Glazer and Rubinstein (2006) remark that their model is essentially
unchanged if instead of choosing the persuasion rule to minimize the expected error,
the listener chooses the persuasion rule to minimize the expected cost of error, where
the cost of error depends on the state. The cost of error at an accept states is vL, because
if the seller offers a high price when the buyer is of a low type, he loses a potential payoff
of vL. The cost of error at a reject state is vH − vL, because if the seller offers a low price
when the seller is of a high type, he loses the additional increment vH − vL that he could

37As explored by Sher (2014), the optimal mechanism is not necessarily a persuasion rule in the above
sense. In general, the listener could do better with one round of back-and-forth cheap talk communication
between the speaker and listener (where the listener randomizes her communication) followed by evidence
presentation. The listener’s communication can be interpreted as a request for specific evidence. However,
it follows from the analysis of Sher (2014) that in the case of unrestricted evidence, persuasion rules are
indeed optimal, and, hence, not only the optimal persuasion rule, but also the optimal mechanism, is de-
terministic. Sher (2014) refers to the persuasion rules of Glazer and Rubinstein (2006) as static persuasion
rules, and refers to the mechanisms with back-and-forth cheap talk communication preceding evidence
presentation as dynamic persuasion rules. The persuasion rules studied by Glazer and Rubinstein (2004)
are dynamic in this sense. Related analyses occur in Forges and Koessler (2005), Bull and Watson (2007),
and Deneckere and Severinov (2008).
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have received if he had offered a high price. When vH = 2vL, minimizing the expected
cost of error coincides with minimizing the error probability.

In the binary values model, the revenue maximizing mechanism is deterministic and
corresponds to the optimal persuasion rule in the persuasion model, where a type is
accepted in the persuasion model exactly if he receives a low price of vL in the revenue
maximizing mechanism. All other types are rejected by the optimal persuasion rule; in
the revenue maximization problem, these rejected types pay a high price of vH if they
are high types and are not served if they are low types (since they are unwilling to pay
the high price).

Although the optimal mechanism is deterministic, the credible implementation of
the optimal mechanism may involve randomization. In the binary values model, if an
optimal solution is good, then there are two types of paths P for which λP > 0: either P is
of the form (i) 0 → r or of the form (ii) 0 → s→ t, where s is a low type and t is a high type.
This implies, in particular, that if s is a low type and P = (0� s), then λP = πs. So in the
credible implementation of the revenue maximizing mechanism, all low types initially
tell the truth (after claiming to be the zero type) and high types initially randomize over
lies, pretending to be one of the low types they can mimic, before admitting to being
high types if asked for a second cheap talk report (unless the high type receives a zero
payoff, in which case she might admit to being a high type without claiming to be a low
type first). Recall that when a type claims to be low, the seller may not ask for a second
cheap talk report for fear that a truly low type would drop out.

The credible implementation of the optimal persuasion rule is similar, and can be
derived from the revenue maximization problem and its dual. For expositional ease,
assume that the optimal good dual solution is such that for all high types t, the path
P ′ = (0� t) is such that λP ′ = 0. Since we are considering a good dual solution, for any
path P = (0� s� t), where s is a low type and t is a high type, λP = λ(s� t), where the latter
comes from the corresponding optimal solution of the edge formulation of the dual.
Then at the credible implementation of the optimal persuasion rule, at each accept state
t, the speaker presents evidence St . At each reject state s, the speaker presents evidence
St with probability λ(t� s)/πs if (t� s) ∈E and presents any evidence not of this form with
probability 0. (Since λ is good, the speaker presents evidence St with positive probability
only for accept states t.) The listener accepts the speaker’s request if the evidence is St for
some t such that pt = vL at the revenue maximizing mechanism and rejects otherwise.

A few points are worth emphasizing. First, here we have identified an alternative
sufficient condition for the optimal mechanism to be deterministic: that the environ-
ment be an instance of the binary values model. Unlike the sufficient conditions of Sec-
tion 5.2, this new sufficient condition is completely independent of the incentive graph,
and depends only on valuations. Second, in contrast to Proposition 13, which shows
that, in general, outside the binary values model, the credible implementation of the
seller’s revenue maximizing mechanism may require many rounds of communication,
the credible implementation of the optimal persuasion rule requires only one round of
communication. Why is this? Our analysis sheds light on this question. In our model,
the maximal number of rounds of cheap talk communication in the canonical credi-
ble implementation corresponds roughly to the length of the longest chain of binding
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incentive constraints along which the allocation strictly increases. Proposition 3(i) im-
plies that in the binary values model, the only relevant incentive constraints correspond
to edges of the form (0� �) and (��h), where � is a low type and h is a high type. So
we must only consider chains with two edges. Since, in the canonical credible imple-
mentation, (i) the initial claim to be the zero type is for simplicity of description of the
mechanism and not strictly necessary, and (ii) all high types have the same value, so
if a high type’s claim to be a low type is rejected, it is not necessary for the high type to
specify which high type she is, it is indeed possible to reduce communication from three
rounds to one.

Appendix

A.1 Preliminaries

This section collects results and notation useful for proofs of the main results. For any
path P : t0 → t1 → ·· · → tn, define the path length of P to be n the number of edges
(ti−1� ti) in P . (This differs from the notion of path length discussed in footnote 20.)
Also for any path P inG, write P = (tP0 � � � � � tPnP ); this notation is sometimes convenient.

Let G = (V �E) be the incentive graph. Let E′ be the set of good edges in E and let
G′ = (V �E′). The monotone primal is the program that performs the maximization in
(3) subject to (5) and (6), and

∀(s� t) ∈ E′� vtqt −pt ≥ vtqs −ps� (41)

The original primal is (3)–(6).
Let z = (q�p) be an optimal solution in the monotone primal and letBz = {(s� t) ∈ E′ :

vtqt − pt = vtqs − ps}. So, Bz is the set of binding constraints at z. Define G′
z := (V �Bz)

and let Ḡ∗
z = (V �B∗

z) be the transitive reduction ofG′
z .

Lemma 3. Let z = (q�p) be an optimum of the monotone primal and let P : 0 = t0 →
·· · → tn be a path inG′

z . Then

ptn =
n∑
i=1

vti(qti − qti−1)� (42)

Moreover, for each t ∈ V \ 0, there exists a 0 − t path inG′
z .

Proof. We must have q0 = 0. Otherwise redefine q0 := 0 and add the same sufficiently
small increment ε to the payment of all types t other than 0. Feasibility of the original
mechanism implies feasibility of the new mechanism and revenue increases, contra-
dicting optimality of the original mechanism. Now (42) follows from an easy induction
on n. Finally, let S be the set of nonzero types t such that there is no 0 − t path in G′

z .
If S �= ∅, increase the payment of all types in S by sufficiently small ε, arriving at a new
feasible mechanism with higher revenue, a contradiction. �
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Lemma 4. The monotone primal and original primal have the same set of optima.

Proof. Since the monotone primal is a relaxation of the original primal, it is sufficient
to show that any optimum of the monotone primal is feasible in the original primal. Let
z = (q�p) be optimal in the monotone primal and choose (t� s) ∈ E. By Lemma 3, there
exists a path P : 0 = t0 → ·· · → tn = t in G′

z . Let j be the largest index i such that vti < vs;
j exists because vt0 = v0 < vs.38 Since E is weakly transitive, (tj� s) ∈E′. So

vsqs −ps ≥ vsqtj −ptj = vsqtj −
n∑
i=1

vti (qti − qti−1)

≥ vsqtj −
n∑
i=1

vti(qti − qti−1)+
n∑

i=j+1

(vs − vti)(qti − qti−1)

= vsqt −pt�
where the first inequality follows from feasibility of z in the monotone primal, the first
equality follows from Lemma 3, and the second inequality follows from the fact that
vs < vti for i = j + 1� � � � � n by choice of j and Proposition 3(ii) applied to the monotone
primal. �

Lemma 5. If G∗ is a tree, then for any optimum z = (q�p) of the monotone primal,
Ḡ∗
z =G∗.

Proof. If E∗ ⊆ Bz , then for all (s� t) ∈ E∗, Ḡ∗
z contains an s − t path. But (s� t) is the

unique s − t path in G′ and E′ ⊇ B̄∗
z . So (s� t) ∈ B̄∗

z . So E∗ ⊆ B̄∗
z . But since for every

(s� t) ∈ Bz , there is an s − t path in G∗, E∗ = B̄∗
z . So assuming for contradiction that

Ḡ∗
z �= G∗, it follows that E∗ � Bz . So G∗ contains a path P : 0 = t0 → ·· · → tn such that

(tn−1� tn) /∈ Bz . Let P be the shortest path with this property. It follows that

vtnqtn −ptn > vtnqtn−1 −ptn−1 � (43)

By Lemma 3, there exists a 0 − tn path Q : 0 = s0 → s1 → ·· · → sm = tn in G′
z . Since G∗ is

a tree, P is the unique 0 − tn path in G∗. Since G∗ is the transitive reduction of G′ and
(sm−1� tn)= (sm−1� sm) ∈ Bz ⊆E′, there exists i ∈ {0� � � � � n− 2} such that ti = sm−1

39 and

vtnqtn −ptn = vtiqti −pti � (44)

So

ptn−1 −pti > vtn(qtn−1 − qti)≥ vtn−1(qtn−1 − qti)� (45)

where the strict inequality follows by subtracting (44) from (43), and the weak inequal-
ity follows from the fact that edge (tn−1� tn) is in E′, and so is good, and that by choice
of P and Proposition 3(ii) (applied to when the incentive graph is G′), qj ≥ qj−1 for

38Condition (2) implies s �= 0.
39We have i �= n− 1 because (tn−1� tn) /∈ Bz . This also implies that n≥ 2.
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j = i� � � � � n − 1. Conclude by observing that (45) contradicts the incentive constraint
(ti� tn−1) ∈ E′.40 �

A.2 Proofs

Proof of Proposition 1(iv). In view of Proposition 2, it is sufficient to show that in
the standard monopoly problem, ψ̂(t) = ψ(t) ∀t ∈ T . To this end, define λ(s� t) = �t if
t = s + 1 and define λ(s� t) = 0 otherwise. If virtual values (19) are defined with respect
to the above-defined λ’s, then virtual values and quasi-virtual values coincide. However,
as virtual values are defined with respect to an optimal dual solution, it remains to show
that the above λ’s are part of an optimal dual solution. Define μt = max{ψ̂(t)�0}πt . Next
define qt = 1 if ψ̂(t) > 0 and qt = 0 otherwise. Let s be the smallest type with qs = 1,
and define pt = vs if qt = 1 and pt = 0 otherwise. Using the monotonicity of quasi-
virtual values and the complementary slackness conditions, it is straightforward to ver-
ify that (q�p) and (λ�μ) are feasible, and, moreover, optimal, in the primal and dual,
respectively. �

Proof of Proposition 3. (i) To establish that eliminating bad edges does not alter op-
timal revenue, it is sufficient to show that any optimal solution to the monotone primal
is feasible in the original primal. Let z = (q�p) be optimal in the monotone primal and
choose (t� s) ∈ E. By Lemma 3, there exists a path P : 0 = t0 → ·· · → tn = t in G′

z . Let j
be the largest index i such that vti < vs; j exists because vt0 < vs. Since E is transitive,
(tj� s) ∈E′. So

vsqs −ps ≥ vsqtj −ptj = vsqtj −
j∑
i=1

vti (qti − qti−1)

≥ vsqtj −
j∑
i=1

vti(qti − qti−1)+
n∑

i=j+1

(vs − vti )(qti − qti−1) (46)

= vsqt −pt�
where the first inequality follows from (41), both equalities follow from Lemma 3, and
the second inequality follows from (i) vs < vti for i = j + 1� � � � � n by choice of j, and
(ii) qti ≥ qti−1 for i= j + 1� � � � � n by Proposition 3(ii) applied to incentive graph G′. Con-
dition (46) implies that z is feasible in the original primal.

(ii) Since (s� t) binds, vt(qt − qs) = pt − ps. So if qs > qt , then ps > pt . But then
redefining qt := qs and pt := ps yields another feasible primal solution. In particular,
t’s incentive constraints are still satisfied, as are those of all types who can mimic t by
transitivity of E and this leads to higher revenue, a contradiction. �

Proof of Proposition 4. AsG∗ is a tree, denote the unique 0 − t path inG∗ as Pt : 0 =
st0 → st1 → ·· · → stnt = t.

40The inclusion (ti� tn−1) ∈E′ follows by weak transitivity of E′.
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Lemma 6. Let q̂= (q̂t : t ∈ V ) be an optimum of

maximize
∑
t∈V

qtψ̂(t)πt (47)

subject to

qs ≤ qt ∀(s� t) ∈E∗ (48)

0 ≤ qt ≤ 1 ∀t ∈ V \ 0 (49)

q0 = 0� (50)

Let41

p̂t =
nt∑
i=1

vsti
(q̂sti

− q̂sti−1
) ∀t ∈ T� (51)

If G∗ is a tree, then (q̂� p̂) is optimal in the primal (3)–(6). Moreover,
∑
t∈V p̂tπt =∑

t∈V q̂tψ̂(t)πt .

Proof. Any optimum of the monotone primal satisfies (50). Proposition 5 implies that
any optimum of the monotone primal satisfies (48). Since G∗ is a tree, Lemmas 3 and 5
imply that any optimum (q�p) of the monotone primal satisfies

pt =
nt∑
i=1

vsti
(qsti

− qsti−1
) ∀t ∈ T� (52)

So adding the constraints (50) and (52) to the monotone primal will not alter the set of
optima. Using the fact that the monotone primal only contains good edges, (52) and
(48) imply all of the constraints in the monotone primal, so the incentive constraints
may now be removed. Using (50) and (52),

∑
t∈V

ptπt =
∑
t∈V

πt

nt∑
i=1

vsti
(qsti

− qsti−1
)

=
∑
t∈V

vtqtπt −
∑
t∈V

nt−1∑
i=1

(vsti+1
− vsti )qsti πt (53)

=
∑
t∈V

vtqtπt −
∑

(t�s)∈E∗
(vs − vt)qt�s =

∑
t∈V

qtψ̂(t)πt�

Plugging (53) into the monotone primal objective, it follows that (q̂� p̂) is optimal in the
monotone primal and, hence, by Lemma 4, is also in the original primal. �

As the constraint matrix corresponding to (48) and (49) is totally unimodular (see
Proposition 2.6 in Part III.1 of Nemhauser and Wolsey 1999), it follows that (47)–(50) has
an integer optimal solution (see Proposition 2.3 in Part III.1 of Nemhauser and Wolsey

41When t = 0, (51) reduces to p̂0 = 0.



632 Sher and Vohra Theoretical Economics 10 (2015)

1999), and so by Lemma 6 that the original primal has an integer optimal solution, cor-
responding to a deterministic optimum. �

Proof of Proposition 5. Proposition 5 follows from Lemmas 4 and 5 and Proposi-
tion 3(ii). �

Proof of Lemma 1 and Proposition 6.

Lemma 7. IfG is essentially segmented, thenG∗
v is a tree for all nondegenerate valuation

assignments v.

Proof. For each t ∈ T , let �(t) be the maximum length of a 0 − t path in G∗
v . (For the

definition of path length, see Appendix A.1.) If G∗
v is not a tree, then for some t ∈ V0, G∗

v

contains two distinct 0 − t paths P andQ. Choose such a t to minimize �(t).
Since G∗

v is the transitive reduction of an acyclic graph, there exist vertices r, s such
that r ∈ P \Q and s ∈Q \P . Note that r� s ∈ Ṽ . Since v is nondegenerate, assume without
loss of generality, vr < vs. If there were an r − s path in G, then G∗

v would contain two
distinct 0 − s paths, P ′ and Q′, where r ∈ P ′ and Q′ coincides with Q up to s. But since
�(s) < �(t), this contradicts the choice of t. So there is no r − s path in G. Since both r
and s are on paths to the common vertex t, it now follows that G cannot be essentially
segmented. �

Lemma 8. If G is essentially segmented, then G induces a deterministic optimum for all
assignments of values and probabilities.

Proof. When v is nondegenerate, the result follows from Lemma 7 and Proposition 4.
The result is extended to degenerate v via the maximum theorem.42 �

Define a bad configuration to be a triple of nonzero types (r� s� t) such that r �= s,
(r� t) ∈E, (s� t) ∈E, and (r� s) /∈ E.

Lemma 9. If G contains a bad configuration, then there exists an assignment of values
and probabilities such that no optimal mechanism is deterministic.

Proof. Let (r� s� t) be a bad configuration. Then suppose that vr = 1, vs = 2, and vt = 3.
Define

δ= min
({
πs

πt
�
πt

πr

}
∪

{
πr

πu
:u ∈ T \ {0� r� s� t}

})
�

42In view of Proposition 8, we may apply the maximum theorem to the path formulation of the primal
rather than to the edge formulation. In particular, the path formulation makes it easy to establish that the
feasible region is lower hemicontinuous in the valuation profile. Note that for the purpose of the proof, we
may assume that valuations are all below a certain bound. Then for sufficiently largeM , we may append the
constants −M ≤ pt ≤M ∀t ∈ T without changing the set of optima in the path formulation. This ensures
that the feasible region is compact.
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If probabilities are chosen so that δ is sufficiently large, then all optimal mechanisms are
such that

qs = qt = 1� ps = pt = 2� (54)

where we have used the assumption that (s� t) ∈ E. If δ is sufficiently large, then since
(r� s) /∈ E and (r� t) ∈ E, at the optimal mechanism, pr will be chosen as large as possible
subject to the (r� t) and (0� r) incentive constraints and (54), so that qr = pr = 1/2. �

Lemma 10. IfG is not essentially segmented, thenG contains a bad configuration.

Proof. If condition (ii) of essential segmentation fails, then there exist i� j ∈ {1� � � � � n}
with i �= j and r ∈ Vi, s ∈ Vj , t ∈ V ◦ such that (r� t) ∈ E and (s� t) ∈ E. Since Vi and Vj are
distinct weakly connected components of G̃, (r� s) /∈E. So (r� s� t) is a bad configuration.

Next assume (i) fails. Then there exists i ∈ {1� � � � � n} and r� s ∈ Vi such thatGi contains
no directed r − s path but Gi contains an undirected r − s path P = (r = t0� � � � � tn = s).
Because G, and, hence, also G̃, is weakly transitive, there exists k ∈ {1� � � � � n} such that
(tk� tk−1) ∈ E and (tk−1� tk) /∈ E. Since tk−1 ∈ Vi and, hence, tk−1 /∈ V ◦, there exists t such
that (tk−1� t) ∈ E, and by weak transitivity of G, (tk� t) ∈ E. It follows that (tk−1� tk� t) is a
bad configuration. �

Lemma 11. If G contains a bad configuration, then there exists a nondegenerate valua-
tion assignment v such thatG∗

v is not a tree.

Proof. Let (r� s� t) be a bad configuration. Set vr < vs < vt and assign the remaining
values so as to be nondegenerate. The graph G∗ must contain 0 − t paths P and Q such
that r ∈ P and s ∈Q. BecauseG′ contains neither an r− s path (because (r� s) /∈E andG′
is weakly transitive) nor an s− r path (because vr < vs), and every path inG∗ is a path in
G′, r /∈Q. SoG∗ is not a tree. �

Lemmas 8–10 imply Proposition 6. Lemmas 7, 10, and 11 imply Lemma 1. �

Proof of Proposition 7. Consider the relaxed program that results from removing
the monotonicity constraints (48) from (47)–(50). The allocation q∗ defined in (23) is
clearly an optimum of the relaxed program. But by single-crossing quasi-virtual values,
q∗ satisfies the monotonicity constraints, and so is optimal in (47)–(50). Moreover, the
assumption of single-crossing quasi-virtual values implies that (q∗�p∗) from (23) satis-
fies (51). So by Lemma 6, (q∗�p∗) is optimal in the primal (3)–(6). �

Proof of Proposition 8. Let P ′ be the set of paths originating in 0 in the monotone
incentive graph G′. Note that P ′ does not contain any cycles. (Terminology aside, G′ is
acyclic.) Define the monotone path primal to be the program that performs the maxi-
mization in (24) subject to

∀(t0� t1� � � � � tk) ∈ P ′� ptk ≤ vtkqtk −
k−1∑
r=1

qtr (vtr+1 − vtr )− vt1qt0�
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and (27). To avoid ambiguity, we rename the monotone primal defined in Appendix A.1
the monotone edge primal. In contrast, (3)–(6) and (24)–(27) will be referred to, respec-
tively, as the original edge primal and the original path primal.

Lemma 12. If (q�p) is optimal in the monotone path primal, then (q�p) is feasible in the
monotone edge primal.

Proof. Let (q�p) be optimal in the monotone path primal. Assume for contradiction
that for some (s� t) ∈ E′, (q�p) violates the (s� t) incentive constraint in the monotone
edge primal so that

pt > vt(qt − qs)+ps� (55)

Optimality of (q�p) in the monotone path primal implies that there exists a path P : 0 =
t0 → t1 → ·· · → tn = s such that

ps = vtnqtn −
n−1∑
i=1

qti(vti+1 − vti)− vt1qt0 � (56)

Setting tn+1 = t and plugging (56) into (55), we obtain

pt > vtn+1qtn+1 −
n∑
i=1

qti(vti+1 − vti)− vt1qt0 � (57)

Because (tn� tn+1) = (s� t) ∈ E′, P ′ : t0 → ·· · → tn → tn+1 belongs to P ′. (P ′ cannot be a
cycle as G′ is acyclic.) But then (57) contradicts the feasibility of (q�p) in the monotone
path primal. �

Lemma 13. (i) If (q�p) is feasible in the original edge primal, then (q�p) is feasible in
the original path primal.

(ii) The monotone path primal, the original path primal, the monotone edge primal,
and the original edge primal all have the same value.

Proof. Choose P : t0 → t1 → ·· · → tk in P . The instance of (25) in the original path
primal follows from the incentive constraints (4) corresponding to edges (ti−1� ti) for i=
1� � � � �k in the original edge primal. This establishes part (i). The monotone path primal
is a relaxation of the original path primal. So part (ii) follows from part (i) and Lemmas
4 and 12. �

We are now in a position to prove Proposition 8. If (q�p) is optimal in the original
edge primal, by Lemma 13, (q�p) is optimal in the original path primal. Now suppose
(q�p) is optimal in the original path primal. Then (q�p) is feasible in the monotone
path primal, and so by Lemma 13(ii), is optimal in the monotone path primal. So by
Lemma 12 and Lemma 13(ii), (q�p) is optimal in the monotone edge primal. So by
Lemma 4, (q�p) is optimal in the original edge primal. �

Proof of Proposition 10. Let μ = (μt : t ∈ T), λ = (λ(s� t) : (s� t) ∈ E), and
λ̃= (λP :P ∈ P). Let (λ�μ) be a good optimal solution to the edge formulation of the
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dual. For any (s� t) ∈E and path P inG, define

φ(s� t) := λ(s� t)∑
r : (r�t)∈E λ(r� t)

and �P :=
[
nP∏
i=1

φ(tPi−1� t
P
i )

]
πtPnP

� (58)

(For notation tPi and tPnP , see Appendix A.1.) The term �P is defined for both paths P
originating in 0 and paths P not originating in 0. (In contrast, λP is only defined for
paths P originating in 0.)

In view of Proposition 8, strong duality, the fact that (24)–(27) is the dual of (29)–(33),
and that the objective function value for both the edge and path formulations of the dual
is determined by μ, if (λ̃�μ) is feasible in the path formulation of the dual, then (λ̃�μ) is
optimal.

Suppose that λ̃ satisfies (34) and (35). Then (34) implies that∑
P�t

λP =
∑

s : (s�t)∈E

∑
P�(s�t)

λP =
∑

s : (s�t)∈E
λ(s� t) ∀t ∈ T \ 0� (59)

So (34) and (35) imply that

λP =�P ∀P ∈ P� (60)

So the proportional vector λ̃ corresponding to λ is unique if it exists.
To complete the proof, it is sufficient to argue that if λ̃ is defined from λ via (60), then

(λ̃�μ) is feasible in the path formulation of the dual, and satisfies (34) and (35).
Let �(t) be the maximum length of a 0 − t path in the monotone incentive graph G′.

(For the definition of path length, see Appendix A.1.) First, we argue by induction on �(t)
that λ̃ satisfies (30). For the base case, when �(t) = 1, (s� t) ∈ E′ exactly if s = 0. So the
only 0 − t path not containing a bad edge is P∗ = (0� t). So

∑
P∈Pt λP = λP∗ =�P∗ = πt ,

where the first equality follows from the assumption that λ is good and the last equality
follows from (58) given that P∗ = (0� t). For the inductive step,∑

P∈Pt
λP = πt

∑
s : (s�t)∈E

φ(s� t)

∑
P∈Ps λP
πs

= πt
∑

s : (s�t)∈E
φ(s� t)= πt�

The first two equalities follow from (58), (60), and the fact that if P � t, then either (s� t) is
a bad edge, in which caseφ(s� t)= 0, or P contains a bad edge, in which case�P = 0. The
third equality follows from the fact that if (s� t) ∈E is such thatφ(s� t) > 0, then (s� t) ∈E′
so that �(s) < �(t) and we can apply the inductive hypothesis. The fourth equality follows
from (58). So (λ̃�μ) satisfies (30). Further below, we show that (λ̃�μ) also satisfies (31).

For any t ∈ T , let Pt→ be the set of paths inG originating in t (where a path contains
at least one edge so that (t) is not a path). Next, we argue that λ̃ satisfies (34) and (35).
To do so, we argue by backward induction on �(t) that∑

s : (s�t)∈E
λ(s� t)= πt +

∑
P∈Pt→

�P ∀t ∈ T� (61)

For the base case, when �(t) is maximal, then for all s ∈ T , if (s� t) ∈ E, then (s� t) is a
bad edge and if P ∈ Pt→, then P contains a bad edge. So both (12) and (61) reduce to
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s : (s�t)∈E λ(s� t) = πt . Since λ satisfies (12), (61) holds in this case. For the inductive

step, ∑
s : (s�t)∈E

λ(s� t) = πt +
∑

s : (t�s)∈E
λ(t� s)= πt +

∑
s : (t�s)∈E

{
φ(t� s)

∑
r : (s�r)∈E

λ(s� r)

}

= πt +
∑

s : (t�s)∈E

{
φ(t� s)

[
πs +

∑
P∈Ps→

�P

]}
= πt +

∑
P∈Pt→

�P�

where the first equality follows from (12), the second equality follows from (58), the third
equality follows from the inductive hypothesis and the fact for all (t� s) ∈E, ifφ(t� s) > 0,
then (s� t) ∈E′, and, hence, �(s) > �(t), and the fourth equality follows from (58) and the
fact that if (t� s) ∈ E and P � t, then either (s� t) is a bad edge, in which case φ(s� t) = 0,
or P contains a bad edge, in which case �P = 0. We have now established (61).

Next we have

λ(s� t) = φ(s� t)
∑

r : (r�t)∈E
λ(r� t)=φ(s� t)

{
πt +

∑
P∈Pt→

�P

}

=
{∑

P∈Ps �P
πs

}
×φ(s� t)×

{
πt +

∑
P∈Pt→

�P

}
=

∑
P�(s�t)

λP�

where the first equality follows from (58), the second from (61), the third from the fact,
established above, that λ̃ satisfies (30), and the fourth from (58) and the fact that for all
(s� t) ∈ E, P ∈ Ps , and P ′ ∈ Pt→, then if tP0 → ·· · → tPnP = s→ t = tP ′

0 → ·· · → tP
′

nP′ contains

a cycle, then since λ is good, �P × φ(s� t) × �P ′ = 0. So λ̃ satisfies (34). Equation (34)
implies (59), which, together with (58), (60), and another application of (34), implies
that λ̃ satisfies (35). Finally, (34) and (13) imply that (λ̃�μ) satisfies (31) and, hence, is
feasible in the path formulation of the dual. �

Remark 4. Let (λ�μ) be a good optimum of the edge formulation of the dual and let
(λ̃�μ) be the corresponding proportional optimum of the path formulation, where λ̃ is
related to λ by (34). Then (61) and the fact that λ̃ satisfies (60) imply that∑

P ′∈P : P⊆P ′
λP ′ = λP

πt

∑
s : (s�t)∈E

λ(s� t) ∀t ∈ T�∀P ∈ Pt �

Proof of Proposition 11. The proof is implemented in two steps. First we present
a Bayesian Nash equilibrium implementing the optimal mechanism. Then we explain
how this can be strengthened to a sequential equilibrium.

Step 1: Bayesian Nash equilibrium.
Strategies. The players’ on-path play was described in Section 7.3.1. Here we spec-

ify off-path play. This is important to ensure that the strategies are mutual best replies.
When the preliminary randomization yields path P in (36), then even off the equilibrium
path, when asked for a cheap talk report, the buyer reports along path P as described in
Section 7.3.1 unless the buyer herself previously deviated from reporting along path P ,
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in which case she drops out. Similarly, when asked for evidence, the buyer’s strategy is
as described in Section 7.3.1 unless the buyer previously deviated from reporting along
P , in which case she drops out without presenting evidence. To specify the seller’s off-
equilibrium play, we assume that at Step 3 of the dynamic bargaining protocol, if the
seller has observed a sequence of reports that is not buyer on-path (see (39)) or if the
last report t̂ that the seller observed is such that qt̂ = 1, the seller requests evidence with
probability 1. At Step 3, if the buyer has presented evidence S, and either S �= Stk , where
tk was the last type report before evidence was requested, or the sequence of type re-
ports presented was not buyer on-path, then the seller makes an offer at a price equal
to the maximum value of any type that had access to S (that is, max{vr :S ⊆ σ(r)}). Note
that because the buyer’s and seller’s randomizations are determined by dual and primal
optima, complimentary slackness and Proposition 3(ii) imply that if tk−1 and tk are two
consecutive cheap talk reports that were made by the buyer on the equilibrium path,
then qtk−1 ≤ qtk . So the seller’s strategy as described here and in Section 7.3.1 is well de-
fined. In what follows, we refer to the buyer and seller strategies defined here and in
Section 7.3.1 as ζ∗ and ξ∗, respectively.

The strategies implement the optimal mechanism. We show that the strategies ζ∗ and
ξ∗, if followed, implement the same outcome as the optimal mechanism. For any path
P : t0 → t1 → ·· · → tn in Pt define kP to be the smallest index i such that qti = 1 if such an
i exists and kP = n otherwise. Complementary slackness and Proposition 3(ii) imply that
if P ∈ Pt and λP > 0, then qtkP = qt . Using notation tPi and tPnP defined in Appendix A.1,
and adopting the convention qtP−1

:= 0, the strategy profile (ζ∗� ξ∗) induces a probability

of sale for type t buyer of

∑
P∈Pt

λP
πt

kP∑
k=0

[
k−1∏
i=1

1 − qtPi
1 − qtPi−1

]
qtPk

− qtPk−1

1 − qtPk−1

=
∑
P∈Pt

λP
πt

kP∑
k=0

(qtPk
− qtPk−1

)=
∑
P∈Pt

λP
πt
qtkP

= qt�

where we have used the fact that by (30),
∑
P∈Pt λP/πt = 1. Similarly, the expected pay-

ment of the type t buyer induced by (ζ∗� ξ∗) is

∑
P∈Pt

λP
πt

kP∑
k=0

[
k−1∏
i=1

1 − qtPi
1 − qtPi−1

]
qtPk

− qtPk−1

1 − qtPk−1

vtPk

=
∑
P∈Pt

λP
πt

kP∑
k=0

(qtPk
− qtPk−1

)vtPk
=

∑
P∈Pt

λP
πt

nP∑
k=0

(qtPk
− qtPk−1

)vtPk

=
∑
P∈Pt

λP
πt

[
vtP
nP
qtPnP

−
nP−1∑
k=1

qtPk
(vtPk+1

− vtPk )− vtP1 qtP0

]
= pt�

where the second equality uses the fact that if λP > 0, then qtPk
≥ qtPk−1

by complementary

slackness in the edge formulation, (34), and Proposition 3(ii). The last equality uses
complementary slackness. It follows that we implement the optimal mechanism.
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Buyer optimization. Here we prove that ζ∗ is a buyer best reply to ξ∗. If the type t
buyer had a profitable deviation, she would have a profitable pure strategy deviation in-
cluding some sequence of reports P = (t0� � � � � tk) that she would make before dropping
out. We may assume that P ∈ Ps for some s ∈ T with σ(s) ⊆ σ(t) and λP > 0 because
at any moment that it becomes evident to the seller that one of these conditions is vi-
olated, the buyer can no longer attain a positive utility given the seller’s strategy and
so the buyer may as well drop out.43 However, it now follows from the arguments like
those establishing that ζ∗ and ξ∗, if followed, implement the optimal mechanism, that
the buyer’s payoff from this deviation would be vtqs −ps. Incentive compatibility ((4) in
the primal) implies this deviation would yield a payoff inferior to vtqt −pt , which, as we
argued above, is the payoff that the type t buyer would attain if she used ζ∗.

Seller optimization. We now fill in some missing details from the argument of Sec-
tion 7.3.4 that ξ∗ is a best reply to ζ∗. We start with two lemmas establishing facts that
were mentioned in Section 7.3.4.

Lemma 14. There exists a seller best reply to ζ∗ that is a stopping strategy.

Proof. Let ξ be a best reply to ζ∗. There exists a deterministic best reply to any buyer
strategy, so for simplicity assume that ξ is deterministic. Consider a nonterminal history
h satisfying (i) following h, it is the seller’s turn to make an offer (Step 5), and (ii) the se-
quence of cheap talk reports P = (t0� � � � � tk) in h is buyer on-path (see (39)). Statements
(i) and (ii) imply that the buyer presented evidence Stk (since she uses ζ∗). Suppose that
conditional on h, ξ offers a price p different than vtk . Then we may assume that vtk < p
because given ζ∗, all buyer types consistent with h have value at least equal to vtk . Now
consider a seller strategy ξ′ that agrees with ξ except on histories following the sequence
of cheap talk reports P . Following P , ξ′ continues to request cheap talk reports until the
buyer presents a cheap talk report t with vt ≥ p, at which point ξ′ requests evidence and
then behaves as in a stopping strategy, so that if the buyer then presents St , ξ′ makes an
offer of vs. Then notice that conditional on the initial sequence of reports P , ξ and ξ′
will lead to the same collection of buyer types being served, but each such buyer type
will pay a weakly higher price under ξ′ than under ξ. Since ξ was a best reply, it follows
that ξ′ is also a best reply. By a sequence of such modifications, we can turn the strategy
ξ into a seller strategy ξ0 that is a stopping strategy and also a best reply to ζ∗.44 �

Lemma 15. If, using ζ∗, the buyer previously reported P = (t1� � � � � tk) and then the seller
continued, requesting more cheap talk, the probability that the seller assigns to the event
that the buyer will not drop out but instead will report tk+1 = t is given by (37).

43Observe in particular that if P = (t0� � � � � tk), λP > 0, and σ(ti)� σ(t), then σ(ti+1)� σ(t), and so once
ti is reached, any seller offer will be weakly above vt . So the type t buyer may as well select the truncation of
P that ends in the last type s in P for which σ(s)⊆ σ(t), and so drop out after s is reached.

44For ξ0 to be a stopping strategy, we may have to make some additional modifications conditional on
histories that occur with zero probability and, hence, do not affect the seller’s payoff.
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Proof. By Remark 4, the probability that in the preliminary randomization, the buyer
selected a sequence P ′′ ⊇ P is∑

t∈T

∑
{P ′′∈Pt : P⊆P ′′}

πt
λP ′′

πt
=

∑
P ′′∈P : P⊆P ′′

λP ′′ = λP
πtk

∑
s : (tk�s)∈E

λ(tk� s)� (62)

Similarly, the probability that the buyer selected P ′′ ⊇ P ′ = (t0� � � � � tk� t)′ is

λP ′

πt

∑
s : (t�s)∈E

λ(t� s)� (63)

Equations (34) and (35) imply that

λP ′/πt
λP/πtk

= λ(tk� t)∑
s : (s�t)∈E λ(s� t)

�

It follows that dividing (63) by (62) yields (37). �

The definition of ξ∗ implies the existence of a stopping strategy ξ̃∗ that agrees with
ξ∗ on all histories that contain a buyer on-path sequence of type reports (see (39)). Once
Lemma 2 is established and in view of Lemma 14, to complete the argument that the ξ∗
is a best reply to ζ∗, it is sufficient to show that ξ̃∗ is optimal among stopping strategies.
We argue by backward induction. As we go, note that (35) implies that a sequence of
type reports P is buyer on-path if and only if λP > 0. Consider a history P = (t0� � � � � tk)

with λP > 0. First let P be such a history of maximal length.45 (Recall that the length
of P is the number of edges in P .) In this case, we must have qtk = 1,46 and clearly it is
optimal to stop as required by ξ̃∗. Now suppose we have established the result for all
histories P ′ (with λP ′ > 0) that are longer than P . First suppose that qtk > 0. It follows
from Proposition 3(ii) that for all P ′ = (t0� � � � � tk� tk+1) with λP ′ > 0, qtk+1 > 0. It follows
from the inductive hypothesis that conditional on any such P ′, it would be optimal for
the seller to stop. Lemma 2 now implies that following P , stopping immediately would
be optimal as required by ξ̃∗. Next suppose that qtk < 1. Then by Lemma 2, the seller
would be weakly better off continuing one step and then stopping than stopping im-
mediately, and so continuing and then following ξ̃∗ (which by backward induction, is
optimal) would be even better, again as required by ξ̃∗.

Step 2: Sequential equilibrium. The above argument presented a strategy profile and
established that it is a Bayesian Nash equilibrium implementing the optimal mecha-
nism. We now strengthen this to a sequential equilibrium. First, we modify the strategies
ζ∗ and ξ∗ to form strategies ζ∗∗ and ξ∗∗, respectively. Strategy ξ∗∗ agrees with ξ∗ at any

45Such a history exists because T is finite and λ has no bad edges; in other words, a sequence of cheap
talk reports cannot form a cycle.

46Suppose that qtk < 1. Then by complementary slackness, μtk = 0. But then the fact that vtkπtk >
0 and (31) imply that there must exist tk+1 ∈ T with vtk < vtk+1 and

∑
P ′�(tk�tk+1)

λP ′ > 0. Since λ

is good, tk+1 /∈ (t0� � � � � tk). So consider the path P ′′ = (t0� � � � � tk� tk+1). So (35) implies that λP ′′ =
λP(

∑
P ′�(tk�tk+1)

λP ′/
∑
P ′�tk+1

λP ′)(πtk+1/πtk ) > 0, contradicting the assumption that P was of maximal
length.
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seller information set that occurs with positive probability given (ζ∗� ξ∗), as well as any
seller information set at which evidence has not yet been presented. At any seller infor-
mation set that occurs with zero probability given (ζ∗� ξ∗) at which the buyer previously
presented evidence S, ζ∗∗ requires the seller to make a take-it-or-leave-it offer at price
max{vr :S ⊆ σ(r)}. Similarly, ζ∗ agrees with ζ∗∗ at any buyer information set that occurs
with positive probability given (ζ∗� ξ∗), as well as any information set where the seller
decides whether to accept a take-it-or-leave-it offer. At any type t buyer information set
I that occurs with zero probability given (ζ∗� ξ∗) only because the type t buyer has taken
a sequence of actions that would have been taken with positive probability by some
other buyer type according to ζ∗ (and the seller has taken actions consistent with ξ∗)—
call such information sets undetected—the buyer continues by following some type t
best reply to ξ∗∗ conditional on I. At any other information set, the buyer drops out.

Lemma 16. (i) The strategy profile (ζ∗∗� ξ∗∗) is a Bayesian Nash equilibrium of the dy-
namic communication protocol.

(ii) The strategy profiles (ζ∗∗� ξ∗∗) and (ζ∗� ξ∗) induce the same probability distribution
over terminal histories.

Proof. Part (ii) follows by construction. So consider part (i). If ξ is a seller strategy
profile such that (ζ∗� ξ) and (ζ∗∗� ξ) induce the same probability distribution over ter-
minal histories, then part (ii) of the lemma and the fact that (ζ∗� ξ∗) is a Bayesian Nash
equilibrium implies that ξ is not a profitable seller deviation at (ζ∗∗� ξ∗∗). So consider a
ξ such that (ζ∗� ξ) and (ζ∗∗� ξ) induce different probability distributions over terminal
histories. The definition of ζ∗∗ means that (ζ∗� ξ) differs from (ζ∗∗� ξ) only insofar as
sometimes the buyer drops out in the latter when he would not have done so in the for-
mer. This implies that the seller’s payoff under (ζ∗� ξ) is weakly higher than the seller’s
payoff under (ζ∗∗� ξ), which, in turn, implies that ξ is not a profitable seller deviation at
(ζ∗∗� ξ∗∗). Using the same argument as for the seller, if the buyer has a profitable devia-
tion ζ at (ζ∗∗� ξ∗∗), then (ζ�ξ∗) and (ζ�ξ∗∗)must induce a different probability distribu-
tion over terminal histories. But this means that (ζ�ξ∗) and (ζ�ξ∗∗) differ only in that in
the latter, following certain histories, the seller makes the offer max{vr :S ⊆ σ(r)}, where
S is the evidence that has been presented by the buyer, whereas in the former, the seller
would have made a different offer. Notice that if the buyer has presented S, she must
have been of a type t such that S ⊆ σ(t). But this implies that vt ≤ max{vr :S ⊆ σ(r)},
which in turn implies that the buyer’s payoff is weakly higher under (ζ�ξ∗) than under
(ζ�ξ∗∗), so that ζ is not a profitable buyer deviation at (ζ∗∗� ξ∗∗). This establishes part (i)
of the lemma. �

To complete the proof, we show that the players’ strategies are sequentially rational
off the equilibrium path, where the seller’s off-equilibrium beliefs are consistent with
the structure of the game as required by sequential equilibrium.47 For each ε > 0, we
construct a totally mixed buyer strategy ζε such that ζε → ζ∗∗ as ε→ 0. Enumerate the

47There is no corresponding issue for the buyer’s beliefs because the seller has no private information.
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types t ′1� � � � � t
′
n in T so that i < j⇒ vt ′i ≥ vt ′j . The strategy ζε is the buyer strategy in which,

with probability 1 − εi, the type ti buyer plays (her part of) ζ∗∗ and, with probability εi,

she randomizes uniformly over all type t pure strategies. So a type with a higher index

(and, hence, a lower value) trembles with a probability that approaches zero faster than

a type with a lower index. Off the equilibrium path, the seller’s beliefs about the buyer’s

type are the limiting beliefs derived via Bayes’ rule using ζε (and any totally mixed seller

strategy48). It follows that in any off-equilibrium path history, if the seller can infer that

the buyer has deviated from ζ∗∗, the seller will infer that the buyer is the highest value

type that could have performed the actions consistent with that history; so if no evi-

dence has been presented, the seller will infer that the buyer is of a highest value type;

if evidence has been presented, the seller will infer that the buyer has the highest value

among those types who could have presented the evidence.

First we establish that given any seller information set I that occurs with zero prob-

ability under (ζ∗∗� ξ∗∗), ξ∗∗ is a seller’s best reply to ζ∗∗ given the seller’s off-equilibrium

beliefs derived above. Lemma 16(ii) implies that I also occurs with zero probability un-

der (ζ∗� ξ∗). First suppose that at I, the buyer has not yet presented evidence. Then

no matter what the seller does, the buyer will drop out at the next opportunity, so the

seller is best replying. Next consider I at which the buyer has presented evidence S.

Because I has zero probability under (ζ∗� ξ∗), according to ζ∗∗, either the buyer should

have dropped out prior to presenting evidence or the buyer should have presented ev-

idence different from S. In either event, the seller will use the off-equilibrium beliefs

derived above and infer that the buyer is of the type t such that vt = max{vr :S ⊆ σ(t)},

and so it will be optimal to offer the maximal price that the type t buyer will accept,

namely, max{vr :S ⊆ σ(t)}, as required by ξ∗∗.

Finally, we establish that given any buyer information set I that occurs with zero

probability in equilibrium, ζ∗∗ is a buyer best reply to ξ∗∗. Again, I has zero probability

under (ζ∗� ξ∗). If at I, the seller has made a take-it-or-leave-it-offer or if I is undetected,

then the result is immediate from the definitions of ζ∗ and ζ∗∗. In any other case, the

buyer cannot possibly attain a positive utility, and by dropping out as required by ζ∗∗,

she attains a utility of zero. �

Proof of Proposition 12. This follows from the equilibrium strategies and the fact

that at an optimal good dual solution,
∑
P∈P : (s�t)∈P λP > 0 implies that both vs < vt and

Ss ⊆ St . The former inequality depends on the fact that λ is good, while the latter inclu-

sion depends only on (1). �

Proof of Proposition 13. To prove the proposition, we present a series of environ-

ments, parameterized by n, such that the nth environment requires n + 1 rounds of

communication in the equilibrium constructed in Section 7.3.1. Some assertions made

48The resulting beliefs do not depend on which totally mixed seller strategy is used.
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Figure 3. The incentive graph.

below are proved in Sher and Vohra (2011), a previous working paper version of this
paper.

Let T =X ∪ Y ∪ {0}, where X = {x1� � � � � xn} and Y = {y0� y1� � � � � yn}. So we partition
the set of types (other than the zero type) into two setsX and Y . Let us refer to the types
in X as x-types and to the types in Y as y-types. As usual, we assume that v0 = π0 = 0.
Moreover, we assume that

vx1 < vx2 < · · ·< vxn < vy0 < vy1 < vy2 < · · ·< vyn� (64)

This means that within the set of x-types and within the set of y-types, valuations are
strictly increasing in the indices of the type. However, all y-types have higher valuations
than all x-types. The incentive graph is given by

E = {(0� t) : t ∈ T \ 0} ∪ {(xi�xj) ∈X ×X : i < j}
∪ {(xi� yj) ∈X ×Y : i≤ j} ∪ {(yi� yj) ∈ Y ×Y : i < j}�

(65)

This can be represented pictorially as in Figure 3.
Each directed path in Figure 3 corresponds to an edge in the incentive graph (65). So

all types can mimic the zero type, all x-types can mimic lower index x-types, all y-types
can mimic lower index y-types, and y-types can also mimic x-types with a weakly lower
index. The above incentive graph can be induced by the message structure

σ(t) = {ms : (s� t) ∈E} ∪ {mt} ∀t ∈ T \ 0

σ(0) = {m0}�

where we assume that if s �= t, thenms andmt are distinct messages.
We now make some assumptions that allow us to explicitly solve for the optimal

mechanism. First, a definition is useful. Working backward from n, we recursively
define

δn := 0

δi−1 := δi +
vxiπxi − (vxi+1 − vxi)[δi +

∑n
j=i+1πxj ]

vyi − vxi
∀i= 1� � � � � n�

Note that when i = n, we define (vxi+1 − vxi)[δi +
∑n
j=i+1πxj ] := 0, and similarly in (68)

below, when i = n, we define (vxi+1 − vxi)[(
∑n
j=i+1πxj + ∑n

j=i+1πyj )/πxi ] := 0. We also
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assume that

vyi − (vyi+1 − vyi)
∑n
j=i+1πyj

πyi
> 0 ∀i= 0�1� � � � � n− 1 (66)

vxi − (vxi+1 − vxi)
∑n
j=i+1πxj

πxi
> (vxi+1 − vxi)

δi
πxi

∀i= 1� � � � � n− 1 (67)

vxi − (vxi+1 − vxi)
[∑n

j=i+1πxj + ∑n
j=i+1πyj

πxi

]
− (vyi − vxi)

πyi
πxi

< 0 ∀i= 1� � � � � n� (68)

For any profile of valuations satisfying (64), there are many probability distribu-
tions (πt : t ∈ T) such that (66)–(68) are satisfied. Inequality (66) implies that if
(aside from the zero type) there were only y-types (where we take the restriction of
the incentive graph to these types and the probabilities renormalized to sum to 1),
then the optimal allocation would allocate the object to each type with probabil-
ity 1.

Similarly, (67) implies that if there were only x-types, then it would be optimal to allo-
cate the object to all types. But the assumption (67) for x-types is a stronger assumption
than the corresponding assumption (66) for y-types. Indeed, a simple induction using
(67) implies

δi > 0 ∀i= 0�1� � � � � n− 1�

and, hence, (67) also implies

vxi − (vxi+1 − vxi)
∑n
j=i+1πxj

πxi
> 0 ∀i= 1� � � � � n− 1�

Inequality (68) says that if the set of types were of the form Ti := {xi�xi+1� � � � � xn} ∪
{yi� yi+1� � � � � yn} ∪ {0} for i = 1� � � � � n, and the incentive graph were {(s� t) ∈ (Ti \ {yi}) ×
(Ti \ {yi�0}) : s �= t} ∪ {(xi� yi)}, then it would be optimal not to allocate the object to xi.
Notice that T1 differs from T because T contains y0, whereas T1 does not; we do not
define a set T0 because there is no type x0.

Given the above assumptions, the optimal prices and allocation for the y-types are
given by

qyi := 1 ∀i= 0�1� � � � � n (69)

pyi := vy0 ∀i= 0�1� � � � � n� (70)

For the x-types, the optimal allocation and prices can be defined recursively as

qx1 := vy1 − vy0

vy1 − vx1

(71)

px1 := vx1qx1 (72)

qxi := (vyi − vy0)− (vxiqxi−1 −pxi−1)

vyi − vxi
∀i= 2� � � � � n (73)

pxi := vxi(qxi − qxi−1)+pxi−1 ∀i= 2� � � � � n� (74)
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It is straightforward to verify that

0< qx1 < qx2 < · · ·< qxn < 1�

Moreover, the mechanism given by (69)–(74) is the unique optimal mechanism. It is also
the case that at every dual optimal solution, we have that

λ(xi−1�xi) > 0 ∀i= 2� � � � � n

λ(0�x1) > 0

λ(xh�xi) = 0 ∀i= 2� � � � � n�∀h< i− 1

λ(0�xi) = 0 ∀i= 2� � � � � n�

It follows that the unique path P from 0 to xn with λP > 0 is P = (0�x1�x2� � � � � xn), so
type xn is asked to submit a cheap talk report n+ 1 times in the equilibrium constructed
in Section 7.3.1. To describe the equilibrium in more detail, each x-type xi, uses the se-
quence of reports (0�x1�x2� � � � � xi), dropping out if the seller requests another message
after xi. Each y-type yi randomizes over two sequences of reports at the preliminary
phase: (0�x1�x2� � � � � xi� yi) and (0� y0� y1� � � � � yi). If the seller receives the report y0, he
requests evidence and then given that evidence Sy0 = {m0�my0} is presented, he makes
a take-it-or-leave-it offer at price vy0 . If the seller receives the report xi, he randomizes
between asking for another cheap talk report and requesting evidence. �

A.3 Algorithm for optimal mechanism under tree structure

Here we show how under tree structure, the optimal mechanism can then be found by
solving a simple perfect information game between the seller and nature by backward
induction. So assume that G∗ is a tree. Then for each type t, let Dt be the set of types
s such that the unique path in G∗ from 0 to s passes through t; t itself belongs to Dt .
A descendant of t is a type in Dt other than t. So Dt consists of t and all of the descen-
dants of t. For example in Figure 1, D3 = {3�4�7}. Formally, Dt := {t} ∪ {s : (t� s) ∈ E′},
where E′ is the edge set of the monotone incentive graph. A child of type t is type s such
that (t� s) ∈ E∗. Let Ct be the set of children of t. So in Figure 1, C1 = {2�3}; in contrast,
D1 = {1�2�3�4�5�6�7}.

The ex ante probability that the buyer’s type belongs to Dt is �t (see (22)). If s is a
child of t, then using Bayes’ rule, the ex ante probability that the buyer’s type belongs to
Ds given that the buyer’s type belongs toDt is Pr(Ds|Dt) :=�s/�t . The ex ante probabil-
ity that the buyer’s type is t given that the buyer’s type belongs toDt is Pr(t|Dt) := πt/�t .
Observe that

Pr(t|Dt)+
∑
s∈Ct

Pr(Ds|Dt)= 1�

Game Against Nature. 1. Start with t := 0.

2. (a) With probability Pr(t|Dt), the game ends and the seller receives a payoff of 0.
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(b) For each child s of t, with probability Pr(Ds|Dt), nature selects type s. Go to
Step 3.

3. The seller observes s and selects STOP or CONTINUE.

(a) If the seller selects STOP, the game ends and the seller receives a payoff of vs .

(b) If the seller selects CONTINUE, redefine t := s and go to Step 3.

Observe that if the game reaches a history where nature has selected a type s that has
no children, then Pr(s|Ds) = 1, so even if the seller were to select CONTINUE (which
would not be a wise choice), the game would end in one step. It follows that the game
terminates after nature has selected a type at most n times, where n is the number of
types.

Proposition 15. Assume that G∗ is a tree. The optimal mechanism can be found by
solving the game against nature by backward induction: For each type s on which the
seller stops, the seller sells the object for a price of vs and to s all descendants of s. The
seller does not sell the object to any other type.

Proof. Let S and C be shorthand, respectively, for STOP and CONTINUE. Let P∗ be the
set of all paths inG∗ that begin at 0 (including the degenerate path (0)). A strategy in the
extensive form game can be represented as a function η :P∗ → {S�C}. Because G∗ is a
tree, for each t ∈ T \ 0, there is a unique 0 − t path Pt : 0 = st0 → st1 → ·· · → stnt = t in G∗.
So we can rewrite η as a function η :T → {S�C}, where η(t)= η(Pt). Define

Tη = {
t ∈ T : [∀s ∈ T� (s� t) ∈E′ ⇒ η(s)= C] and [η(t)= S]}�

Let Eη be the seller’s expected payoff to strategy η in the game against nature. Then,
using the fact that �0 =�st0 = 1,

Eη =
∑
t∈Tη

(
nt∏
i=1

�sti
�sti−1

)
vt =

∑
t∈Tη

vt�t�

For any strategy η, define qηt = 1 if either t ∈ Tη or there exists s ∈ Tη with (s� t) ∈ E′.
Otherwise, define qηt = 0. Then qη is feasible in (47)–(50). For all (t� s) ∈ E′, let Pt�s : t =
r
t�s
0 → ·· · → r

t�s
nt�s = s be the unique s− t path inG∗. Then

∑
t∈V

q
η
t ψ̂(t)πt =

∑
t∈Tη

∑
s∈Dt

ψ̂(s)πs =
∑
t∈Tη

∑
s∈Dt

(
vs −

∑
r : (s�r)∈E∗

(vr − vs)�r
πs

)
πs

=
∑
t∈Tη

[
vtπt +

∑
s∈Dt\t

([
vrt�snt

+
nt�s∑
i=1

(vrt�si
− vrt�si−1

)

]
πs

)]
=

∑
t∈Tη

vt�t =Eη�

where the third equality follows by separating and regrouping the terms multi-
plying each probability πs, and the last equality follows from the fact that vrt�snt

+
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i=1(vrt�si

− vrt�si−1
)= vs. So qη achieves the objective function value Eη. Next, choose any

deterministic feasible solution q to (47)–(50) (i.e., a feasible solution such that qt ∈ {0�1}
for all t); then the strategy η defined by η(t) = S if qt = 1 and by η(t) = C otherwise is
such that q= qη. That this is so depends on the monotonicity constraints (48). Lemma 6
and the fact—explained in the proof of Proposition 4—that the program (47)–(50) admits
a deterministic optimum now imply that the backward induction solution to the game
achieves the seller’s optimal revenue in the primal (3)–(6). The remaining claims in the
proposition are straightforward to verify. �
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