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Bayes correlated equilibrium and
the comparison of information structures in games

Dirk Bergemann
Department of Economics, Yale University

Stephen Morris
Department of Economics, Princeton University

A game of incomplete information can be decomposed into a basic game and an
information structure. The basic game defines the set of actions, the set of pay-
off states, the payoff functions, and the common prior over the payoff states. The
information structure refers to the signals that the players receive in the game.
We characterize the set of outcomes that can arise in Bayes Nash equilibrium if
players observe the given information structure but may also observe additional
signals. The characterization corresponds to the set of (a version of) incomplete
information correlated equilibria, which we dub Bayes correlated equilibria. We
identify a partial order on many-player information structures (individual suffi-
ciency) under which more information shrinks the set of Bayes correlated equilib-
ria. This order captures the role of information in imposing (incentive) constraints
on behavior.
Keywords. Correlated equilibrium, incomplete information, Bayes Nash equi-
librium, Bayes correlated equilibrium, robust predictions, information structure,
sufficiency, Blackwell ordering.

JEL classification. C72, D82, D83.

1. Introduction

1.1 Motivation and results

We investigate behavior in a given game of incomplete information, where the latter is
described by a “basic game” and by an “information structure.” The basic game refers
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to the set of actions, the set of payoff states, the utility functions of the players, and the
common prior over the payoff states. The information structure refers to the type space
of the game, which is generated by a mapping from the payoff states to a probability
distribution over types or signals. We ask what might happen in equilibrium if players
may have access to additional signals beyond the given information structure. We show
in Theorem 1 that behavior corresponds to a Bayes Nash equilibrium for some extra
information that the players might observe if and only if it is an incomplete information
version of correlated equilibrium that we dub Bayes correlated equilibrium.

A decision rule specifies a distribution over actions for each type profile and payoff
state. A decision rule is a Bayes correlated equilibrium if it satisfies an obedience con-
dition: a player does not have an incentive to deviate from the action recommended
by the decision rule if he knows only his type and the action recommendation. There
are a number of reasons why the notion of Bayes correlated equilibrium and its char-
acterization result are of interest. First, it allows the analyst to identify properties of
equilibrium outcomes that are going to hold independently of features of the informa-
tion structure that the analyst does not know; in this sense, properties that hold in all
Bayes correlated equilibria of a given incomplete information game constitute robust
predictions. Second, it provides a way to partially identify parameters of the underly-
ing economic environment independently of knowledge of the information structure.
Third, it provides an indirect method of identifying socially or privately optimal infor-
mation structures without explicitly working with a space of all information structures.
In Bergemann and Morris (2013b), we illustrate these uses of the characterization result
in a particular class of continuum player—linear best response games—focussing on
normal distributions of types and actions, and symmetric information structures and
outcomes. In this paper, we focus on game theoretic foundations.1

The separation between the basic game and the information structure enables us to
ask how changes in the information structure affect the equilibrium set for a fixed basic
game. A second contribution of this paper is that (i) we introduce a statistical partial or-
der on information structures—called individual sufficiency—that captures intuitively
when one information structure contains more information than another, and (ii) we
show that the set of Bayes correlated equilibria shrinks in all games if and only if the in-
formativeness of the information structure increases. Thus, if the information structure
of the players contains more information, then a smaller set of outcomes is incentive
compatible.

To describe the order on information structures, it is useful to note that a one-player
version of an information structure is an “experiment” in the sense studied by Blackwell
(1951, 1953). An experiment consists of a set of signals and a mapping from states to
probability distributions over signals. Suppose that we are interested in comparing a
pair of experiments. A combination of the two experiments is a new experiment where
a pair of signals—one from each experiment—is observed and the marginal probability
over signals from each of the original experiments corresponds to the original distribu-
tion over signals for that experiment. One way to characterize the classic sufficiency

1We report an example in the Appendix that illustrates both Bayes correlated equilibrium and these ap-
plications in the context of a finite game and thus the setting of this paper.
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condition of Blackwell (1951) is the following: one experiment is sufficient for another if
it is possible to construct a combined experiment such that the former experiment is a
sufficient statistic for the combined experiment.

Our partial order on (many-player) information structures is a player-by-player gen-
eralization of sufficiency. One information structure is individually sufficient for an-
other if there exists a combined information structure where each player’s signal from
the former information structure is a sufficient statistic for the state and other players’
signals in the latter information structure. This partial order has a couple of key prop-
erties, each generalizing well known properties in the one-player case, that suggest that
it is the “right” ordering on (many-player) information structures. First, two informa-
tion structures are individually sufficient for each other if and only if they have the same
canonical representation, where signals are identified with higher-order beliefs about
states. Second, one information structure is individually sufficient for another if and
only if it is possible to start with the latter information structure and then have each
player observe an extra signal, so that the expanded information structure has the same
canonical representation as the former information structure.

We analyze an “incentive ordering” on information structures: an information struc-
ture is more incentive constrained than another if it gives rise to a smaller set of Bayes
correlated equilibria. Our main result, Theorem 2, is that one information structure is
more incentive constrained than another if and only if the former is individually suffi-
cient for the latter. Thus we show the equivalence between a statistical ordering and an
incentive ordering.

Blackwell’s theorem showed that if one experiment was sufficient for another, then
making decisions based on the former experiment allows a decision maker to attain a
richer set of outcomes, and thus higher ex ante utility. Thus Blackwell’s theorem showed
the equivalence of a “statistical ordering” on experiments (sufficiency) and a “feasibility
ordering” (more valuable than). Our main result, restricted to the one-player case, has
a natural interpretation and shows an equivalence between a statistical ordering and
an incentive ordering, and thus can be seen as an extension of Blackwell’s theorem. To
further understand the connection to Blackwell’s theorem, we also describe a feasibility
ordering on many-player information structures and establish in Theorem 3 that it is
equivalent to individual sufficiency and is “more incentive constrained than.”

Taken together, our main result and discussion of the relation to Blackwell’s theorem
highlight the dual role of information. By making more outcomes feasible, more infor-
mation allows more outcomes that can occur. By adding incentive constraints, more
information restricts the set of equilibrium outcomes that do occur. The same partial
order–individual sufficiency, reducing to sufficiency in the one-player case, captures
both roles of information simultaneously.

1.2 Related literature

Hirshleifer (1971) showed how information might be damaging in a many-player context
because it removed options to insure ex ante. In mechanism design, it is well understood
how more information may reduce the set of attainable outcomes by adding incentive
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constraints. Our result on the incentive constrained ordering can be seen as a formaliza-
tion of the idea behind the observation of Hirshleifer (1971): we give a general statement
of how more information creates more incentive constraints and thus reduces the set of
incentive compatible outcomes.

Aumann (1974, 1987) introduced the notion of correlated equilibrium in games with
complete information and a number of definitions of correlated equilibrium in games
with incomplete information have been suggested, notably in Forges (1993, 2006).
A maintained assumption in that literature, which we dub join feasibility, is that play
can only depend on the combined information of all the players. This restriction is nat-
ural under the maintained assumption that correlated equilibrium is intended to cap-
ture the role of correlation of the players’ actions but not unexplained correlation with
the state of nature. Our different motivation leads us to allow such unexplained correla-
tion. Liu (2015) also relaxes the join feasibility assumption, but imposes a belief invari-
ance assumption (introduced and studied in combination with join feasibility in Forges
1993, 2006), requiring that, from each player’s point of view, the action recommenda-
tion that he receives from the mediator not change his beliefs about others’ types and
the state. Intuitively, the belief invariant Bayes correlated equilibria of Liu (2015) capture
the implications of common certainty of rationality and a fixed information structure,
while our Bayes correlated equilibria capture the implications of common certainty of
rationality and the fact that the players have observed at least the signals in the informa-
tion structure, and possibly additional information.

Gossner (2000) introduced a partial order on information structures, expressed in
statistical terms, that characterized when the set of outcomes that can arise in Bayes
Nash equilibrium shrinks going from one information structure to another. We per-
form the analogous exercise for Bayes correlated equilibrium. The analysis of the Bayes
Nash equilibrium inevitably conflated issues of incentives—more information imposes
more incentive constraints—and feasibility—more information allows more things to
happen. As a result, the statistical partial order of Gossner (2000) never ranks infor-
mation structures corresponding to different beliefs and higher-order beliefs about the
state; it simply characterizes when one information structure permits more correlation
than another.2 In contrast, the notion of Bayes correlated equilibrium abstracts from
feasibility considerations by construction. In fact, we show that mere correlation pos-
sibilities are irrelevant in our partial order and information structures are ranked based
only on beliefs and higher-order beliefs about the state. Nonetheless, our arguments are
closest to those of Gossner (2000), as our main result can be seen as removing feasibil-
ity considerations from his main argument. Lehrer et al. (2013) study solution concepts
that are intermediate between Bayes correlated equilibrium and Bayes Nash equilib-
rium, and provide partial characterizations of how the set of equilibrium outcomes vary
with the information structure.

2The main result in Gossner (2000) is about complete information games, but our discussion of Gossner
(2000) here and in the rest of the paper refers to Section 6 and Theorem 17, which briefly reports the ex-
tension to incomplete information. See Cherry and Smith (2012) for an alternative approach to Gossner’s
question in the complete information case.
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Our characterization result also has an important one-player analogue. Consider
a decision maker who has access to an experiment, but may have access to more in-
formation. The joint distribution of actions, signals, and states that might result in
a given decision problem is equal to the set of one-player Bayes correlated equilibria.
Such one-player Bayes correlated equilibria have already arisen in a variety of contexts.
Kamenica and Gentzkow (2011) consider the problem of cheap talk with commitment
(“Bayesian persuasion”). So as to understand the behavior that a sender/speaker can
induce a receiver/decision maker to choose, one must first characterize all outcomes
that can arise for some committed cheap talk (independent of the objectives of the
speaker). This, in our language, is the set of one-player Bayes correlated equilibria in
the case of a null experiment (where the information structure of the receiver is simply
the common prior over the payoff states and hence contains null additional informa-
tion). In this sense, our work provides an approach for studying a many receiver version
of Kamenica and Gentzkow (2011) where receivers have prior information. Kamenica
and Gentzkow (2011) is based on a concavification argument introduced in the study
of repeated games by Aumann et al. (1995).3 Thus our work can be seen as an exten-
sion of Aumann (1987) to environments with incomplete information by extending the
analysis of Aumann et al. (1995) to many players and general, many-player, information
structures.

Our main result concerns an ordering on information structures based on the idea
that more information reduces the set of outcomes by imposing more incentive con-
straints, i.e., an incentive ordering. By contrast, for the one-player case, Blackwell (1951)
characterized an order on information structures based on the idea that more infor-
mation increases the set of feasible outcomes, and thus increases the set of attainable
payoffs, i.e., a feasibility ordering. Lehrer et al. (2010) propose a natural way to study
feasibility orderings in the many-player case: see what can happen in equilibria in com-
mon interest games under different solution concepts. If we look for the best (com-
mon) payoff under feasible strategy profiles (under a given solution concept), then more
information, by making more outcomes feasible, will lead to a higher maximum com-
mon payoff. They characterize the ordering on information structures that increases
the maximum payoff in all common interest games, for different solution concepts. The
relevant ordering on information structures varies with the feasibility constraints built
into the solution concept. It is an easy corollary of the results of Lehrer et al. (2010)
that an information structure is individually sufficient for another if and only if, in any
common interest game, the maximum payoff attainable in belief invariant Bayes cor-
related equilibrium (as defined above) is weakly higher under the former information
structure than under the latter information structure. Thus our feasibility result, The-
orem 3, follows Lehrer et al. (2010, 2013) in showing that the same ordering on infor-

3Aumann et al. (1995) showed that in infinitely repeated zero sum games with one sided uncertainty
and without discounting, the outcome of the repeated game is as if the informed player can commit to
reveal only certain information about the state in the corresponding static game. They then showed that a
concavification of the complete information payoff function yields the complete characterization of the set
of feasible payoffs in the one-player game of private information.



492 Bergemann and Morris Theoretical Economics 11 (2016)

mation structures that is relevant for incentive orderings is also relevant for feasibility
orderings.4

The structure of the remainder of the paper is as follows. In Section 2, we define the
notion of Bayes correlated equilibrium for a general finite game and establish the first re-
sult, Theorem 1, showing the relationship between Bayes correlated equilibria and Bayes
Nash equilibria of games with more information. In Section 3, we describe a many-
player generalization of the sufficiency ordering of information structures, dubbed in-
dividual sufficiency. We also relate individual sufficiency to beliefs and higher-order be-
liefs, and illustrate the different notions with binary information structures. In Section 4,
we present the second result, Theorem 2, which establishes an equivalence between the
incentive based ordering and the statistical ordering. In Section 5, we place Bayes corre-
lated equilibrium in the context of the literature on incomplete information correlated
equilibrium, discuss the relation to alternative orderings on information structures, in-
cluding feasibility orderings and Blackwell’s theorem, and show how our results can be
used to give a many-player approach to Bayesian persuasion.

2. Bayes correlated equilibrium

2.1 Definition

There are I players, 1�2� � � � � I, and we write i for a typical player. There is a finite set of
states,�, and we write θ for a typical state. A basic game G consists of (i) for each player
i, a finite set of actions Ai, where we write A=A1 × · · · ×AI , and a utility function ui :
A×�→R, and (ii) a full support common prior ψ ∈ �++(�). ThusG= ((Ai�ui)Ii=1�ψ).
An information structure S consists of (i) for each player i, a finite set of signals (or types)
Ti, where we write T = T1 × · · · × TI , and (ii) a signal distribution π : �→ �(T). Thus
S = ((Ti)

I
i=1�π). A possible (and natural) information structure is the null information

structure in which each player’s set of signals Ti is a singleton, Ti = {ti}. This corresponds
to the situation in which each player has no information over and above the common
prior ψ.

Together, the basic game G and the information structure S define a standard in-
complete information game. This division of an incomplete information game into the
basic game and the information structure has now been widely used (see, for example,
Gossner 2000).

A decision rule in the incomplete information game (G�S) is a mapping σ :

σ : T ×�→ �(A)� (1)

One way to mechanically understand the notion of the decision rule is to view σ as the
strategy of an omniscient mediator who first observes the realization of θ ∈ � chosen
according toψ and the realization of t ∈ T chosen according to π(·|θ), and then picks an
action profile a ∈A and privately announces to each player i the draw of ai. For players
to have an incentive to follow the mediator’s recommendation in this scenario, it would
have to be the case that the recommended action ai was always preferred to any other

4Gossner (2010) also highlights the dual role of information in a different analytic setting.
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action a′
i conditional on the signal ti that player i had received and his knowledge of the

recommended action ai. This is reflected in the following “obedience” condition.

Definition 1 (Obedience). Decision rule σ is obedient for (G�S) if, for each i= 1� � � � � I,
ti ∈ Ti, and ai ∈Ai, we have∑
a−i�t−i�θ

ψ(θ)π((ti� t−i)|θ)σ((ai� a−i)|(ti� t−i)� θ)ui((ai� a−i)� θ)

≥
∑

a−i�t−i�θ
ψ(θ)π((ti� t−i)|θ)σ((ai� a−i)|(ti� t−i)� θ)ui((a′

i� a−i)� θ)

for all a′
i ∈Ai.

Our definition of Bayes correlated equilibrium requires obedience and nothing else.

Definition 2 (Bayes correlated equilibrium). A decision rule σ is a Bayes correlated
equilibrium (BCE) of (G�S) if it is obedient for (G�S).

If there is complete information, i.e., if � is a singleton, then this definition re-
duces to the Aumann (1987) definition of correlated equilibrium for a complete infor-
mation game. If S is the null information structure, then this is essentially the “universal
Bayesian solution” of Forges (1993). If, in addition, there is only one player, then this
definition reduces to behavior in the concavification problem of Aumann et al. (1995)
and the Bayesian persuasion of Kamenica and Gentzkow (2011). We postpone until Sec-
tion 5 a discussion of these connections and how this definition relates to (and is in
general weaker than) other definitions in the literature on incomplete information cor-
related equilibrium. We provide our motivation for studying this particular definition
next.

Consider an analyst who had the following knowledge:

1. The basic game G describes actions, payoff functions depending on states, and a
prior distribution on states.

2. The players observe at least information structure S, but may observe more.

3. The players’ actions constitute a Bayes Nash equilibrium given the actual informa-
tion structure.

What joint distributions of actions, signals (in the original information structure, S),
and states can arise in such an equilibrium? We will formalize this question and show
that the answer is the set of Bayes correlated equilibria of (G�S).

We first note the standard definition of Bayes Nash equilibrium in this setting. A (be-
havioral) strategy for player i in the incomplete information game (G�S) is βi : Ti →
�(Ai).
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Definition 3 (Bayes Nash equilibrium). A strategy profileβ is a Bayes Nash equilibrium
(BNE) of (G�S) if for each i= 1� � � � � I, ti ∈ Ti, and ai ∈Ai with βi(ai|ti) > 0, we have

∑
a−i�t−i�θ

ψ(θ)π((ti� t−i)|θ)
(∏
j �=i
βj(aj|tj)

)
ui((ai� a−i)� θ)

≥
∑

a−i�t−i�θ
ψ(θ)π((ti� t−i)|θ)

(∏
j �=i
βj(aj|tj)

)
ui((a

′
i� a−i)� θ)

for each a′
i ∈Ai.

2.2 Foundations

We want to discuss situations where players observe more information than that con-
tained in a given information structure. To formalize this, we use the concept of combi-
nations of information structures. If we have two information structures S1 = (T 1�π1)

and S2 = (T 2�π2), we will say that information structure S∗ = (T ∗�π∗) is a combination
of information structures S1 and S2 if the combined information structure S∗ = (T ∗�π∗)
is obtained by forming a product space of the signals, T ∗

i = T 1
i × T 2

i for each i, and a
signal distribution π∗ : �→ �(T 1 × T 2) that preserves the marginal distribution of its
constituent information structures.

Definition 4 (Combination). The information structure S∗ = (T ∗�π∗) is a combination
of information structures S1 = (T 1�π1) and S2 = (T 2�π2) if

T ∗
i = T 1

i × T 2
i for each i

and ∑
t2∈T 2

π∗(t1� t2|θ) = π1(t1|θ) for each t1 ∈ T 1 and θ ∈�
∑
t1∈T 1

π∗(t1� t2|θ) = π2(t2|θ) for each t2 ∈ T 2 and θ ∈��

Note that the above definition places no restrictions on whether signals t1 ∈ T 1 and
t2 ∈ T 2 are independent or correlated, conditional on θ, under π∗. Thus any pair of
information structures S1 and S2 will have many combined information structures.

Definition 5 (Expansion). An information structure S∗ is an expansion of S1 if S∗ is a
combination of S1 and some other information structure S2.

Suppose strategy profile β was played in (G�S∗), where S∗ is a combination of two
information structures S1 and S2. Now, if the analyst did not observe the signals of the
combined information structure S∗, but only the signals of S1, then the behavior under
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the strategy profile β would induce a decision rule for (G�S1). Formally, the strategy
profile β for (G�S∗) induces the decision rule σ for (G�S1):

σ(a|t1� θ) �=
∑
t2∈T 2 π∗(t1� t2|θ)∏I

j=1βj(aj|t1j � t2j )
π1(t1|θ)

for each a ∈A whenever π1(t1|θ) > 0.

Theorem 1. A decision rule σ is a Bayes correlated equilibrium of (G�S) if and only if,
for some expansion S∗ of S, there is a Bayes Nash equilibrium of (G�S∗) that induces σ .

Thus this is an incomplete information analogue of the Aumann (1987) characteri-
zation of correlated equilibrium for complete information games. An alternative inter-
pretation of this result, following Aumann (1987), would be to say that BCE captures the
implications of common certainty of rationality (and the common prior assumption) in
the gameGwhen players have at least information S, since requiring BNE in some game
with expanded information is equivalent to describing a belief closed subset where the
game G is being played, players have access to (at least) information S, and there is
common certainty of rationality.5

In the Appendix, we provide an example to illustrate the theorem. The example also
demonstrates the usefulness of the characterization for identifying which expansion of
the information structure is most desirable for the players of the game. In particular,
public disclosure is optimal in games with strategic complementarities while private
disclosure is optimal in games with strategic substitutes.

The proof follows the logic of the classic result of Aumann (1987) for complete infor-
mation and that of Forges (1993) for the Bayesian solution for incomplete information
games (discussed in Section 5).

Proof of Theorem 1. Suppose that σ is a Bayes correlated equilibrium of (G�S).
Thus∑
a−i�t−i�θ

ψ(θ)π((ti� t−i)|θ)σ((ai� a−i)|(ti� t−i)� θ)ui((ai� a−i)� θ)

≥
∑

a−i�t−i�θ
ψ(θ)π((ti� t−i)|θ)σ((ai� a−i)|(ti� t−i)� θ)ui((a′

i� a−i)� θ)

for each i, ti ∈ Ti, ai ∈Ai, and a′
i ∈Ai. Let S∗ = ((T ∗

i )
I
i=1�π

∗) be an expansion of S, and,
in particular, a combination of S = ((Ti)

I
i=1�π) and S′ = ((T ′

i )
I
i=1�π

′), where T ′
i =Ai for

each i and π∗ satisfies

π∗((ti� ai)Ii=1|θ)= π(t|θ)σ(a|t� θ) (2)

5See Bergemann and Morris (2014b) for more on the relationship between Theorem 1 and the epistemic
foundations of game theory literature.



496 Bergemann and Morris Theoretical Economics 11 (2016)

for each t ∈ T , a ∈A, and θ ∈�. Now, in the game (G�S∗), consider the ”truthful” strat-

egy β∗
j for player j, with

β∗
j (a

′
j|(tj� aj))=

{
1 if a′

j = aj
0 if a′

j �= aj� (3)

for all tj ∈ Tj and aj ∈Aj . Now the interim payoff to player i observing signal (ti� ai) and

choosing action a′
i in (G�S∗) if he anticipates that each opponent will follow strategy β∗

j

is proportional to

∑
a′

−i�a−i�t−i�θ
ψ(θ)π∗((ti� t−i)� (ai� a−i)|θ)

(∏
j �=i
β∗
j (a

′
j|tj� aj)

)
ui((a

′
i� a

′
−i)� θ)

=
∑

a−i�t−i�θ
ψ(θ)π∗((ti� t−i)� (ai� a−i)|θ)ui((a′

i� a−i)� θ) [by (3)]

=
∑

a−i�t−i�θ
ψ(θ)π((ti� t−i)|θ)σ((ai� a−i)|(ti� t−i)� θ)ui((a′

i� a−i)� θ) [by (2)]

and thus Bayes Nash equilibrium optimality conditions for the truth telling strategy pro-

file β∗ are implied by the obedience conditions on σ . By construction, β induces σ .

Conversely, suppose thatβ is a Bayes Nash equilibrium of (G�S∗), where S∗ is a com-

bined information structure for S and S′. Write σ : T ×�→ �(A) for the decision rule

for (G�S) induced by β, so that

π(t|θ)σ(a|t� θ)=
∑
t ′∈T ′

π∗((ti� t ′i)
I
i=1|θ)

I∏
j=1

βj(aj|tj� t ′j)

for each t ∈ T , a ∈A, and θ ∈�. Now βi(ai|(ti� t ′i)) > 0 implies

∑
a−i�t−i�t ′−i�θ

ψ(θ)π∗((ti� t ′i)
I
i=1|θ)

(∏
j �=i
βj(aj|tj� t ′j)

)
ui((ai� a−i)� θ)

≥
∑

a−i�t−i�t ′−i�θ
ψ(θ)π∗((ti� t ′i)

I
i=1|θ)

(∏
j �=i
βj(aj|tj� t ′j)

)
ui((a

′
i� a−i)� θ)

for each i, ti ∈ Ti, t ′i ∈ T ′
i , and a′

i ∈Ai. Thus

∑
t ′i

βi(ai|(ti� t ′i))
∑

a−i�t−i�t ′−i�θ
ψ(θ)π∗((ti� t ′i)

I
i=1|θ)

(∏
j �=i
βj(aj|tj� t ′j)

)
ui((ai� a−i)� θ)

≥
∑
t ′i

βi(ai|(ti� t ′i))
∑

a−i�t−i�t ′−i�θ
ψ(θ)π∗((ti� t ′i)

I
i=1|θ)

(∏
j �=i
βj(aj|tj� t ′j)

)
ui((a

′
i� a−i)� θ)
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for each i, ti ∈ Ti and a′
i ∈Ai. But

∑
t ′i

βi(ai|(ti� t ′i))
∑

a−i�t−i�t ′−i�θ
ψ(θ)π∗((ti� t ′i)

I
i=1|θ)

(∏
j �=i
βj(aj|tj� t ′j)

)
ui((a

′
i� a−i)� θ)

=
∑

a−i�t−i�θ
ψ(θ)π((ti� t−i)|θ)σ((ai� a−i)|(ti� t−i)� θ)ui((a′

i� a−i)� θ)

and thus BNE equilibrium conditions in (G�S∗) imply the obedience conditions of σ in
(G�S). �

3. A partial order on information structures

We will study the following partial order on information structures. An information
structure S is individually sufficient for S′ if each player’s probability of his signal un-
der S′ conditional on his signal under S is independent of the state and others’ signals
in S. To be more precise, we require that these player-by-player conditional indepen-
dence properties hold in some “combined information structure”—a probability space
that embeds both information structures; we formally defined a combined information
structure in Definition 4 in the previous section. Thus we have the following definition.

Definition 6 (Individual sufficiency). Information structure S = (T�π) is individually
sufficient for information structure S′ = (T ′�π ′) if there exists a combined information
structure S∗ = (T ∗�π∗) such that, for each i,

Pr(t ′i|ti� t−i� θ) �=
∑
t ′−i
π∗((ti� t−i)� (t ′i� t

′
−i)|θ)∑

t̃ ′i�t
′
−i
π∗((ti� t−i)� (̃t ′i� t

′
−i)|θ)

is independent of t−i and θ (4)

whenever the denominator is nonzero.

Thus, for each player i, the probability of t ′i conditional on ti is independent of
(t−i� θ). In the one-player special case, individual sufficiency reduces to the sufficiency
ordering on experiments of Blackwell (1951, 1953). An equivalent way to state the condi-
tion, using the pairwise Markov property of conditional independence, is that, for each
player i, the probability of (t−i� θ) conditional on ti is independent of t ′i .

6 Thus the key
property of this extension of Blackwell’s order is that an agent’s signal t ′i in the com-
bined information structure S∗ neither provides new information about θ relative to ti
nor provides new information about t−i. Thus while the signals t ′i may be correlated
across agent, i.e., with t ′−i, they do not convey any additional information about beliefs
and higher-order beliefs represented by (t−i� θ). Crucially, while we only require the con-
ditional independence properties to hold player-by-player, we do require them to hold

6In Bergemann and Morris (2014a) we give a third equivalent definition of individual sufficiency that
extends the Markov kernel statement of sufficiency of Blackwell (1951, 1953) to the many-player version of
individual sufficiency.
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in the same combined information structure. We postpone until Section 5.2 a discus-
sion of alternative extensions of the Blackwell order to the many-player case and how
they have been used in the existing literature.

The partial order of individual sufficiency inherits two key properties of Blackwell’s
order in the one-player case. First, for any given experiment (i.e., one-player informa-
tion structure), we can define its canonical representation to be the one where we merge
signals that give rise to the same posterior over states and label signals according to their
posteriors over states; two experiments are sufficient for each other if and only if they
have the same canonical representation. Second, if you start with an experiment, and
then the decision maker observes an additional signal, then the combined experiment
is trivially sufficient for the original experiment. But a converse is also true. If an exper-
iment is sufficient for another, then we can start with the latter experiment, provide an
additional signal to the player, and show that the combined experiment has the same
canonical representation as the former.

To state the many-player analogues of these two properties, recall that Mertens and
Zamir (1985) defined a canonical representation of a many-player information struc-
ture, a universal type space, to be one where we merge types with the same beliefs
and higher-order beliefs about the state and label types according to their beliefs and
higher-order beliefs about the state, and that we defined an “expansion” of an informa-
tion structure S to be the combination of S with any other information structure. Now
we have the following claim.

Claim 1. (i) Two information structures are individually sufficient for each other if and
only if they have the same canonical representation.7

(ii) Information structure S is individually sufficient for S′ if and only if there exists an
expansion of S′ that has the same canonical representation as S.

We now report two examples that we will use to illustrate the ordering and these two
properties.8 We will return to them when we discuss the relation to alternative orderings.
For both examples, we assume that there are two possible states, θ0 and θ1.

Example 1. The first comparison illustrates the irrelevance of access to correlating de-
vices, i.e., information that is “redundant” in the sense of Mertens and Zamir (1985). Ex-
amples such as this have been leading examples in the literature; see Dekel et al. (2007),
Ely and Pęski (2006), and Liu (2015). Let S be a null information structure where each

7Showing this is equivalent to showing that if two information structures are individually sufficient for
each other, then one can use the same combined information structure to verify this. This was shown by
Liu (2015) and is an implication of arguments in Lehrer et al. (2013). In an earlier version of this paper
(Bergemann and Morris 2014a), we reported a formal statement and proof of these claims in our language.

8Thus, strictly speaking, individual sufficiency per se forms a preorder and becomes a partial order after
restricting attention to the equivalence classes suggested by the canonical representation above.
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player has only one possible signal that is always observed. Let S′ be given by

π ′(·|θ0) t ′0 t ′1
t ′0

1
2 0

t ′1 0 1
2

π ′(·|θ1) t ′0 t ′1
t ′0 0 1

2
t ′1

1
2 0

�

where each player observes one of two signals, t ′0 and t ′1; the above tables describe the
probabilities of different signal profiles, where player 1’s signal corresponds to the row,
player 2’s signal corresponds to the column, the left and right hand tables correspond to
the distribution of signal profiles in states θ0 and θ1, respectively, and the table entries
correspond to the conditional probabilities of those signal profiles.

In this case, there is a unique combined information structure (because signals in
S are redundant). Each information structure is individually sufficient for the other,
because each player’s signal in S′ gives no additional information about the state (and
the redundant signal of the other player in S). Thus there is common certainty that
each player assigns probability 1

2 to each state. This example illustrates the first part of
Claim 1. ♦

This example may suggest that individual sufficiency can be checked by first remov-
ing redundancies and then checking “informativeness” player-by-player. The next ex-
ample is the simplest possible to illustrate that this is not the case and that individual
sufficiency is a more subtle relation.

Example 2. We now compare two new information structures with the same signal sets
and labels that we used previously. Let information structure S be given by

π(·|θ0) t0 t1

t0
1
2 0

t1 0 1
2

π(·|θ1) t0 t1

t0 0 0
t1 0 1

� (5)

Under information structure S, if the state is θ0, with probability 1
2 , it is common knowl-

edge that the state is θ0 (and both players observe signal t0); otherwise, both players
observe t1. Consider now a second binary information structure S′given by

π ′(·|θ0) t ′0 t ′1
t ′0

1
2

1
6

t ′1
1
6

1
6

π ′(·|θ1) t ′0 t ′1
t ′0

1
3 0

t ′1 0 2
3

� (6)

In the information structure S′, each player observes a signal with “ accuracy” 2
3 in either

state: that is, if the state is θ0, then each player observes t ′0 with probability 2
3 ; if the state

is θ1, then each player observes t ′1 with probability 2
3 . But in state θ1, the signals are

perfectly correlated across players, whereas in state θ0, the signals are less than perfectly
correlated.
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Neither of these two information structures has any redundancies, but S is individ-

ually sufficient for S′. We can illustrate our characterization by identifying a combined

information structure S∗ that can be used to establish individually sufficiency:

π∗(·|θ0) t ′0t
′
0 t ′0t

′
1 t ′1t

′
0 t ′1t

′
1

t0t0
1
2 0 0 0

t1t1 0 1
6

1
6

1
6

π∗(·|θ1) t ′0t
′
0 t ′0t

′
1 t ′1t

′
0 t ′1t

′
1

t1t1
1
3 0 0 2

3

If we look at the marginal of π∗ on signals from S, we obtain (5), whereas if we look

at the marginal of π∗ on signals from S′, we get (6). The following table reports the

conditional probabilities necessary to verify individual sufficiency: the rows correspond

to the three triples consisting of player 1’s type in S, player 2’s type in S, and the state that

arises with positive probability; the columns correspond (for either player, by symmetry)

to the player’s type in information structure S′ and the table entries correspond to the

probability of the latter conditional on the former:

t ′0 t ′1
t0t0θ0 1 0
t1t1θ0

1
3

2
3

t1t1θ1
1
3

2
3

Since, for any player, the probability of his signal under S′ conditional on his signal un-

der S is independent of the other player’s signal under S and the state, the conditional

independence property (4) is verified.

We can also illustrate the second part of Claim 1 by verifying that the combined in-

formation structure has the same canonical representation as S. Suppose that the two

states are equally likely and we start out with information structure S′. Suppose that

players are then given an additional public signal: if the true state is θ0 and both ob-

served signal t ′0, then both will observe signal t0; otherwise both will observe signal t1.

This expansion of information structure S′ corresponds to the combined information

structure S∗. If players observe t0, then there is common certainty that the state is θ0.

If players observe t1, then one can verify that there is common certainty that both play-

ers assign probability 1
3 to state θ0 (independent of what signals in S′ they started out

with).

To formally verify this, note that in the combined information structure S∗, each

player has three possible types (or combined types) that are a combination of types in

S and S′ : t∗ ∈ {t0t ′0� t1t ′0� t1t ′1}. We can rearrange the representation of the combined in-

formation structure S∗ in the following table: rows correspond to combined types t∗ for

S∗ (of either player), columns correspond to the possible profiles of the other player’s

combined type and state θ, and entries correspond to the conditional probabilities of
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the latter given the former:

θ0t0t
′
0 θ0t1t

′
0 θ0t1t

′
1 θ1t1t

′
0 θ1t1t

′
1

t0t
′
0 1 0 0 0 0

t1t
′
0 0 0 1

3
2
3 0

t1t
′
1 0 1

6
1
6 0 2

3

�

Now from the above table, we can see that combined types t1t ′0 and t1t ′1 both assign
probability 1

3 to state θ0 (and 2
3 to state θ1), and thus cannot be distinguished on the

basis of their first order beliefs. But we also see that combined types t1t ′0 and t1t ′1 both
assign probability 1

3 to the event that θ = θ0 and the other player assigning probability
1
3 to state 0. Thus combined types t1t ′0 and t1t ′1 cannot be distinguished on the basis of
their second order beliefs, and so on. ♦

4. Comparing information structures

Giving players more information will generate more obedience constraints and thus re-
duce in size the set of Bayes correlated equilibria. If “giving players more information”
is interpreted to mean that we expand their information structures, allowing them to
keep their previous signals and observe more, then this claim follows trivially from the
definition and characterization of Bayes correlated equilibria in Section 2. In this sec-
tion, we strengthen this observation by showing that it is also true if by “giving player
more information,” we mean that we replace their information structure with one that
is individually sufficient for it. And we prove a converse, showing that if an information
structure, S, is not individually sufficient for another, S′, then there exists a basic gameG
such that (G�S) has a Bayes correlated equilibrium that generates outcomes that could
not arise under a Bayes correlated equilibrium of (G�S′).

So as to compare outcomes across information structures, we will be interested in
what can be said about actions and states if signals are not observed. We will call a
mapping

ν :�→ �(A)�

an outcome and say ν is induced by decision rule σ if it is the marginal of σ onA, so that

ν(a|θ) �=
∑
t∈T

σ(a|t� θ)π(t|θ)

for each a ∈A and θ ∈�. Outcome ν is a Bayes correlated equilibrium outcome of (G�S)
if it is induced by a Bayes correlated equilibrium decision rule σ of (G�S).

We now define a partial order on information structures that corresponds to shrink-
ing the set of BCE outcomes in all basic games. Writing BCE(G�S) for the set of BCE
outcomes of (G�S), we can state the following definition.

Definition 7 (Incentive constrained). Information structure S is more incentive con-
strained than information structure S′ if, for all basic gamesG,

BCE(G�S)⊆ BCE(G�S′)�
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We call this partial order more incentive constrained than because, given our defi-
nition of Bayes correlated equilibrium, it captures exactly the role of information in im-
posing more incentive constraints. Thus an information structure giving rise to a smaller
set of Bayes correlated equilibria in all games corresponds to a more informed informa-
tion structure. By contrast, if we replaced Bayes correlated equilibrium in the above
definition with Bayes Nash equilibrium—which corresponds to the problem studied by
Gossner (2000)—a smaller set of Bayes Nash equilibria corresponds to a less informed
information structure as the notion of Bayes Nash equilibrium imposes strong feasibil-
ity constraints on the outcome mapping.

Theorem 2. Information structure S is individually sufficient for information structure
S′ if and only if S is more incentive constrained than S′.

We report an example illustrating the theorem in the Appendix.
To prove the result, we first show constructively that if S is individually sufficient for

S′ and ν is a BCE outcome of (G�S), then we can use the BCE decision rule inducing ν
and the combined information structure establishing individual sufficiency to construct
a decision rule of (G�S′) that induces ν. The incentive constraints under S′ are averages
of the incentive constraints under S, and therefore the incentive compatibility of the
original decision rule for (G�S) is preserved for (G�S′). Versions of this argument have
been used by Gossner (2000), Lehrer et al. (2013), and Liu (2015) to prove similar claims
working with different solution concepts and orderings on information structures.

To prove the converse, we consider, for any information structure S, a particular ba-
sic gameG and a particular BCE outcome ν of (G�S). If S is more incentive constrained
than S′, that particular ν must also be a BCE outcome of (G�S′). We then show that our
choice ofG and ν imply that if ν is a BCE outcome of (G�S′), there must exist a combined
information structure establishing that S is individually sufficient for S′. To show this,
we use the basic gameGwhere each player i is asked to report either a type in Ti (which
is associated under S with a belief over T−i×�) or an arbitrary belief over T−i×� (which
does not in general correspond to an element of Ti). Players are then given an incentive
to truthfully report their beliefs over T−i × � (which may or may not correspond to a
type in Ti) using a quadratic scoring rule.

There is a BCE of (G�S) where players “truthfully” report their types in S. This BCE
thus induces the outcome π : �→ �(T). Now consider any decision rule σ ′ for (G�S′)
that induces the same outcome π. Combining π ′ : �→ �(T ′) and σ ′ : T ′ × �→ �(T)

gives a combined information structure for S and S′ with π∗(t� t ′|θ)= π ′(t ′|θ)σ ′(t|t ′� θ).
Obedience of σ ′ in the game (G�S′) now implies that, under the combined information
structure, the beliefs of type t ′i about (t−i� θ) when recommended to take action ti must
equal the beliefs of ti about (t−i� θ) under information structure S alone. But now we
have a combined information structure establishing individual sufficiency. This heuris-
tic argument uses an infinite action basic game, and we are restricted to finite games. In
the formal proof, we use finite approximations of this infinite action game and a conti-
nuity argument to establish our result.
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This step has parallels in an similar argument in Gossner (2000).9 There are two dif-
ferences. First, and less substantively, Gossner (2000) allows general games (not just
finite games), which changes technical aspects of the argument. More importantly,
because Gossner (2000) works with the solution concept of Bayes Nash equilibrium,
feasibility constraints matter in the argument and so, in addition to establishing that
there is a combined experiment establishing individual sufficiency, the combined ex-
periment must satisfy additional properties reflecting feasibility restrictions not present
in our analysis, giving rise to a very different statistical ordering that we will discuss in
Section 5.2.

Proof of Theorem 2. Suppose that S is individually sufficient for S′. Take any basic
game G and any BCE σ of (G�S). We will construct σ ′ : T ′ ×�→ �(A), which is a BCE
of (G�S′) that gives rise to the same outcome as σ . Write Vi(ai� a′

i� ti) for the expected
utility for player i under decision rule σ if he is type ti and receives recommendation ai
but chooses action a′

i, so that

Vi(ai� a
′
i� ti)

�=
∑

a−i∈A−i�t−i∈T−i�θ∈�
ψ(θ)π((ti� t−i)|θ)σ((ai� a−i)|(ti� t−i)� θ)ui((a′

i� a−i)� θ)�

Now, by Definition 1, for each i= 1� � � � � I, ti ∈ Ti, and ai ∈Ai, we have

Vi(ai� ai� ti)≥ Vi(ai� a′
i� ti) (7)

for each a′
i ∈Ai. Since S is individually sufficient for S′, there exists a combined infor-

mation structure satisfying (4). Define σ ′ : T ′ ×�→ �(A) by

σ ′(a|t ′� θ)=
∑
t∈T π∗(t� t ′|θ)σ(a|t� θ)

π ′(t ′|θ) (8)

for all (a� t ′� θ) ∈A×T ′ ×�wheneverπ(t ′|θ) > 0 (and ifπ(t ′|θ)= 0, we are free to choose
an arbitrary probability distribution σ ′(a|t ′� θ)). By construction, decision rules σ(a|t� θ)
and σ ′(a|t ′� θ) induce the same outcome function ν : �→ �(A). Write V ′

i (ai� a
′
i� t

′
i) for

the expected utility for player i under decision rule σ ′ if he is type t ′i and receives recom-
mendation ai but chooses action a′

i, so that

V ′
i (ai� a

′
i� t

′
i)

�=
∑

a−i∈A−i�t ′−i∈T ′
−i�θ∈�

ψ(θ)π ′((t ′i� t
′
−i)|θ)σ ′((ai� a−i)|(t ′i� t ′−i)� θ)ui((a′

i� a−i)� θ)�

Now σ ′ satisfies the obedience condition (Definition 1) to be a correlated equilibrium of
(G�S′) if for each i= 1� � � � � I, t ′i ∈ T ′

i , and ai ∈Ai,

V ′
i (ai� ai� t

′
i)≥ V ′

i (ai� a
′
i� t

′
i)

9We are grateful to Marcin Peski for clarifying the connection to Gossner (2000), which also suggested
a simplification of the proof of Theorem 2. In private communication, Peski has suggested how our proof
could be unified with (a finite version of) Gossner (2000).
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for all a′
i ∈Ai. Condition (4) in the definition of individual sufficiency implies the exis-

tence of φi : Ti → �(T ′
i ) such that

φi(t
′
i|ti)π((ti� t−i)|θ)=

∑
t ′−i

π∗((ti� t−i)� (t ′i� t
′
−i)|θ) (9)

for each t ′i , ti, t−i, and θ. Now

V ′
i (ai� a

′
i� t

′
i)

=
∑

a−i∈A−i�t ′−i∈T ′
−i�θ∈�

ψ(θ)π ′((t ′i� t
′
−i)|θ)σ ′((ai� a−i)|(t ′i� t ′−i)� θ)ui((a′

i� a−i)� θ)

=
∑

a−i∈A−i�t ′−i∈T ′
−i�θ∈��t∈T

ψ(θ)π∗(t� t ′|θ)σ((ai� a−i)|t� θ)ui((a′
i� a−i)� θ)

[by the definition of σ ′; see (8)]

=
∑

a−i∈A−i�θ∈��t∈T
ψ(θ)σ((ai� a−i)|t� θ)ui((a′

i� a−i)� θ)
∑

t ′−i∈T ′
−i

π∗(t� (t ′i� t
′
−i)|θ) (10)

=
∑

a−i∈A−i�θ∈��t∈T
ψ(θ)σ((ai� a−i)|t� θ)ui((a′

i� a−i)� θ)π((ti� t−i)|θ)φi(t ′i|ti) [by (9)]

=
∑
ti∈Ti

φi(t
′
i|ti)

×
[ ∑
a−i∈A−i�θ∈��t−i∈T−i

ψ(θ)π((ti� t−i)|θ)σ((ai� a−i)|(ti� t−i)� θ)ui((a′
i� a−i)� θ)

]

=
∑
ti∈Ti

φi(t
′
i|ti)Vi(ai� a′

i� ti)�

Now for each i= 1� � � � � I, t ′i ∈ T ′
i , and ai ∈Ai,

V ′
i (ai� ai� t

′
i) =

∑
ti∈Ti

φi(t
′
i|ti)Vi(ai� ai� ti) [by (10)]

≥
∑
ti∈Ti

φi(t
′
i|ti)Vi(ai� a′

i� ti) [by (7) for each ti ∈ Ti]

= V ′
i (ai� a

′
i� t

′
i) [by (10)]

for each a′
i ∈Ai. Thus σ ′ is a BCE of (G�S′). By construction σ ′ and σ induce the out-

come ν : � → �(A). Since this argument started with an arbitrary BCE outcome ν of
(G�S) and an arbitraryG, we have BCE(G�S)⊆ BCE(G�S′) for all basic gamesG.

We now show the converse. We first introduce a notion of approximate individual
sufficiency. Fix a full support prior ψ ∈ �++(�). Let λi : Ti → �(T−i × �) denote the
induced belief of type ti about (t−i� θ) under S:

λi(t−i� θ|ti) �= ψ(θ)π((ti� t−i)|θ)∑
t̃−i�θ̃ ψ(θ̃)π((ti� t̃−i)|θ̃)

�
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For any combined information structure S∗ = (T × T ′�π∗) for S and S′, write
λπ

∗
i (t−i� θ|ti� t ′i) for the induced beliefs of player i about (t−i� θ) given a combined type
(ti� t

′
i),

λπ
∗

i (t−i� θ|ti� t ′i)
�=

∑
t ′−i
ψ(θ)π∗((ti� t−i)� (t ′i� t

′
−i)|θ)∑

t̃−i�θ̃
∑
t̃−i ψ(θ̃)π

∗((ti� t̃−i)� (t ′i� t̃
′
−i)|θ̃)

� (11)

provided that the denominator does not vanish. We say that S is ε-individually sufficient
for S′ if there exists a combined information structure S∗ = (T × T ′�π∗) with

λπ
∗

i (t−i� θ|ti� t ′i)− λi(t−i� θ|ti)≤ ε

for all such t ′i , ti, t−i, and θ that (11) is well defined.
We will now construct a finite basic game such thatGε = ((Ai�ui)Ii=1�ψ) and an out-

come ν∗ :�→ �(A) such that (i) ν∗ ∈ BCE(G�S) and (ii) ν∗ ∈ BCE(G�S′) imply that S is
ε-individually sufficient for S′. Let �i be any ε-grid of �(T−i ×�), i.e., a finite subset of
�(T−i ×�) satisfying the property that, for all ξi ∈ �(T−i ×�), there exists ξ′

i ∈ �i with

‖ξi−ξ′
i‖ ≤ ε. Now for every player i, let the set of actions beAi

�=�i ∪Ti. Write χi(ai) for
the belief over T−i×� naturally associated with ai, so χi :Ai → �(T−i×�) is defined by

χi(ai)
�=

{
λi(·|ti) if ai = ti ∈ Ti
ξi if ai = ξi ∈�i�

Now let the payoff function of each player i be

ui((ai� a−i)� θ)
�=

{
2χi(t−i� θ|ai)− ∑

t̃−i∈T−i�θ̃∈�(χi(̃t−i� θ̃|ai))2 if a−i = t−i ∈ T−i
0 if a−i /∈ T−i�

Thus if others’ actions are within T−i, utility function ui gives player i an incentive to
choose an action associated with his true beliefs via a quadratic scoring rule. More pre-
cisely, suppose player i assigns probability 1 to his opponents choosing a−i ∈ T−i and,
in particular, for some ξi ∈ �(T−i × �), assigns probability ξi(t−i� θ) to his opponents
choosing a−i = t−i ∈ T−i and the state being θ. The expected payoff to player i with this
belief overA−i ×� of choosing an action ai with χi(ai)= ξ′

i is

∑
t−i∈T−i�θ∈�

2ξ′
i(t−i� θ)

(
ξ′
i(t−i� θ)−

∑
t̃−i∈T−i�θ̃∈�

(ξ′
i(̃t−i� θ̃))

2
)

= 2
∑

t−i∈T−i�θ∈�
ξi(t−i� θ)ξ′

i(t−i� θ)−
∑

t̃−i∈T−i�θ̃∈�
(ξ′
i(̃t−i� θ̃))

2

= 2
∑

t−i∈T−i�θ∈�
ξi(t−i� θ)ξ′

i(t−i� θ)−
∑

t−i∈T−i�θ∈�
(ξ′
i(t−i� θ))

2

= (‖ξi‖2 − ‖ξ′
i − ξi‖2)�
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Now the game (G�S) has, by construction, a “truth-telling” BCE where each type ti al-
ways chooses action ti. This gives rise to an outcome ν∗ where

ν∗(a|θ)=
{
π(a|θ) if a= t ∈ T
0 otherwise.

So ν∗ is a BCE outcome of (G�S). For ν∗ to be a BCE outcome of (G�S′), there must exist
a BCE of (G�S′), σ ′ :�× T ′ → �(T), inducing ν∗. Note that formally, the BCE of (G�S′)
is specified by σ ′ : �× T ′ → �(A), but if a ∈A is such that a /∈ T , then the fact that σ ′
induces ν∗ implies that ∑

t ′∈T ′
π ′(t ′|θ)σ ′(a|t ′� θ)= 0�

Therefore, if π ′(t ′|θ) > 0, then σ ′(a|t ′� θ)= 0. Now setting

π∗(t� t ′|θ)= π′(t ′|θ)σ ′(t|t ′� θ)�
information structure S∗ = (T ×T ′�π∗) is a combined information structure for S and S′.
Obedience constraints imply that

‖λπ∗
i (·|ti� t ′i)− λi(·|ti)‖ ≤ ε�

Thus S is ε2-individually sufficient for S′.
But now S being more incentive constrained than S′ requires that BCE(Gε�S) ⊆

BCE(Gε�S′) for all such games Gε, and thus that S be ε2-individually sufficient for S′
for all ε > 0. But because the set of mappings of combined information structures,
π∗ : � → �(T × T ′), is a compact set, if S is ε2-individually sufficient for S′ for each
ε > 0, S is individually sufficient for S′. �

5. Discussion

5.1 Obedience and incomplete information correlated equilibrium

Aumann (1974, 1987) introduced the notion of correlated equilibrium for complete in-
formation games. A correlated equilibrium is a joint distribution over actions such that
each player’s action is optimal for that player if all the player knew is the action he is
playing and the joint distribution over actions. Bayes correlated equilibrium is the nat-
ural incomplete information generalization where we (i) add incomplete information
and (ii) require that players’ actions be optimal when they condition on their type as
well as their equilibrium action. This is the obedience condition. Thus Bayes correlated
equilibrium captures only the role of information in tightening obedience constraints.
Theorem 1 formalizes this motivation for studying Bayes correlated equilibrium: the so-
lution concept captures rational behavior given that players have access to the signals
in the information structure, but may have additional information.

The existing literature on incomplete information correlated equilibrium has fo-
cussed on additional restrictions on behavior that capture the idea that players are con-
strained by what information is available to them. To put our solution concept in con-
text, we report some key feasibility restrictions imposed in the literature. A decision
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rule σ is belief invariant if, for each player i, the probability distribution over player i’s
actions that it induces depends only on player i’s type, and is independent of other play-
ers’ types and the state. Writing σi : T ×�→ �(Ai) for the probability distribution over
player i’s actions induced by σ ,

σi(ai|(ti� t−i)� θ) �=
∑
a−i
σ((ai� a−i)|(ti� t−i)� θ)�

decision rule σ is belief invariant for (G�S) if, for each player i, σi(ai|(ti� t−i)� θ) is in-
dependent of t−i and θ. An equivalent statement is that player i’s beliefs about (t−i� θ)
conditional on ti do not depend on ai. In the language of mediation it says that the me-
diator’s recommendation does not give a player any additional information about the
state and other players’ types. The condition of belief invariance was introduced in this
form and so named by Forges (2006). If a decision rule σ is belief invariant for (G�S),
then players have no less but also no more information under σ and S than under in-
formation structure S. If we impose belief invariance as well as obedience on a decision
rule, we get a solution concept that was introduced in Liu (2015).

Definition 8 (Belief invariant BCE). Decision rule σ is a belief invariant Bayes corre-
lated equilibrium of (G�S) if it is obedient and belief invariant for (G�S).

Belief invariant BCE captures the implications of common knowledge of rationality
and that players know exactly the information contained in S (and no more) if the com-
mon prior assumption is maintained.10 The set of Bayes correlated equilibria of (G�S)
is the union of all belief invariant BCE of (G�S′) for all information structures S′ that are
individually sufficient for S. Liu (2015) showed that if two information structures have
the same canonical representation, then they have the same set of belief invariant Bayes
correlated equilibria. This in turn implies that they have the same set of Bayes correlated
equilibria.

Much of the literature on incomplete information correlated equilibrium started
from the premise that an incomplete information definition of correlated equilib-
rium should capture what could happen if players had access to a correlation de-
vice/mediator under the maintained assumption that the correlation device/mediator
did not have access to information that was not available to the players. We can describe
the assumption formally as follows.

Definition 9 (Join feasible). Decision rule σ is join feasible for (G�S) if σ(a|t� θ) is in-
dependent of θ.

Thus the probability of a profile of action recommendations conditional on the play-
ers’ type profile is independent of the state. If join feasibility but not belief invariance is
assumed, we get another solution concept as follows.

10Liu (2015) notes that this solution concept can be seen as the common prior analogue of the solution
concept of interim correlated rationalizability discussed by Dekel et al. (2007); see Bergemann and Mor-
ris (2014b) for a discussion of the rationalizability notion that is the noncommon prior analogue of Bayes
correlated equilibrium.
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Definition 10 (Bayesian solution). Decision rule σ is a Bayesian solution of (G�S) if it
is obedient and join feasible.

Join feasibility was implicitly assumed in Forges (1993) and other works, because it
was assumed that type profiles exhausted payoff relevant information;11

 Lehrer et al.
(2010, 2013) explicitly impose this assumption. The Bayesian solution was named by
Forges (1993) and it is the weakest version of incomplete information correlated equilib-
rium she studies. Imposing both join feasibility and belief invariance, we get a solution
concept that has been an important benchmark in the literature.

Definition 11 (Belief invariant Bayesian solution). Decision rule σ is a belief invariant
Bayesian solution of (G�S) if it is obedient, belief invariant, and join feasible.

Forges (2006) introduced this name. The other incomplete information corre-
lated equilibrium solution concepts for an incomplete information game in Forges
(1993, 2006)—communication equilibrium, agent normal form correlated equilibrium,
and strategic form correlated equilibrium—are all strictly stronger than the belief invari-
ant Bayesian solution, by imposing additional truth-telling constraints (for communica-
tion equilibrium), feasible correlation structure constraints (for agent normal form cor-
related equilibrium), and a combination of the two (for strategic form correlated equilib-
rium). Forges (1993) also discusses a “universal Bayesian solution,” which corresponds
to Bayes correlated equilibrium in the case where S is degenerate, i.e., there is no prior
information structure (beyond the common prior over payoff states).

5.2 Alternative orderings on many-player information structures and their uses

If we fix a pair of information structures S and S′, a combined information structure for
these two information structures, and a prior on states, we generate a probability distri-
bution on the space T × T ′ ×�. We can identify a variety of conditional independence
properties that we might be interested in on that space:

(i) The distribution of t ′i conditional on ti is independent of θ for each i.

(ii) The distribution of t ′i conditional on ti is independent of (t−i� θ) for each i.

(iii) The distribution of t ′i conditional on ti is independent of (t−i� t ′−i� θ) for each i.

(iv) The distribution of t ′ conditional on t is independent of θ.

In the one-player case, these four conditions are all equivalent to each other (and to
Blackwell’s order). In the many-player case, they are all different from each other. In-
tuitively, condition (i) requires only that information structure S′ conveys no new infor-
mation to any player about the state; condition (ii) requires that information structure

11The issue is discussed in Section 4.5 of Forges (1993), where she notes how analyzing a “reduced form”
game is not innocuous in general. But in many natural economic settings, type profiles do exhaust payoff
relevant information and in those cases, there is an equivalence between Bayes correlated equilibria and
Bayesian solutions. See Bergemann and Morris (2014b) for a discussion of this issue and economic settings
(such as private values environments) where join feasibility is a natural maintained assumption.
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S′ conveys no new information to any player about the state and higher-order beliefs
about the state; condition (iii) requires that information structure S′ conveys no new
information to any player about the state, higher-order beliefs about the state, and re-
dundant signals that other players may be observing; condition (iv) requires that infor-
mation structure S′ conveys no new information about the state to the players collec-
tively (combining their information) that they did not collectively possess before. The
exact relation between them is subtle: one can verify that (iii) ⇒ (ii) ⇒ (i) and (iii) ⇒ (iv)
but there are no further implications relating these conditional independence proper-
ties. In particular, in Example 2 in Section 3, information structure S was individually
sufficient for S′, and thus conditional independence (ii) was satisfied, but one can verify
that (iv) fails not only in the particular combined information structure used to establish
individual sufficiency, but also in any other combined information structure.

We can understand the related literature by comparing which conditional indepen-
dence properties are required and in which combined experiments. We showed that
information structure S gives rise to fewer Bayes correlated equilibrium outcomes than
information structure S′ if and only if there exists a combined information structure
such that (ii) holds. Gossner (2000) asked when information structure S gives rise to
fewer Bayes Nash equilibrium outcomes than information structure S′.12 He showed
that this is true if and only if there exists a combined information structure such that
two conditions hold, namely (ii) t ′i conditional on ti is independent of (t−i� θ) for each
player i, and the stronger condition (iii) in its reverse form, i.e., ti conditional on t ′i is
independent of (t−i� t ′−i� θ) for each i.13 This combination of conditions implies that S
and S′ must have the same canonical representation. Intuitively, this is because feasi-
bility considerations (implicit in the definition of Bayes Nash equilibrium) require that
information structure S′ contain at least as much information about beliefs and higher-
order beliefs as S, and incentive considerations require that S contain at least as much
information about beliefs and higher-order beliefs as S′. However, Gossner’s character-
ization also requires that S′ has more information about redundant information than S,
i.e., more correlation possibilities. Thus Gossner does not order information structures
with distinct canonical representations and shows how more redundant information,
i.e., correlation possibilities, must lead to a larger set of Bayes Nash equilibrium out-
comes. We show that redundant information does not affect the set of Bayes correlated
equilibrium outcomes and that more payoff relevant information must lead to a smaller
set of Bayes correlated equilibrium outcomes.

It is an implication of Gossner (2000) that two information structures give rise to the
same set of Bayes Nash equilibrium outcomes if and only if there is a single combined
information structure where (iii) holds (t ′i conditional on ti is independent of (t−i� t ′−i� θ)
for each i) and its reverse holds, i.e., ti conditional on t ′i is independent of (t−i� t ′−i� θ) for
each i. Lehrer et al. (2013) show that this result remains true if the conditional indepen-
dence properties hold in distinct combined information structures, i.e., there exists one
combined information structure where t ′i conditional on ti is independent of (t−i� t ′−i� θ)
for each i,14 and another combined information structure where ti conditional on t ′i is

12Gossner and Mertens (2001) and Pęski (2008) characterize the value of information in zero sum games.
13In this case, Gossner (2000) says that “there is a faithful and compatible interpretation from S to S′.”
14In this case, Lehrer et al. (2013) say that “there is an independent garbling from S to S′.”
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independent of (t−i� t ′−i� θ) for each i. Thus Lehrer et al. (2013) show that it is without
loss of generality to require that the conditional independence properties hold in the
same combined information structure.15

 Lehrer et al. (2013) also establish analogous
results for solution concepts that are intermediate between Bayes Nash equilibrium and
Bayes correlated equilibrium. Thus they show that two information structures give rise
to the same set of belief invariant Bayesian solution outcomes if and only if there ex-
ists a combined information structure where (ii) and (iv) hold,16 and another combined
information structure where the reverse properties hold.

5.3 The one-player special case and many-player Bayesian persuasion

Our results apply to the case of one player. In the one-player case, a basic game re-
duces to a decision problem, mapping actions and states to a payoff of the decision
maker. An information structure corresponds to an experiment in the sense of Blackwell
(1951, 1953). A decision rule in now a mapping from state and signals to probability
distributions over actions. A decision rule is a Bayes correlated equilibrium if it is obe-
dient. To interpret obedience, consider a decision maker who observed a signal under
the experiment and received an action recommendation chosen according to the de-
cision rule. The decision rule is obedient if he would have an incentive to follow the
recommendation. Theorem 1 states that the set of Bayes correlated equilibria for a fixed
decision problem and experiment equals the set of decision rules from a decision maker
choosing an optimal action with access to that experiment and possibly more informa-
tion (an expanded experiment). Thus Bayes correlated equilibria capture all possible
optimal behavior if the decision maker had access to the fixed experiment and perhaps
some additional information.

Now consider the case where the original information structure is degenerate (there
is only one signal, which represents the prior over the states of the world). In this case,
the set of Bayes correlated equilibria correspond to joint distributions of actions and
states that could arise under rational choice by a decision maker with any information
structure. Kamenica and Gentzkow (2011) consider a problem of Bayesian persuasion.
Suppose a “sender” could pick the experiment that the decision maker, the “receiver,”
could observe. Kamenica and Gentzkow (2011) characterize the set of joint distributions
over states and actions that the sender could induce through picking an experiment and
having the decision maker choose optimally. This set is exactly what we label Bayes
correlated equilibria. They can then analyze which (in our language) Bayes correlated
equilibrium the sender would prefer to induce in a variety of applications.

Thus if we want extend Bayesian persuasion to the case of many receivers who have
some prior information, the set of Bayes correlated equilibria is the set of outcomes that

15As we noted in footnote 7, this argument can be adapted to show that if S is individually sufficient for S′
and S′ is individually sufficient for S, we can without loss of generality establish both directions of individual
sufficiency using the same combined information structure, and thus the two information structures have
the same canonical representation.

16In this case, Lehrer et al. (2013) say that “there is a noncommunicating garbling from S to S′.”
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can be induced. In the Appendix, we report an example to illustrate optimal multiplayer
Bayesian persuasion use of our characterization.17

5.4 Feasibility and Blackwell’s theorem

Our Theorem 2 relates a statistical ordering (individual sufficiency) to an incentive or-
dering (more incentive constrained). More information leads to a smaller set of Bayes
correlated equilibria because it adds incentive constraints. Information is unambigu-
ously “bad” in the sense of reducing the set of possible outcomes. Lack of information is
never a constraint on what is feasible for players because the solution concept of Bayes
correlated equilibrium imposes no feasibility constraints on players’ behavior.

By contrast, Blackwell’s theorem relates a statistical ordering to a feasibility ordering.
In the one-player case, more information is “good” in the sense of leading to more feasi-
ble joint distributions of actions and states, and thus (in the one-player case) to higher ex
ante utility. Incentive constraints do not bind, because there is a single decision maker.
In this section, we will report a result that relates our statistical ordering to a feasibility
ordering in the many-player case. The approach and result is a straightforward variation
on the work of Lehrer et al. (2010), so we report the result without formal proof.

Say that basic game G has common interests if u1 = u2 = · · · = uI = u∗. Fix a com-
mon interest basic gameG and an information structure S. Recall from Section 5.1 that a
decision rule is belief invariant for (G�S) if, for each player, the distribution of his action
depends only on his type and is independent of others’ types and the state. Let v(G�S)
be the highest possible (common) ex ante utility that is attained by players under a belief
invariant decision rule:

v(G�S)
�= max
σ∈�B

∑
a�t�θ

ψ(θ)π(t|θ)σ(a|t� θ)u∗(a�θ)� (12)

where

�B
�= {σ : T ×�→ �(A)|σ is belief invariant for (G�S)}�

Thus we are asking what is the highest (common) payoff that players could obtain if
they were able to correlate their behavior but could only do so using correlation devices
in the sense of Liu (2015) under which a player’s action recommendation gives him no
additional information about others’ types and the state. Here the information structure
is constraining (through belief invariance) the set of joint distributions over actions and
states that can arise. Say that an information structure S is more valuable than S′ if, in
every common interest basic game G, there is a belief invariant decision rule for (G�S)
that gives a higher common ex ante payoff than any belief invariant decision rule for
(G�S′).

Definition 12 (More valuable). Information structure S is more valuable than infor-
mation structure S′ if, for every common interest basic gameG, v(G�S)≥ v(G�S′).

17Caplin and Martin (2015) introduce a theoretical and experimental framework for analyzing imper-
fect perception. The set of joint distributions over states and actions that arise in their framework also
correspond to one-player Bayes correlated equilibria where S is null.



512 Bergemann and Morris Theoretical Economics 11 (2016)

Now we can state another theorem.

Theorem 3. Information structure S is individually sufficient for information structure
S′ if and only if S is more valuable than S′.

Notice that obedience constraints do not arise in any of the properties used to state
this theorem. In that sense, the theorem relates a statistical ordering to a feasibility or-
dering and does not make reference to incentive compatibility constraints. But also no-
tice that, since the game has common interests, the belief invariant decision rule that
is the argmax of expression (12) will automatically satisfy obedience. Recall from Defi-
nition 8 that a decision rule is a belief invariant Bayes correlated equilibrium of (G�S)
if it satisfies belief invariance and obedience. Thus v(G�S) is also the ex ante highest
common payoff that can be obtained in a belief invariant Bayes correlated equilibrium.

In the special case of one player, Theorem 3 clearly reduces to the classic statement
of Blackwell’s theorem favored by economists; in the many-player case, it follows from
the arguments of Lehrer et al. (2010). We can sketch a direct proof of the harder direc-
tion of Theorem 3. Manipulations of definitions shows that S is individually sufficient
for information structure S′ if and only if the set of outcomes induced by belief invari-
ant decision rules for (G�S) is larger than that set for (G�S′). In other words, for any
action sets for the players, S supports a larger set of feasible outcomes than S′. Since
these sets are compact and convex, the separating hyperplane theorem implies we can
choose a common utility function such that ex ante expected utility is higher under S
than under S′.

Appendix: Applications and a binary action game

We have used Bayes correlated equilibria and the interpretation suggested by Theorem 1
in a variety of applications. In Bergemann and Morris (2013b) and Bergemann et al.
(2015c), we have considered games played by a continuum of players, with symmetric
payoffs and linear best responses, and focussed on symmetric equilibria. In our work
on third degree price discrimination, Bergemann et al. (2015b), we exploited the fact
that the outcomes of third degree price discrimination correspond to one-player Bayes
correlated equilibria. In Bergemann et al. (2015a) we used the results to look at all out-
comes that could arise for different information structures that players have in a first
price auction.

Rather than trying to review this work, we instead present a 2 × 2 × 2 basic game,
where there are two players, two actions for each player, and two states, to illustrate the
structure of Bayes correlated equilibria and Theorem 1 and the orderings of information
structures in Theorem 2. In particular, we identify, in this class of games, the expanded
information structures that support or “decentralize” welfare maximizing Bayes corre-
lated equilibria as Bayes Nash equilibria. The role of strategic substitutes and strategic
complements in these results complements welfare results in Bergemann and Morris
(2013b). Even in this simple class of games, the analysis becomes algebraically quite in-
volved. This is not surprising, given the demonstration in Calvó-Armengol (2006) that,
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even in complete information games, characterizing and visualizing all correlated equi-
libria of all two player two actions games are not easy. We restrict attention to a two
dimensional class of (symmetric) decision rules. We emphasize that we are using this
class of examples to illustrate results that apply to general, asymmetric, information
structures and general, asymmetric, decision rules. We analyzed a related class of such
2 × 2 × 2 basic games in Bergemann and Morris (2013a), as did Taneva (2015).

A binary investment game

Each player can either invest, a= I, or not invest, a=N , and the payoffs are given in the
bad state θB and the good state θG by the matrices

θB I N

I z− 1 + yB� z− 1 + yB −1� z
N z�−1 0�0

θG I N

I z+ 1 + yG�z+ 1 + yG 1� z
N z�1 0�0

�

The payoffs are symmetric across players and have three components: (i) there is a pay-
off 1 to invest in the good state θG and a payoff −1 to invest in the bad state θB; (ii) there
is always an externality z > 0 if the other player invests; and (iii) there is an additional,
possibly state dependent, payoff yj , j = B�G, to investing if the other player invests as
well. The payoff yj can be positive or negative, but of uniform sign across states, leading
to a game with strategic complements or substitutes, respectively. We will focus on the
case where z � 1 and yj ≈ 0.18 Thus, if the players were to know the state, i.e., under
complete information, then each player would have a strict dominant strategy to invest
in θG and not to invest in θB. Importantly, given that the externality z is assumed to be
large, i.e., z� 1, the sum of the payoffs is maximized if both players invest in both states,
θB and θG. Notice that z is a pure externality that influences players’ utilities but not the
best responses and a fortiori not the set of BCE. Finally, we assume that state θG occurs
with probability ψ, while state θB occurs with probability 1 −ψ.

A binary information structure

We consider a binary information structure S where, if the state is bad, each player ob-
serves a signal tb, saying that the state is bad, with probability q. If a player does not
receive the signal tb, then he receives the signal tg, and thus the signal tg is always ob-
served in the good state. The signal distribution π :�→ �(T) is given by

π(·|θB) tb tg

tb q 0
tg 0 1 − q

π(·|θG) tb tg

tb 0 0
tg 0 1

�

Thus signal realizations are perfectly correlated. The information structure is symmetric
across players, but not across states. In particular, the conditional probability q is a

18Formally, we require that z > 1 and that z > 1 − 2yj for j = B�G.
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measure of the accuracy of the information structure. An increase in q leads, after a
realization of tg, to a strict increase in the posterior probability that the state is θG, and
after a realization of tb, the posterior probability that the state is θB is always 1 (and thus
is weakly increasing in q).

We restrict attention to decision rules σ , as defined earlier in (1), that are symmetric
across players. Accordingly, we must specify the action profile for each state–signal pro-
file (θ� t). After observing the negative signal tb, each player knows that the state is θB
and has a strictly dominant strategy to choose N , so we will take this behavior as given.
We can parameterize the symmetric (across players) decision rule σ conditional on the
positive signals tg and the state θj , for j = B�G, by

σ(θj� tg) I N

I γj αj − γj
N αj − γj γj + 1 − 2αj

� (13)

We thus have four parameters, αB, αG, γB, and γG. The probability that any one player
invests in state θj is αj and γj is the probability that both players invest. These parame-
ters are subject to the nonnegativity restrictions:

αj ≥ 0� γj ≥ 0� and 2αj − 1 ≤ γj ≤ αj for j = B�G� (14)

The set of parameters (αB�αG�γB�γG) that form a Bayes correlated equilibrium are
completely characterized by the obedience conditions for a = I�N . Thus, explicitly, if
a player is observing signal tg and is advised to invest, then he will invest if

ψ(αG + γGyG)+ (1 −ψ)(1 − q)(−αB + γByB)≥ 0; (15)

and a player advised to not invest will not invest if

ψ(1 − αG + (αG − γG)yG)+ (1 −ψ)(1 − q)(−(1 − αB)+ (αB − γB)yB)≤ 0� (16)

Welfare maximizing Bayes correlated equilibria

We will first focus on the characterization of the “second-best BCE,” which maximizes
the sum of players’ utility subject to being a BCE, and then describe the expanded in-
formation structures that can achieve the Bayes correlated equilibrium as a Bayes Nash
equilibrium. To this end, it suffices to identify the parameters (αB�αG�γB�γG) that max-
imize the expected utility of a (representative) player,

ψ(αG(z+ 1)+ γGyG)+ (1 −ψ)(1 − q)(αB(z− 1)+ γByB)�

subject to the obedience conditions (15) and (16) and the nonnegativity restrictions (14).
In the analysis it will prove useful to distinguish between the strategic complements,
yj ≥ 0, and strategic substitutes, yj ≤ 0.
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Strategic complements

We begin with strategic complements. As a player never invests after observing the neg-
ative signal tb, after correctly inferring that the state is θB, we immediately ask under
what conditions investment can occur after the realization of the positive signal tg. If
investment could always be achieved, independent of the true state, then the resulting
decision rule σ would have αG = γG = αB = γB = 1, and inserting these values into the
obedience constraint for investing (see (15)) yields

ψ(1 + yG)+ (1 −ψ)(1 − q)(yB − 1)≥ 0 ⇔ q≥ 1 − ψ

1 −ψ
1 + yG
1 − yB � (17)

Thus, if the information structure S, as represented by q, is sufficiently accurate, then
investment following the realization of the signal tg can be achieved with probability 1.
In fact, the above condition (17) is a necessary and sufficient condition for a Bayes Nash
equilibrium with investment after the signal tg to exist. Hence, we know that this deci-
sion rule can be informationally decentralized without any additional information if q
is sufficiently large.

By contrast, if q fails to satisfy the condition (17), then the second-best BCE is to
maintain investment in the good state, αG = γG = 1, while maximizing the probability
of investment αB in the bad state subject to the obedience constraint (15).19 In a game
with strategic complements, this is achieved by coordinating investments, i.e., setting
αB = γB and satisfying (15) as an equality:

ψ(1 + yG)− (1 −ψ)(1 − q)αB(1 − yB)= 0 ⇔ αB = γB = ψ(1 + yG)
(1 −ψ)(1 − q)(1 − yB) � (18)

Now, we observe that the solution (18) requires the probabilities to differ across the
states, or αB = γB < αG = γG = 1. It follows that this decision rule requires additional
information, and hence an expansion of the information structure S for it to be decen-
tralized as a Bayes Nash equilibrium. The necessary expansion is achieved by two addi-
tional signals t ′b� t

′
g, which lead to an expansion S∗ and an associated signal distribution

π∗(t� t ′|θ) as displayed below:

π∗(·|θB) tb� t
′
b tg� t

′
b tg� t

′
g

tb� t
′
b q 0 0

tg� t
′
b 0 r 0

tg� t
′
g 0 0 1 − q− r

π∗(·|θG) tb� t
′
b tg� t

′
g

tb� t
′
b 0 0

tg� t
′
g 0 1

�

We observe that the expansion preserves the public nature of the signals, in that the re-
alizations remain perfectly correlated across the players. The additional signals confirm
the original signals everywhere except for the pair (tg� t ′b), which changes the posterior
of each player to a probability 1 belief that the state is θB. In other words, the additional
signals t ′b� t

′
g “split” the posterior conditional on receiving tg in the information struc-

ture S. We can readily compute the minimal probability that the public signal (tg� t ′b)

19The no investment constraint (16) will automatically be satisfied.
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has to have so that in the associated BNE the players invest with probability 1 after re-
ceiving the signal (tg� t ′g), namely by requiring that the best response for investment is
met as an equality in the BNE:

ψ(1 + yG)− (1 −ψ)(1 − q− r)(1 − yB)= 0 ⇔ r = 1 − q− ψ(1 + yG)
(1 −ψ)(1 − yB) �

Strategic substitutes

Next, we discuss the game with strategic substitutes, yj ≤ 0. While the basic equilibrium
conditions remain unchanged, the information structures that decentralize the second-
best BCE have very different properties with strategic substitutes. In particular, private
rather than public signals become necessary to decentralize the decision rule σ as a
Bayes Nash equilibrium.

To begin with, just as in the case of strategic complements, if the information struc-
ture S, as represented by q, is sufficiently accurate, then investment following the re-
alization of the signal tg can be achieved with probability 1; this is the earlier condi-
tion (17). Similarly, if q fails to satisfy the condition (17), then the second-best BCE is to
maintain investment in the good state, αG = γG = 1, while maximizing the probability of
investment αB in the bad state subject to the obedience constraint (15). But importantly,
in a game with strategic substitutes, the obedience constraint is maintained by minimiz-
ing the probability of joint investments, hence minimizing γB. In terms of the decision
rule σ(·� tg) as represented in the matrix (13), we seek to place most probability off the
diagonal, in which only one, but not both players, invest. If there is substantial slack
in the obedience constraint (15) when evaluated at zero entries on the diagonal of (13),
then the residual probability can lead to investment by both players, but if there is little
slack, then it will require that the residual probability leads to no investment by either
player, which suggests a second threshold for q, beyond the one established in (17).

Thus if condition (17) fails, then it is optimal to maximize αB and minimize γB, where
the latter is constrained by the nonnegativity restrictions of (14): γB = max{0�2αB − 1}.
Thus we want αB to solve the obedience constraint for investment, (15), as an equality:

ψ(1 + yG)+ (1 −ψ)(1 − q)(−αB + max(2αB − 1�0)yB)= 0�

This leads to a strictly positive solution of γB, the probability of joint investment, as long
as the probability q is not too low, or

1 − 2ψ
1 −ψ(1 + yG)≤ q≤ 1 − ψ

1 −ψ
1 + yG
1 − yB � (19)

and the second-best decision rule given by

αG = γG = 1� αB = 1
1 − 2yB

(
ψ(1 + yG)

(1 −ψ)(1 − q) − yB
)
� γB = 2αB − 1�
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Finally, if q falls below the lower threshold established in (19), then the second-best
decision rule σ prescribes investment only by one player, but never by both players si-
multaneously:

αG = γG = 1� αB = ψ(1 + yG)
(1 −ψ)(1 − q)� γB = 0� (20)

As expected, we find that both the probability of investment by a player, given by αB, as
well as the probability of a joint investment, γB, are increasing in the accuracy q.

We ask again which expanded information structures decentralize these second-
best decision rules. As γB < αB, the decision rule σ requires with positive probability
investment by one player only. This can only be achieved by private signals that lead
to distinct choices by the players with positive probability. The expansion can still be
achieved with two additional signals, t ′b� t

′
g, and as before the additional signals refine

or split the posterior that each player held at tg in the information structure S. But im-
portantly, now the signal realizations cannot be perfectly correlated across the players
anymore. Thus if q is not too low, i.e., condition (19) prevails, then the following infor-
mation structure decentralizes the second-best BCE:

π∗(·|θB) tb� t
′
b tg� t

′
b tg� t

′
g

tb� t
′
b q 0 0

tg� t
′
b 0 0 r

tg� t
′
g 0 r 1 − q− 2r

π∗(·|θG) tb� t
′
b tg� t

′
g

tb� t
′
b 0 0

tg� t
′
g 0 1

�

By contrast, if q is sufficiently low, i.e., below the lower bound of (19), then the expanded
information structure below decentralizes the BCE:

π∗(·|θB) tb� t
′
b tg� t

′
b tg� t

′
g

tb� t
′
b q 0 0

tg� t
′
b 0 1 − q− 2r r

tg� t
′
g 0 r 0

π∗(·|θG) tb� t
′
b tg� t

′
g

tb� t
′
b 0 0

tg� t
′
g 0 1

�

In either case, the expansion requires private signals in the sense that conditional on
receiving a given signal, either (tg� t ′g) or (tg� t ′b), respectively, each player remains un-
certain as to the signal received by the other player, i.e., either (tg� t ′b) or (tg� t ′g). As re-
quired, the expanded information structure S∗ preserves the likelihood distributionψ of
the initial information structure S.20

The set of all symmetric Bayes correlated equilibria

The above analysis focussed on second-best Bayes correlated equilibria that maximize
welfare. We now visualize all symmetric Bayes correlated equilibria in a special case.

20An interesting question that we do not explore in any systematic manner in this paper is what we can
say about the relation between Bayes correlated equilibria and the expansions that are needed to support
them as Bayes Nash equilibria. Milchtaich (2014) examines properties of devices needed to implement
correlated equilibria, and tools developed in his paper might be useful for this task.
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Figure 1. BNE and set of BCE with low accuracy: q= 1
5 .

Figure 2. BNE and set of BCE with intermediate accuracy: q= 11
20 .

We stay with a game of strategic substitutes, yj ≤ 0, and the illustrations below are com-
puted for the prior probability of the good state, ψ = 1

3 and z = 2, yG = 0, yB = − 1
6 . Be-

cause there is never investment conditional on bad signals, it is enough the focus on
the probabilities αG and αB that any player invests, conditional on good and bad states,
respectively, after observing the positive signal tg. Figures 1–3 show the set of all values
of αG and αB corresponding to symmetric BCE for low, intermediate, and high levels of
accuracy q, namely q= 1

5 , 11
20 , and 4

5 , respectively.
The set of Bayes correlated equilibria for the binary games is completely character-

ized by the obedience constraints (15) and (16), given the parameterized decision rule σ ;
see (13). The detailed computations for the present example are recorded in Appendix B
of Bergemann and Morris (2014a).

For all values of q ∈ [0�1], the action profile that maximizes the sum of the payoffs
is αB = αG = 1, the first-best action profile. Every Bayes Nash equilibrium under the
given information structure S has to be located on the 45◦ line, as each player cannot
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Figure 3. BNE and set of BCE with high accuracy: q= 4
5 .

distinguish between the states θB and θG conditional on tg. In fact, the symmetric Bayes
Nash equilibrium in the game with strategic substitutes is unique for all levels of q, and
depending on the accuracy q, it is either a pure strategy equilibrium with no investment
as in Figure 1, a mixed strategy equilibrium with positive probability of investment as in
Figure 2, or a pure strategy equilibrium with investment as in Figure 3. By contrast, the
second-best BCE, as computed by (20), always yields a strictly positive level of invest-
ment in the bad state θB, and one that is strictly higher than in any BNE, unless the BNE
itself is a pure strategy equilibrium with investment (following tg); see Figure 3.

If we consider an intermediate level of accuracy q, rather than a low level of accuracy
q, as in Figure 2, then we find that there is unique mixed BNE, which provides invest-
ment with positive probability following tg. The BNE is therefore in the interior of the
unit square of conditional investment probabilities (αG�αB). By contrast, the second-
best BCE remains at the boundary of the unit square, and yields a strictly higher prob-
ability of investment in the bad state than the corresponding Bayes Nash equilibrium.
Interestingly, the BNE is in the interior of the set of BCE, when expressed in the space
of investment probabilities rather than an extreme point of the set of BCE. If the accu-
racy of the information structure increases even further (see Figure 3), then conditional
on receiving the positive signal tg, it is sufficiently likely that the state is θG, and invest-
ment occurs with probability 1 even in the Bayes Nash equilibrium. Essentially, the high
probability of θG (and resulting high payoffs from investment) more than offsets the low
probability of θB (and resulting low payoffs from investment).

This first set of illustrations depicts the probabilities of investment conditional on
the realization of the positive signal tg and the state θj , j = B�G. But as we vary the ac-
curacy q, we are changing the probability of the signal tg, and hence the above figures
do not directly represent the probabilities of investment βj conditional on the state θj
only, which are simply given by βB = (1 − q)αB and βG = αG. The resulting sets of in-
vestment probabilities are depicted in Figure 4 for all three levels of q. The set of BCE is
shrinking as the information structure S, as represented by q, becomes more accurate.
This comparative static illustrates Theorem 2. Because the set of BCE is shrinking, the
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Figure 4. Set inclusion of BCE with increasing information.

best achievable BCE welfare is necessarily getting weakly lower with more information
and, in this example, is strictly lower. Alternatively, as q increases, welfare in BNE will
increase over some ranges.
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